WO2022226749A1 - 一种通信方法及装置、存储介质和芯片系统 - Google Patents

一种通信方法及装置、存储介质和芯片系统 Download PDF

Info

Publication number
WO2022226749A1
WO2022226749A1 PCT/CN2021/090070 CN2021090070W WO2022226749A1 WO 2022226749 A1 WO2022226749 A1 WO 2022226749A1 CN 2021090070 W CN2021090070 W CN 2021090070W WO 2022226749 A1 WO2022226749 A1 WO 2022226749A1
Authority
WO
WIPO (PCT)
Prior art keywords
descriptor
request
parameters
routing
processor
Prior art date
Application number
PCT/CN2021/090070
Other languages
English (en)
French (fr)
Inventor
闫志吉
胡文
陈功
谷传征
徐佳婕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023565495A priority Critical patent/JP2024515763A/ja
Priority to PCT/CN2021/090070 priority patent/WO2022226749A1/zh
Priority to CN202180097002.5A priority patent/CN117280859A/zh
Priority to EP21938239.7A priority patent/EP4325995A4/en
Priority to BR112023022259A priority patent/BR112023022259A2/pt
Priority to KR1020237040526A priority patent/KR20230172598A/ko
Priority to TW111115685A priority patent/TWI823362B/zh
Publication of WO2022226749A1 publication Critical patent/WO2022226749A1/zh
Priority to US18/494,331 priority patent/US20240056943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device, a storage medium and a chip system.
  • the 3rd generation partnership project (3GPP) defines a user routing policy (UE route selection policy, URSP), which is used to determine the routing required by different applications (application, APP), data packets, etc.
  • Description information (Route Selection Descriptor, RSD), such as network slice (network slice, NS), data network name (Data Network Name, DNN), and session service continuity (session service continuity, SSC) mode and so on.
  • RSD Route Selection Descriptor
  • the terminal device can determine the corresponding RSD according to the network requirements of the APP, then establish a protocol data unit (PDU) session based on the determined RSD, and then transmit the data of the APP through the established PDU session.
  • PDU protocol data unit
  • the modem sends the network through the +CRUEPOLICY command, including URSP information, such as user policy Information (UE policy section), and then reported to the upper-layer system in the form of the original code stream (the upper-layer system usually refers to the operating system or application control layer).
  • URSP information such as user policy Information (UE policy section)
  • the upper-layer system usually refers to the operating system or application control layer.
  • the upper-layer system After the upper-layer system decodes the original code stream, it replies to the Modem through the +CSUEPOLICY command, and then the Modem forwards it to the network.
  • the 3GPP 27.007 protocol tends to perform URSP-related operations in the upper-layer system.
  • the operating systems such as Android and Android used by each manufacturer are controlled by the system publisher, and it is difficult to modify the control layer code for certain features.
  • the URSP feature needs to be used on the communication device, each manufacturer needs to develop and maintain the URSP feature by itself, and with the upgrade of the 3GPP protocol, the protocol parsing code in the operating system needs to be modified synchronously. The cost of development and maintenance is very high. Based on this, Manufacturers are less willing to implement URSP on communication devices.
  • the present application provides a communication method and device, a storage medium and a chip system, which are used to implement the URSP feature through a communication processor installed on the communication device.
  • the communication device may be a wireless communication device, or may be a part of a device in the wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the wireless communication device may be a computer device that supports wireless communication functionality.
  • the wireless communication device may be a terminal such as a smart phone, or may be a wireless access network device such as a base station.
  • a system-on-chip may also be referred to as a system on chip (system on chip, SoC), or simply referred to as a SoC chip.
  • the communication chip may include a baseband processing chip and a radio frequency processing chip. Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • the radio frequency processing chip is also sometimes referred to as a radio frequency transceiver (transceiver) or radio frequency chip.
  • some or all of the communication chips may be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • a wireless communication apparatus including a communication processor, the communication processor including a processing circuit, and an interface circuit coupled to the processing circuit, wherein the processing circuit is configured to: The first request sent by the application processor is received, and the second request is sent to the network device. The first request is used to query the routing descriptor. The first request includes routing information parameters corresponding to the data to be transmitted. The second request is used to activate the session. The second request includes at least one parameter in the routing descriptor. The routing descriptor matches the routing information parameter.
  • the communication processor can trigger an operation of querying the routing descriptor based on the first request, and then request the establishment of a session from the network based on the routing descriptor matching the routing information parameter obtained in the query, so that on the wireless communication device
  • the URSP feature is implemented, and the solution does not require other manufacturers to develop and maintain the URSP feature on the operating system layer, reducing the cost of the manufacturer.
  • the URSP feature can also be implemented by the installed communication processor. In this way, the utilization rate of the URSP feature in the product can be increased.
  • the routing information parameter is the same as the parameter included in the traffic descriptor in the target URSP rule.
  • the routing descriptor is the routing descriptor in the target URSP rule.
  • the routing information parameter includes at least one of the following parameters: a destination address parameter of the data to be transmitted; a data network parameter corresponding to the data to be transmitted; an application program descriptor corresponding to the data to be transmitted; or, The connection capability parameter corresponding to the data to be transmitted. Since the routing descriptor can be queried based on multiple types of parameters, the flexibility of the scheme can be improved.
  • the traffic descriptor includes at least one of the following parameters: a destination address parameter; a data network parameter; an application descriptor; or, a connection capability parameter. Since the parameter type in the traffic descriptor is basically the same as the parameter type in the routing information parameter, the required routing descriptor is queried by matching the two.
  • the destination address parameter includes at least one of the following parameters: a domain descriptor corresponding to the data to be transmitted; an Internet Protocol IP descriptor corresponding to the data to be transmitted; or a non-IP corresponding to the data to be transmitted Descriptor. Since there are various types of destination address parameters, the flexibility of the scheme can be increased.
  • the data network parameters include: DNN.
  • DNN the data network required for the data to be transmitted can be determined according to the DNN.
  • the parameters in the routing descriptor include: parameters required to be satisfied by the session.
  • the parameters required by the session to be satisfied include at least one of the following: parameters of the network required by the session; parameters of the network slice required by the session; or parameters of the session service required by the session. Since there are many types of parameters included in the routing descriptor, it is possible to create requirements for sessions from various perspectives, and then to provide users with more diverse personalized services.
  • the parameters of the network include at least one of the following parameters: session type, data network name DNN, access type priority, or non-seamless offload indication. Since the parameters of the network include more types, the flexibility of the scheme can be improved, and more personalized services can be provided for users.
  • the parameters of the network slice include at least one of the following parameters: network slice type, or network slice name.
  • the network slice parameters required for the session can be determined by the network slice type or name.
  • the parameters of the session service include: a session service continuity SSC parameter.
  • Session-based service parameters can provide users with a service mode that is more in line with session characteristics.
  • the first request is further used for: activating the session.
  • the first request can be made by two functions, query routing descriptor and activate session.
  • the communications processor may then perform two actions based on the first request: query the routing descriptor and activate the session. It can be seen that there is almost no change to the application processor in this solution, and it is only necessary to send the first request.
  • the work of realizing the URSP feature is all realized by the communication processor, which can reduce the workload of each manufacturer to make changes to the operating system.
  • the first request includes at least one of the following: +CACT; +CPSDIAL; +CACT; +CEST; or +CCONN.
  • ACT in this command includes the meaning of activating a session, which is more practical and makes it easier for users to understand the meaning of this command.
  • the processing circuit is further configured to, through the interface circuit: after receiving the first request sent by the application processor and before sending the second request to the network device, return the first request to the application processor In response, the first response includes at least one parameter in the routing descriptor.
  • the communication processor can return at least one parameter in the queried routing descriptor to the application processor, so that the application processor can use the parameter as a dialing parameter when activating a session, thereby implementing the URSP feature.
  • the first request includes at least one of the following: +C5GRSDQRY; +C5GURSPQRY; +CURSPQRY; +CQRSD; +C5GQRSD or +C5GRURSP.
  • the query function of the first request can be implemented through the defined new AT command, so that it can be more compatible with the prior art.
  • "5GRSDQRY" in this command includes the command used in 5G networks, and the function is to query the meaning of the routing descriptor, which is more practical and makes it easier for users to understand the meaning of the command.
  • the first response further includes the priority of the routing descriptor.
  • the application processor can be made to dial in sequence according to the priority of each routing descriptor, so as to create a session.
  • the communication processor after returning the first response and before sending the second request to the network device, further includes: receiving a third request sent by the application processor, where the third request is used for: activating the session;
  • the third request includes at least one parameter in the routing descriptor.
  • the third request can carry the routing descriptor queried from the communication processor, so the selection right of the routing descriptor can be given to the application processor.
  • this scheme since this scheme is added to realize the URSP feature, the diversity of the embodiments of the present application can be improved, and more alternative implementation schemes can be provided for users, thereby improving flexibility.
  • the second request is a session establishment request.
  • the second request sent by the communication processor may be a session establishment request defined in an existing protocol. Taking the 5G technology as an example, the second request may be a PDU session establishment request. And carry at least one parameter in the routing descriptor as a dialing parameter. In this way, existing protocols can be more compatible.
  • the processing circuit is further configured to, through the interface circuit: receive at least one URSP rule corresponding to the wireless communication device issued by the network device; the URSP rule in the at least one URSP rule includes a flow descriptor and at least one routing descriptor.
  • a first message is sent to the application processor, the first message including parameters in at least one traffic descriptor in at least one URSP rule.
  • sending the traffic descriptor to the application processor can lay the groundwork for the application processor to perform preliminary screening.
  • the first message includes at least one of the following: +C5GTDRPT; +CTDRPT; +CURSPRPT; or +C5GTD.
  • the query function of the first request can be implemented through the defined new AT command, so that it can be more compatible with the prior art.
  • the command can contain the meaning of the returned flow descriptor, which is more practical and makes it easier for the user to understand the meaning of the command.
  • the wireless communication apparatus further includes an application processor, and the communication processor is coupled to the application processor.
  • the application processor is specifically configured to: determine whether there is a traffic descriptor that meets a preset condition in the received at least one traffic descriptor, where the preset condition includes: the parameter in the traffic descriptor matches the routing information parameter; if there is, then Send the first request. In this way, since the application processor can perform preliminary screening, the first request can be sent after it is determined that the URSP rule issued by the network has a corresponding traffic descriptor.
  • the original solution can be used, that is, the communication processor receives the request to activate the session After that, the routing descriptor is not queried, but a session is directly initiated to the network, but the parameters in the routing descriptor are no longer used as dialing parameters in the session.
  • the session activation fails.
  • the processing circuit is further configured to: through the interface circuit: after sending the second request to the network device, receive a second response, where the second response is used to indicate that the session is activated successfully.
  • a third response is returned to the application processor, where the third response is used to indicate that the session activation is successful.
  • the communication processor After receiving the session activation success message, the communication processor indicates to the application processor that the session activation is successful, and can send the session message, so that the application processor transmits data based on the activated session.
  • the processing circuit is further configured to use the interface circuit: if a message indicating session activation failure is received, the communication processor can select a routing description with a lower priority by itself The activation process of initiating the session continues until the session activation is successful, or all the matching routing descriptors are used up. In this manner, the communication processor may choose to feed back the message of session activation failure to the application processor, or not.
  • the processing circuit is further configured to, through the interface circuit, return a message of session activation failure to the application processor, and the application processor selects a routing descriptor with a second priority. Continue to initiate the session activation process until the session activation is successful, or all the matched routing descriptors are used up.
  • the processing circuit is configured to receive, through the interface circuit, an original code stream corresponding to at least one URSP rule corresponding to the wireless communication apparatus issued by the network device. Decode the original code stream corresponding to the URSP rule to obtain at least one URSP rule. Store at least one URSP rule to memory. In this way, the work of decoding the original code stream of the URPS rule can be moved to the communication processor to realize, reducing the requirement on the application processor.
  • the application processor does not have the ability to decode the original code stream corresponding to the URSP rule. In this way, the work of decoding the original code stream of the URPS rule can be moved to the communication processor to realize, reducing the requirement on the application processor. Then it lays a foundation for popularizing the URSP feature in wireless communication devices with weak application processors.
  • an embodiment of the present application provides a communication method, which is applicable to a wireless communication device including a communication processor; the method includes receiving, through the communication processor, a first request sent by an application processor, and sending a second request to a network device.
  • the first request is used to query the routing descriptor, and the first request includes routing information parameters corresponding to the data to be transmitted.
  • the second request is used to activate the session, and the second request includes at least one parameter in the routing descriptor; the routing descriptor matches the routing information parameter.
  • the communication processor can trigger an operation of querying the routing descriptor based on the first request, and then request the establishment of a session from the network based on the routing descriptor matching the routing information parameter obtained in the query, so that on the wireless communication device
  • the URSP feature is implemented, and the solution does not require other manufacturers to develop and maintain the URSP feature on the operating system layer, reducing the cost of the manufacturer.
  • the URSP feature can also be implemented by the installed communication processor. In this way, the utilization rate of the URSP feature in the product can be increased.
  • the routing information parameter is the same as the parameter included in the traffic descriptor in the target URSP rule.
  • the routing descriptor is the routing descriptor in the target URSP rule.
  • the routing information parameter includes at least one of the following parameters: a destination address parameter of the data to be transmitted; a data network parameter corresponding to the data to be transmitted; an application program descriptor corresponding to the data to be transmitted; or, The connection capability parameter corresponding to the data to be transmitted. Since the routing descriptor can be queried based on multiple types of parameters, the flexibility of the scheme can be improved.
  • the traffic descriptor includes at least one of the following parameters: a destination address parameter; a data network parameter; an application descriptor; or, a connection capability parameter. Since the parameter type in the traffic descriptor is basically the same as the parameter type in the routing information parameter, the required routing descriptor is queried by matching the two.
  • the destination address parameter includes at least one of the following parameters: a domain descriptor corresponding to the data to be transmitted; an Internet Protocol IP descriptor corresponding to the data to be transmitted; or a non-IP corresponding to the data to be transmitted Descriptor. Since there are various types of destination address parameters, the flexibility of the scheme can be increased.
  • the data network parameters include: DNN.
  • DNN the data network required for the data to be transmitted can be determined according to the DNN.
  • the parameters in the routing descriptor include: parameters required to be satisfied by the session.
  • the parameters required by the session to be satisfied include at least one of the following: parameters of the network required by the session; parameters of the network slice required by the session; or parameters of the session service required by the session. Since there are many types of parameters included in the routing descriptor, it is possible to create requirements for sessions from various perspectives, and then to provide users with more diverse personalized services.
  • the parameters of the network include at least one of the following parameters: session type, data network name DNN, access type priority, or non-seamless offload indication. Since the parameters of the network include more types, the flexibility of the scheme can be improved, and more personalized services can be provided for users.
  • the parameters of the network slice include at least one of the following parameters: network slice type, or network slice name.
  • the network slice parameters required for the session can be determined by the network slice type or name.
  • the parameters of the session service include: a session service continuity SSC parameter.
  • Session-based service parameters can provide users with a service mode that is more in line with session characteristics.
  • the first request is further used for: activating the session.
  • the first request can be made by two functions, query routing descriptor and activate session.
  • the communications processor may then perform two actions based on the first request: query the routing descriptor and activate the session. It can be seen that there is almost no change to the application processor in this solution, and it is only necessary to send the first request.
  • the work of realizing the URSP feature is all realized by the communication processor, which can reduce the workload of each manufacturer to make changes to the operating system.
  • a first response is also returned to the application processor through the communication processor, where the first response includes route selection At least one parameter in the descriptor.
  • the communication processor can return at least one parameter in the queried routing descriptor to the application processor, so that the application processor can use the parameter as a dialing parameter when activating a session, thereby implementing the URSP feature.
  • the first response further includes the priority of the routing descriptor.
  • the application processor can be made to dial in sequence according to the priority of each routing descriptor, so as to create a session.
  • the communication processor further receives, through the communication processor, a third request sent by the application processor, where the third request is used to: activate session; the third request includes at least one parameter in the routing descriptor.
  • the third request can carry the routing descriptor queried from the communication processor, so the selection right of the routing descriptor can be given to the application processor.
  • the second request is: a session establishment request; the second request includes at least one parameter in the routing descriptor.
  • the second request sent by the communication processor may be a session establishment request defined in an existing protocol. Taking 5G technology as an example, the second request may be a PDU session establishment request, and carry at least one parameter in the routing descriptor as a dialing parameter . In this way, existing protocols can be more compatible.
  • At least one URSP rule corresponding to the wireless communication device issued by the network device is also received by the communication processor; in the at least one URSP rule A URSP rule includes a traffic descriptor and at least one routing descriptor.
  • a first message is sent to the application processor by the communication processor, the first message including parameters in at least one traffic descriptor in at least one URSP rule.
  • sending the traffic descriptor to the application processor can lay the groundwork for the application processor to perform preliminary screening.
  • the application processor after sending the first message to the application processor, the application processor further determines whether there is a flow descriptor that satisfies a preset condition in the received at least one flow descriptor, and the preset condition includes: The parameter in the traffic descriptor matches the routing information parameter; if it exists, the first request is sent. In this way, since the application processor can perform preliminary screening, the first request can be sent after it is determined that the URSP rule issued by the network has a corresponding traffic descriptor.
  • the original solution can be used, that is, the communication processor receives the request to activate the session After that, the routing descriptor is not queried, but a session is directly initiated to the network, but the parameters in the routing descriptor are no longer used as dialing parameters in the session.
  • the session activation fails.
  • the communication processor after the communication processor sends the second request to the network device, the communication processor further receives the second response, and returns the third response to the application processor.
  • the second response is used to indicate that the session activation is successful.
  • the third response is used to indicate that the session activation is successful.
  • the communication processor After receiving the session activation success message, the communication processor indicates to the application processor that the session activation is successful, and can send the session message, so that the application processor transmits data based on the activated session.
  • the communication processor may select a routing descriptor with a lower priority by itself to continue the activation process of initiating the session until the session activation is successful, Or all matching routing descriptors are used up. In this way, the communication processor can choose to feed back the message of session activation failure to the application processor, or not.
  • the communication processor may return a message of session activation failure to the application processor, and the application processor selects a routing descriptor with a lower priority to continue the activation process of initiating the session until the session is activated. Success, or all matching routing descriptors are used up.
  • the communication processor before the communication processor receives the first request sent by the application processor, receives the original code stream corresponding to at least one URSP rule corresponding to the wireless communication apparatus issued by the network device. Decode the original code stream corresponding to the URSP rule to obtain at least one URSP rule. Store at least one URSP rule to memory. In this way, the work of decoding the original code stream of the URPS rule can be moved to the communication processor to realize, reducing the requirement on the application processor.
  • the application processor does not have the ability to decode the original code stream corresponding to the URSP rule. In this way, the work of decoding the original code stream of the URPS rule can be moved to the communication processor to realize, reducing the requirement on the application processor. Then it lays a foundation for popularizing the URSP feature in wireless communication devices with weak application processors.
  • the present application further provides a communication device, including: a processor and a memory; wherein, the memory is used for storing program instructions; the processor is used for executing the program instructions stored in the memory, so as to implement any possible method in the second aspect.
  • the present application also provides a communication device, comprising: a processor and an interface circuit; wherein, the interface circuit is used to access a memory, and the memory stores program instructions; the processor is used to access the memory through the interface circuit, and execute the program instructions stored in the memory , to implement any possible method in the second aspect.
  • the present application provides a computer-readable storage medium, in which computer-readable instructions are stored, and when the computer reads and executes the computer-readable instructions, the communication apparatus is made to execute the method in any of the above possible designs.
  • the present application provides a computer program product that, when a computer reads and executes the computer program product, causes a communication apparatus to perform the method in any of the above possible designs.
  • the present application provides a chip, which is connected to a memory, and is used for reading and executing a software program stored in the memory, so as to implement the method in any of the above possible designs.
  • FIG. 1 is a schematic diagram of the architecture of a communication system to which an embodiment of the application is applied;
  • FIG. 2a is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 2b is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another possible communication method provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (Time Division Duplex) , TDD), fifth generation (5th Generation, 5G) system, New Radio (New Radio, NR) or future sixth generation (5th Generation, 6G) system, etc., which are not limited here.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • 5G Fifth Generation
  • New Radio New Radio
  • 6G future sixth generation
  • FIG. 1 exemplarily shows a schematic diagram of the architecture of a communication system to which an embodiment of the present application is applied.
  • a terminal device 10 and a network device.
  • network equipment usually belongs to operators or infrastructure providers, and these manufacturers are responsible for operation or maintenance.
  • the network devices may be further divided into (radio access network, (R)AN) devices 20 and core network (core network, CN) devices 30 .
  • R radio access network
  • CN core network
  • RAN equipment includes base station (BS), small cell or 5G router, etc.
  • the wireless communication device may be a wireless communication device, or may be a part of a device in the wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the wireless communication device may be a computer device that supports wireless communication functionality.
  • the wireless communication device may be a terminal device 10 (a terminal such as a smart phone) or a (R)AN device 20 (a (R)AN device such as a base station).
  • a system-on-chip may also be referred to as a system on chip (system on chip, SoC), or simply referred to as a SoC chip.
  • the communication chip may include a baseband processing chip and a radio frequency processing chip. Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • the radio frequency processing chip is also sometimes referred to as a radio frequency transceiver (transceiver) or radio frequency chip.
  • some or all of the communication chips may be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • Terminal device 10 (1) Terminal device 10 .
  • the terminal device 10 may also be referred to as a terminal.
  • the terminal can establish a connection with the network device, and provide the user with specific wireless communication services based on the service of the network device. It should be understood that because the terminal has a closer relationship with the user, it is sometimes also referred to as user equipment (user equipment, UE), or subscriber unit (subscriber unit, SU).
  • user equipment user equipment
  • subscriber unit subscriber unit
  • SU subscriber unit
  • terminals tend to move with users and are sometimes referred to as mobile stations (mobile stations, MSs).
  • some network devices such as relay nodes (relay nodes, RNs) or wireless routers, can sometimes be regarded as terminals because they have UE identity or belong to users.
  • the terminal may be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, smart bracelet, smart helmet, smart glasses), and other Devices with wireless access capabilities, such as smart cars, various Internet of things (IOT) devices, including various smart home devices (such as smart meters and smart home appliances) and smart city devices (such as security or monitoring equipment, intelligent road transport facilities), etc.
  • IOT Internet of things
  • smart home devices such as smart meters and smart home appliances
  • smart city devices such as security or monitoring equipment, intelligent road transport facilities
  • the (R)AN device 20 is used to provide a network access function for authorized terminal devices in a specific area, and can use transmission tunnels of different qualities according to the level of the terminal device, service requirements, and the like.
  • the (R)AN device 20 can manage radio resources, provide access services for terminal devices, and then complete the forwarding of control signals and terminal device data between the terminal device and the core network.
  • the access network equipment may include various forms of base stations, such as: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, and the like.
  • a base station may also sometimes be referred to as an access point (AP), or a transmission reception point (TRP).
  • the base station may be a general node B (generation Node B, gNB) in a 5G new radio (new radio, NR) system, or an evolutional Node B (evolutional Node B, eNB) in a 4G long term evolution (long term evolution, LTE) system.
  • Base stations can be classified into macro base stations or micro base stations according to their physical form or transmit power. Micro base stations are also sometimes referred to as small base stations or small cells.
  • the (R)AN device 20 may be slightly different, for example:
  • the 5G access network equipment can be a next generation NodeB (gNB).
  • the gNB can be connected to a terminal device and communicate with the terminal device using a new wireless (new radio, NR) access technology, that is, the gNB and the terminal device communicate through an NR link.
  • NR new wireless
  • the 4G access network equipment may be an evolved base station (evolved Node B, eNB).
  • the terminal equipment can be located within the signal coverage of the 4G access network equipment.
  • the terminal device can be connected to the 4G access network device, and communicate with the 4G access network device through the LTE link.
  • the 2G access network equipment can be a base transceiver station (base transceiver station, BTS) and a base station controller (base station controller, BSC).
  • BTS base transceiver station
  • BSC base station controller
  • a 3G access network device may be a Node B (NodeB) or a base station or a radio network controller (RNC).
  • NodeB Node B
  • RNC radio network controller
  • a core network (core network, CN) device 30 (3) A core network (core network, CN) device 30 .
  • Core network equipment is used to provide user connections, manage users, and carry services.
  • the establishment of user connection includes functions such as mobility management (mobile management, MM) and paging (paging).
  • User management includes user description, QoS, and security (corresponding security measures provided by the authentication center include security management of mobile services and security processing of external network access).
  • Bearer connections include external public switched telephone networks (PSTN), external circuit data networks and packet data networks, the Internet, and the like.
  • the specific core network device 30 may be somewhat different, for example:
  • the core network equipment in the 5G communication system can also be called 5G core network (5G core network, 5GC).
  • 5G core network 5G core network
  • the network elements in 5GC are functional virtual units, which may include but are not limited to: Unit (access and mobility management function, AMF), unit for session management function (session management function, SMF), network element for unified data management (unified data management, UDM) and so on.
  • AMF access and mobility management function
  • SMF session management function
  • UDM unified data management
  • the core network equipment in the 4G communication system can also be called an evolved packet core (EPC).
  • the EPC mainly includes the following network elements: mobility management entity (MME), serving gateway (serving gateway, SGW), packet data network gateway (packet data network gateway, PGW), home subscriber server (home subscriber server, HSS) and application server, etc.
  • MME mobility management entity
  • SGW serving gateway
  • PGW packet data network gateway
  • HSS home subscriber server
  • the main functions of the MME include access control, mobility management, attach and detach, session management (eg, bearer establishment, modification, and release), and so on.
  • the SGW is mainly used for routing and forwarding of data packets.
  • the main functions of the PGW include user-based packet filtering, lawful interception, and IP address allocation.
  • the HSS is used to store user subscription information, user subscription data, and location information of mobile users.
  • the 2G/3G core network equipment may be a mobile switching center (Mobile Switching Center, MSC), a base station controller (base station controller, BSC), and the like.
  • MSC Mobile Switching Center
  • BSC base station controller
  • FIG. 2a exemplarily shows a schematic structural diagram of a wireless communication apparatus provided by an embodiment of the present application.
  • the wireless communication apparatus may include a processor, and the processor 100 in this embodiment of the present application may include an application processor 110 and a communication processor 1501.
  • Communication processor 1501 may be modem 15011.
  • the wireless communication device may further include a communication interface 120, a memory 130, an antenna 1, an antenna 2 (an antenna 1 and an antenna 2 are used as examples in FIG. 2a, optionally, other antennas may also be included), a mobile communication module 150, a wireless communication module 140, etc.
  • the communication processor 1501 may be disposed in the mobile communication module 150, or may be disposed in other locations, for example, may be disposed on the same chip as the application processor 110. In the figure, the communication processor 1501 is located in the mobile communication module 150 for example.
  • each component of the wireless communication device is specifically introduced:
  • Processor 100 (1) Processor 100 .
  • the processor 100 in this embodiment of the present application may include one or more processing units, for example, the processor 100 may include an application processor (application processor, AP) 110, a communication processor 1501 (such as a modem 15011), a graphics processor (graphics processing unit, GPU), image signal processor (ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and/or neural network Network processor (neural-network processing unit, NPU), etc.
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller can be the nerve center and command center of the terminal device.
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • the communication processor 1501 is deployed in the mobile communication module 150 as an example in FIG. 1 for illustration. In a specific implementation, the communication processor 1501 may also be deployed in the processor 100 .
  • the wireless communication function of the terminal device can be implemented by antenna 1, antenna 2, mobile communication module 150, wireless communication module 140, communication processor 1501 (eg modem 15011) and baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in a terminal device can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the terminal device.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter, amplify, etc. the received electromagnetic waves, and transmit them to the communication processor 1501 for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the communication processor 1501 , and then convert it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150, such as the communication processor 1501 may be provided in the processor.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor.
  • the communication processor 1501 is, for example, a modem 15011.
  • Modem 15011 is the abbreviation of Modulator (modulator) and Demodulator (demodulator), called modem in Chinese, and affectionately called "cat" according to the homonym of Modem. functional electronic equipment. It generally consists of a modulator and a demodulator. Wherein, the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal. The demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing. The low frequency baseband signal is transmitted to the application processor 110 after being processed by the baseband processor.
  • modem 15011 may be a stand-alone device. In other embodiments, the modem 15011 may be independent of the processor and be provided in the same device as the mobile communication module 150 or other functional modules.
  • Modem 15011 which can be a chip.
  • it can be an integrated circuit chip with signal processing capability.
  • the steps to be implemented by the modem 15011 may be completed by hardware integrated logic circuits in the modem 15011 or instructions in the form of software.
  • the application processor 110 and the communication processor 1501 may be integrated into the same wireless communication device or the same large chip (such as a SoC (system on a chip) chip commonly found in mobile phones).
  • SoC system on a chip
  • the wireless communication module 140 can provide wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (BT), and global navigation satellite systems applied on the terminal device. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 140 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 140 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 100 .
  • the wireless communication module 140 can also receive the signal to be sent from the processor 100 , perform frequency modulation on the signal, amplify the signal, and then convert it into an
  • a memory 130 may also be provided in the processor for storing instructions and data.
  • the memory in the processor is a cache memory.
  • the memory may hold instructions or data that have just been used or recycled by the processor 100 . If the processor needs to use the instruction or data again, it can be directly called from the memory, thereby avoiding repeated access, reducing the waiting time of the processor, and thus improving the efficiency of the system.
  • the wireless communication device may also include an external memory interface for connecting an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal device.
  • an external memory card such as a Micro SD card
  • Internal memory may be used to store computer executable program code, which includes instructions.
  • the internal memory may include a program storage area and a data storage area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 100 executes various functional applications and data processing of the terminal device by executing the instructions stored in the internal memory 130 and/or the instructions stored in the memory provided in the processor.
  • the wireless communication device may include one or more communication interfaces 120 .
  • the communication interface 120 may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver transmission universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) ) interface, and/or a universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous transceiver transmission universal asynchronous receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the illustrated terminal device is merely an example, and the terminal device may have more or fewer components than those shown in the figures, may combine two or more components, or may have a different configuration of components.
  • the terminal device may also include other components, such as a power management module, buttons, indicators, etc., which will not be repeated here.
  • FIG. 2 b exemplarily shows a schematic structural diagram of a wireless communication device provided in an embodiment of the present application
  • the wireless communication device may be the wireless communication device in FIG. 2 a or the wireless communication device in FIG. communication device.
  • the wireless communication device of Figure 2b may include more or fewer components or modules than the wireless communication device shown in Figures 1 and 2a.
  • the wireless communication device may include an application processor 110.
  • the application processor 110 is used to run the operating system.
  • An operating system layer 1101 may be provided in the application processor 110 .
  • at least one application such as application 1, application 2, and application 3, may also be installed in the wireless communication device. These applications may also be run by the application processor 110 .
  • the communication processor 1501 may execute a communication protocol stack of a wireless communication device for transmitting and receiving data and the like.
  • the protocol parsing code in the operating system layer 1101 needs to be modified synchronously, and the cost of development and maintenance is high.
  • some small wireless communication devices such as routers
  • the embodiment of the present application provides a solution for realizing the URSP feature through the communication processor 1501, that is, realizing the URSP selection function when a protocol data unit (protocol data unit, PDU) session is established.
  • the communication processor in the embodiment of the present application is installed in the wireless communication device produced by the manufacturer of the communication device, there is no need to invest any more cost to develop and maintain the URSP feature on the operating system layer 1101 .
  • the URSP feature can also be implemented by the installed communication processor 1501 .
  • FIG. 3 exemplarily shows a schematic structural diagram of a wireless communication apparatus provided in an embodiment of the present application, and the wireless communication apparatus may be the wireless communication apparatus of FIG.
  • the wireless communication device in 2a may also be the wireless communication device in the aforementioned FIG. 1 .
  • the wireless communication apparatus shown in FIG. 3 may only include a communication processor.
  • the wireless communication apparatus may include a communication processor, which may include processing circuitry and interface circuitry. Interface circuits can be used to input and output information.
  • the processing circuit may be used to execute a computer-executable program, so that the method embodiments on the communication processor side provided by the embodiments of the present application can be executed.
  • the processing circuit may be a processor or a controller, such as a general-purpose central processing unit (CPU), general-purpose processor, digital signal processing (DSP), application specific integrated circuits (application specific integrated circuits) , ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the processing circuit can execute computer-executable instructions stored in the memory module.
  • the interface circuit may be a unit, module or interface on the communication processor for transmitting information.
  • the function of the interface circuit can also be implemented by a transceiver module, a transceiver, a communication module, etc. in the communication processor.
  • Interface circuits may be used to receive signals from other devices.
  • the interface circuit is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit used by the chip to send signals to other chips or devices .
  • the interface circuit may be, for example, a transceiver.
  • the transceiver may include radio frequency circuitry.
  • the interface circuit may be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing circuit may call a computer-executable program stored in the storage module, so that the method embodiments on the communication processor side provided by the embodiments of the present application can be executed.
  • the storage module may be a memory.
  • the storage module can be a storage module in a chip, such as a register, a cache, etc., and the storage module can also be a storage module located outside the chip in the communication device, such as a read-only memory (ROM). ) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the function/implementation process of the interface circuit and the processing circuit in FIG. 3 can be implemented by the communication processor 1501 in the wireless communication device shown in FIG. 2a or 2b calling the computer execution instructions stored in the memory.
  • the function/implementation process of the processing circuit in FIG. 3 can be implemented by the communication processor 1501 in the wireless communication device shown in FIG. 2a or FIG.
  • the function/implementation process can be realized through the communication interface in the communication processor 1501 in the wireless communication device shown in FIG. 2a or FIG. 2b.
  • 3GPP defines user routing policy rules (which can be called URSP, or URSP rules for short, or URSP rules; the target URSP rules that appear in this article can also be written as target URSP rules, target URSP rules, target URSP rules, etc. ).
  • URSP rules may include Rule Precedence (Rule Precedence), Traffic Descriptor (TD) and Route Selection Descriptor (RSD).
  • Rule Precedence Rule Precedence
  • TD Traffic Descriptor
  • RSD Route Selection Descriptor
  • a URSP rule may include a traffic descriptor and one or more routing descriptors.
  • the traffic descriptor may include at least one of an application descriptor, an IP descriptor, a domain description, a non-IP descriptor, a data network name (Data Network name, DNN), or a connection capability.
  • the routing descriptor may include routing descriptor priority, service and session continuity mode (service and session continuity mode, SSC) mode selection, network slice selection, PDU session type selection, and non-seamless offloading At least one of an indication, an access type priority, a routing validity criterion, a time window, or a location criterion.
  • the content in the URSP rule and the content in the traffic descriptor will be introduced in conjunction with Table 1 below, and the content in the routing descriptor will be introduced in conjunction with Table 2. It should be noted that the content included in the URSP rules defined in the embodiments of this application is only an example. With the development of technology, it is not excluded that other information may be included in the URSP rules, or some components or parts of the example may be included. Parameter deletion; it is not excluded that other components or parameters are added to the traffic descriptor, or some components or parameters of the traffic descriptor in this example are deleted; it is not excluded that the routing descriptor also includes other components or parameters, or the example Some components or parameters of the routing descriptor are removed.
  • FIG. 4 exemplarily shows a schematic flowchart of a possible communication method provided by an embodiment of the present application.
  • the method may be composed of
  • the wireless communication device may be the terminal device 10 or the access network device 20 in FIG. 1 , or a chip, such as a chip inside the terminal device 10 or a chip inside the access network device 20 .
  • the wireless communication apparatus includes only a communication processor, such as the wireless communication apparatus shown in FIG. 3 above.
  • the wireless communication apparatus may include an application processor and a communication processor, such as the aforementioned wireless communication apparatus shown in FIG. 2a and FIG. 2b.
  • the application processor and the communication processor are coupled.
  • the application processor may be the application processor 110 in FIG. 2a and FIG. 2b
  • the communication processor may be the communication processor 1501 or the modem 15011 in FIG. 2a and FIG. 2b.
  • the method may further include a network device, and the network device may be the aforementioned core network device 30 in FIG. 1 .
  • the session in this embodiment of the present application may be a session under various communication systems, for example, a PDU session under a 5G system, or a session under a future communication system architecture. Under the future system architecture, the session may still use the name PDU session in 5G, or another name may be used, which is not limited in this embodiment of the present application.
  • the session is a PDU session under the 5G system as an example for introduction. If the future session is changed to another name, the name of the PDU session is correspondingly replaced with other name will do.
  • the method includes:
  • the communication processor receives the original code stream corresponding to at least one URSP rule corresponding to the wireless communication device and issued by the network device.
  • the communication processor decodes the original code stream corresponding to the URSP rule, obtains at least one URSP rule, and stores the at least one URSP rule in the memory.
  • the original code stream corresponding to the URSP rule may be included in the original code stream of the UE section policy.
  • the communication processor returns a fourth response to the network device.
  • the fourth response may be used to indicate to the network device that the wireless communication apparatus has successfully received the URSP rule.
  • the communication processor can acquire the URSP rules in various ways.
  • the URSP rules can also be acquired in a preset manner, or the URSP rules can be acquired according to the preset rules. generate and so on. The steps of S401 to S403 are not necessary.
  • a URSP rule includes a traffic descriptor and at least one routing descriptor.
  • Each URSP rule can also have a URSP rule priority.
  • the data to be transmitted may match multiple URSP rules. In this case, the priority of multiple URSP rules can be used in sequence.
  • a flow descriptor includes at least one parameter.
  • at least one parameter for describing routing information may be included.
  • a traffic descriptor may include at least one of the following parameters: a destination address parameter; a data network parameter; an application descriptor; or, a connection capability parameter.
  • the destination address parameter may include at least one of the following parameters: a domain descriptor; an Internet Protocol IP descriptor; or a non-IP descriptor.
  • the data network parameters may include at least one of the following parameters: DNN, data network type or access name.
  • Non-IP descriptors can include 802.1Q C-TAG VID, 802.1Q S-TAG VID, 802.1Q C-TAG PCP/DEI, 802.1Q S-TAG PCP/DEI, and Ethertype, etc.
  • a routing descriptor includes at least one parameter.
  • it may include the parameters required to be satisfied by the PDU session.
  • the required parameters for the PDU session include at least one of the following: network parameters required for the PDU session; network slice parameters required for the PDU session; or a session required for the PDU session Parameters of the service.
  • the parameters of the network may include at least one of the following: PDU session type, data network name DNN, access type priority, or non-seamless offloading indication.
  • the parameters of the network slice which can include at least one of the following parameters: network slice type, or network slice name.
  • the parameters of the session service may include the session service continuity SSC parameter.
  • Each routing descriptor may also correspond to a routing descriptor priority, so that when multiple routing descriptors are matched, they can be used in sequence according to the priorities of the multiple routing descriptors when initiating a PDU session.
  • the communication processor sends a first message to the application processor, where the first message includes parameters in at least one traffic descriptor in at least one URSP rule.
  • the first message includes at least one parameter in at least one traffic descriptor in at least one URSP rule. In yet another possible implementation, the first message includes all parameters in at least one traffic descriptor in at least one URSP rule.
  • the first message can be an AT command, and certainly can be other commands.
  • the AT command set is a control protocol invented by Hayes, the inventor of the dial-up modem (MODEM), in order to control the Modem.
  • MODEM dial-up modem
  • AT is the abbreviation of Attention, and the protocol itself uses text. Every command starts with AT, hence the name.
  • the present document specifies a profile of AT commands and recommends that this profile be used for controlling Mobile Termination(MT) functions and network services from a Terminal Equipment(TE)through Terminal Adaptor(TA).
  • the command prefix+C is reserved for Digital Cellular in ITU T Recommendation V.250.”
  • the first message is applicable to a 5G network and is used to send at least one traffic descriptor in at least one URSP rule (it can also be understood that the role of the first message is: used to transmit TD report ), in this embodiment of the present application, the first message may be a newly defined AT command, such as: +C5GTDRPT; +CTDRPT; +CURSPRPT; or +C5GTD, etc. In this embodiment of the present application, the first message may have various names, which are not limited thereto.
  • the application processor determines routing information parameters corresponding to the data to be transmitted.
  • the routing information parameter when the wireless communication device is a mobile phone, the routing information parameter may be determined according to an application program on the mobile phone opened by the user. In another possible implementation, when the wireless communication device is a router, the routing information parameter may be determined according to the data to be transmitted. Before the wireless communication device performs data transmission with the network (it can also be said that before the data service of the wireless communication device is activated), a network connection needs to be established, and the connection may be a PDU session connection.
  • the PDU session connection may be a newly created PDU session connection or a historically established PDU session connection. This part of the content will be explained in detail in the subsequent content, and will not be elaborated here.
  • the routing information parameters include at least one of the following parameters: destination address parameters of the data to be transmitted; data network parameters corresponding to the data to be transmitted; application descriptors corresponding to the data to be transmitted; Connectivity parameter.
  • the destination address parameter may include at least one of the following parameters: a domain descriptor corresponding to the data to be transmitted; an IP descriptor corresponding to the data to be transmitted; or a non-IP descriptor corresponding to the data to be transmitted.
  • the data network parameters may include at least one of the following parameters: DNN, data network type or access name.
  • the domain descriptor can be the target fully qualified domain name (FQDN) or is usually expressed as a domain name matching criterion.
  • the IP descriptor may be a target IP3 tuple (IP address or IPv6 network prefix, port number, etc.).
  • the application processor determines whether there is a flow descriptor that meets a preset condition in the received at least one flow descriptor?
  • the preset conditions include: the parameters in the traffic description match the routing information parameters;
  • all parameters included in the traffic descriptor satisfying the preset condition are the same as the parameters in the routing information parameter.
  • a traffic descriptor only includes the destination address parameter, and the routing information parameter includes the destination address parameter and the data network parameter. If the destination address parameter in the traffic description and the destination address parameter in the routing information are the same, the traffic description meets the preset conditions.
  • a traffic descriptor includes destination address parameters and data network parameters, and routing information parameters only include destination address parameters, even if the destination address parameters in the traffic description and the destination address parameters in the routing The data network parameter in the descriptor does not match the data network parameter in the routing information parameter, so it is determined that the traffic descriptor does not meet the preset condition.
  • the application processor determines that there is one traffic descriptor in the received at least one traffic descriptor, all parameters included in the traffic description and some or all of the parameters in the routing information parameters The same, then further, you can query whether there is an active PDU session (that is, an established PDU session connection), and the PDU session matches the parameters in the traffic descriptor (that is, the PDU session satisfies a routing descriptor. PDU session, and the parameters in the traffic descriptor corresponding to the routing descriptor are the same as the parameters in the traffic descriptor). If present, the transmission data may be transmitted through the active PDU session. If it does not exist, S407 can be executed.
  • the first request may be sent after determining that there is a corresponding traffic descriptor in the URSP rule issued by the network.
  • the original solution can be used, that is, the communication processor receives the activation PDU session After the request, the routing descriptor is no longer queried, but a PDU session is directly initiated to the network, but the parameters in the routing descriptor are no longer used as dialing parameters in the PDU session.
  • the PDU session activation fails.
  • S404 and S406 are not necessary. If there are S404 to S406, the application processor can perform preliminary screening by itself, and when it is determined that there is a TD matching the first parameter, the first request is sent. If there are no S404 to S406, but the application processor directly obtains the first parameter and then executes S408.
  • the application processor sends a first request to the communication processor.
  • the first request is used to query the routing descriptor, the first request includes routing information parameters corresponding to the data to be transmitted, and the routing descriptor matches the routing information parameters.
  • the communication processor receives the first request.
  • the communication processor may query whether there is a target URSP rule in the stored URSP rules, and the traffic descriptor in the target URSP rule matches the routing information parameter.
  • the traffic descriptor matching the routing information parameter means that all parameters included in the traffic descriptor are the same as all or part of the routing information parameters.
  • the first request in this embodiment of the present application may be an AT command, and certainly may be other commands.
  • the first request is applicable to a 5G network and is used to query a routing descriptor (used to query RSD).
  • the first request may be a newly defined AT command, such as: +C5GRSDQRY; +C5GURSPQRY; +CURSPQRY; +CQRSD; +C5GQRSD or +C5GRURSP, etc.
  • the first request may have various names, which are not limited thereto.
  • the communication processor queries the target URSP rule.
  • the communication processor returns a first response to the application processor, where the first response may include at least one parameter in at least one routing descriptor in the target URSP rule.
  • the first response may include all parameters in at least one routing descriptor in the target URSP rule.
  • the target URSP rule queried in the embodiment of the present application may be one or multiple.
  • at least one parameter in at least one routing descriptor in the multiple target URSP rules may be returned to the application processor through one first response, or may be sent to the application processor through multiple first responses respectively Returns at least one parameter in at least one routing descriptor in the plurality of target URSP rules.
  • a first response may carry all parameters in a routing descriptor in a target URSP rule.
  • the communication processor may also send the priority of the multiple target URSP rules to the application processor, so that the application processor can use the target URSP rule according to the priority the routing descriptor.
  • the first response may further carry the priority of at least one routing descriptor in the target URSP rule.
  • the application processor can be used in sequence according to the priority of the multiple routing descriptors.
  • the communication processor may further query whether there is an already activated PDU session (ie, an established PDU session connection), and the PDU session is connected to at least one of the target URSP rules.
  • a routing descriptor matches (ie, the PDU session satisfies the parameters in at least one routing descriptor in the target URSP rule). If it exists, in a possible implementation manner, the information of the activated PDU session may be carried in the first response and sent to the application processor, or the activated PDU session may be returned to the application processor through other messages Information. So that the application processor can choose whether to use the activated PDU session directly or re-establish the PDU session.
  • the application processor sends a third request to the communication processor.
  • the third request is used to activate the PDU session.
  • the third request may include at least one parameter in the routing descriptor.
  • the application processor finds at least one routing descriptor in the at least one target URSP rule through the aforementioned S409, it can select and use it in sequence according to the priority of the URSP rule and the priority of the routing descriptor, and in the third
  • the request carries the parameters in the currently selected routing descriptor (which can be all parameters in the selected routing descriptor, or at least one parameter; the parameters in the routing descriptor carried in the third request can be called dialing parameters), and then the PDU session connection established based on the third request will satisfy the dialing parameters carried in the third request.
  • the third request may be an AT command for activating a PDU (used to activate 5GS PDU session), and of course other commands, such as +CGACT.
  • the application processor may choose to query whether there is an active PDU session (that is, an established PDU session connection), the PDU session and the At least one routing descriptor carried in the third request matches (that is, the PDU session satisfies the parameters of the routing descriptor carried in the third request). If so, in a possible implementation manner, the information of the activated PDU session may be sent to the application processor. So that the application processor can choose whether to use the activated PDU session directly or re-establish the PDU session. Of course, if the historical PDU session has already been queried when the first response is returned in the aforementioned S410, the query will not be performed after S411. Or if the application processor has already queried whether there is a matching historical PDU session in the aforementioned S406, the query in S410 and S411 is also unnecessary.
  • the communication processor sends a second request to the network device, where the second request is used to activate the PDU session, and the second request includes at least one parameter in the routing descriptor.
  • the parameters in the routing descriptor that the communication processor can carry in the second request are the foregoing S411 parameters. 3 Parameters in the routing descriptor carried in the request.
  • the parameters in the routing descriptor carried in the second request may be: the priority according to the URSP rule, and the priority of the routing descriptor, Parameters in a routing descriptor selected in order.
  • the second request may carry all the parameters in the selected one routing descriptor, or at least one parameter.
  • the second request may be a PDU session establishment request, which may be written as PDU session establishment request in English.
  • the second request is used to request to establish or activate a PDU session connection with the network, and the PDU session connection satisfies the parameters in the routing descriptor carried in the second request.
  • the communication processor receives a second response sent by the network device, where the second response is used to indicate that the PDU session is successfully activated.
  • the second response may be a PDU session establishment acceptance, which may be written as PDU session establishment accept in English.
  • the communication processor returns a third response to the application processor, where the third response is used to indicate that the PDU session is successfully activated.
  • the second request is resent in order to reactivate the PDU session.
  • the second request may be repeatedly sent until the establishment of the PDU session is successful, or until all the routing descriptors in all the queried target URSP rules are used up and all the establishment of the PDU session fails.
  • the second request may be triggered by a third request resent by the application processor, or may be triggered by receiving a message for indicating a failure to activate the PDU session.
  • the communication processor may carry the routing descriptor in the sent second request, so that the established PDU session can satisfy the URSP characteristic.
  • the URSP characteristic of the wireless communication device is realized by the communication processor, the manufacturer of the wireless communication device does not need to develop and maintain the upper-layer system in order to realize the URSP characteristic, thereby reducing the cost of the wireless communication device manufacturer.
  • the URSP feature can be realized only by installing the communication processor, which reduces the need for wireless communication devices with weaker capabilities to realize the URSP feature. complexity.
  • the solutions provided by the embodiments of the present application can also be applied to products that need to optimize the PDU session establishment process (also referred to as the data service activation process) according to product characteristics, and have little impact on the data service processing process of the original product.
  • an example of the syntax of the first request is exemplarily shown in Table 3 below, and the content in the first column is the parameters included in the first request.
  • the second column is the value returned by the communication processor after receiving the first request.
  • An example of the meaning of each parameter in Table 3 is exemplarily shown in Table 4.
  • the first request is named +C5GRSDQRY for example. In practical applications, the first request may also have other names.
  • FIG. 5 exemplarily shows a schematic flowchart of another possible communication method provided by the embodiment of the present application.
  • the method may be The communication apparatus is executed, and the wireless communication apparatus may be the terminal device 10 or the access network device 20 in FIG.
  • the wireless communication device includes an application processor and a communication processor.
  • the application processor and the communication processor are coupled.
  • the application processor may be the application processor 110 in FIG. 2a and FIG. 2b
  • the communication processor may be the communication processor 1501 or the modem 15011 in FIG. 2a and FIG. 2b.
  • the method may further include a network device, and the network device may be the aforementioned core network device 30 in FIG. 1 .
  • the method includes:
  • S401 to S407 in FIG. 5 may refer to S401 to S407 in the aforementioned FIG. 4 .
  • S406 is judged that if there is a flow descriptor that satisfies the preset condition, S501 is executed. Similar to the above-mentioned content in FIG. 4 , S401 to S407 are not necessary but optional steps.
  • the application processor sends a first request to the communication processor.
  • the first request includes routing information parameters corresponding to the data to be transmitted, and the routing descriptor matches the routing information parameters.
  • the first request is used to activate the PDU session. In other words, the first request is used to query the routing descriptor and also to activate the PDU session.
  • the communication processor receives the first request.
  • the communication processor may query whether there is a target URSP rule in the stored URSP rules, and the traffic descriptor in the target URSP rule matches the routing information parameter.
  • the traffic descriptor matching the routing information parameter means that all parameters included in the traffic descriptor are the same as all or part of the routing information parameters.
  • the first request in this embodiment of the present application may be an AT command.
  • the introduction of the AT command can parameterize the above-mentioned content.
  • the first request is applicable to a 5G network and is used to activate a routing descriptor (used to activate 5GS PDU session).
  • the first request may be a newly defined AT command, such as: +CACTPDU; +CPSDIAL; +CPDUACT; +CPDUEST; or +CPDUCONN, etc.
  • the first request may have various names, which are not limited thereto.
  • the communication processor queries the target URSP rule.
  • S503 may be directly executed after S502.
  • the communication processor may further query whether there is an already activated PDU session (ie, an established PDU session connection), and the PDU session is related to at least one of the target URSP rules.
  • a routing descriptor matches ie, the PDU session satisfies the parameters in at least one routing descriptor in the target URSP rule. If it exists, in a possible implementation manner, the information of the activated PDU session may be returned to the application processor, and a message indicating the successful activation of the PDU session (such as the third response in S414) may be directly sent to the application processor. application processor. After the application processor receives the message, it can transmit data using the activated PDU session. In this scenario, the communication processor does not need to execute S503 and S413. On the other hand, if there is no activated PDU session that matches at least one routing descriptor in the target URSP rule, S503 may be continued.
  • the communication processor sends a second request to the network device, where the second request is used to activate the PDU session, and the second request includes at least one parameter in the routing descriptor.
  • the parameters in the routing descriptor carried in the second request may be: the communication processor selects one routing descriptor in sequence according to the priority of the target URSP rule and the priority of the routing descriptor. parameter.
  • the second request may carry all the parameters in the selected one routing descriptor, or at least one parameter.
  • the second request may be a PDU session establishment request, which may be written as PDU session establishment request in English.
  • the second request is used to request to establish or activate a PDU session connection with the network, and the PDU session connection satisfies the parameters in the routing descriptor carried in the second request.
  • S413 to S414 may be executed.
  • S413 to S414 may be executed.
  • S413 to S414 may be executed.
  • the application processor only sends the first request, and then the communication processor completes the query of the URSP rule and the PDU activation (or the communication processor triggers data service dialing). In this way, changes to the application processor can be minimized, thereby laying a foundation for further improving the competitiveness of the communication processor.
  • an example of the syntax of the first request is exemplarily shown in Table 5 below, and the content in the first column is the parameter included in the first request.
  • the second column is the value returned by the communication processor after receiving the first request.
  • the first request is named +CACTPDU as an example. In practical applications, the first request may also have other names.
  • a first message syntax example is exemplarily shown in Table 6 and Table 7 below.
  • the content in the first column in Table 6 is the content included in the first message. parameter.
  • the second column is the value returned by the communication processor after receiving the first message.
  • the meanings of the parameters included in the first column of Table 6 are exemplarily shown in Table 7.
  • the first message is "+C5GTDRPT" as an example. In practical applications, the first message may also have other names.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or importance of multiple objects degree.
  • first request and the second request are only for distinguishing different requests, but do not indicate the difference in priority or importance of the two requests.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer program code enables the computer to execute the above-mentioned embodiments.
  • the computer program product includes: computer program code, when the computer program code is run on a computer, the computer program code enables the computer to execute the above-mentioned embodiments. The method of any one of the embodiments.
  • the present application further provides a computer-readable storage medium, where the computer-readable medium stores program codes, when the program codes are executed on a computer, the computer is made to execute the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disc (SSD)) )Wait.
  • the network equipment in the above apparatus embodiments corresponds to the network equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units. Steps other than receiving may be performed by a processing unit (processor). For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种通信方法及装置、存储介质和芯片系统,用于通过通信装置上安装的通信处理器实现URSP特性,以提高URSP特性在产品中的使用率。本申请中无线通信装置包括通信处理器和应用处理器,通信处理器与应用处理器耦合。通信处理器用于接收应用处理器发送的第一请求,第一请求用于查询路由选择描述符。第一请求包括待传输数据对应的路由信息参数。通信处理器用于向网络设备发送第二请求。第二请求用于激活PDU会话。第二请求包括路由选择描述符中的至少一个参数。路由选择描述符与路由信息参数匹配。由于通过安装的通信处理器实现URSP特性。从而可以提高URSP特性在产品中的使用率。

Description

一种通信方法及装置、存储介质和芯片系统 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置、存储介质和芯片系统。
背景技术
第三代合作伙伴计划(3rd generation partnership project,3GPP)定义了用户路由选择策略(UE route selection policy,URSP),URSP用于确定不同应用程序(application,APP)、数据包等所需要的路由选择描述信息(Route Selection Descriptor,RSD),如网络切片(network slice,NS)、数据网络名称(Data Network Name,DNN)、和会话服务连续性(session service continuity,SSC)模式等等。通过URSP,终端设备可以根据APP的网络需求确定对应的RSD,然后基于确定出的RSD建立协议数据单元(protocol data unit,PDU)会话,然后通过建立的PDU会话传输该APP的数据。
目前针对URSP的使用,协议中没有明确的规定,只在3GPP 27.007协议中定义了2个相关的AT命令,调制解调器(Modem)通过+CRUEPOLICY命令把网络下发的包括有URSP的信息,比如用户策略信息(UE policy section),之后以原始码流的形式上报给上层系统(上层系统通常是指操作系统或应用控制层)。上层系统对原始码流进行解码后,再通过+CSUEPOLICY命令回复给Modem,然后Modem再转发给网络。
从3GPP 27.007协议来看,倾向于在上层系统执行URSP的相关操作。但是针对一些通信装置的厂商,比如手机的厂商,各厂家使用的安卓Android等操作系统受系统发布者的控制,很难为某类特性修改控制层代码。若需要在通信装置上使用URSP特性,则需要各厂家自行开发维护URSP特性,且需随着3GPP协议的升级,同步修改操作系统中的协议解析代码,开发和维护的成本很高,基于此,各厂家在通信装置上实现URSP的意愿较低。针对一些较小的通信装置的厂商,比如非手机的厂商,他们的产品中很多没有操作系统,只有一个应用控制层,基本不具备解析3GPP协议和完全按照协议实现URSP特性的能力,更难以随着3GPP协议的升级而升级,因此,目前此类通信装置上无法实现URSP特性。
基于此,如何提升URSP特性在产品中的使用率成为亟需解决的问题。
发明内容
本申请提供一种通信方法及装置、存储介质和芯片系统,用于通过通信装置上安装的通信处理器实现URSP特性。
应理解,本申请实施例提供的方案中,通信装置可以是无线通信设备,也可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。无线通信设备可以是支持无线通信功能的计算机设备。
具体地,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。系统芯片也可称为片上系统(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带 处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。
第一方面,提供一种无线通信装置,包括通信处理器,所述通信处理器包括处理电路,以及与所述处理电路耦合的接口电路,其中,所述处理电路用于通过所述接口电路:接收应用处理器发送的第一请求,向网络设备发送第二请求。第一请求用于查询路由选择描述符。第一请求包括待传输数据对应的路由信息参数。第二请求用于激活会话。第二请求包括路由选择描述符中的至少一个参数。路由选择描述符与路由信息参数匹配。可以看出,通信处理器基于第一请求可以触发查询路由选择描述符的操作,继而基于查询到的与路由信息参数匹配的路由选择描述符向网络请求会话的建立,从而在该无线通信装置上实现了URSP特性,且该方案无需使其他厂商在操作系统层上开发和维护URSP特性,降低厂商的成本。且针对没有操作系统,或操作系统不具备基于URSP规则对应的原始码流进行解码的能力的无线通信装置,也可以通过安装的通信处理器实现URSP特性。如此,可以提高URSP特性在产品中的使用率。
在一种可能地实施方式中,路由信息参数与目标URSP规则中流量描述符包括的参数相同。路由选择描述符为目标URSP规则中的路由选择描述符。通过将路由信息参数与URSP规则中的流量描述符匹配的方式,查询出目标URSP规则,继而得到与该路由信息参数匹配的路由选择描述符,如此可以与标准中的URSP特性更加兼容。
在一种可能地实施方式中,路由信息参数包括以下参数中的至少一项:待传输数据的目的地址参数;待传输数据对应的数据网络参数;待传输数据对应的应用程序描述符;或,待传输数据对应的连接能力参数。由于可以根据多种类型的参数查询路由选择描述符,因此可以提高方案的灵活性。
在一种可能地实施方式中,流量描述符包括以下参数中的至少一项:目的地址参数;数据网络参数;应用程序描述符;或,连接能力参数。由于流量描述符中的参数类型与路由信息参数中的参数类型基本相同,因此通过将二者匹配的方式的查询出所需的路由选择描述符。
在一种可能地实施方式中,目的地址参数包括以下参数中的至少一项:待传输数据对应的域描述符;待传输数据对应的网际协议IP描述符;或,待传输数据对应的非IP描述符。由于目的地址参数的类型包括多种,因此可以调高方案的灵活性。
在一种可能地实施方式中,数据网络参数包括:DNN。如此,可以根据DNN确定出待传输数据所需的数据网络。
在一种可能地实施方式中,路由选择描述符中的参数包括:会话所需满足参数。其中,会话所需满足参数包括以下内容中的至少一项:会话所需的网络的参数;会话所需的网络切片的参数;或,会话所需的会话服务的参数。由于路由选择描述符中包括的参数类型较多,因此可以从多种角度对会话创建要求,继而可以为用户提供更多样的个性化服务。
在一种可能地实施方式中,网络的参数,包括以下参数中的至少一项:会话类型、数据网络名称DNN、接入类型优先级,或非无缝的分流指示。由于网络的参数包括较多类型,因此可以提高方案的灵活性,且可以为用户提供更多的个性化服务。
在一种可能地实施方式中,网络切片的参数,包括以下参数中的至少一项:网络切片类型,或网络切片名称。如此,可以通过网络切片类型或名称确定出会话所需的网络切片参数。
在一种可能地实施方式中,会话服务的参数,包括:会话服务连续性SSC参数。基于会话服务的参数可以为用户提供更符合会话特性的服务方式。
在一种可能地实施方式中,第一请求还用于:激活会话。如此,第一请求可以由两个功能,查询路由选择描述符和激活会话。继而通信处理器基于第一请求可以执行两个动作:查询路由选择描述符和激活会话。可见,该方案中对于应用处理器几乎无改动,仅是发送第一请求即可。实现URSP特性的工作均由通信处理器实现,继而可以降低各个厂商对操作系统进行改动的工作量。
在一种可能地实施方式中,第一请求包括以下内容中的至少一项:+CACT;+CPSDIAL;+CACT;+CEST;或+CCONN。如此可以通过定义的新的AT命令实现第一请求的功能,从而可以与现有技术更加兼容。且该命令中“ACT”包含激活会话的含义,更加贴合实际,更容易使用户理解该命令的含义。
在一种可能地实施方式中,所述处理电路还用于通过所述接口电路:在接收应用处理器发送的第一请求之后,向网络设备发送第二请求之前,向应用处理器返回第一响应,第一响应包括路由选择描述符中的至少一个参数。如此,通信处理器可以将查询到的路由选择描述符中的至少一个参数放回给应用处理器,以便应用处理器在激活会话时使用该参数作为拨号参数,从而实现URSP特性。
在一种可能地实施方式中,第一请求包括以下内容中的至少一项:+C5GRSDQRY;+C5GURSPQRY;+CURSPQRY;+CQRSD;+C5GQRSD或+C5GRURSP。如此,如此可以通过定义的新的AT命令实现第一请求的查询功能,从而可以与现有技术更加兼容。且该命令中“5GRSDQRY”包含在5G网络中使用该命令,且功能为查询路由选择描述符的含义,更加贴合实际,更容易使用户理解该命令的含义。
在一种可能地实施方式中,第一响应还包括路由选择描述符的优先级。如此,可以使应用处理器依据各个路由选择描述符的优先级依次选用进行拨号,以创建会话。
在一种可能地实施方式中,通信处理器,返回第一响应之后,向网络设备发送第二请求之前,还包括:接收应用处理器发送的第三请求,第三请求用于:激活会话;第三请求包括路由选择描述符中的至少一个参数。在该实施方式中,第三请求中可以携带从通信处理器上查询到的路由选择描述符,因此可以将路由选择描述符的选择权交给应用处理器。另一方面,由于又增加了该种方案实现URSP特性,因此可以提高本申请实施例的多样性,且可以为用户提供更多的可供选择的实现方案,从而可以提高灵活性。
在一种可能地实施方式中,第二请求为会话建立请求。通信处理器发出的第二请求可以为现有协议中定义的会话建立请求,以5G技术为例,第二请求可以为PDU会话建立请求。且携带路由选择描述符中的至少一个参数作为拨号参数。如此,可以更加兼容现有协议。
在一种可能地实施方式中,所述处理电路还用于通过所述接口电路:接收网络设备下发的无线通信装置对应的至少一个URSP规则;至少一个URSP规则中的URSP规则包括流量描述符和至少一个路由选择描述符。向应用处理器发送第一消息,第一消息包括至少一个URSP规则中的至少一个流量描述符中的参数。如此,可以将对URPS规则的原始码流进行解码的工作挪到通信处理器来实现,降低对应用处理器的要求。另一方面,将流量描述符发送给应用处理器,可以为应用处理器进行初步筛选奠定基础。
在一种可能地实施方式中,第一消息包括以下内容的至少一项:+C5GTDRPT; +CTDRPT;+CURSPRPT;或+C5GTD。如此可以通过定义的新的AT命令实现第一请求的查询功能,从而可以与现有技术更加兼容。且该命令中可以包含返回流量描述符的含义,更加贴合实际,更容易使用户理解该命令的含义。
在一种可能地实施方式中,无线通信装置还包括应用处理器,通信处理器与应用处理器耦合。应用处理器,具体用于:确定接收到的至少一个流量描述符中是否存在满足预设条件的流量描述符,预设条件包括:流量描述符中的参数与路由信息参数匹配;若存在,则发送第一请求。如此,由于应用处理器可以进行初步筛选,因此可以在确定网络上下发的URSP规则中存在与其对应的流量描述符之后再发送第一请求。另一种可能地实施方式中,若经查询,并网络下发的URSP规则中不存在与路由信息参数匹配的流量描述符,则可以使用原始的方案,即通信处理器接收到激活会话的请求之后,也不再查询路由选择描述符,而是直接向网络发起会话,但是会话中不再将路由选择描述符中的参数作为拨号参数。又一种可能地实施方中,若经查询,并网络下发的URSP规则中不存在与路由信息参数匹配的流量描述符,则可以确定会话激活失败。
在一种可能地实施方式中,所述处理电路还用于通过所述接口电路:向网络设备发送第二请求之后,接收第二响应,第二响应用于指示会话激活成功。向应用处理器返回第三响应,第三响应用于指示会话激活成功。通信处理器接收到会话激活成功的消息后向应用处理器指示会话激活成功,并可以发送会话的消息,继而使应用处理器基于激活的会话传输数据。
另一种可能地实施方式中,所述处理电路还用于通过所述接口电路:若接收到用于指示会话激活失败的消息,则通信处理器可以自行选择一个优先级次之的路由选择描述符继续发起会话的激活流程,直至会话激活成功,或者匹配出的所有路由选择描述符使用完毕。该方式中通信处理器可以选择将会话激活失败的消息反馈给应用处理器,也可以不反馈。
又一种可能地实施方式中,所述处理电路还用于通过所述接口电路:可以将会话激活失败的消息返回给应用处理器,由应用处理器选择一个优先级次之的路由选择描述符继续发起会话的激活流程,直至会话激活成功,或者匹配出的所有路由选择描述符使用完毕。
在一种可能地实施方式中,所述处理电路用于通过所述接口电路:接收网络设备下发的无线通信装置对应的至少一个URSP规则对应的原始码流。对URSP规则对应的原始码流进行解码,得到至少一个URSP规则。将至少一个URSP规则存储至存储器。如此,可以将对URPS规则的原始码流进行解码的工作挪到通信处理器来实现,降低对应用处理器的要求。
在一种可能地实施方式中,应用处理器不具备基于URSP规则对应的原始码流进行解码的能力。如此,可以将对URPS规则的原始码流进行解码的工作挪到通信处理器来实现,降低对应用处理器的要求。继而为在应用处理器能力较弱的无线通信装置中推广URSP特性奠定基础。
第二方面,本申请实施例提供一种通信方法,适用于包括通信处理器的无线通信装置;方法包括通过通信处理器接收应用处理器发送的第一请求,向网络设备发送第二请求。第一请求用于查询路由选择描述符,第一请求包括待传输数据对应的路由信息参数。第二请求用于激活会话,第二请求包括路由选择描述符中的至少一个参数;路由选择描述符与路由信息参数匹配。可以看出,通信处理器基于第一请求可以触发查询路由选择描述符的操 作,继而基于查询到的与路由信息参数匹配的路由选择描述符向网络请求会话的建立,从而在该无线通信装置上实现了URSP特性,且该方案无需使其他厂商在操作系统层上开发和维护URSP特性,降低厂商的成本。且针对没有操作系统,或操作系统不具备基于URSP规则对应的原始码流进行解码的能力的无线通信装置,也可以通过安装的通信处理器实现URSP特性。如此,可以提高URSP特性在产品中的使用率。
在一种可能地实施方式中,路由信息参数与目标URSP规则中流量描述符包括的参数相同。路由选择描述符为目标URSP规则中的路由选择描述符。通过将路由信息参数与URSP规则中的流量描述符匹配的方式,查询出目标URSP规则,继而得到与该路由信息参数匹配的路由选择描述符,如此可以与标准中的URSP特性更加兼容。
在一种可能地实施方式中,路由信息参数包括以下参数中的至少一项:待传输数据的目的地址参数;待传输数据对应的数据网络参数;待传输数据对应的应用程序描述符;或,待传输数据对应的连接能力参数。由于可以根据多种类型的参数查询路由选择描述符,因此可以提高方案的灵活性。
在一种可能地实施方式中,流量描述符包括以下参数中的至少一项:目的地址参数;数据网络参数;应用程序描述符;或,连接能力参数。由于流量描述符中的参数类型与路由信息参数中的参数类型基本相同,因此通过将二者匹配的方式的查询出所需的路由选择描述符。
在一种可能地实施方式中,目的地址参数包括以下参数中的至少一项:待传输数据对应的域描述符;待传输数据对应的网际协议IP描述符;或,待传输数据对应的非IP描述符。由于目的地址参数的类型包括多种,因此可以调高方案的灵活性。
在一种可能地实施方式中,数据网络参数包括:DNN。如此,可以根据DNN确定出待传输数据所需的数据网络。
在一种可能地实施方式中,路由选择描述符中的参数包括:会话所需满足参数。其中,会话所需满足参数包括以下内容中的至少一项:会话所需的网络的参数;会话所需的网络切片的参数;或,会话所需的会话服务的参数。由于路由选择描述符中包括的参数类型较多,因此可以从多种角度对会话创建要求,继而可以为用户提供更多样的个性化服务。
在一种可能地实施方式中,网络的参数,包括以下参数中的至少一项:会话类型、数据网络名称DNN、接入类型优先级,或非无缝的分流指示。由于网络的参数包括较多类型,因此可以提高方案的灵活性,且可以为用户提供更多的个性化服务。
在一种可能地实施方式中,网络切片的参数,包括以下参数中的至少一项:网络切片类型,或网络切片名称。如此,可以通过网络切片类型或名称确定出会话所需的网络切片参数。
在一种可能地实施方式中,会话服务的参数,包括:会话服务连续性SSC参数。基于会话服务的参数可以为用户提供更符合会话特性的服务方式。
在一种可能地实施方式中,第一请求还用于:激活会话。如此,第一请求可以由两个功能,查询路由选择描述符和激活会话。继而通信处理器基于第一请求可以执行两个动作:查询路由选择描述符和激活会话。可见,该方案中对于应用处理器几乎无改动,仅是发送第一请求即可。实现URSP特性的工作均由通信处理器实现,继而可以降低各个厂商对操作系统进行改动的工作量。
在一种可能地实施方式中,在接收应用处理器发送的第一请求之后,向网络设备发送 第二请求之前,还通过通信处理器向应用处理器返回第一响应,第一响应包括路由选择描述符中的至少一个参数。如此,通信处理器可以将查询到的路由选择描述符中的至少一个参数放回给应用处理器,以便应用处理器在激活会话时使用该参数作为拨号参数,从而实现URSP特性。
在一种可能地实施方式中,第一响应还包括路由选择描述符的优先级。如此,可以使应用处理器依据各个路由选择描述符的优先级依次选用进行拨号,以创建会话。
在一种可能地实施方式中,通过通信处理器返回第一响应之后,向网络设备发送第二请求之前,还通过通信处理器接收应用处理器发送的第三请求,第三请求用于:激活会话;第三请求包括路由选择描述符中的至少一个参数。在该实施方式中,第三请求中可以携带从通信处理器上查询到的路由选择描述符,因此可以将路由选择描述符的选择权交给应用处理器。另一方面,由于又增加了该种方案实现URSP特性,因此可以提高本申请实施例的多样性,且可以为用户提供更多的可供选择的实现方案,从而可以提高灵活性。
在一种可能地实施方式中,第二请求为:会话建立请求;第二请求包括路由选择描述符中的至少一个参数。通信处理器发出的第二请求可以为现有协议中定义的会话建立请求,以5G技术为例,第二请求可以为PDU会话建立请求,且携带路由选择描述符中的至少一个参数作为拨号参数。如此,可以更加兼容现有协议。
在一种可能地实施方式中,通过通信处理器接收应用处理器发送的第一请求之前,还通过通信处理器接收网络设备下发的无线通信装置对应的至少一个URSP规则;至少一个URSP规则中的URSP规则包括流量描述符和至少一个路由选择描述符。通过通信处理器向应用处理器发送第一消息,第一消息包括至少一个URSP规则中的至少一个流量描述符中的参数。如此,可以将对URPS规则的原始码流进行解码的工作挪到通信处理器来实现,降低对应用处理器的要求。另一方面,将流量描述符发送给应用处理器,可以为应用处理器进行初步筛选奠定基础。
在一种可能地实施方式中,向应用处理器发送第一消息之后,还通过应用处理器确定接收到的至少一个流量描述符中是否存在满足预设条件的流量描述符,预设条件包括:流量描述符中的参数与路由信息参数匹配;若存在,则发送第一请求。如此,由于应用处理器可以进行初步筛选,因此可以在确定网络上下发的URSP规则中存在与其对应的流量描述符之后再发送第一请求。另一种可能地实施方式中,若经查询,并网络下发的URSP规则中不存在与路由信息参数匹配的流量描述符,则可以使用原始的方案,即通信处理器接收到激活会话的请求之后,也不再查询路由选择描述符,而是直接向网络发起会话,但是会话中不再将路由选择描述符中的参数作为拨号参数。又一种可能地实施方中,若经查询,并网络下发的URSP规则中不存在与路由信息参数匹配的流量描述符,则可以确定会话激活失败。
在一种可能地实施方式中,通过通信处理器向网络设备发送第二请求之后,还通过通信处理器接收第二响应,向应用处理器返回第三响应。第二响应用于指示会话激活成功。第三响应用于指示会话激活成功。通信处理器接收到会话激活成功的消息后向应用处理器指示会话激活成功,并可以发送会话的消息,继而使应用处理器基于激活的会话传输数据。
另一种可能地实施方式中,若接收到用于指示会话激活失败的消息,则通信处理器可以自行选择一个优先级次之的路由选择描述符继续发起会话的激活流程,直至会话激活成功,或者匹配出的所有路由选择描述符使用完毕。该方式中通信处理器可以选择将会话激 活失败的消息反馈给应用处理器,也可以不反馈。
又一种可能地实施方式中,通信处理器可以将会话激活失败的消息返回给应用处理器,由应用处理器选择一个优先级次之的路由选择描述符继续发起会话的激活流程,直至会话激活成功,或者匹配出的所有路由选择描述符使用完毕。
在一种可能地实施方式中,通过通信处理器接收应用处理器发送的第一请求之前,通过通信处理器接收网络设备下发的无线通信装置对应的至少一个URSP规则对应的原始码流。对URSP规则对应的原始码流进行解码,得到至少一个URSP规则。将至少一个URSP规则存储至存储器。如此,可以将对URPS规则的原始码流进行解码的工作挪到通信处理器来实现,降低对应用处理器的要求。
在一种可能地实施方式中,应用处理器不具备基于URSP规则对应的原始码流进行解码的能力。如此,可以将对URPS规则的原始码流进行解码的工作挪到通信处理器来实现,降低对应用处理器的要求。继而为在应用处理器能力较弱的无线通信装置中推广URSP特性奠定基础。
本申请还提供一种通信装置,包括:处理器和存储器;其中,存储器用于存储程序指令;处理器用于执行存储器中存储的程序指令,以实现第二方面中任一种可能的方法。
本申请还提供一种通信装置,包括:处理器和接口电路;其中,接口电路用于访问存储器,存储器中存储有程序指令;处理器用于通过接口电路访问存储器,并执行存储器中存储的程序指令,以实现第二方面中任一种可能的方法。
本申请提供一种计算机可读存储介质,计算机存储介质中存储有计算机可读指令,当计算机读取并执行计算机可读指令时,使得通信装置执行上述任一种可能的设计中的方法。
本申请提供一种计算机程序产品,当计算机读取并执行计算机程序产品时,使得通信装置执行上述任一种可能的设计中的方法。
本申请提供一种芯片,芯片与存储器相连,用于读取并执行存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的一种通信系统的架构示意图;
图2a为本申请实施例提供的一种无线通信装置的结构示意图;
图2b为本申请实施例提供的一种无线通信装置的结构示意图;
图3为本申请实施例提供的一种无线通信装置的结构示意图;
图4为本申请实施例提供的一种可能地通信方法的流程示意图;
图5为本申请实施例提供的另一种可能地通信方法的流程示意图。
具体实施方式
下面结合附图对本申请实施例进行介绍。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、第五代(5th Generation,5G)系统、新无线(New Radio,NR)或未来的第六代(5th Generation,6G)系统等,在此不做限制。
图1示例性示出了本申请实施例适用的一种通信系统的架构示意图,如图1所示,包括终端设备10和网络设备。其中,网络设备通常归属于运营商或基础设施提供商,并由这些厂商负责运营或维护。网络设备还可进一步分为(无线)接入网(radio access network,(R)AN)设备20以及核心网(core network,CN)设备30。RAN设备包括基站(base station,BS)、小基站或5G路由器等等。
应理解,本申请实施例提供的方案中,无线通信装置可以是无线通信设备,也可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。无线通信设备可以是支持无线通信功能的计算机设备。
具体地,无线通信设备可以终端设备10(诸如智能手机这样的终端),也可以是(R)AN设备20(诸如基站这样的(R)AN设备)。系统芯片也可称为片上系统(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。
下面结合图1对本申请实施例中涉及到的各个设备进行介绍。
(1)终端设备10。
终端设备10也可以称为终端(terminal)。终端能够与网络设备建立连接,并基于网络设备的服务为用户提供具体的无线通信业务。应理解,由于终端与用户的关系更加紧密,有时也被称为用户设备(user equipment,UE),或订户单元(subscriber unit,SU)。此外,相对于通常在固定地点放置的基站,终端往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN)或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端。
具体地,终端可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
(2)(R)AN设备20。
应理解,(R)AN设备20用于为特定区域的授权终端设备提供入网功能,并能够根据终端设备的级别,业务的需求等使用不同质量的传输隧道。(R)AN设备20能够管理无线资源,为终端设备提供接入服务,进而完成控制信号和终端设备数据在终端设备和核心网之间的转发。接入网设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
基站有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。具体地,基站可以是5G新无线(new radio,NR)系统中的通用节点B(generation Node B,gNB),4G长期演进(long term evolution,LTE)系统的演进节点B(evolutional Node B,eNB)。根据基站的物理形态或发射功率的不同,基站可被分为宏基站(macro base station)或微基站(micro base station)。微基站有时也被称为小基站或小小区(small cell)。
在不同的通信系统中,(R)AN设备20具体可能会有些不同,比如:
5G接入网设备可以是下一代基站(next generation NodeB,gNB)。gNB可以连接到终端设备,并和该终端设备之间采用新无线(new radio,NR)接入技术相互通信,即gNB和终端设备之间通过NR链路通信。
4G接入网设备可以是演进型基站(evolved Node B,eNB)。终端设备可以位于4G接入网设备的信号覆盖范围内。终端设备可以连接到4G接入网设备,并和4G接入网设备之间通过LTE链路通信。
2G接入网设备可以是基站收发站台(base transceiver station,BTS)、基站控制器(base station controller,BSC)。3G接入网设备可以是节点B(NodeB)或称为基站、无线网络控制器(radio network controller,RNC)。
(3)核心网(core network,CN)设备30。
核心网设备用于提供用户连接、对用户的管理以及对业务完成承载。例如,用户连接的建立包括移动性管理(mobile management,MM)、寻呼(paging)等功能。用户管理包括用户的描述、Qos、安全性(由鉴权中心提供相应的安全性措施包含了对移动业务的安全性管理和对外部网络访问的安全性处理)。承载连接包括到外部的公共交换电话网络(publicswitched telephone network,PSTN)、外部电路数据网和分组数据网、因特网(Internet)等等。
在不同的通信系统中,核心网设备30具体可能会有些不同,比如:
5G通信系统中的核心网设备也可以称为5G核心网(5G core network,5GC),5GC中的网元为功能性的虚拟单元,可包括但不限于:用于接入和移动管理功能的单元(access and mobility management function,AMF)、用于会话管理功能的单元(session management function,SMF)、用于统一数据管理的网元(unified data management,UDM)等等。
4G通信系统中的核心网设备也可以称为演进的分组系统(evolved packet core,EPC),EPC中主要包括以下网元:移动性管理实体(mobility management entity,MME)、服务网关(serving gateway,SGW)、分组数据网络网关(packet data network gateway,PGW)、归属签约用户服务器(home subscriber server,HSS)和应用服务器等。MME的主要功能包括接入控制、移动性管理、附着与去附着、会话管理(例如承载的建立、修改和释放)等。SGW的主要用于数据包的路由和转发。PGW的主要功能包括基于用户的包过滤功能、合法侦听功能IP地址分配功能等。HSS用于存储用户签约信息、用户的签约数据及移动用户的位置信息等。
2G/3G核心网设备可以是移动交换中(Mobile Switching Center,MSC)、基站控制器(base station controller,BSC)等。
图2a示例性示出了本申请实施例提供的一种无线通信装置的结构示意图。
如图2a所示,无线通信装置可以包括处理器,本申请实施例中的处理器100可以包括应用处理器110和通信处理器1501。通信处理器1501可以为调制解调器15011。该无线通信装置还可以包括通信接口120,存储器130,天线1,天线2(图2a中以天线1和天线2进行示例,可选地,还可以包括其他天线),移动通信模块150,无线通信模块140等。通信处理器1501可以设置于移动通信模块150中,还可以设置于其他位置,比如可以与应用处理器110设置于同一个芯片上,图中以通信处理器1501位于移动通信模块150中进行示例。
下面结合图2a对无线通信装置的各个部件进行具体的介绍:
(1)处理器100。
本申请实施例中的处理器100可以包括一个或多个处理单元,例如,处理器100可以包括应用处理器(application processor,AP)110,通信处理器1501(比如为调制解调器15011),图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。其中,控制器可以是终端设备的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。其中,在图1中以通信处理器1501部署在移动通信模块150中为例进行展示,在具体实施中,通信处理器1501也可以部署于处理器100中。
(2)移动通信模块150。
终端设备的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块140,通信处理器1501(比如为调制解调器15011)以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至通信处理器1501进行解调。移动通信模块150还可以对经通信处理器1501调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块(比如通信处理器1501)可以被设置于处理器中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器的至少部分模块被设置在同一个器件中。
(3)通信处理器1501。
通信处理器1501比如为调制解调器15011。调制解调器15011是Modulator(调制器)与Demodulator(解调器)的简称,中文称为调制解调器,根据Modem的谐音,亲昵地称之为“猫”,是一种能够实现通信所需的调制和解调功能的电子设备。一般由调制器和解调器组成。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器110。在一些实施例中,调制解调器15011可以是独立的器件。在另一些实施例中,调制解调器15011可以独立于处理器,与移动通信模块150或其他功能模块设置在同一个器件中。
调制解调器15011,可以是一个芯片。比如,可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,调制解调器15011要实现的步骤可以通过调制解调器15011中的硬件的集成逻辑电路或者软件形式的指令完成。
其中,应用处理器110和通信处理器1501,可集成到同一个无线通信设备或同一个大芯片(比如手机中常见的SoC(system on a chip)芯片)中。
(4)无线通信模块140。
无线通信模块140可以提供应用在终端设备上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块140可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块140经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器100。无线通信模块140还可以从处理器100接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
(5)存储器130。
处理器中还可以设置存储器130,用于存储指令和数据。在一些实施例中,处理器中的存储器为高速缓冲存储器。该存储器可以保存处理器100刚用过或循环使用的指令或数据。如果处理器需要再次使用该指令或数据,可从存储器中直接调用,从而可避免重复存取,可减少处理器的等待时间,因而可提高系统的效率。
无线通信装置还可以包括外部存储器接口,用于连接外部存储卡,例如Micro SD卡,实现扩展终端设备的存储能力。
内部存储器可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器100通过运行存储在内部存储器130的指令,和/或存储在设置于处理器中的存储器的指令,执行终端设备的各种功能应用以及数据处理。
(6)通信接口120。
在一些实施例中,无线通信装置可以包括一个或多个通信接口120。比如,通信接口120可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
应理解,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。图示终端设备仅是一个范例,并且终端设备可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。尽管图2a中未示出,终端设备还可以包括其他部件,比如电源管理模块、按键、指示器等,在此不予赘述。
基于上述内容,图2b示例性示出了本申请实施例中提供的一种无线通信装置的结构示意图,该无线通信装置可以为前述图2a的无线通信装置,也可以为前述图1中的无线通信装置。相比图1和图2a的无线通信装置,图2b中可以比图1和图2a中所示的无线通信装置包括更多或更少的部件或模块。如图2b所示,该无线通信装置可以包括应用处理器 110。应用处理器110用于运行操作系统。应用处理器110中可以设置操作系统层1101。本申请实施例中,无线通信装置中还可以安装至少一个应用,比如应用1、应用2和应用3。这些应用也可以由应用处理器110运行。通信处理器1501可以执行无线通信装置的通信协议栈,用于收发数据等。
针对URSP,若由上层系统(比如操作系统层1101)解析URSP原始码流,由于无线通信装置的操作系统受系统发布者的控制,很难为某类特性修改控制层代码。因此需要各个厂商自行开发维护URSP特性,且需随着3GPP协议的升级,同步修改操作系统层1101中的协议解析代码,开发和维护的成本很高。而另外一方面,针对一些较小的无线通信装置,比如路由器等,这些无线通信装置中可能没有操作系统层1101,只有一个应用控制层,基本不具备解析URSP原始码流的能力,更难以随着3GPP协议的升级而升级,因此,目前此类无线通信装置上无法实现URSP特性。
基于此,本申请实施例提供一种方案,用于通过通信处理器1501实现URSP特性,即实现协议数据单元(protocol data unit,PDU)会话(session)建立时的URSP选择功能,如此,各个无线通信装置的厂商所生产的无线通信装置中若安装了本申请实施例中的通信处理器,则无需再投入成本在操作系统层1101上开发和维护URSP特性。且针对没有操作系统,或操作系统不具备基于URSP规则对应的原始码流进行解码的能力的无线通信装置,也可以通过安装的通信处理器1501实现URSP特性。而且,应用本申请实施例提供的方案,对上层系统(比如操作系统层1101)几乎没有修改,或修改量很小,且也不需要在上层系统和通信处理器1501之间提供额外的中间层。
基于上述内容,图3示例性示出了本申请实施例中提供的一种无线通信装置的结构示意图,该无线通信装置可以为前述图2b的无线通信装置,该无线通信装置也可以为前述图2a的无线通信装置,也可以为前述图1中的无线通信装置。相比图1、图2a和图2b的无线通信装置,图3中所示的无线通信装置,可以仅包括有通信处理器。如图3所示,该无线通信装置可以包括通信处理器,该通信处理器可以包括处理电路和接口电路。接口电路可以用于输入和输出信息。处理电路可以用于执行计算机可执行程序,使得本申请实施例提供的通信处理器侧的方法实施例得以执行。
其中,处理电路可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。该处理电路可执行存储模块存储的计算机执行指令。
接口电路可以为通信处理器上用于传输信息的单元、模块或接口。接口电路的功能还可以由通信处理器中的收发模块、收发器、通信模块等等来实现。接口电路可以用于从其它装置接收信号。例如,当该通信处理器以芯片的方式实现时,该接口电路是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。该接口电路例如可以是收发器。可选的,该收发器可以包括射频电路。该接口电路例如可以是输入/输出接口、管脚或电路等。
又一种可能地实施方式中,处理电路可以调用存储模块中存储的计算机可执行程序,使得本申请实施例提供的通信处理器侧的方法实施例得以执行。存储模块可以是存储器。可选地,该存储模块可以为芯片内的存储模块,如寄存器、缓存等,该存储模块还可以是通信装置内的位于该芯片外部的存储模块,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
具体的,图3中的接口电路和处理电路的功能/实现过程可以通过图2a或图2b所示的无线通信装置中的通信处理器1501调用存储器中存储的计算机执行指令来实现。或者,图3中的处理电路的功能/实现过程可以通过图2a或图2b所示的无线通信装置中的通信处理器1501用存储器中存储的计算机执行指令来实现,图3中的接口电路的功能/实现过程可以通过图2a或图2b所示的无线通信装置中的通信处理器1501中的通信接口来实现。
在基于上述内容对本申请实施例提供的方案进行具体介绍,在此之前,为便于理解本申请实施例,先对本申请涉及到“用户路由选择策略”进行介绍。
3GPP定义了用户路由选择策略规则(可以称为URSP,或者简称为URSP规则,或者称为URSP rule;本文中出现的目标URSP规则也可以写为目标URSP规则,目标URSP规则,目标URSP规则rule等)。URSP规则可以包括规则优先级(Rule Precedence)、流量描述符(Traffic Descriptor,TD)和路由选择描述符(Route Selection Descriptor,RSD)。其中,一个URSP规则中可以包括一个流量描述符,以及一个或多个路由选择描述符。
本申请实施例中流量描述符可以包括应用程序描述符、IP描述符、域描述、非IP描述符、数据网络名称(Data Network name,DNN)或连接能力中的至少一项。本申请实施例中路由选择描述符可以包括路由选择描述符优先级、业务和会话连续性模式(service and session continuity mode,SSC)模式选择、网络切片选择、PDU会话类型选择、非无缝的分流指示、接入类型优先级、路由选择有效标准、时间窗口或位置标准中的至少一项。
下面结合下述表1对URSP规则中的内容以及流量描述符中的内容进行介绍,结合表2对路由选择描述符中的内容进行介绍。需说明的是,本申请实施例中定义的URSP规则中包括的内容仅是一种示例,随着技术的发展,不排除URSP规则中还可以包括其他信息,或将该示例中的部分分量或参数删除;不排除流量描述符中还加入其他分量或参数,或将该示例中流量描述符的部分分量或参数删除;不排除路由选择描述符还包括有其他分量或参数,或将该示例中路由选择描述符的部分分量或参数删除。
表1 用户路由选择策略规则
Figure PCTCN2021090070-appb-000001
Figure PCTCN2021090070-appb-000002
Figure PCTCN2021090070-appb-000003
表2 路由选择描述符
Figure PCTCN2021090070-appb-000004
Figure PCTCN2021090070-appb-000005
Figure PCTCN2021090070-appb-000006
基于上述内容,图4示例性示出了本申请实施例提供的一种可能地通信方法的流程示意图,如图4所示,该方法可以由图1、图2a、图2b和图3中的无线通信装置执行,无线通信装置可以为图1中的终端设备10或接入网设备20,或者为芯片,比如为终端设备10内部的芯片,或为接入网设备20内部的芯片等。
一种可能地实施方式中,无线通信装置包括仅包括通信处理器,比如前述图3中所示的无线通信装置。
又一种可能地实施方式中,无线通信装置可以包括应用处理器和通信处理器,比如前述的图2a和图2b所示的无线通信装置。应用处理器和通信处理器耦合。其中应用处理器可以图2a和图2b中的应用处理器110,通信处理器可以为图2a和图2b中的通信处理器1501或调制解调器15011。该方法中还可以包括网络设备,该网络设备可以为前述图1中的核心网设备30。
需要说明的是,本申请实施例中的会话可以为多种通信系统下的会话,比如可以为5G系统下的PDU会话,也可以是未来的通信系统架构下的会话。在未来的系统架构下,会话可能仍沿用5G中的名称PDU会话,也可能会该用其他名称,本申请实施例中对此不做限制。为了更清楚的介绍本申请实施例提供的方案,本申请实施例中以会话为5G系统下的PDU会话为例进行介绍,若未来会话更改了其他名称,则将PDU会话的名称对应替换为其他名称即可。
如图4所示,该方法包括:
S401,通信处理器接收网络设备下发的无线通信装置对应的至少一个URSP规则对应的原始码流。
S402,通信处理器对URSP规则对应的原始码流进行解码,得到至少一个URSP规则,将至少一个URSP规则存储至存储器。
一种可能地实施方式中,URSP规则对应的原始码流可以包括于UE section policy的原始码流中。
S403,通信处理器向网络设备回复第四响应。
第四响应可以用于向网络设备指示无线通信装置已成功接收到URSP规则。
需要说明的是,本申请实施例中通信处理器获取URSP规则的方式有多种,除了上述S401至S403的方案之外,比如还可以通过预设的方式获取URSP规则,或者可以根据预设规则生成等等。S401至S403的步骤不是必须的。
一种可能地实施方式中,一个URSP规则包括一个流量描述符和至少一个路由选择描述符。每个URSP规则也可以有URSP规则优先级,待传输数据可能匹配出多个URSP规则,这种情况下,可以依据多个URSP规则的优先级依序使用。
一种可能地实施方式中,一个流量描述符中包括至少一个参数。比如可以包括用于描述路由信息的至少一个参数。比如,一个流量描述符可以包括以下参数中的至少一项:目的地址参数;数据网络参数;应用程序描述符;或,连接能力参数。
其中,目的地址参数可以包括以下参数中的至少一项:域描述符;网际协议IP描述符;或,非IP描述符。其中,数据网络参数可以包括以下参数中的至少一项:DNN、数据网络类型或接入的名称。非IP描述符可以包括802.1Q C-TAG VID、802.1Q S-TAG VID、802.1Q C-TAG PCP/DEI、802.1Q S-TAG PCP/DEI和Ethertype等。
本申请实施例中流量描述符中包括的参数还可以参见前述表1,在此不再赘述。
一种可能地实施方式中,一个路由选择描述符中包括至少一个参数。比如可以包括PDU会话所需满足参数。一种可能地实施方式中,PDU会话所需满足参数包括以下内容中的至少一项:PDU会话所需的网络的参数;PDU会话所需的网络切片的参数;或,PDU会话所需的会话服务的参数。
其中,网络的参数,可以包括以下内容中的至少一项:PDU会话类型、数据网络名称DNN、接入类型优先级,或非无缝的分流指示。网络切片的参数,可以包括以下参数中的至少一项:网络切片类型,或网络切片名称。会话服务的参数,可以包括会话服务连续性SSC参数。
本申请实施例中路由选择描述符中包括的参数也可以参见前述表2,在此不再赘述。每个路由选择描述符还可以对应有路由描述符优先级,如此,当匹配出多个路由选择描述符时,在发起PDU会话时可以依据多个路由选择描述符的优先级依次使用。
S404,通信处理器向应用处理器发送第一消息,第一消息包括至少一个URSP规则中的至少一个流量描述符中的参数。
一种可能地实施方式中,第一消息包括至少一个URSP规则中的至少一个流量描述符中的至少一个参数。在又一种可能地实施方式中,第一消息包括至少一个URSP规则中的至少一个流量描述符中的全部参数。
第一消息可以为AT命令,当然也可以为其他命令。AT命令集是由拨号调制解调器(MODEM)的发明者贺氏公司(Hayes)为了控制Modem发明的控制协议。AT是Attention的缩写,协议本身采用文本。每个命令均以AT打头,因此得名。
本文档指定了AT命令的配置文件,并建议通过该配置文件控制终端设备(TE)至移动终端(MT)的终端适配器(TA)功能和网络服务。在ITU T建议V.250中要求数字蜂窝中保留命令前缀+C。对应英文内容如下:
“The present document specifies a profile of AT commands and recommends that this profile be used for controlling Mobile Termination(MT)functions and network services from a Terminal Equipment(TE)through Terminal Adaptor(TA).The command prefix+C is reserved for Digital Cellular in ITU T Recommendation V.250。”
在一种可能地实施方式中,第一消息适用于5G网络中,且用于发送至少一个URSP规则中的至少一个流量描述符(也可以理解为第一消息的作用为:used to transmit TD report),本申请实施例中,第一消息可以为一条新定义的AT命令,比如可以为:+C5GTDRPT;+CTDRPT;+CURSPRPT;或+C5GTD等。本申请实施例中第一消息可以有多种名称,不限于此。
S405,应用处理器确定待传输数据对应的路由信息参数。
一种可能地实施方式中,当无线通信装置为手机时,路由信息参数可能是根据用户开启的手机上的应用程序确定的。还有一种可能地实施方式中,当无线通信装置为路由器时,路由信息参数可能是根据待传输数据确定的。无线通信装置在与网络进行数据传输之前(也可以说在无线通信装置的数据业务激活之前),需要建立网络连接,该连接可以为PDU会话连接。该PDU会话连接可以为新建的PDU会话连接,也可以为历史建立的PDU会话连接。关于此部分内容将在后续内容详细说明,在此先不展开阐述。
本申请实施中路由信息参数包括以下参数中的至少一项:待传输数据的目的地址参数;待传输数据对应的数据网络参数;待传输数据对应的应用程序描述符;或,待传输数据对应的连接能力参数。
其中,目的地址参数可以包括以下参数中的至少一项:待传输数据对应的域描述符;待传输数据对应的IP描述符;或,待传输数据对应的非IP描述符。其中,数据网络参数可以包括以下参数中的至少一项:DNN、数据网络类型或接入的名称。其中,域描述符可以为目标全限定域名(fully qualified domain name,FQDN)或者通常表示为域名匹配标准。其中,IP描述符可以为目标IP3元组(IP地址或IPv6网络前缀、端口号等)。
S406,应用处理器确定接收到的至少一个流量描述符中是否存在满足预设条件的流量描述符?预设条件包括:流量描述中的参数与路由信息参数匹配;
若不存在,则执行S407;
若存在,则执行S408。
S407,结束流程。
本申请实施例中,一种可能地实施方式中,满足预设条件的流量描述符中包括的所有参数与路由信息参数中的参数相同。比如,一个流量描述符中仅包括目的地址参数,路由信息参数中包括目的地址参数和数据网络参数,则若该流量描述中的目的地址参数和路由信息中的目的地址参数相同,则该流量描述符满足预设条件。再比如,一个流量描述符中包括目的地址参数和数据网络参数,路由信息参数中仅包括目的地址参数,则即使该流量 描述中的目的地址参数和路由信息中的目的地址参数相同,但因流量描述符中的数据网络参数并未匹配到路由信息参数中的数据网络参数,因此确定该流量描述符不满足预设条件。
在一种可能地实施方式中,S406中,应用处理器若确定接收到的至少一个流量描述符中存在一个流量描述符,该流量描述中包括的所有参数与路由信息参数中的部分或全部参数相同,则进一步,可以查询是否存在一个已处于激活状态PDU会话(即已经建立的PDU会话连接),该PDU会话与该流量描述符中的参数匹配(即该PDU会话为满足一个路由选择描述符的PDU会话,且该路由选择描述符对应的流量描述符中的参数与该流量描述符中的参数相同)。若存在,则可以通过该处于激活状态的PDU会话传输该传输数据。若不存在,则可以执行S407。
在一种可能地实施方式中,由于应用处理器可以进行初步筛选,因此可以在确定网络上下发的URSP规则中存在与其对应的流量描述符之后再发送第一请求。另一种可能地实施方式中,若经查询,并网络下发的URSP规则中不存在与路由信息参数匹配的流量描述符,则可以使用原始的方案,即通信处理器接收到激活PDU会话的请求之后,也不再查询路由选择描述符,而是直接向网络发起PDU会话,但是PDU会话中不再将路由选择描述符中的参数作为拨号参数。又一种可能地实施方中,若经查询,并网络下发的URSP规则中不存在与路由信息参数匹配的流量描述符,则可以确定PDU会话激活失败。
需要注意的是,前述S404和S406不是必须的,若存在S404至S406,则可以使应用处理器自身执行初步筛选,当确定存在与第一参数匹配的TD时,再去发送第一请求。若没有S404至S406,而是直接由应用处理器获取第一参数后执行S408也是可以的。
S408,应用处理器向通信处理器发送第一请求。第一请求用于查询路由选择描述符,第一请求包括待传输数据对应的路由信息参数,路由选择描述符与路由信息参数匹配。
相对应地,通信处理器接收第一请求。
本申请实施例中,通信处理器接收到第一请求之后,可以查询存储的URSP规则中是否存在目标URSP规则,目标URSP规则中的流量描述符与该路由信息参数匹配。在一种可能地实施方式中,与该路由信息参数匹配的流量描述符是指:该流量描述符中包括的所有参数与路由信息参数中的全部或部分相同。相关示例可以参见前述内容,不再赘述。
本申请实施例中的第一请求可以为AT命令,当然也可以为其他命令。在一种可能地实施方式中,第一请求适用于5G网络中,且用于查询路由选择描述符(used to query RSD)。本申请实施例中,第一请求可以为一条新定义的AT命令,比如可以为:+C5GRSDQRY;+C5GURSPQRY;+CURSPQRY;+CQRSD;+C5GQRSD或+C5GRURSP等。本申请实施例中第一请求可以有多种名称,不限于此。
S409,通信处理器查询出目标URSP规则。
S410,通信处理器向应用处理器返回第一响应,第一响应可以包括目标URSP规则中的至少一个路由选择描述符中的至少一个参数。
在一种可能地实施方式中,第一响应可以包括目标URSP规则中的至少一个路由选择描述符中的全部参数。
关于路由选择描述符中包括的参数可以参见前述内容,在此不再赘述。
本申请实施例中查询出的目标URSP规则可以为一个,也可以为多个。当为多个时,可以通过一个第一响应将多个目标URSP规则中的至少一个路由选择描述符中的至少一个 参数返回给应用处理器,也可以通过多个第一响应分别向应用处理器返回多个目标URSP规则中的至少一个路由选择描述符中的至少一个参数。比如一个第一响应可以携带一个目标URSP规则中的一个路由选择描述符中的所有参数。
在一种可能地实施方式中,当目标URSP规则有多个时,通信处理器还可以将多个目标URSP规则的优先级发送给应用处理器,以便应用处理器依据优先级使用目标URSP规则中的路由选择描述符。
在一种可能地实施方式中,在第一响应中还可以携带目标URSP规则中的至少一个路由选择描述符的优先级。如此,可以使应用处理器依据多个路由选择描述符的优先级依序使用。
在又一种可能地实施方式中,S410中,通信处理器还可以进一步查询是否存在一个已处于激活状态PDU会话(即已经建立的PDU会话连接),该PDU会话与该目标URSP规则中的至少一个路由选择描述符匹配(即该PDU会话满足该目标URSP规则中的至少一个路由选择描述符中的参数)。若存在,则一种可能地实施方式中,可以将该已激活的PDU会话的信息携带在第一响应中发送给应用处理器,也可以通过其他消息向应用处理器返回该已激活的PDU会话的信息。以使应用处理器可以选择是直接使用该已激活的PDU会话,还是重新建立PDU会话。
S411,应用处理器向通信处理器发送第三请求。第三请求用于激活PDU会话。第三请求可以包括路由选择描述符中的至少一个参数。
应用处理器在通过前述S409查询到至少一个目标URSP规则中的至少一个路由选择描述符之后,可以依据URSP规则的优先级,以及路由选择描述符的优选级,依序选择使用,并在第三请求中携带当前所选择使用的路由选择描述符中的参数(可以为所选择的路由选择描述符中的所有参数,或至少一个参数;第三请求中所携带的路由选择描述符中的参数可以称为拨号参数),继而基于该第三请求所建立的PDU会话连接将满足该第三请求中所携带的拨号参数。
第三请求可以为用于激活PDU(used to activate 5GS PDU session)的AT命令,当然也可以为其他命令,比如可以为+CGACT。
在一种可能地实施方式中,本申请实施例中,应用处理器接收到第三请求之后可以选择查询是否存在一个已处于激活状态PDU会话(即已经建立的PDU会话连接),该PDU会话与该第三请求中携带的至少一个路由选择描述符匹配(即该PDU会话满足该第三请求中携带的路由选择描述符的参数)。若存在,则一种可能地实施方式中,可以将该已激活的PDU会话的信息发送给应用处理器。以使应用处理器可以选择是直接使用该已激活的PDU会话,还是重新建立PDU会话。当然,若在前述S410中返回第一响应时已经查询过历史PDU会话,则在S411之后不再查询。或者若在前述S406中已由应用处理器查询是否存在匹配的历史PDU会话,则在S410和S411中也可以不必查询。
S412,通信处理器向网络设备发送第二请求,第二请求用于激活PDU会话,第二请求包括路由选择描述符中的至少一个参数。
需要注意的是,前述S410和S411并不是必须的,当存在S411的情况下,一种可能地实施方式中,通信处理器在第二请求中可以携带的路由选择描述符中的参数为前述第三请求中携带的路由选择描述符中的参数。
在又一种可能地实施方式中,当不存在S410和S411时,第二请求中携带的路由选择 描述符中的参数可以为:依据URSP规则的优先级,以及路由选择描述符的优选级,依序选择出的一个路由选择描述符中的参数。第二请求中可以携带所选择的一个路由选择描述符中的所有参数,或至少一个参数。
在一种可能地实施方式中,第二请求可以为PDU会话建立请求,英文可以写为PDU session establishment request。第二请求用于请求与网络之间建立或激活PDU会话连接,该PDU会话连接满足第二请求中所携带的路由选择描述符中的参数。
S413,通信处理器接收网络设备发送的第二响应,第二响应用于指示PDU会话激活成功。
本申请实施例中第二响应可以是PDU会话建立接受,英文可以写为PDU session establishment accept。
S414,通信处理器向应用处理器返回第三响应,第三响应用于指示PDU会话激活成功。
需要说明的是,若S412通信处理器发送第二请求之后接收到的响应指示PDU会话激活失败,则可以再选择一个路由选择描述符(比如可以依据目标URSP规则的优先级,以及目标URPS中的路由选择描述符的优先级进行选择),重新发送第二请求,以便重新激活PDU会话。可以重复发送第二请求,直至PDU会话建立成功,或直至查询出的所有目标URSP规则中的所有路由选择描述符均用完且PDU会话建立全部失败。该第二请求可以由应用处理器重新发送的第三请求触发,也可以由接收到用于指示PDU会话激活失败的消息后触发。
由于目前针对URSP信息的使用,协议中没有明确的规定,只在3GPP 27.007协议中定义了2个相关的AT命令,Modem通过+CRUEPOLICY命令把网络下发的UE section policy信息,以原始码流的形式上报给上层系统,上层系统对UE section policy原始码流进行解码后,再通过+CSUEPOLICY命令回复给Modem,然后Modem再转发给网络设备。而各个厂商为了使用URSP特性对上层系统进行开发和维护,成本较高。且有一部分无线通信装置的上层系统不具备对URSP规则对应的原始码流进行解码的能力。基于此,本申请实施例中通信处理器接收到包括路由信息参数的第一请求之后,可以在发送的第二请求中携带路由选择描述符,因此可以使建立的PDU会话满足URSP特性。且由于通过通信处理器实现了无线通信装置的URSP特性,因此无线通信装置的厂商无需为了实现URSP特性而对上层系统进行开发和维护,从而可以降低无线通信装置厂商的成本。且针对不具备对URSP规则对应的原始码流进行解码的能力的无线通信装置来说,仅需通过安装该通信处理器即可实现URSP特性,降低了对于能力较弱的无线通信装置实现URSP特性的复杂度。本申请实施例提供的方案还可以适用于需要按照产品特性,优化PDU会话建立流程(也可以称为数据业务激活流程)的产品,对原有产品的数据业务处理流程影响较小。
基于前述图4所示的方案,下面通过表3示例性示出了一种第一请求语法示例,第一列中内容为第一请求中包括的参数。第二列中为通信处理器接收到第一请求之后,返回的值。表4中示例性示出了表3中各个参数的含义的示例。表3和表4中以第一请求命名为+C5GRSDQRY进行示例,在实际应用中,第一请求也可以有其他名称。
表3:+C5GRSDQRY命令语法说明
Figure PCTCN2021090070-appb-000007
Figure PCTCN2021090070-appb-000008
表4:+C5GRSDQRY命令中参数说明
Figure PCTCN2021090070-appb-000009
Figure PCTCN2021090070-appb-000010
Figure PCTCN2021090070-appb-000011
基于上述内容,基于上述内容,图5示例性示出了本申请实施例提供的另一种可能地通信方法的流程示意图,如图5所示,该方法可以由图2a和图2b中的无线通信装置执行,无线通信装置可以为图1中的终端设备10或接入网设备20,或者为芯片,比如为终端设备10内部的芯片,或为接入网设备20内部的芯片等。
无线通信装置包括应用处理器和通信处理器。应用处理器和通信处理器耦合。其中应用处理器可以图2a和图2b中的应用处理器110,通信处理器可以为图2a和图2b中的通信处理器1501或调制解调器15011。该方法中还可以包括网络设备,该网络设备可以为前述图1中的核心网设备30。
如图5所示,该方法包括:
图5中的S401至S407可以参见前述图4中的S401至S407。在图5中S406经判断若存在满足预设条件的流量描述符,则执行S501。与前述图4中内容类似,S401至S407并不是必须的,为可选则步骤。
S501,应用处理器向通信处理器发送第一请求。第一请求包括待传输数据对应的路由信息参数,路由选择描述符与路由信息参数匹配。第一请求用于激活PDU会话。或者说,第一请求用于查询路由选择描述符,且还用于激活PDU会话。
相对应地,通信处理器接收第一请求。
本申请实施例中,通信处理器接收到第一请求之后,可以查询存储的URSP规则中是否存在目标URSP规则,目标URSP规则中的流量描述符与该路由信息参数匹配。在一种可能地实施方式中,与该路由信息参数匹配的流量描述符是指:该流量描述符中包括的所有参数与路由信息参数中的全部或部分相同。相关示例可以参见前述内容,不再赘述。
本申请实施例中的第一请求可以为AT命令。AT命令相关介绍可以参数前述内容。
在一种可能地实施方式中,第一请求适用于5G网络中,且用于激活路由选择描述符(used to activate 5GS PDU session)。本申请实施例中,第一请求可以为一条新定义的AT命令,比如可以为:+CACTPDU;+CPSDIAL;+CPDUACT;+CPDUEST;或+CPDUCONN等。本申请实施例中第一请求可以有多种名称,不限于此。
S502,通信处理器查询出目标URSP规则。
在又一种可能地实施方式中,S502之后可以直接执行S503。
在又一种可能地实施方式中,S502中,通信处理器还可以进一步查询是否存在一个已处于激活状态PDU会话(即已经建立的PDU会话连接),该PDU会话与该目标URSP规则中的至少一个路由选择描述符匹配(即该PDU会话满足该目标URSP规则中的至少一个路由选择描述符中的参数)。若存在,则一种可能地实施方式中,可以将该已激活的PDU会话的信息返回给应用处理器,且直接发送用于指示PDU会话激活成功的消息(比如S414中的第三响应)给应用处理器。应用处理器接收到该消息之后,可以使用该已激活的PDU会话传输数据。这种场景下,通信处理器不必再执行S503和S413。另一方面,若不存在已激活的PDU会话与该目标URSP规则中的至少一个路由选择描述符匹配,则可以继续执行S503。
S503,通信处理器向网络设备发送第二请求,第二请求用于激活PDU会话,第二请求包括路由选择描述符中的至少一个参数。
第二请求中携带的路由选择描述符中的参数可以为:通信处理器依据查询到的目标URSP规则的优先级,以及路由选择描述符的优选级,依序选择出的一个路由选择描述符中的参数。第二请求中可以携带所选择的一个路由选择描述符中的所有参数,或至少一个参数。
在一种可能地实施方式中,第二请求可以为PDU会话建立请求,英文可以写为PDU session establishment request。第二请求用于请求与网络之间建立或激活PDU会话连接,该PDU会话连接满足第二请求中所携带的路由选择描述符中的参数。
在S503之后可以执行S413至S414,相关内容更可以参见前述图4中的S413至S414,在此不再赘述。
可以看出,图5所示的方案中,应用处理器仅发送第一请求,之后由通信处理器完成URSP规则的查询和PDU激活(或者说由通信处理器触发数据业务拨号)。如此,可以尽量减少对应用处理器的改动,从而为进一步提高通信处理器的竞争力奠定基础。
基于前述图5所示的方案,下面通过表5示例性示出了一种第一请求语法示例,第一列中内容为第一请求中包括的参数。第二列中为通信处理器接收到第一请求之后,返回的值。表5中第一请求中包括的参数的含义可以参见前述表4中的内容。表5中以第一请求命名为+CACTPDU进行示例,在实际应用中,第一请求也可以有其他名称。
表5:+CACTPDU命令语法说明
Figure PCTCN2021090070-appb-000012
基于前述图4和图5所示的方案中的S404,下面通过表6和表7示例性示出了一种第一消息语法示例,表6中第一列中内容为第一消息中包括的参数。第二列中为通信处理器接收到第一消息之后,返回的值。表7中示例性示出了表6中第一列中包括的参数的含义。表6和表7中以第一消息为+C5GTDRPT”进行示例,在实际应用中,第一消息也可以有其他名称。
表6:+C5GTDRPT命令语法说明
命令类型 返回值
+C5GTDRPT:[<type>],[<length>],[<code>]  
表7:+C5GTDRPT命令中参数说明
Figure PCTCN2021090070-appb-000013
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一请求和第二请求,只是为了区分不同的请求,而并不是表示这两个请求的优先级或者重要程度等的不同。
应理解,以上通信设备的单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述所示实施例中任意一个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备和方法实施例中的网络设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外, 这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种无线通信装置,其特征在于,包括通信处理器,所述通信处理器包括处理电路,以及与所述处理电路耦合的接口电路,其中,所述处理电路用于通过所述接口电路:
    接收应用处理器发送的第一请求,所述第一请求用于查询路由选择描述符,所述第一请求包括待传输数据对应的路由信息参数;
    向网络设备发送第二请求,所述第二请求用于激活会话,所述第二请求包括所述路由选择描述符中的至少一个参数;所述路由选择描述符与所述路由信息参数匹配。
  2. 如权利要求1所述的无线通信装置,其特征在于,所述路由信息参数与目标用户路由选择策略URSP规则中流量描述符包括的参数相同;
    所述路由选择描述符为所述目标URSP规则中的路由选择描述符。
  3. 如权利要求1或2所述的无线通信装置,其特征在于,所述路由信息参数包括以下参数中的至少一项:
    所述待传输数据的目的地址参数;
    所述待传输数据对应的数据网络参数;
    所述待传输数据对应的应用程序描述符;或,
    所述待传输数据对应的连接能力参数。
  4. 如权利要求1或2所述的无线通信装置,其特征在于,所述流量描述符包括以下参数中的至少一项:
    目的地址参数;
    数据网络参数;
    应用程序描述符;或,
    连接能力参数。
  5. 如权利要求3或4所述的无线通信装置,其特征在于,所述目的地址参数包括以下参数中的至少一项:
    所述待传输数据对应的域描述符;所述待传输数据对应的网际协议IP描述符;或,所述待传输数据对应的非IP描述符。
  6. 如权利要求1-5任一项所述的无线通信装置,其特征在于,所述路由选择描述符中的参数包括:所述会话所需满足参数;
    其中,所述会话所需满足参数包括以下内容中的至少一项:
    所述会话所需的网络的参数;
    所述会话所需的网络切片的参数;或,
    所述会话所需的会话服务的参数。
  7. 如权利要求6所述的无线通信装置,其特征在于,所述网络的参数,包括以下参数中的至少一项:
    会话类型、数据网络名称DNN、接入类型优先级,或非无缝的分流指示。
  8. 如权利要求1-7任一项所述的无线通信装置,其特征在于,所述第一请求还用于:激活所述会话。
  9. 如权利要求8所述的无线通信装置,其特征在于,所述第一请求包括以下内容中的至少一项:
    +CACTPDU;+CPSDIAL;+CPDUACT;+CPDUEST;或+CPDUCONN。
  10. 如权利要求1-9任一项所述的无线通信装置,其特征在于,所述处理电路还用于通过所述接口电路:
    在接收所述应用处理器发送的第一请求之后,向网络设备发送第二请求之前,向所述应用处理器返回第一响应,所述第一响应包括所述路由选择描述符中的至少一个参数。
  11. 如权利要求10所述的无线通信装置,其特征在于,所述第一请求包括以下内容中的至少一项:
    +C5GRSDQRY;+C5GURSPQRY;+CURSPQRY;+CQRSD;+C5GQRSD或+C5GRURSP。
  12. 如权利要求11所述的无线通信装置,其特征在于,所述第一响应还包括所述路由选择描述符的优先级。
  13. 如权利要求11或12所述的无线通信装置,其特征在于,所述通信处理器,所述返回第一响应之后,向网络设备发送第二请求之前,还用于:
    接收所述应用处理器发送的第三请求,所述第三请求用于:激活所述会话;所述第三请求包括所述路由选择描述符中的至少一个参数。
  14. 如权利要求1-13任一项所述的无线通信装置,其特征在于,所述第二请求为:协议数据单元PDU会话建立请求。
  15. 如权利要求1-14任一项所述的无线通信装置,其特征在于,所述处理电路还用于通过所述接口电路:
    接收网络设备下发的所述无线通信装置对应的至少一个URSP规则;所述至少一个URSP规则中的URSP规则包括流量描述符和至少一个路由选择描述符;
    向所述应用处理器发送第一消息,所述第一消息包括所述至少一个URSP规则中的至少一个流量描述符中的参数。
  16. 如权利要求15所述的无线通信装置,其特征在于,所述第一消息包括以下内容的至少一项:
    +C5GTDRPT;+CTDRPT;+CURSPRPT;或+C5GTD。
  17. 如权利要求15或16所述的无线通信装置,其特征在于,还包括所述应用处理器,所述通信处理器与所述应用处理器耦合;所述应用处理器,具体用于:
    在确定接收到的所述至少一个流量描述符中存在满足预设条件的流量描述符的情况下,发送所述第一请求;
    其中,所述预设条件包括:所述流量描述符中的参数与所述路由信息参数匹配。
  18. 一种通信方法,其特征在于,适用于包括通信处理器的无线通信装置;所述方法包括通过所述通信处理器执行:
    接收应用处理器发送的第一请求,所述第一请求用于查询路由选择描述符,所述第一请求包括待传输数据对应的路由信息参数;
    向网络设备发送第二请求,所述第二请求用于激活会话,所述第二请求包括所述路由选择描述符中的至少一个参数;所述路由选择描述符与所述路由信息参数匹配。
  19. 如权利要求18所述的方法,其特征在于,所述路由信息参数与目标用户路由选择策略规则URSP规则中流量描述符包括的参数相同;
    所述路由选择描述符为所述目标URSP规则中的路由选择描述符。
  20. 如权利要求18或19所述的方法,其特征在于,所述路由信息参数包括以下参数中的至少一项:
    所述待传输数据的目的地址参数;
    所述待传输数据对应的数据网络参数;
    所述待传输数据对应的应用程序描述符;或,
    所述待传输数据对应的连接能力参数。
  21. 如权利要求18-20任一项所述的方法,其特征在于,所述流量描述符包括以下参数中的至少一项:
    目的地址参数;
    数据网络参数;
    应用程序描述符;或,
    连接能力参数。
  22. 如权利要求18-21任一项所述的方法,其特征在于,所述路由选择描述符中的参数包括:所述会话所需满足参数;
    其中,所述会话所需满足参数包括以下内容中的至少一项:
    所述会话所需的网络的参数;
    所述会话所需的网络切片的参数;或,
    所述会话所需的会话服务的参数。
  23. 如权利要求22所述的方法,其特征在于,所述网络的参数,包括以下参数中的至少一项:
    会话类型、数据网络名称DNN、接入类型优先级,或非无缝的分流指示。
  24. 如权利要求18-23任一项所述的方法,其特征在于,所述第一请求还用于:激活所述会话。
  25. 如权利要求18-23任一项所述的方法,其特征在于,所述接收所述应用处理器发送的第一请求之后,向网络设备发送第二请求之前,还包括:
    向所述应用处理器返回第一响应;
    其中,所述第一响应包括所述路由选择描述符中的至少一个参数;或者,
    所述第一响应包括所述路由选择描述符中的至少一个参数,和所述路由选择描述符的优先级。
  26. 如权利要求25所述的方法,其特征在于,所述返回第一响应之后,向网络设备发送第二请求之前,还包括:
    接收所述应用处理器发送的第三请求,所述第三请求用于:激活所述会话;所述第三请求包括所述路由选择描述符中的至少一个参数。
  27. 如权利要求18-26任一项所述的方法,其特征在于,所述接收所述应用处理器发送的第一请求之前,还包括:
    接收网络设备下发的所述方法对应的至少一个URSP规则;所述至少一个URSP规则中的URSP规则包括流量描述符和至少一个路由选择描述符;
    向所述应用处理器发送第一消息,所述第一消息包括所述至少一个URSP规则中的至少一个流量描述符中的参数。
  28. 如权利要求27所述的方法,其特征在于,所述无线通信装置还包括应用处理器,所述方法还包括:
    通过所述应用处理器确定接收到的所述至少一个流量描述符中存在满足预设条件的流量描述符的情况下,发送所述第一请求;
    其中,所述预设条件包括:所述流量描述符中的参数与所述路由信息参数匹配。
  29. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    其中,所述存储器用于存储程序指令;
    所述处理器用于执行所述存储器中存储的程序指令,以实现所述权利要求18-28中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:
    处理器和接口电路;
    其中,所述接口电路用于访问存储器,所述存储器中存储有程序指令;
    所述处理器用于通过所述接口电路访问所述存储器,并执行所述存储器中存储的程序指令,以实现所述权利要求18-28中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了程序代码,所述程序代码被计算机执行时,实现所述权利要求18-28中任一项所述的方法。
  32. 一种芯片系统,其特征在于,包括通信接口和处理器,所述通信接口,用于输入和/或输出信息;当所述处理器运行时,使得权利要求18-28任一项所述的方法被执行。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品包含的程序代码被计算机执行时,实现所述权利要求18-28中任一项所述的方法。
PCT/CN2021/090070 2021-04-26 2021-04-26 一种通信方法及装置、存储介质和芯片系统 WO2022226749A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2023565495A JP2024515763A (ja) 2021-04-26 2021-04-26 通信方法及び装置、記憶媒体並びにチップ・システム
PCT/CN2021/090070 WO2022226749A1 (zh) 2021-04-26 2021-04-26 一种通信方法及装置、存储介质和芯片系统
CN202180097002.5A CN117280859A (zh) 2021-04-26 2021-04-26 一种通信方法及装置、存储介质和芯片系统
EP21938239.7A EP4325995A4 (en) 2021-04-26 2021-04-26 COMMUNICATION METHOD AND APPARATUS, AND RECORDING MEDIUM AND CHIP SYSTEM
BR112023022259A BR112023022259A2 (pt) 2021-04-26 2021-04-26 Método e aparelho de comunicação, meio de armazenamento e sistema de chip
KR1020237040526A KR20230172598A (ko) 2021-04-26 2021-04-26 통신 방법 및 장치, 저장 매체, 및 칩 시스템
TW111115685A TWI823362B (zh) 2021-04-26 2022-04-25 一種通訊方法及裝置、儲存介質和晶片系統
US18/494,331 US20240056943A1 (en) 2021-04-26 2023-10-25 Communication method and apparatus, storage medium, and chip system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090070 WO2022226749A1 (zh) 2021-04-26 2021-04-26 一种通信方法及装置、存储介质和芯片系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/494,331 Continuation US20240056943A1 (en) 2021-04-26 2023-10-25 Communication method and apparatus, storage medium, and chip system

Publications (1)

Publication Number Publication Date
WO2022226749A1 true WO2022226749A1 (zh) 2022-11-03

Family

ID=83847630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090070 WO2022226749A1 (zh) 2021-04-26 2021-04-26 一种通信方法及装置、存储介质和芯片系统

Country Status (8)

Country Link
US (1) US20240056943A1 (zh)
EP (1) EP4325995A4 (zh)
JP (1) JP2024515763A (zh)
KR (1) KR20230172598A (zh)
CN (1) CN117280859A (zh)
BR (1) BR112023022259A2 (zh)
TW (1) TWI823362B (zh)
WO (1) WO2022226749A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996307A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种数据路由方法以及终端
US20200120487A1 (en) * 2018-02-09 2020-04-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless Communication Method, Network Device, and Terminal Device
WO2020197288A1 (ko) * 2019-03-28 2020-10-01 삼성전자 주식회사 Edge computing 서비스를 이용하기 위하여 단말에 연결성을 제공하는 방법 및 장치
CN112073979A (zh) * 2020-08-13 2020-12-11 展讯通信(天津)有限公司 通路描述符传输方法及相关装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787596B2 (en) * 2015-01-26 2017-10-10 Mediatek Inc. Maximum transmission unit size reporting and discovery by a user equipment
KR20200139771A (ko) * 2018-04-06 2020-12-14 콘비다 와이어리스, 엘엘씨 5g 네트워크에서의 로컬 영역 데이터 네트워크(ladn)에 대한 접속들을 관리하는 방법들
CN111182580B (zh) * 2018-11-16 2023-02-24 维沃移动通信有限公司 业务传输方法、终端和网络侧设备
EP3888331A1 (en) * 2018-11-28 2021-10-06 Convida Wireless, Llc Methods to leverage non-cellular device capabilities
US10602422B1 (en) * 2018-12-10 2020-03-24 Verizon Patent And Licensing Inc. Application-based user equipment route selection policy mapping
KR20200115155A (ko) * 2019-03-28 2020-10-07 삼성전자주식회사 Edge Computing 서비스를 이용하기 위하여 단말에 연결성을 제공하는 방법 및 장치
US11206597B2 (en) * 2019-05-06 2021-12-21 Mediatek Inc. Enhanced UE route selection policy (URSP) rules selection
KR20210030167A (ko) * 2019-09-09 2021-03-17 삼성전자주식회사 무선 통신 시스템에서 하나의 단말을 여러 사용자가 이용하기 위한 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996307A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种数据路由方法以及终端
US20200120487A1 (en) * 2018-02-09 2020-04-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless Communication Method, Network Device, and Terminal Device
WO2020197288A1 (ko) * 2019-03-28 2020-10-01 삼성전자 주식회사 Edge computing 서비스를 이용하기 위하여 단말에 연결성을 제공하는 방법 및 장치
CN112073979A (zh) * 2020-08-13 2020-12-11 展讯通信(天津)有限公司 通路描述符传输方法及相关装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Connectivity Models for Edge Computing", 3GPP DRAFT; S2-2000198, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Incheon, Korea; 20200113 - 20200117, 7 January 2020 (2020-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051842305 *
See also references of EP4325995A4 *

Also Published As

Publication number Publication date
CN117280859A (zh) 2023-12-22
TW202245509A (zh) 2022-11-16
US20240056943A1 (en) 2024-02-15
EP4325995A4 (en) 2024-05-08
BR112023022259A2 (pt) 2023-12-26
KR20230172598A (ko) 2023-12-22
TWI823362B (zh) 2023-11-21
EP4325995A1 (en) 2024-02-21
JP2024515763A (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
EP4072234A1 (en) Method for establishing connection and obtaining relay service code, and communication apparatus
US20220174546A1 (en) User Plane Information Reporting Method And Apparatus
US11722425B2 (en) Data packet deleting method, device and storage medium
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
US11399307B2 (en) Service authorization method, terminal device and network device
WO2019137549A1 (zh) 通信方法和通信装置
WO2018127018A1 (zh) 多链接通信方法、设备和终端
US20230254922A1 (en) Multipath transmission method and communication apparatus
US20220124500A1 (en) Communication method, terminal device and network device
US20230035694A1 (en) Service guarantee method and apparatus
EP4354770A1 (en) Method and apparatus for transmitting data
WO2020078248A1 (zh) 无线通信方法及设备
CN110784912B (zh) 一种会话对应关系的管理方法和终端设备
WO2018145292A1 (zh) 通信方法、装置和系统
US20230079012A1 (en) Communication method and communication apparatus
WO2021204361A1 (en) Apparatus, method and computer program
WO2020223907A1 (zh) 一种信息传输方法及装置、网络设备
EP4336884A1 (en) Communication method and communication apparatus
WO2019098143A1 (ja) 端末装置、基地局装置、および方法
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
WO2022142792A1 (zh) 用于传输数据的方法和装置
WO2022226749A1 (zh) 一种通信方法及装置、存储介质和芯片系统
CN110913507B (zh) 通信方法和装置
CN114514764B (zh) 设备、方法和计算机程序
WO2023015973A1 (zh) 一种网络切片准入控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565495

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023022259

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021938239

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237040526

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040526

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021938239

Country of ref document: EP

Effective date: 20231116

ENP Entry into the national phase

Ref document number: 112023022259

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231025