WO2019100893A1 - 电子调速器、电机控制系统及无人机 - Google Patents

电子调速器、电机控制系统及无人机 Download PDF

Info

Publication number
WO2019100893A1
WO2019100893A1 PCT/CN2018/111721 CN2018111721W WO2019100893A1 WO 2019100893 A1 WO2019100893 A1 WO 2019100893A1 CN 2018111721 W CN2018111721 W CN 2018111721W WO 2019100893 A1 WO2019100893 A1 WO 2019100893A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resistor
mos transistor
motor
electronic governor
Prior art date
Application number
PCT/CN2018/111721
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019100893A1 publication Critical patent/WO2019100893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the embodiments of the present application relate to the technical field of drones, and in particular, to an electronic governor, a motor control system, and a drone.
  • drones have been widely used in aerial photography, plant protection, power inspection, disaster relief and many other fields due to their flexibility, quick response, driverless operation and low operational requirements.
  • wireless Internet wireless local area network and image processing technology, drones have been favored by more and more consumers.
  • the drone In the power system of the drone, it includes a motor, a propeller connected to the output shaft of the motor, and an ESC connected to the input of the motor.
  • Electronically adjustable full name electronic governor English Electronic Speed Control, referred to as ESC.
  • the electronic governor controls the operation of the motor by outputting a motor control signal to the motor.
  • the embodiment of the present application provides an electronic governor, a motor control system, and a drone, which can solve the problem of how to improve the integration degree of the motor control system of the drone.
  • a technical solution adopted by the present application is to provide an electronic governor for controlling the rotational speed of the motor, the number of the motors being at least two, and the electronic governor includes:
  • control unit configured to output at least two sets of switch tube driving signals
  • At least two electrically adjustable main circuits wherein the signal input ends of each of the electrically adjustable main circuits are connected to the output end of the control unit for receiving a set of switching tube driving signals corresponding to the electrically adjustable main circuit, and according to The switch tube drive signal outputs a corresponding set of motor drive signals; the feedback end of each of the ESC main circuits is connected to the input end of the control unit for feeding back the sampling current of the ESC main circuit to the
  • the control unit is configured to enable the control unit to generate a set of switch tube drive signals corresponding to the ESC main circuit according to the sampling current; the output ends of the at least two ESC main circuits are respectively connected to at least two motors An input to output the motor drive signal to the at least two motors to control its rotational speed.
  • control unit includes:
  • An op amp circuit wherein the input ends thereof are respectively connected to the feedback ends of the at least two ESC main circuits, and are used for amplifying the sampling currents of each of the received ESC main circuits, and outputting the respective at least At least two sets of feedback signals corresponding to the two main circuits of the ESC;
  • a microcontroller whose input end is connected to an output end of the operational amplifier circuit, for generating at least two sets of control signals according to the at least two sets of feedback signals, respectively;
  • a pre-driver circuit having an input end connected to an output end of the microcontroller, and an output end connected to a signal input end of each of the ESC main circuits for outputting the at least two groups according to the at least two sets of control signals Switch tube drive signal.
  • the op amp circuit, the microcontroller, and the pre-driver circuit are integrated on the same carrier.
  • control unit further includes a power conversion circuit for providing power to the microcontroller and the pre-drive circuit.
  • the operational amplifier circuit, the microcontroller, the pre-drive circuit and the power conversion circuit are integrated on the same carrier.
  • the ESC main circuit includes:
  • a power switch circuit having a signal input end connected to an output end of the control unit for receiving a set of switch tube drive signals corresponding to the ESC main circuit, and outputting a set of motor drives according to the switch tube drive signal signal;
  • a sampling circuit coupled to the power switching circuit for sampling a current flowing through the power switching circuit, and feeding the obtained sampling current to the control unit through a feedback end thereof.
  • the power switch circuit includes: an upper arm circuit and a lower arm circuit, and the upper arm circuit is connected to the lower arm circuit.
  • control unit further includes a bootstrap circuit for performing bootstrap boosting to provide a voltage for maintaining the upper arm to conduct.
  • each group of the switch tube driving signals includes a first switch tube driving signal to a sixth switch tube driving signal
  • the upper arm circuit includes a first resistor, a second resistor, a third resistor, a first MOS transistor, a second MOS transistor, and a third MOS transistor;
  • the lower arm circuit includes a fourth resistor, a fifth resistor, a sixth resistor, a fourth MOS transistor, a fifth MOS transistor, and a sixth MOS transistor;
  • One end of the first resistor is configured to receive a first switch tube driving signal, the other end of the first resistor is connected to a gate of the first MOS tube, and one end of the second resistor is configured to receive a second switch a tube driving signal, the other end of the second resistor is connected to a gate of the second MOS transistor, and one end of the third resistor is configured to receive a third switching transistor driving signal, and the other end of the third resistor is a gate of the third MOS transistor is connected, one end of the fourth resistor is for receiving a fourth switch transistor driving signal, and the other end of the fourth resistor is connected to a gate of the fourth MOS transistor, One end of the fifth resistor is for receiving a fifth switch tube driving signal, the other end of the fifth resistor is connected to the gate of the fifth MOS tube, and one end of the sixth resistor is for receiving the sixth switch tube drive a signal, the other end of the sixth resistor is connected to a gate of the sixth MOS transistor;
  • the drains of the first MOS transistor, the second MOS transistor, and the third MOS transistor are all connected to the first node, and the source of the first MOS transistor is connected to the drain of the fourth MOS transistor, a source of the second MOS transistor is connected to a drain of the fifth MOS transistor, a source of the third MOS transistor is connected to a drain of the sixth MOS transistor, and the fourth MOS transistor and the fifth MOS transistor And a source of the sixth MOS transistor is connected to the second node, and an external power source is loaded between the first node and the second node.
  • the sampling circuit includes a sampling resistor, one end of the sampling resistor is connected to the second node, and the other end of the sampling resistor is connected to the external power source, and the feedback end of the sampling circuit includes the sampling The one end of the resistor and the other end of the sampling resistor.
  • the ESC main circuit further includes:
  • a filter circuit coupled to the power switch circuit for filtering harmonic components of the external power source.
  • a motor control system comprising: at least two motors, and an electronic governor as described above;
  • the output terminals of the main circuit of the electric current are electrically connected to the input ends of the at least two motors, respectively.
  • a drone comprising: at least two propellers; at least two motors, the at least two motors respectively At least two propeller connections for driving the at least two propellers to provide flight power to the drone; and an electronic governor as described above, wherein the at least two electro-optical main circuits are The outputs are electrically connected to the inputs of the at least two motors, respectively.
  • the electronic governor provided by the embodiment of the present application includes a control unit and at least two ESC main circuits, and the control unit can correspond to each of the ESC main circuit outputs.
  • a set of switch tube driving circuits so that each of the ESC main circuits can output a corresponding set of motor drive signals according to the received switch tube drive signals, so that the electronic governor provided by the embodiment of the present application can simultaneously control at least Two motors reduce the number of electronic governors required for the motor control system of the drone and increase integration.
  • the ESC main circuit can also feed back the sampling current to the control unit through the feedback end, so that the control unit can make more reliable control logic, thereby improving the electronic speed regulation. Reliability of the device.
  • FIG. 1 is a schematic structural view of a four-rotor UAV provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a motor control system according to an embodiment of the present application.
  • FIG. 3 is a circuit block diagram of an electronic governor provided by an embodiment of the present application.
  • FIG. 4 is a circuit block diagram of a control unit according to an embodiment of the present application.
  • FIG. 5 is a circuit block diagram of a main circuit of an electric adjustment according to an embodiment of the present application.
  • FIG. 6 is a circuit block diagram of a power switch circuit according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a circuit of an electric adjustment main circuit according to an embodiment of the present application.
  • the electronic governor and motor control system provided by the embodiments of the present application can be applied to various motor-driven movable objects, including but not limited to unmanned aerial vehicles (UAVs), ships, and robots. Now take the drone as an example for explanation.
  • the structure of the UAV includes a center housing, a boom, and a power system.
  • the arm is integrally or fixedly connected to the center housing, and the power system is mounted on the arm.
  • Typical power systems include electronic governors, motors, and propellers.
  • the electronic governor is located in a cavity formed by the arm or the center housing. One end of the electronic governor is electrically connected to the throttle controller, and the other end of the electronic governor is electrically connected to the motor.
  • the electronic governor and the motor form a motor control system, and the electronic governor outputs a motor drive signal to the motor to control its rotational speed.
  • the motor is mounted on the arm, and the rotating shaft of the motor is connected to the propeller.
  • the propeller generates a force that causes the drone to move under the drive of the motor, for example, a lift or thrust that causes the drone to move.
  • the flight control module of the drone sends an accelerator signal to the electronic governor, and the electronic governor receives the throttle signal, generates and outputs a motor drive signal for controlling the motor operation to the motor.
  • the motor drive signal includes, for example, a signal for controlling motor start, a signal for controlling a rotational speed at which the motor operates, and the like.
  • the throttle controller can be a flight control module of the drone.
  • the flight control module senses the environment around the UAV through various sensors and controls the flight of the UAV.
  • the flight control module may be a processing unit, an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Multi-rotor drones typically employ multiple motors to control the speed or direction of a plurality of rotors connected to them, thereby powering the multi-rotor drone to complete the flight.
  • a four-rotor drone uses four motors to control the speed or direction of the respective rotor.
  • each motor of the multi-rotor UAV controls its operation by using an electronic governor.
  • the electronic governor can output a corresponding motor drive signal according to the control logic to drive the motor to rotate.
  • its smallest component unit may include at least two propellers, at least two electric machines, and an electronic governor. At least two motors are respectively connected to at least two propellers, one of the electronic governors is connected to one of the at least two motors, and the other drive circuit is connected to the other motor.
  • the electronic governor can send a motor drive signal to the corresponding motor through the drive circuit of the corresponding road, and the motor drives the propeller to rotate according to the motor drive signal, thereby providing flight power for the drone.
  • the conventional multi-rotor UAV uses a one-to-one control method to control the motor, that is, an electronic governor controls a motor. Therefore, when the drone is a quadrotor drone, it needs four. An electronic governor and four motor architectures for drive control. Therefore, the traditional multi-rotor UAV has a low degree of integration of the electronic governor in the structure of the motor control system, resulting in the traditional multi-rotor UAV being too large in size, overweight in weight, and over cost. High, not conducive to consumer price increases.
  • the embodiment of the present application provides a drone.
  • the drone is a multi-rotor drone, for example, it can be a three-rotor drone, a quadrotor drone, and the like.
  • This embodiment introduces the UAV as a quadrotor UAV as an example, but it can be understood that the following description about the quadrotor UAV is not used to limit the application of the UAV provided by the embodiment of the present application.
  • the scope of the present invention is not limited to the scope of the present application.
  • FIG. 1 is a schematic structural diagram of a four-rotor UAV according to an embodiment of the present application.
  • the quadrotor UAV 100 includes four propellers (not shown) and four motors (a first motor 11, a second motor 12, a third motor 13, and a fourth motor 14).
  • the motors are respectively coupled to four propellers for driving the four propellers to provide flight power to the four-rotor drone 100.
  • the quadrotor drone 100 further includes an electronic governor 15 that is coupled to the first motor 11, the second motor 12, the third motor 13, and the fourth motor 14, respectively, to form a motor control system.
  • the electronic governor 15 sends corresponding motor driving signals to the first motor 11, the second motor 12, the third motor 13, and the fourth motor 14 according to the control logic, thereby driving the first motor 11 and the second motor 12, respectively.
  • the three motor 13 and the fourth motor 14 rotate.
  • the four motors share an electronic governor, which can constitute a motor control system, and which can also greatly reduce the size and weight of the quadrotor.
  • the quadrotor drone 100 may further add an electronic governor, and the additional electronic governor may be combined with the above four drones. Connect or control any two or three motors.
  • one of the electronic governors 15 controls the first motor 11 and the second motor 12, and the other electronic governor 15 controls the third motor 13 and the fourth motor 14, each of which may constitute a motor control system.
  • an electronic governor can control two motors, which can reduce the size of the drone and improve the reliability of the drone.
  • the electronic governor 15 can also be connected to a plurality of motors as long as the electronic governor 15 is open enough to provide an available interface for driving the motor, and the manner shown in the above embodiments is not limited herein.
  • the motor control system 10 includes a first motor 11, a second motor 12, and an electronic governor 15, and the output ends of the electronic governor 15 are electrically connected to the input ends of the first motor 11 and the second motor 12, respectively, according to the control.
  • the logic drives the first motor 11 and the second motor 12 to rotate.
  • the electronic governor 15 includes a control unit 151, a first electrically adjustable main circuit 152, and a second electrically adjustable main circuit 153.
  • the control unit 151 includes an input terminal 151a and an output terminal 151b.
  • the first ESC main circuit 152 includes a first signal input terminal 152a, a first feedback terminal 152b, and a first signal output terminal 152c.
  • the second ESC main circuit 153 includes The second signal input terminal 153a, the second feedback terminal 153b, and the second signal output terminal 153c.
  • the first signal input terminal 152a and the second signal input terminal 153a are both connected to the output terminal 151b of the control unit 151; the first feedback terminal 152b and the second feedback terminal 153b are both connected to the input terminal 151a of the control unit 151; the first signal output The end 152c is connected to the input end of the first motor 11, the motor drive signal outputted by the first signal output end 152c can drive the first motor 11 to rotate; the second signal output end 153c is connected to the input end of the second motor 12, the second signal The motor drive signal outputted by the output terminal 153c can drive the second motor 12 to rotate.
  • the control unit 151, the first ESC main circuit 152, and the second ESC may be first used.
  • the main circuit 153 is respectively connected to the external power source Vdc to activate the electronic governor 15.
  • the control unit 151 is configured to output a first set of switch tube drive signals corresponding to the first ESC main circuit 152, and output a second set of switch tube drive signals corresponding to the second ESC main circuit 153.
  • the first group of control signals or the second group of control signals may be a PWM signal (Pulse Width Modulation) or a PFM signal (Pulse Frequency Modulation).
  • the first ESC main circuit 152 After receiving the first group of switch tube driving signals through the first signal input terminal 152a, the first ESC main circuit 152 outputs a first group of motor driving signals to the first motor 11 according to the first group of switch tube driving signals to drive the first During operation of a motor 11, the first set of motor drive signals includes signals for controlling activation of the first motor 11 , signals for controlling the speed of operation of the first motor 11 , and the like; meanwhile, the first ESC main circuit 152 also passes the first feedback.
  • the terminal 152b feeds back the first sampling current of the first electrically adjustable main circuit 152 to the control unit 151, so that the control unit 151 generates a first set of switching tube driving signals corresponding to the first electrically adjustable main circuit 152 according to the first sampling current. .
  • the second ESC main circuit 153 receives the second group of switch tube drive signals through the second signal input terminal 153a, and outputs a second group of motor drive signals to the second motor 12 according to the second group of switch tube drive signals.
  • the second set of motor drive signals includes signals for controlling the start of the second motor 12, signals for controlling the rotational speed of the second motor 12, and the like; meanwhile, the second ESC main circuit 153 also passes The second feedback terminal 153b feeds back the second sampling current of the second ESC main circuit 153 to the control unit 151, so that the control unit 151 generates a second group switch corresponding to the second ESC main circuit 153 according to the second sampling current. Tube drive signal.
  • an electronic governor 15 can be realized to simultaneously control the first motor 11 and the second motor 12.
  • the electronic governor 15 includes only two ESC main circuits, that is, the first ESC main circuit 152 and the second ESC main circuit 153, only for the purpose of performing Illustratively; in other embodiments, in order to be able to control more motors, the electronic governor 15 may also include more circuit-switching main circuits, each of which can control one motor, each The main circuit of one ESC can be implemented according to the content taught in this application.
  • control unit 151 includes: an operational amplifier circuit 1511, a micro-controller 1512, and a pre-driver circuit 1513 that are sequentially connected, and a bootstrap circuit 1514.
  • the op amp circuit 1511, the microcontroller 1512, and the pre-driver circuit 1513 may be integrated on the same carrier.
  • the three may be integrated on the same crystal or the chip; or the carrier may be in other forms. Circuit board.
  • the op amp circuit 1511 can be any type of amplifying circuit, and the input end thereof is the input end 151a of the control unit 151, that is, the input end of the op amp circuit 1511 is respectively connected to the first feedback end 152b and the second feedback end 153b. . Since the signal of the sampling current obtained from each feedback terminal is generally weak, in order to facilitate the signal processing of the microcontroller 1512 more reliably, the received first sampling current and second sampling current can be received by the operational amplifier circuit 1511. The amplification process is performed, and then the first set of feedback signals corresponding to the first electrically adjustable main circuit 152 and the second set of feedback signals corresponding to the second electrically adjustable main circuit 153 are output to the microcontroller 1512.
  • the input end of the microcontroller 1512 is coupled to the output of the operational amplifier circuit 1511 for generating a first set of control signals for driving the first electrically adjustable main circuit 152 according to the first set of feedback signals, according to the second set of feedback.
  • the signal generates a second set of control signals for driving the second electrically adjustable main circuit 153.
  • the first group of control signals output by the microcontroller 1512 corresponding to the first ESC main circuit 152 are respectively PWM1_1 to PWM1_6, and the second group of control signals corresponding to the second ESC main circuit 153 are respectively PWM2_1 to PWM2_6.
  • the microcontroller 1512 can be any of the following electrical devices: an application specific integrated circuit (AS IC), a digital signal processor (DSP), a digital signal processing device (DSPD), a programmable logic device (PLD), and an on-site Programming gate arrays (FPGAs), processors, microprocessors, and other electronic units that perform these functions.
  • AS IC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGAs on-site Programming gate arrays
  • the input end of the pre-drive circuit 1513 is connected to the output end of the microcontroller 1512, and the output end of the pre-drive circuit 1513 is the output end 151b of the control unit 151, which is connected to the signal input end of each of the ESC main circuits. And configured to output a first group of switch tube driving signals according to the first group of control signals, and output a second group of switch tube driving signals according to the second group of control signals.
  • each of the main circuit of the ESC includes a plurality of switching tubes, and the "switching tube driving signal" refers to a signal capable of controlling whether each of the switching tubes of each of the ESC main circuits is turned on or off.
  • Each set of control signals includes a plurality of PWM signals at least equal to the number of switches in the corresponding ESC main circuit, and the plurality of PWM signals are used to indicate that the pre-drive circuit 1513 is strobed to output a corresponding switch driving signal, and The switch tube driving signal is loaded on the corresponding switch tube in the ESC main circuit, and therefore, the number of the switch tube drive signals is equal to the number of control signals.
  • each switch main circuit includes six switch tubes, and the received six PWM1_1 to PWM1_6 signals are respectively “10000”, the pre-drive circuit 1513 can output a set of switch tube drive signals PWM11 to PWM16, In order to make the first switch in the main circuit of the ESC work in the on state, all the other switches are in the off state. After the first switch is turned on 180 degrees, the other switches are turned on in turn according to the conduction logic. turning tube.
  • the switching transistor driving signal outputted by the pre-driving circuit 1513 may be relatively weak, and is not enough to drive the respective switching tubes of the upper bridge arms in the respective ESC main circuits. Therefore, in this embodiment, The bootstrap boost is performed by the bootstrap circuit 1514 to provide a voltage for maintaining the upper arm of the first ESC main circuit 152 and the second ESC main circuit 153 to be turned on.
  • the bootstrap circuit 1514 can include a plurality of bootstrap capacitors and diodes, and the number of bootstrap capacitors and diodes can correspond to the number of switches of the upper arm of the corresponding ESC main circuit.
  • the switch driving signal output by the pre-drive circuit 1513 can drive each switch of the upper arm of each ESC main circuit
  • the bootstrap circuit 1514 can also be omitted.
  • control unit 151 further includes a power conversion circuit 1515, which is respectively connected to the microcontroller 1512 and the pre-drive circuit 1513 for providing the microcontroller 1512 and the pre-drive circuit 1513.
  • the power supply for example, provides a 3.3V or 5V DC voltage to the microcontroller 1512 and a 15V DC voltage to the pre-driver circuit 1513.
  • the power conversion circuit 1515 can also be integrated on the same carrier as the operational amplifier circuit 1511, the microcontroller 1512, and the pre-driver circuit 1513, for example, integrated on the same wafer.
  • FIG. 5 is a schematic block diagram of a first electrical control main circuit according to an embodiment of the present application, and the specific circuit structure and principle of the second electrically adjustable main circuit 153 in this embodiment may refer to the first A block diagram of the main circuit of the ESC is not repeated here.
  • the first ESC main circuit 152 includes: a first power switch circuit 1521, a first sampling circuit 1522, and a first filter circuit 1523.
  • the first power switch circuit 1521 may include a plurality of switch tubes.
  • the signal input end of the first power switch circuit 1521 is the first signal input end 152a of the first ESC main circuit 152, and the output end of the control unit 151.
  • 151a ie, the output end of the pre-drive circuit 1513
  • Each of the switching tubes of the power switching circuit 1521 outputs a first group of motor driving signals to the first motor 11 through its signal output terminal (ie, the first signal output terminal 152c of the first electrically adjustable main circuit 152), thereby driving the first The motor 11 rotates.
  • the first sampling circuit 1522 is coupled to the first power switching circuit 1521 for sampling the current flowing through the first power switching circuit 1521, and passing the obtained first sampling current through the feedback end thereof (ie, the first power)
  • the feedback terminal 152b) of the tuning main circuit 152 is fed back to the input of the operational amplifier circuit 1511 of the control unit 151.
  • the first sampling current is functionally related to the current of the first power switching circuit 1521 driving the first motor 11, and the first power switching circuit 1521 can be evaluated to drive the current of the first motor 11. Therefore, the first sampling is performed.
  • the sampling position of circuit 1522 can be determined as needed.
  • the "coupling" can be understood that the connection between the first sampling circuit 1522 and the first power switching circuit 1521 can be an indirect connection or an electrical connection.
  • the first sampling circuit 1522 includes a Hall sensor capable of sampling. The current flowing through the first power switching circuit 1521.
  • the connection page between the first sampling circuit 1522 and the first power switching circuit 1521 may be electrically connected.
  • the first sampling circuit 1522 takes the sampling resistor and sets the sampling resistor in the first power switching circuit 1521. The first sample current is obtained by feedback of the sampling resistor.
  • a first filter circuit 1523 is further provided, and the first filter circuit 1523 is connected to the first power switch circuit 1521.
  • the first filter circuit 1523 can also be omitted.
  • the electric-switching main circuit including the first electric-adjusting main circuit and the second electric-adjusting main circuit
  • the following embodiments of the present application in conjunction with FIG. 6 to FIG.
  • the main circuit is further elaborated. It should be understood that the description made herein is not intended to limit the specific structure of the ESC main circuit, and is only used to further elaborate the ESC main circuit. Similarly, for convenience of explanation, in the embodiment, the first ESC main circuit 152 is still taken as an example for detailed description.
  • the first ESC main circuit 152 includes six switch tubes, and the first group of switch tube drive signals received include a first switch tube drive signal to a sixth switch tube drive signal (ie, PWM11 to PWM16). ).
  • the first power switch circuit 1521 includes a first upper arm circuit 15211 and a first lower arm circuit 15212, a first upper arm circuit 15211 and a first lower arm. Circuitry 15212 is connected.
  • the first upper arm circuit 15211 includes a first resistor R1, a second resistor R2, a third resistor R3, a first MOS transistor PQ1, a second MOS transistor PQ2, and a third MOS transistor PQ3.
  • the lower bridge arm circuit 15212 includes a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a fourth MOS transistor PQ4, a fifth MOS transistor PQ5, and a sixth MOS transistor PQ6.
  • the MOS transistor can be a PMOS transistor or an NMOS transistor.
  • one end of the first resistor R1 is used to receive the first switch driving signal PWM11, the other end of the first resistor R1R1 is connected to the gate of the first MOS transistor PQ1, and one end of the second resistor R2 is used to receive the second switch.
  • the tube drive signal PWM12, the other end of the second resistor R2 is connected to the gate of the second MOS transistor PQ2, and one end of the third resistor R3 is for receiving the third switch transistor drive signal PWM13, and the other end of the third resistor R3 is the third
  • the gate of the MOS transistor PQ3 is connected, one end of the fourth resistor R4 is for receiving the fourth switch driving signal PWM14, the other end of the fourth resistor R4 is connected to the gate of the fourth MOS transistor PQ4, and the fifth resistor R5 is One end is for receiving the fifth switch tube driving signal PWM15P, the other end of the fifth resistor R5 is connected to the gate of the fifth MOS transistor PQ5, and one end of the sixth resistor R6 is for receiving the sixth switch tube driving signal PWM16, the sixth resistor The other end of R6 is connected to the gate of the sixth MOS transistor PQ6.
  • the drains of the first MOS transistor PQ1, the second MOS transistor PQ2, and the third MOS transistor PQ3 are all connected to the first node e, and the source of the first MOS transistor PQ1 is connected to the drain of the fourth MOS transistor PQ4, and the second MOS
  • the source of the transistor PQ2 is connected to the drain of the fifth MOS transistor PQ5, the source of the third MOS transistor PQ3 is connected to the drain of the sixth MOS transistor PQ6, and the fourth MOS transistor PQ4, the fifth MOS transistor PQ5, and the sixth MOS
  • the source of the pipe PQ6 is connected to the second node f, and the external power source Vdc is loaded between the first node e and the second node f.
  • the first sampling circuit 1522 includes a sampling resistor R0.
  • One end of the sampling resistor R0 is connected to the second node e, and the other end of the sampling resistor R0 is connected to the external power source Vdc.
  • the feedback end of the first sampling circuit 1522 includes One end of the sampling resistor R0 and the other end of the sampling resistor R0.
  • the first filter circuit 1523 includes a filter capacitor C1. One end of the filter capacitor C1 is connected to the first node e, and the other end is connected to the other end of the sampling resistor R0.
  • the corresponding switch tube is strobed from the first power switch circuit 1521 for conduction.
  • the strobe first MOS transistor PQ1 is turned on, and the other MOS transistors are turned off, the output voltage is Vdc.
  • the sixth MOS transistor PQ6 is turned on, and when the other MOS transistors are turned off, the output voltage is -Vdc.
  • the turn-on sequence of each MOS transistor is PQ1-PQ6-PQ2-PQ5-PQ3-PQ4. According to the conduction sequence of the respective MOS tubes, it is possible to output a first group of motor drive signals for driving the rotation of the first motor 11.
  • sampling resistor R0 is capable of sampling the driving current flowing through the first motor 11 and feeding back the sampling current to the control unit 151 so that the control 151 can adjust the logic of controlling the motor in time.
  • the filter capacitor C1 is capable of filtering out harmonic components of the first power switch circuit 1521 that the external power source Vdc is loaded, thereby enabling the power switch circuit 1521 to operate reliably.
  • the ESC provided by the embodiment of the present application can be applied not only to a drone, but also to a mobile device such as a remote control vehicle or an unmanned ship.
  • the electronic governor provided by the embodiment of the present application includes a control unit and at least two ESC main circuits, and the control unit can output a set of switches corresponding to each EQUID main circuit.
  • the tube driving circuit is configured to enable each of the ESC main circuits to output a corresponding set of motor driving signals according to the received switching tube driving signal, so that the electronic governor provided by the embodiment of the present application can simultaneously control at least two motors. It reduces the number of electronic governors required for the motor control system of the drone and improves integration.
  • the ESC main circuit can also feed back the sampling current to the control unit through the feedback end, so that the control unit can make more reliable control logic, thereby improving the electronic governor. Reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本申请实施例涉及无人机技术领域,具体公开了一种电子调速器、电机控制系统及无人机。其中,该电子调速器包括:控制单元,用于输出至少两组开关管驱动信号;至少两路电调主电路,用于接收与其对应的一组开关管驱动信号,并根据该开关管驱动信号输出对应的一组电机驱动信号;同时,每一路电调主电路将其采样电流反馈至控制单元,以使控制单元根据该采样电流生成与该电调主电路对应的一组开关管驱动信号;该至少两路电调主电路的输出端分别连接至少两个电机的输入端,以便向该至少两个电机输出所述电机驱动信号以控制其运行。通过上述方式,本申请实施例能够提升电机控制系统的集成度,减少占用体积,降低成本。

Description

电子调速器、电机控制系统及无人机
本申请要求于2017年11月27日提交中国专利局、申请号为2017216104071、申请名称为“一种电子调速器、电机控制系统及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无人机技术领域,特别是涉及一种电子调速器、电机控制系统及无人机。
背景技术
近年来,无人机因其具有机动灵活、反应快速、无人驾驶、操作要求低等优点而广泛应用于航拍、植保、电力巡检、救灾等众多领域。随着无线互联网、无线局域网和图像处理技术的发展,无人机更是得到了越来越多消费者的青睐。
在无人机的动力系统中,包括电机、与电机的输出轴相连的螺旋桨以及与电机的输入端相连的电调。电调全称电子调速器,英文Electronic Speed Control,简称ESC。电子调速器通过输出电机控制信号给电机,从而控制电机的运行。
在实现本申请的过程中,发明人发现:目前市面上的消费类无人机通常采用“一拖一式”的电机控制系统,即,在电机控制系统中一个电调控制一个电机,而“一拖一式”的电机控制系统的集成度较低,不仅占用无人机的体积,增加无人机的重量,还增加了无人机的生产成本,不利于提升消费类无人机的价格优势。由此,如何提升无人机的电机控制系统的集成度是当前亟待解决的问题。
发明内容
本申请实施例提供一种电子调速器、电机控制系统及无人机,能够解决如何提升无人机的电机控制系统的集成度的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种电子调速器,用于控制电机的转速,所述电机的数量为至少两个,所述电子调速器包括:
控制单元,用于输出至少两组开关管驱动信号;
至少两路电调主电路,每一路电调主电路的信号输入端均与所述控制单元的输出端连接,用于接收与所述电调主电路对应的一组开关管驱动信号,并根据所述开关管驱动信号输出对应的一组电机驱动信号;每一路电调主电路的反馈端均与所述控制单元的输入端连接,用于将所述电调主电路的采样电流反馈至所述控制单元,以使所述控制单元根据所述采样电流生成与所述电调主电路对应的一组开关管驱动信号;所述至少两路电调主电路的输出端分别连接至少两个电机的输入端,以便向所述至少两个电机输出所述电机驱动信号以控制其转速。
可选地,所述控制单元包括:
运放电路,其输入端分别与所述至少两路电调主电路的所述反馈端连接,用于对接收到的每一路电调主电路的采样电流进行放大处理,输出分别与所述至少两路电调主电路一一对应的至少两组反馈信号;
微控制器,其输入端与所述运放电路的输出端连接,用于分别根据所述至少两组反馈信号生成至少两组控制信号;
预驱动电路,其输入端与所述微控制器的输出端连接,其输出端与每一 路电调主电路的信号输入端连接,用于根据所述至少两组控制信号输出所述至少两组开关管驱动信号。
可选地,所述运放电路、所述微控制器和所述预驱动电路集成于同一载体上。
可选地,所述控制单元还包括电源转换电路,所述电源转换电路用于对所述微控制器和所述预驱动电路提供电源。
可选地,所述运放电路、所述微控制器、所述预驱动电路和所述电源转换电路集成于同一载体上。
可选地,所述电调主电路包括:
功率开关电路,其信号输入端与所述控制单元的输出端连接,用于接收与所述电调主电路对应的一组开关管驱动信号,并根据所述开关管驱动信号输出一组电机驱动信号;
采样电路,其与所述功率开关电路耦合,用于采样流经所述功率开关电路的电流,并将获取到的采样电流通过其反馈端反馈至所述控制单元。
可选地,所述功率开关电路包括:上桥臂电路与下桥臂电路,所述上桥臂电路与所述下桥臂电路连接。
可选地,所述控制单元还包括自举电路,所述自举电路用于进行自举升压,提供维持所述上桥臂导通的电压。
可选地,每一组所述开关管驱动信号包括第一开关管驱动信号至第六开关管驱动信号;
所述上桥臂电路包括第一电阻、第二电阻、第三电阻、第一MOS管、第二MOS管及第三MOS管;
所述下桥臂电路包括第四电阻、第五电阻、第六电阻、第四MOS管、第五MOS管及第六MOS管;
所述第一电阻的一端用于接收第一开关管驱动信号,所述第一电阻的另一端与所述第一MOS管的栅极连接,所述第二电阻的一端用于接收第二开关管驱动信号,所述第二电阻的另一端与所述第二MOS管的栅极连接,所述第三电阻的一端用于接收第三开关管驱动信号,所述第三电阻的另一端与所述第三MOS管的栅极连接,所述第四电阻的一端用于接收第四开关管驱动信号,所述第四电阻的另一端与所述第四MOS管的栅极连接,所述第五电阻的一端用于接收第五开关管驱动信号,所述第五电阻的另一端与所述第五MOS管的栅极连接,所述第六电阻的一端用于接收第六开关管驱动信号,所述第六电阻的另一端与所述第六MOS管的栅极连接;
所述第一MOS管、第二MOS管和第三MOS管的漏极皆连接至第一节点,所述第一MOS管的源极与所述第四MOS管的漏极连接,所述第二MOS管的源极与所述第五MOS管的漏极连接,所述第三MOS管的源极与所述第六MOS管的漏极连接,所述第四MOS管、第五MOS管和第六MOS管的源极皆连接至第二节点,外部电源加载于所述第一节点与所述第二节点之间。
可选地,所述采样电路包括采样电阻,所述采样电阻的一端连接所述第二节点,所述采样电阻的另一端与所述外部电源连接,所述采样电路的反馈端包括所述采样电阻的所述一端和所述采样电阻的所述另一端。
可选地,所述电调主电路还包括:
滤波电路,其与所述功率开关电路连接,用于滤除所述外部电源的谐波分量。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种电机控制系统,所述电机控制系统包括:至少两个电机,以及,如上所述的电子调速器;所述至少两路电调主电路的输出端分别与所述至少两个电机的输入端电连接。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种无人机,所述无人机包括:至少两个螺旋桨;至少两个电机,所述至少两个电机分别与所述至少两个螺旋桨连接,用于驱动所述至少两个螺旋桨旋转,以给所述无人机提供飞行动力;以及如上所述的电子调速器,其中,所述至少两路电调主电路的输出端分别与所述至少两个电机的输入端电连接。
本申请实施例的有益效果是:区别于现有技术的情况,本申请实施例提供的电子调速器包括控制单元和至少两路电调主电路,控制单元可以对应每一路电调主电路输出一组开关管驱动电路,以使每一路电调主电路都可以根据接收到的开关管驱动信号输出对应的一组电机驱动信号,从而,本申请实施例提供的电子调速器能够同时控制至少两个电机,减少了无人机的电机控制系统所需的电子调速器的数量,提升集成度。此外,在本申请实施例提供的电子调速器中,电调主电路还可以通过反馈端将其采样电流反馈至控制单元,便于控制单元做出更加可靠的控制逻辑,从而提升该电子调速器的可靠性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些 示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种四旋翼无人机的结构示意图;
图2是本申请实施例提供的一种电机控制系统的结构示意图;
图3是本申请实施例提供的一种电子调速器的电路原理框图;
图4是本申请实施例提供的一种控制单元的电路原理框图;
图5是本申请实施例提供一种电调主电路的电路原理框图;
图6是本申请实施例提供一种功率开关电路的电路原理框图;
图7是本申请实施例提供一种电调主电路的电路结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“左”、“右”、“水平的”、“垂直的”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了方便说明并且理解本申请实施例的技术方案,以下说明所使用的方位词均以附图所展示的方位为准。
本申请实施例提供的电子调速器和电机控制系统可以应用到各种电机驱动的可移动物体上,包括但不限于无人机(unmanned aerial vehicle,UAV)、轮船、机器人。现以无人机为例进行说明。无人飞行器的结构包括中心壳体、机臂、和动力系统。机臂与中心壳体一体连接或者固定连接,动力系统安装于机臂上。典型的动力系统包括电子调速器、电机和螺旋桨。电子调速器位于机臂或中心壳体所形成的空腔内。电子调速器的一端与油门控制器电连接,电子调速器的另一端与电机电连接。电子调速器与电机构成电机控制系统,电子调速器向所述电机输出电机驱动信号,以控制其转速。进一步地,电机安装在机臂上,电机的转动轴连接螺旋桨。螺旋桨在所述电机的驱动下产生使得所述无人机移动的力,例如,使得无人机移动的升力或者推力。
当用户通过遥控器输入开机指令时,无人机的飞控模块向电子调速器发送一油门信号,电子调速器接收该油门信号,生成并向电机输出用于控制电机运行的电机驱动信号,所述电机驱动信号例如包括控制电机启动的信号、控制电机运行的转速的信号等。
在一种实现方式中,油门控制器可以是无人机的飞行控制模块。飞行控制模块通过各种传感器感知无人飞行器周围的环境,并控制无人飞行器的飞行。飞行控制模块可以是处理模块(processing unit),专用集成电路(Application Specific Integrated Circuit,ASIC)或者现场可编程门阵列(Field Programmable Gate Array,FPGA)。
多旋翼无人机一般采用多个电机控制多个与其分别相连的旋翼的转速或 方向,从而为多旋翼无人机提供动力,以完成飞行。例如:四旋翼无人机采用四个电机分别控制各自旋翼的转速或方向。其中,多旋翼无人机的每个电机又通过采用电子调速器控制其运行。电子调速器能够根据控制逻辑输出对应的电机驱动信号,以驱动电机转动。
一般地,对于多旋翼无人机,其最小组件单元可以包括至少两个螺旋桨、至少两个电机以及电子调速器。至少两个电机分别与至少两个螺旋桨连接,电子调速器中的一路驱动电路与至少两个电机中的一个电机连接,另一路驱动电路与另一个电机连接。
无人机工作时,电子调速器能够通过对应路的驱动电路向对应电机发送电机驱动信号,电机根据电机驱动信号驱动螺旋桨转动,从而为无人机提供飞行动力。
然而,如前所述,传统多旋翼无人机采用一拖一方式控制电机,亦即:一个电子调速器控制一个电机,因此,当无人机为四旋翼无人机时,其需要四个电子调速器与四个电机的架构,以实现驱动控制。因此,传统多旋翼无人机在电机控制系统的架构上,电子调速器的集成化程度不高,导致传统多旋翼无人机在体积上过大,在重量上过重,在成本上过高,不利于消费类无人机提升价格优势。
基于此,本申请实施例提供一种无人机。该无人机为多旋翼无人机,例如:其可以为三旋翼无人机、四旋翼无人机等等。本实施例以无人机为四旋翼无人机作为例子进行介绍,但是可以理解的是,以下所作出关于四旋翼无人机的描述并不用于限制本申请实施例提供的无人机的应用范围,本领域技术人员根据本实施例所训导的内容,对无人机作出其它的替换或变形,其应 当落入本申请的保护范围之内,在此不赘述。
请参阅图1,图1是本申请实施例提供一种四旋翼无人机的结构示意图。如图1所示,该四旋翼无人机100包括四个螺旋桨(图未示)以及4个电机(第一电机11、第二电机12、第三电机13以及第四电机14),该4个电机分别与4个螺旋桨连接,用于驱动该4个螺旋桨转动,以给该四旋翼无人机100提供飞行动力。该四旋翼无人机100还包括电子调速器15,电子调速器15分别与第一电机11、第二电机12、第三电机13、第四电机14连接,共同构成电机控制系统。
电子调速器15根据控制逻辑分别向第一电机11、第二电机12、第三电机13、第四电机14发送对应的电机驱动信号,从而分别驱动第一电机11、第二电机12、第三电机13和第四电机14进行转动。
在本实施例中,四个电机共用一个电子调速器,其可以构成一个电机控制系统,并且,其还能够极大缩小四旋翼无人机的体积与减轻重量。
在一些实施例中,为了进一步提高控制无人机的可靠性,该四旋翼无人机100还可以增设一个电子调速器,并且,该增设的电子调速器可以与上述四个无人机中任意两个或三个电机连接与控制。例如:其中一个电子调速器15控制第一电机11和第二电机12,另一个电子调速器15控制第三电机13和第四电机14,每组皆可以构成一个电机控制系统。相对于传统技术,一个电子调速器可以控制两个电机,其可以缩小无人机的体积,并提高控制无人机的可靠性。
可以理解的是:只要电子调速器15开放足够的、可供于驱动电机的可用接口,电子调速器15也可以连接多个电机,在此并不局限上述实施例所示的 方式。
图2是本申请实施例提供的一种电机控制系统的电路原理框图。该电机控制系统10包括第一电机11、第二电机12和电子调速器15,电子调速器15的输出端分别与第一电机11和第二电机12的输入端电连接,能够根据控制逻辑驱动第一电机11和第二电机12转动。
具体地,请参阅图3,该电子调速器15包括:控制单元151、第一电调主电路152和第二电调主电路153。
其中,控制单元151包括输入端151a和输出端151b,第一电调主电路152包括第一信号输入端152a、第一反馈端152b和第一信号输出端152c,第二电调主电路153包括第二信号输入端153a、第二反馈端153b和第二信号输出端153c。第一信号输入端152a以及第二信号输入端153a均与控制单元151的输出端151b连接;第一反馈端152b和第二反馈端153b均与控制单元151的输入端151a连接;第一信号输出端152c与第一电机11的输入端连接,第一信号输出端152c输出的电机驱动信号能够驱动第一电机11转动;第二信号输出端153c与第二电机12的输入端连接,第二信号输出端153c输出的电机驱动信号能够驱动第二电机12转动。
当运行该电机控制系统10时(即,使用电子调速器15驱动第一电机11和第二电机12转动时),可以首先将控制单元151、第一电调主电路152和第二电调主电路153分别接入外部电源Vdc以启动该电子调速器15。在该电子调速器15工作时,控制单元151用于对应第一电调主电路152输出第一组开关管驱动信号,以及对应第二电调主电路153输出第二组开关管驱动信号,其中,第一组控制信号或第二组控制信号可以为PWM信号(Pulse Width  Modulation,脉冲宽度调制)或PFM信号(Pulse Frequency Modulation,脉冲频率调制)。第一电调主电路152通过第一信号输入端152a接收到该第一组开关管驱动信号后,根据该第一组开关管驱动信号向第一电机11输出第一组电机驱动信号以驱动第一电机11的运行,该第一组电机驱动信号包括控制第一电机11启动的信号、控制第一电机11运行的转速的信号等信号;同时,第一电调主电路152还通过第一反馈端152b将第一电调主电路152的第一采样电流反馈至控制单元151,以使控制单元151根据该第一采样电流生成与第一电调主电路152对应的第一组开关管驱动信号。同理,第二电调主电路153通过第二信号输入端153a接收到该第二组开关管驱动信号后,根据该第二组开关管驱动信号向第二电机12输出第二组电机驱动信号以驱动第二电机12的运行,该第二组电机驱动信号包括控制第二电机12启动的信号、控制第二电机12运行的转速的信号等信号;同时,第二电调主电路153还通过第二反馈端153b将第二电调主电路153的第二采样电流反馈至控制单元151,以使控制单元151根据该第二采样电流生成与第二电调主电路153对应的第二组开关管驱动信号。如此,即可实现一个电子调速器15同时控制第一电机11和第二电机12。
其中,可以理解的是,在该实施例中,电子调速器15中仅包括两个电调主电路,即:第一电调主电路152和第二电调主电路153,仅是为了进行示例性说明;在其他的一些实施例中,为了能够控制更多的电机,电子调速器15也可以包括更多路电调主电路,每一路电调主电路均可以对应控制一个电机,每一路电调主电路均可以根据本申请所训导的内容实现。
具体地,请参阅图4,控制单元151包括:依次连接的运放电路1511、 微控制器1512和预驱动电路1513,以及,自举电路1514。
其中,优选地,运放电路1511、微控制器1512和预驱动电路1513可以集成于同一载体上,比如,三者可以集成于同一晶原或者芯片上;或者,该载体也可以是其他形式的电路板。通过将运放电路1511、微控制器1512和预驱动电路151集成于同一载体上,可以减少电子调速器15占用的体积,进一步提升电子调速器15的集成度。
其中,运放电路1511可以是任意类型的放大电路,其输入端即该控制单元151的输入端151a,即,运放电路1511的输入端分别与第一反馈端152b和第二反馈端153b连接。由于从各反馈端获得的采样电流的信号一般比较弱,因此,为了方便微控制器1512能够更加可靠地进行信号处理,可以通过运放电路1511对接收到的第一采样电流和第二采样电流进行放大处理,然后再向微控制器1512输出与第一电调主电路152对应的第一组反馈信号和与第二电调主电路153对应的第二组反馈信号。
其中,微控制器1512的输入端与运放电路1511的输出端连接,用于根据第一组反馈信号生成用于驱动第一电调主电路152的第一组控制信号,根据第二组反馈信号生成用于驱动第二电调主电路153的第二组控制信号。例如,微控制器1512对应第一电调主电路152输出的第一组控制信号分别为PWM1_1至PWM1_6,对应第二电调主电路153输出的第二组控制信号分别为PWM2_1至PWM2_6。此外,该微控制器1512可以为以下任意一种电学装置:专用集成电路(AS IC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、微处理器、执行这些功能的其他电子单元。
其中,预驱动电路1513的输入端与微控制器1512的输出端连接,预驱动电路1513的输出端即该控制单元151的输出端151b,其与每一路电调主电路的信号输入端连接,用于根据第一组控制信号输出第一组开关管驱动信号,根据第二组控制信号输出第二组开关管驱动信号。其中,各路电调主电路中包括多个开关管,所述“开关管驱动信号”是指能够控制每一路电调主电路的各个开关管导通或者截止的信号。每一组控制信号中都包括至少与对应的电调主电路中开关管数量相等的若干个PWM信号,若干个PWM信号用于指示预驱动电路1513选通输出对应的开关管驱动信号,并将该开关管驱动信号加载在电调主电路中对应的开关管上,因此,开关管驱动信号的数量与控制信号的数量相等。例如:假设每一路电调主电路中包括6个开关管,接收到的六个PWM1_1至PWM1_6信号分别为“10000”,则,预驱动电路1513可以对应输出一组开关管驱动信号PWM11至PWM16,以使电调主电路中的第一个开关管工作在导通状态,其它各开关管全部工作在截止状态,待第一个开关管导通180度后,再按照导通逻辑依次导通其它开关管。
其中,在本实施例中,考虑到预驱动电路1513输出的开关管驱动信号有可能会比较弱,尚未足以驱动各电调主电路中的上桥臂的各个开关管,因此,在本实施例中,通过自举电路1514进行自举升压,提供维持第一电调主电路152和第二电调主电路153的上桥臂导通的电压。该自举电路1514中可以包括若干自举电容和二极管,自举电容和二极管的数量可以与对应的电调主电路的上桥臂的开关管数量相对应。
由此,可以理解的是,在实际应用中,若预驱动电路1513输出的开关管驱动信号能够驱动各路电调主电路的上桥臂的各个开关管,则也可以省略该 自举电路1514。
此外,在本实施例中,控制单元151内还包括电源转换电路1515,该电源转换电路1515分别与微控制器1512和预驱动电路1513连接,用于对微控制器1512和预驱动电路1513提供电源,比如,为微控制器1512提供3.3V或者5V的直流电压,为预驱动电路1513提供15V的直流电压。在一些优选的实施例中,该电源转换电路1515也可以与运放电路1511、微控制器1512和预驱动电路1513集成于同一载体上,例如集成于同一晶圆上。
再者,请参阅图5,为本申请实施例提供的一种第一电调主电路的原理框图,而本实施例中的第二电调主电路153的具体电路结构和原理可以参照该第一电调主电路的原理框图,此处便不再赘述。
具体地,该第一电调主电路152包括:第一功率开关电路1521、第一采样电路1522和第一滤波电路1523。
其中,第一功率开关电路1521中可以包括若干开关管,第一功率开关电路1521的信号输入端即该第一电调主电路152的第一信号输入端152a,其与控制单元151的输出端151a(即,预驱动电路1513的输出端)连接,用于接收与该第一电调主电路1521对应的第一组开关管驱动信号,并根据该第一组开关管驱动信号控制该第一功率开关电路1521中的各个开关管,通过其信号输出端(即,第一电调主电路152的第一信号输出端152c)向第一电机11输出第一组电机驱动信号,从而驱动第一电机11转动。
其中,第一采样电路1522与第一功率开关电路1521耦合,用于采样流经该第一功率开关电路1521的电流,并将获取到的第一采样电流通过其反馈端(即,第一电调主电路152的反馈端152b)反馈至控制单元151的运放电 路1511的输入端。其中,第一采样电流只要与第一功率开关电路1521驱动第一电机11的电流存在函数关系,能够评价该第一功率开关电路1521驱动第一电机11的电流即可,因此,该第一采样电路1522的采样位置可以根据需要来确定。此外,所述“耦合”可以理解的是第一采样电路1522与第一功率开关电路1521之间的连接可以是间接连接或电气连接,例如:第一采样电路1522包括霍尔传感器,其能够采样流经第一功率开关电路1521的电流。或者,第一采样电路1522与第一功率开关电路1521之间的连接页可以是电性连接,例如:第一采样电路1522引出采样电阻,并将采样电阻设置在第一功率开关电路1521内,通过采样电阻的反馈获得第一采样电流。
其中,为了滤除外部电源Vdc加载在第一功率开关电路1521上的谐波分量,在本实施例中,还设置有第一滤波电路1523,第一滤波电路1523与第一功率开关电路1521连接。当然,可以理解的是,在其他的一些实施例中,第一滤波电路1523也可以省略。
进一步地,为了详细阐述本申请实施例提供的电调主电路(包括第一电调主电路和第二电调主电路),下面,本申请实施例结合图6至图7,对该电调主电路再作出进一步的阐述,应当理解,此处所作的阐述并不用于限制该电调主电路的具体结构,其只是用于对电调主电路作出进一步详细的阐述。同样地,为方便阐述,在该实施例中,依然以第一电调主电路152为例进行详细说明。
在本实施例中,第一电调主电路152包括6个开关管,其接收到的第一组开关管驱动信号包括第一开关管驱动信号至第六开关管驱动信号(即,PWM11~PWM16)。
具体地,请参阅图6,在本实施例中,第一功率开关电路1521包括第一上桥臂电路15211和第一下桥臂电路15212,第一上桥臂电路15211和第一下桥臂电路15212连接。
具体地,请参阅图7,第一上桥臂电路15211包括第一电阻R1、第二电阻R2、第三电阻R3、第一MOS管PQ1、第二MOS管PQ2及第三MOS管PQ3;第一下桥臂电路15212包括第四电阻R4、第五电阻R5、第六电阻R6、第四MOS管PQ4、第五MOS管PQ5及第六MOS管PQ6。其中,所述MOS管可以是PMOS管也可以是NMOS管。
具体地,第一电阻R1的一端用于接收第一开关管驱动信号PWM11,第一电阻R1R1的另一端与第一MOS管PQ1的栅极连接,第二电阻R2的一端用于接收第二开关管驱动信号PWM12,第二电阻R2的另一端与第二MOS管PQ2的栅极连接,第三电阻R3的一端用于接收第三开关管驱动信号PWM13,第三电阻R3的另一端与第三MOS管PQ3的栅极连接,第四电阻R4的一端用于接收第四开关管驱动信号PWM14,所述第四电阻R4的另一端与第四MOS管PQ4的栅极连接,第五电阻R5的一端用于接收第五开关管驱动信号PWM15P,第五电阻R5的另一端与第五MOS管PQ5的栅极连接,第六电阻R6的一端用于接收第六开关管驱动信号PWM16,第六电阻R6的另一端与第六MOS管PQ6的栅极连接。
第一MOS管PQ1、第二MOS管PQ2和第三MOS管PQ3的漏极皆连接至第一节点e,第一MOS管PQ1的源极与第四MOS管PQ4的漏极连接,第二MOS管PQ2的源极与第五MOS管PQ5的漏极连接,第三MOS管PQ3的源极与第六MOS管PQ6的漏极连接,第四MOS管PQ4、第五MOS管PQ5和第六MOS管PQ6的源 极皆连接至第二节点f,外部电源Vdc加载于该第一节点e与该第二节点f之间。
在本实施例中,第一采样电路1522包括采样电阻R0,采样电阻R0的一端连接至第二节点e,采样电阻R0的另一端与外部电源Vdc连接,该第一采样电路1522的反馈端包括该采样电阻R0的一端和该采样电阻R0的另一端。
在本实施例中,第一滤波电路1523包括滤波电容C1,滤波电容C1的一端连接在第一节点e,另一端与采样电阻R0的另一端连接。
在本实施例中,该第一电调主电路152工作时,响应于控制单元151发送的第一组开关管控制信号,从第一功率开关电路1521中选通出对应的开关管进行导通。例如:当选通第一MOS管PQ1导通,其它MOS管截止时,输出电压为Vdc。第一MOS管PQ1导通180度后,选通第六MOS管PQ6导通,其它MOS管截止时,输出电压为-Vdc。依次类推,各个MOS管的导通顺序为PQ1-PQ6-PQ2-PQ5-PQ3-PQ4。根据各个MOS管的导通顺序,其能够输出驱动第一电机11转动的第一组电机驱动信号。
进一步的,采样电阻R0能够采样流经第一电机11的驱动电流,并向控制单元151反馈采样电流,以便控制151能够及时调整控制电机的逻辑。
滤波电容C1能够滤除外部电源Vdc加载在第一功率开关电路1521的谐波分量,从而使功率开关电路1521能够可靠地工作。
最后,可以理解的是,本申请实施例提供的电调不仅可以应用于无人机上,其还可以应用于遥控战车、无人船等移动装置上。
综上所述可见,区别于现有技术的情况,本申请实施例提供的电子调速器包括控制单元和至少两路电调主电路,控制单元可以对应每一路电调主电 路输出一组开关管驱动电路,以使每一路电调主电路都可以根据接收到的开关管驱动信号输出对应的一组电机驱动信号,从而,本申请实施例提供的电子调速器能够同时控制至少两个电机,减少了无人机的电机控制系统所需的电子调速器的数量,提升集成度。此外,在本申请实施例提供的电子调速器中,电调主电路还可以通过反馈端将其采样电流反馈至控制单元,便于控制单元做出更加可靠的控制逻辑,从而提升电子调速器的可靠性。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (14)

  1. 一种电子调速器,用于控制电机的转速,其特征在于,所述电机的数量为至少两个,所述电子调速器包括:
    控制单元,用于输出至少两组开关管驱动信号;
    至少两路电调主电路,每一路电调主电路的信号输入端均与所述控制单元的输出端连接,用于接收与所述电调主电路对应的一组开关管驱动信号,并根据所述开关管驱动信号输出对应的一组电机驱动信号;每一路电调主电路的反馈端均与所述控制单元的输入端连接,用于将所述电调主电路的采样电流反馈至所述控制单元,以使所述控制单元根据所述采样电流生成与所述电调主电路对应的一组开关管驱动信号;所述至少两路电调主电路的输出端分别连接至少两个电机的输入端,以便向所述至少两个电机输出所述电机驱动信号以控制其运行。
  2. 根据权利要求1所述的电子调速器,其特征在于,所述电机驱动信号包括控制电机启动的信号和控制电机运行的转速的信号。
  3. 根据权利要求2所述的电子调速器,其特征在于,所述控制单元包括:
    运放电路,其输入端分别与所述至少两路电调主电路的所述反馈端连接,用于对接收到的每一路电调主电路的采样电流进行放大处理,输出分别与所述至少两路电调主电路一一对应的至少两组反馈信号;
    微控制器,其输入端与所述运放电路的输出端连接,用于分别根据所述 至少两组反馈信号生成至少两组控制信号;
    预驱动电路,其输入端与所述微控制器的输出端连接,其输出端与每一路电调主电路的信号输入端连接,用于根据所述至少两组控制信号输出所述至少两组开关管驱动信号。
  4. 根据权利要求3所述的电子调速器,其特征在于,所述运放电路、所述微控制器和所述预驱动电路集成于同一载体上。
  5. 根据权利要求3或4所述的电子调速器,其特征在于,所述控制单元还包括电源转换电路,所述电源转换电路用于对所述微控制器和所述预驱动电路提供电源。
  6. 根据权利要求5所述的电子调速器,其特征在于,所述运放电路、所述微控制器、所述预驱动电路和所述电源转换电路集成于同一载体上。
  7. 根据权利要求1-6任一项所述的电子调速器,其特征在于,所述电调主电路包括:
    功率开关电路,其信号输入端与所述控制单元的输出端连接,用于接收与所述电调主电路对应的一组开关管驱动信号,并根据所述开关管驱动信号输出一组电机驱动信号;
    采样电路,其与所述功率开关电路耦合,用于采样流经所述功率开关电路的电流,并将获取到的采样电流通过其反馈端反馈至所述控制单元。
  8. 根据权利要求7所述的电子调速器,其特征在于,所述功率开关电路包括:上桥臂电路与下桥臂电路,所述上桥臂电路与所述下桥臂电路连接。
  9. 根据权利要求8所述的电子调速器,其特征在于,所述控制单元还包括自举电路,所述自举电路用于进行自举升压,提供维持所述上桥臂导通的电压。
  10. 根据权利要求8或9所述的电子调速器,其特征在于,每一组所述开关管驱动信号包括第一开关管驱动信号至第六开关管驱动信号;
    所述上桥臂电路包括第一电阻、第二电阻、第三电阻、第一MOS管、第二MOS管及第三MOS管;
    所述下桥臂电路包括第四电阻、第五电阻、第六电阻、第四MOS管、第五MOS管及第六MOS管;
    所述第一电阻的一端用于接收第一开关管驱动信号,所述第一电阻的另一端与所述第一MOS管的栅极连接,所述第二电阻的一端用于接收第二开关管驱动信号,所述第二电阻的另一端与所述第二MOS管的栅极连接,所述第三电阻的一端用于接收第三开关管驱动信号,所述第三电阻的另一端与所述第三MOS管的栅极连接,所述第四电阻的一端用于接收第四开关管驱动信号,所述第四电阻的另一端与所述第四MOS管的栅极连接,所述第五电阻的一端用于接收第五开关管驱动信号,所述第五电阻的另一端与所述第五MOS管的栅极连接,所述第六电阻的一端用于接收第六开关管驱动信号,所述第 六电阻的另一端与所述第六MOS管的栅极连接;
    所述第一MOS管、第二MOS管和第三MOS管的漏极皆连接至第一节点,所述第一MOS管的源极与所述第四MOS管的漏极连接,所述第二MOS管的源极与所述第五MOS管的漏极连接,所述第三MOS管的源极与所述第六MOS管的漏极连接,所述第四MOS管、第五MOS管和第六MOS管的源极皆连接至第二节点,外部电源加载于所述第一节点与所述第二节点之间。
  11. 根据权利要求10所述的电子调速器,其特征在于,所述采样电路包括采样电阻,所述采样电阻的一端连接所述第二节点,所述采样电阻的另一端与所述外部电源连接,所述采样电路的反馈端包括所述采样电阻的所述一端和所述采样电阻的所述另一端。
  12. 根据权利要求11所述的电子调速器,其特征在于,所述电调主电路还包括:
    滤波电路,其与所述功率开关电路连接,用于滤除所述外部电源的谐波分量。
  13. 一种电机控制系统,其特征在于,包括:
    至少两个电机以及如权利要求1-12任一项所述的电子调速器,所述至少两路电调主电路的输出端分别与所述至少两个电机的输入端电连接。
  14. 一种无人机,其特征在于,包括:
    至少两个螺旋桨;
    至少两个电机,所述至少两个电机分别与所述至少两个螺旋桨连接,用于驱动所述至少两个螺旋桨旋转,以给所述无人机提供飞行动力;以及
    如权利要求1-12任一项所述的电子调速器,其中,所述至少两路电调主电路的输出端分别与所述至少两个电机的输入端电连接。
PCT/CN2018/111721 2017-11-27 2018-10-24 电子调速器、电机控制系统及无人机 WO2019100893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721610407.1 2017-11-27
CN201721610407.1U CN207638583U (zh) 2017-11-27 2017-11-27 一种电子调速器、电机控制系统及无人机

Publications (1)

Publication Number Publication Date
WO2019100893A1 true WO2019100893A1 (zh) 2019-05-31

Family

ID=62854660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111721 WO2019100893A1 (zh) 2017-11-27 2018-10-24 电子调速器、电机控制系统及无人机

Country Status (2)

Country Link
CN (1) CN207638583U (zh)
WO (1) WO2019100893A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207638583U (zh) * 2017-11-27 2018-07-20 深圳市道通智能航空技术有限公司 一种电子调速器、电机控制系统及无人机
CN112154600B (zh) * 2019-10-30 2024-03-26 深圳市大疆创新科技有限公司 电机控制装置、设备、系统及其控制方法
CN117040358B (zh) * 2023-06-09 2024-03-12 上海铼钠克数控科技有限公司 马达数据自动配置方法、装置、设备及可读存储介质
CN116915029B (zh) * 2023-09-11 2023-12-19 深圳市省油灯网络科技有限公司 一种电源变换器的控制方法、装置、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122886A (ja) * 1997-10-16 1999-04-30 Honda Motor Co Ltd 回転電機
CN204517707U (zh) * 2015-04-09 2015-07-29 南京胜捷电机制造有限公司 一种发动机冷却风扇电机的pwm调速电路
CN106549537A (zh) * 2016-11-03 2017-03-29 深圳市道通智能航空技术有限公司 一种电子调速器、永磁同步电机组件以及无人飞行器
CN106672224A (zh) * 2016-11-25 2017-05-17 广州亿航智能技术有限公司 一种无人机及其控制方法
CN207638583U (zh) * 2017-11-27 2018-07-20 深圳市道通智能航空技术有限公司 一种电子调速器、电机控制系统及无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122886A (ja) * 1997-10-16 1999-04-30 Honda Motor Co Ltd 回転電機
CN204517707U (zh) * 2015-04-09 2015-07-29 南京胜捷电机制造有限公司 一种发动机冷却风扇电机的pwm调速电路
CN106549537A (zh) * 2016-11-03 2017-03-29 深圳市道通智能航空技术有限公司 一种电子调速器、永磁同步电机组件以及无人飞行器
CN106672224A (zh) * 2016-11-25 2017-05-17 广州亿航智能技术有限公司 一种无人机及其控制方法
CN207638583U (zh) * 2017-11-27 2018-07-20 深圳市道通智能航空技术有限公司 一种电子调速器、电机控制系统及无人机

Also Published As

Publication number Publication date
CN207638583U (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2019100893A1 (zh) 电子调速器、电机控制系统及无人机
WO2019100894A1 (zh) 电子调速器、电机控制系统及无人机
WO2018082526A1 (zh) 一种电子调速器、电机组件以及无人飞行器
WO2018095159A1 (zh) 一种无人机及其控制方法
WO2018121727A1 (zh) 一种驱动控制电路及机器人
WO2018195771A1 (zh) 用于驱动电机转动的控制方法、电子调速器、动力套装和无人飞行器
US9966881B2 (en) Bluetooth motor controller, brushless direct current motor, and multi-motor system comprising the same
WO2018095286A1 (zh) 一种电调集成化电路及无人机
WO2019024570A1 (zh) 一种数字舵机及其控制方法
US8810165B2 (en) Fan control system
TW587360B (en) DC/DC converter control circuit and DC/DC converter system
WO2020057374A1 (zh) 一种供电电路及电子设备
US20140320106A1 (en) Power supply circuit
US10509431B2 (en) Reversible current mirror and its use in bidirectional communication
WO2022094894A1 (zh) 电机的检测方法、控制、电调、动力装置和可移动平台
CN217849273U (zh) 一种电机驱动系统及一种层流罩
CN210111886U (zh) 一种无刷直流电动机控制驱动电路和闭环伺服控制系统
Viollet et al. A 1-gram dual sensorless speed governor for micro-air vehicles
TW201322630A (zh) 多功能信號輸出裝置
JP4216845B2 (ja) 3相ステッピングモータの駆動回路
EP3035522B1 (en) Brushless direct current motor and driving apparatus thereof
CN103944555B (zh) 驱动控制步进电机和风扇的集成电路
CN111399416A (zh) 一种基于mcu处理器的双轴舵机控制器
WO2019029176A1 (zh) 电机控制电路、电机系统、电调及无人机
US10944343B2 (en) Actuator having two motors and cooling fan module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882066

Country of ref document: EP

Kind code of ref document: A1