WO2018121727A1 - 一种驱动控制电路及机器人 - Google Patents

一种驱动控制电路及机器人 Download PDF

Info

Publication number
WO2018121727A1
WO2018121727A1 PCT/CN2017/119787 CN2017119787W WO2018121727A1 WO 2018121727 A1 WO2018121727 A1 WO 2018121727A1 CN 2017119787 W CN2017119787 W CN 2017119787W WO 2018121727 A1 WO2018121727 A1 WO 2018121727A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
driving
unit
resistor
electronic switch
Prior art date
Application number
PCT/CN2017/119787
Other languages
English (en)
French (fr)
Inventor
熊友军
柳冬
Original Assignee
深圳市优必选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611266570.0A external-priority patent/CN106597907B/zh
Application filed by 深圳市优必选科技有限公司 filed Critical 深圳市优必选科技有限公司
Publication of WO2018121727A1 publication Critical patent/WO2018121727A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the embodiment of the invention belongs to the technical field of steering gear control, and in particular relates to a drive control circuit and a robot.
  • the existing robots, automatic guided vehicles, etc. driven by the steering gear if the steering gear is powered off, may cause the steering motor to generate a directional electromotive force due to mechanical motion, generating a small amount of current.
  • the main board of the servo is powered up under abnormal conditions, which reduces the service life of the main board.
  • the embodiment of the invention provides a driving control circuit and a robot.
  • a driving control circuit including a reverse biasing module
  • the driving motor of the steering gear generates a counter electromotive force by artificially pushing the mechanical motion.
  • the main board of the steering gear is powered on.
  • An embodiment of the present invention provides a driving control circuit for controlling movement of a driving motor of a steering gear, the driving control circuit including a reverse biasing module, an electronic switching module, a driving module, a control module, a current sampling module, and a voltage regulation Module
  • the reverse biasing module is connected to the power supply of the steering gear and is connected to the electronic switch module, the driving module is connected to the driving motor through the electronic switch module, and the control module is connected to the driving module And connecting, by the current sampling module, the electronic switch module, the voltage stabilizing module is connected to the power source and respectively connected to the driving module, the control module and the current sampling module;
  • the reverse biasing module When the power supply is powered on, the reverse biasing module is conducting a current input signal, the control module is powered on and outputs a control signal, and the driving module is powered on and outputs a driving signal according to the control signal.
  • the electronic switch module is turned on according to the current signal and the driving signal, and outputs a driving pulse, the driving motor is driven to rotate by the driving pulse, and the control module further collects the driving motor through the current sampling module. Operating current to adjust a control signal output to the driving module according to the operating current;
  • the reverse biasing module is reversely turned off, preventing current generated by the counter electromotive force from flowing to the control.
  • the module prevents the control module from being powered on.
  • the reverse biasing module comprises a reverse biasing unit and a first filtering unit;
  • An input end of the reverse biasing unit is an input end of the reverse biasing module, and an output end of the reverse biasing unit is coupled to an input end of the first filtering unit to form an output of the reverse biasing module End, the output end of the first filtering unit is a ground end of the reverse biasing module;
  • the input end of the reverse biasing module and the input end of the voltage stabilizing module are connected to the power source, and the output end of the reverse biasing module is connected to the input end of the electronic switch module, the reverse biasing module Ground terminal is connected to the power ground;
  • the reverse bias unit When the power source is powered on, the reverse bias unit is conducting, and a current signal output by the power source is output to the electronic switch module through the reverse bias unit;
  • the reverse biasing unit When the power supply is powered off, if the driving motor continues to rotate to generate a counter electromotive force to turn on the electronic switch module, the reverse biasing unit is reversely turned off, and the current generated by the counter electromotive force passes through the electronic switch
  • the module and the first filtering unit are output to a power ground to prevent a current generated by the counter electromotive force from flowing into the control module through the electronic switch module, the reverse bias module, and the voltage stabilizing module in sequence, thereby avoiding The control module is powered on.
  • the reverse bias unit includes a three-terminal diode
  • the first filter unit includes a first current limiting resistor and a first filter capacitor
  • the two positive electrodes of the three-terminal diode are connected to form an input end of the reverse bias unit, and the negative electrode of the three-terminal diode is an output end of the reverse bias unit;
  • One end of the first current limiting resistor is coupled to the positive pole of the first filter capacitor to form an input end of the first filter unit, and the other end of the first current limiting resistor and the first filter capacitor The negative electrodes are connected in common to form an output end of the first filtering unit.
  • the electronic switch module includes a first electronic switch unit, a second electronic switch unit, and a third electronic switch unit;
  • the input end of the first electronic switch unit, the input end of the second electronic switch unit, and the input end of the third electronic switch unit are connected to form an input end of the electronic switch module, the first electronic switch
  • the first controlled end, the bootstrap connection end and the second controlled end of the unit are respectively a first controlled end, a first bootstrap connection end and a second controlled end of the electronic switch module, the second electronic
  • the first controlled end, the bootstrap connection end and the second controlled end of the switch unit are respectively a third controlled end, a second bootstrap connection end and a fourth controlled end of the electronic switch module, the third
  • the first controlled end, the bootstrap connection end and the second controlled end of the electronic switch unit are respectively a fifth controlled end, a third bootstrap connection end and a sixth controlled end of the electronic switch module,
  • An output end of an electronic switch unit, an output end of the second electronic switch unit, and an output end of the third electronic switch unit are connected to form an output end of the electronic switch module;
  • An input end of the electronic switch module is connected to an output end of the switch control module, and the first controlled end, the second controlled end, the third controlled end, the fourth controlled end, and the fifth end of the electronic switch module
  • the controlled end and the sixth controlled end are respectively connected to the first control end, the second control end, the third control end, the fourth control end, the fifth control end, and the sixth control end of the driving module.
  • the first bootstrap connection end of the electronic switch module and the first bootstrap end of the drive module are connected to the first phase connection end of the drive motor, and the second bootstrap connection end of the electronic switch module And a second bootstrap end of the driving module is connected to the second phase connection end of the driving motor, and a third bootstrap connection end of the electronic switch module is connected to the third bootstrap end of the driving module
  • the output end of the electronic switch module is connected to the power supply ground and is respectively connected to the current sampling end of the current sampling module and the low voltage power supply end of the driving module;
  • any one of the first electronic switch unit, the second electronic switch unit, and the third electronic switch unit inputs a current signal of the power source to be turned on to output a drive pulse. Controlling the rotation of the drive motor;
  • the first electronic switching unit, the second electronic switching unit, and the third electronic switching unit When the power supply is powered off, if the driving motor continues to rotate to generate a counter electromotive force, the first electronic switching unit, the second electronic switching unit, and the third electronic switching unit input the counter electromotive force generated The current is conducted, and the current generated by the counter electromotive force is output to the reverse bias module.
  • the first electronic switch unit includes a first NMOS transistor and a second NMOS transistor
  • the second electronic switch unit includes a third NMOS transistor and a fourth NMOS transistor
  • the third electronic switch unit includes a fifth NMOS a tube and a sixth N MOS tube;
  • a gate and a drain of the first NMOS transistor are respectively a first controlled end and an input end of the first electronic switching unit, a source of the first NMOS transistor and a drain of the second NMOS transistor a bootstrap connection terminal constituting the first electronic switch unit, wherein a gate and a source of the second NMOS transistor are respectively a second controlled end and an output end of the first electronic switch unit;
  • a gate and a drain of the third NMOS transistor are respectively a first controlled end and an input end of the second electronic switch unit, a source of the third NMOS transistor and a drain of the fourth NMOS transistor a bootstrap connection terminal constituting the second electronic switch unit, wherein the gate and the source of the fourth NMOS transistor are respectively a second controlled end and an output end of the second electronic switch unit;
  • a gate and a drain of the fifth NMOS transistor are respectively a first controlled end and an input end of the third electronic switching unit, a source of the fifth NMOS transistor and a drain of the sixth NMOS transistor a bootstrap connection terminal constituting the third electronic switch unit, wherein the gate and the source of the sixth NMOS transistor are respectively a second controlled end and an output end of the third electronic switch unit;
  • the electronic switch module further includes a second filtering unit, an input end of the second filtering unit, an output end of the first electronic switching unit, an output end of the second electronic switching unit, and a third electronic switch
  • the output end of the unit is connected to the current sampling end of the current sampling module, and the output end of the second filtering unit is connected to the power ground;
  • the second filtering unit includes a second current limiting resistor and a second filter capacitor.
  • One end of the second current limiting resistor is coupled to the anode of the second filter capacitor to form an input end of the second filtering unit.
  • the other end of the second current limiting resistor and the negative terminal of the second filter capacitor are connected to form an output end of the second filtering unit.
  • the driving module comprises a first driving unit, a second driving unit and a third driving unit;
  • a first power terminal of the first driving unit, a first power terminal of the second driving unit, and a first power terminal of the third driving unit are connected to form a first power terminal of the driving module, a second power terminal of the first driving unit, a second power terminal of the second driving unit, and a second power terminal of the third driving unit are connected to form a second power terminal of the driving module, the first a low voltage power supply end of the driving unit, a low voltage power supply end of the second driving unit, and a low voltage power supply end of the third driving unit are connected to form a low voltage power supply end of the driving module, and the high voltage of the first driving unit is controlled
  • the high voltage controlled end of the second driving unit and the high voltage controlled end of the third driving unit are respectively a first high voltage controlled end, a second high voltage controlled end and a third high voltage receiving end of the driving module a control end, the low voltage controlled end of the first driving unit, the low voltage controlled end of the second driving unit, and the low voltage controlled end of the third driving unit are respectively controlled
  • the first power terminal and the second power terminal of the driving module are respectively connected to the first output end and the third output end of the voltage stabilizing module, and the low voltage power supply end of the driving module and the output end of the electronic switch module Connecting, the first high voltage controlled end, the second high voltage controlled end, and the third high voltage controlled end of the driving module are respectively connected to the first high voltage control end, the second high voltage control end, and the third high voltage control of the control module a first low-voltage controlled end, a second low-voltage controlled end, and a third low-voltage controlled end of the driving module respectively, and a first low-voltage control end and a second low-voltage control end of the control module
  • the third low-voltage control terminals are connected in one-to-one correspondence, and the first bootstrap end, the second bootstrap end and the third bootstrap end of the driving module respectively respectively connect with the first bootstrap terminal of the electronic switch module and the second self One-to-one connection of the terminal and the third bootstrap terminal;
  • the first driving unit, the second driving unit, and the third driving unit are powered on and output a driving signal according to the control signal, and the first driving unit, the first Two output control signals of the two driving units and the third driving unit control the corresponding two electronic switching units to be turned on, so that the first phase connection end, the second phase connection end and the third phase of the driving motor
  • the corresponding two phases in the connection are powered up to drive the drive motor to rotate.
  • the first driving unit includes a first driving chip, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, a third capacitor, a fourth capacitor, a second diode, and a first Two diodes and a third diode;
  • the power supply end of the first driving chip is connected to the positive electrode of the third capacitor and the positive electrode of the second diode to form a first power terminal of the first driving unit, and a negative terminal of the third capacitor a power supply ground, the high voltage controlled end of the first driving chip and one end of the third resistor are connected to form a high voltage controlled end of the first driving unit, and the other end of the third resistor is connected to a power ground.
  • the low-voltage controlled end of the first driving chip is coupled to one end of the fourth resistor to form a low-voltage controlled end of the first driving unit, and the other end of the fourth resistor is connected to a power ground, the first driving a low voltage power supply end of the chip is a low voltage power supply end of the first driving unit, and a low voltage driving end of the first driving chip is coupled to one end of the fifth resistor and a negative electrode of the third diode, The other end of the fifth resistor and the anode of the third diode are connected to form a second control end of the first driving unit, and the first high voltage power supply end of the first driving chip and the fourth capacitor
  • the positive electrode is commonly connected to form a bootstrap end of the first driving unit, a high voltage driving end of the first driving chip is connected to one end of the sixth resistor and a negative electrode of the fourth diode, and the other end of the sixth resistor is connected to the anode of the fourth diode Forming a first control end of the first driving
  • the second driving unit includes a second driving chip, an eighth resistor, a ninth resistor, a tenth resistor, an eleventh resistor, a twelfth resistor, a fifth capacitor, a sixth capacitor, a fifth diode, and a sixth a diode and a seventh diode;
  • the power supply end of the second driving chip is connected to the positive electrode of the fifth capacitor and the positive electrode of the fifth diode to form a first power terminal of the second driving unit, and the negative terminal of the fifth capacitor is connected.
  • a power supply ground, the high voltage controlled end of the second driving chip and one end of the eighth resistor are connected to form a high voltage controlled end of the second driving unit, and the other end of the eighth resistor is connected to a power ground.
  • the low voltage controlled end of the second driving chip and the one end of the ninth resistor are connected to form a low voltage controlled end of the second driving unit, and the other end of the ninth resistor is connected to a power ground, the second driving a low voltage power supply end of the chip is a low voltage power supply end of the second driving unit, and a low voltage driving end of the second driving chip is coupled to one end of the tenth resistor and a negative electrode of the sixth diode, The other end of the tenth resistor and the anode of the sixth diode are connected to form a second control end of the second driving unit, and the first high voltage power supply end of the second driving chip and the sixth capacitor
  • the positive poles are connected to form a bootstrap end of the second driving unit, a high voltage driving end of the second driving chip is connected to one end of the eleventh resistor and a negative electrode of the seventh diode, and the other end of the eleventh resistor and the anode of the seventh diode a first control terminal constituting the second driving
  • the third driving unit includes a third driving chip, a thirteenth resistor, a fourteenth resistor, a fifteenth resistor, a sixteenth resistor, a seventeenth resistor, a seventh capacitor, an eighth capacitor, and an eighth diode. , a ninth diode and a tenth diode;
  • the power supply end of the third driving chip is connected to the positive electrode of the seventh capacitor and the positive electrode of the eighth diode to form a first power terminal of the third driving unit, and the negative terminal of the seventh capacitor is connected.
  • a high-voltage controlled end of the third driving chip and one end of the thirteenth resistor are connected to form a high-voltage controlled end of the third driving unit, and the other end of the thirteenth resistor is connected to a power ground.
  • the low-voltage controlled end of the third driving chip and the one end of the fourteenth resistor are connected to form a low-voltage controlled end of the third driving unit, and the other end of the fourteenth resistor is connected to a power ground.
  • the low voltage power supply end of the third driving chip is a low voltage power supply end of the third driving unit, the low voltage driving end of the third driving chip and one end of the fifteenth resistor and a negative electrode of the ninth diode
  • the second end of the fifteenth resistor and the anode of the ninth diode are connected to form a second control end of the third driving unit
  • the first high voltage power supply end of the third driving chip is
  • the positive poles of the eighth capacitor are connected to form the third driving list a high-voltage driving end of the third driving chip is connected to one end of the sixteenth resistor and a negative electrode of the tenth diode, the other end of the sixteenth resistor and the a positive electrode of the tenth diode is commonly connected to form a first control end of the third driving unit, a second high voltage power supply end of the third driving chip and one end of the seventeenth resistor and the eighth capacitor
  • the negative electrode is connected in common, and the other end of the seventeenth resistor is connected to the negative electrode of
  • the current sampling module includes an eighteenth resistor, a nineteenth resistor, a twentieth resistor, a twenty-first resistor, a ninth capacitor, and a tenth capacitor;
  • One end of the eighteenth resistor is a current sampling end of the current sampling module, and the other end of the eighteenth resistor is connected to one end of the nineteenth resistor and the anode of the ninth capacitor to form the a first sampling output end of the current sampling module, the other end of the nineteenth resistor is a power supply end of the current sampling module, and the other end of the twentieth resistor and one end of the second eleventh resistor
  • the negative electrode of the tenth capacitor is connected to form a third sampling output end of the current sampling module, and the other end of the twenty-first resistor and the positive electrode of the tenth capacitor are connected to form a second of the current sampling module.
  • the current sampling end of the current sampling module is connected to the output end of the electronic switch module, the power end of the current sampling module is connected to the third output end of the voltage stabilizing module, and the first sampling of the current sampling module
  • the output end, the second sampling output end and the third sampling output end are respectively connected to the first sampling end, the second sampling end and the third sampling end of the control module in one-to-one correspondence;
  • the current sampling module collects the working of the driving motor through the first phase connection end, the second phase connection end and the third phase connection end of the driving motor respectively Current is output to the control module through the first sampling output, the second sampling output, and the third sampling output, respectively.
  • the voltage stabilizing module comprises a first voltage stabilizing unit, a second voltage stabilizing unit and a third voltage stabilizing unit;
  • An input end of the first voltage stabilizing unit is an input end of the voltage stabilizing module, and an output end of the first voltage stabilizing unit and an input end of the second voltage stabilizing unit are connected to form a voltage stabilizing module a first output end, the output end of the second voltage stabilizing unit and the input end of the third voltage stabilizing unit are connected to form a second output end of the voltage stabilizing module, and the output end of the third voltage stabilizing unit is a third output end of the voltage stabilizing module;
  • the voltage stabilizing module sequentially converts the current signal of the output of the power source into the first through the first voltage stabilizing unit, the second voltage stabilizing unit, and the third voltage stabilizing unit.
  • a preset voltage, a second preset voltage, and a third preset voltage are respectively output through the three output ends thereof.
  • a robot which includes a steering gear, a CAN bus transceiver, and a magnetic positioning sensor.
  • the steering gear includes the above-mentioned driving control circuit, and the CAN bus transceiver and the voltage regulator respectively.
  • the module is connected to the control module, and the magnetic positioning sensor is respectively connected to the voltage stabilizing module and the control module, and the control module is further communicably connected to an external device through the CAN bus transceiver.
  • the embodiment of the present invention provides a driving control circuit including a reverse biasing module, which can prevent the current flow generated by the counter electromotive force when the driving motor of the steering gear generates a counter electromotive force due to artificially pushing the mechanical movement after the servo is powered off.
  • the mainboard of the steering gear to avoid powering on the mainboard of the steering gear.
  • FIG. 1 is a block diagram showing the basic structure of a drive control circuit according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a specific structure of a driving control circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic circuit diagram of a reverse bias module according to an embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of an electronic switch module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a circuit of a driving module according to an embodiment of the present invention.
  • FIG. 6 is a schematic circuit diagram of a current sampling module according to an embodiment of the present invention.
  • FIG. 7 is a schematic circuit diagram of a voltage sampling module according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a circuit structure of a temperature acquisition module according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the basic structure of a robot according to an embodiment of the present invention.
  • an embodiment of the present invention provides a drive control circuit 100 for controlling the operation or stop of the drive motor 201 of the steering gear 200 , which includes a reverse bias module 10 , an electronic switch module 20 , and a drive module. 30.
  • the reverse biasing module 10 is connected to the power supply 202 of the steering gear 200 and connected to the electronic switch module 20.
  • the driving module 30 is connected to the driving motor 201 through the electronic switch module 20, and the control module 40 is connected to the driving module 30 and passed through the current sampling module 50.
  • the electronic switch module 20 is connected, and the voltage stabilizing module 60 is connected to the power source 202 and connected to the driving module 30, the control module 40 and the current sampling module 50, respectively.
  • the driving motor 201 can be a three-phase DC servo motor, and the power source 202 can be a 24V DC power supply.
  • the control module 40 can be implemented by a general-purpose integrated circuit, such as a CPU (Central Processing Unit). ASIC (Application Specific Integrated Circuit) is implemented.
  • the reverse bias module is forwarded to input the current signal
  • the control module is powered on to output the control signal
  • the driving module is powered on to output the driving signal according to the control signal
  • the electronic switch module is turned on according to the current signal and the driving signal.
  • the driving pulse is driven by the driving pulse
  • the control module also collects the working current of the driving motor through the current sampling module to adjust the control signal output to the driving module according to the working current;
  • the reverse biasing module is reversely turned off, preventing the current generated by the back electromotive force from flowing to the control module, thereby preventing the control module from being powered on.
  • the present embodiment provides a driving control circuit including a reverse biasing module, which can prevent the current flow generated by the counter electromotive force from being generated when the driving motor of the steering gear generates a counter electromotive force by mechanically pushing the motor after the servo is powered off.
  • the module avoids powering up the control module of the steering gear (ie the mainboard of the steering gear).
  • the reverse biasing module 10 includes a reverse biasing unit 11 and a first filtering unit 12;
  • the electronic switching module 20 includes a first electronic switching unit 21 and a second electronic switching unit 22 and a third electronic switch unit 23;
  • the drive module 30 includes a first drive unit 31, a second drive unit 32, and a third drive unit 33;
  • the voltage stabilization module 60 includes a first voltage stabilization unit 61, a second voltage stabilization unit 62, and The third voltage stabilizing unit 63;
  • the servo drive module 100 further includes a voltage sampling module 70 and a temperature sampling module 80.
  • connection relationship between the reverse bias module 10 and other modules is:
  • the input end of the reverse biasing unit 11 is an input end of the reverse biasing module 10, and the output end of the reverse biasing unit 11 is connected with the input end of the first filtering unit 12 to form an output end of the reverse biasing module 10, and the first filtering The output of unit 12 is the ground of reverse bias module 10.
  • the reverse bias unit 11 may specifically select a diode, and the first filter unit may specifically select any common filter circuit structure.
  • the input end of the reverse biasing module 10 and the input end of the voltage stabilizing module 60 are connected to the power source 202.
  • the output end of the reverse biasing module 10 is connected to the input end of the electronic switch module 20, and the grounding end of the reverse biasing module 10 is connected to the power ground. .
  • the reverse bias unit When the power source is powered on, the reverse bias unit is conducting, and a current signal output by the power source is output to the electronic switch module through the reverse bias unit;
  • the reverse biasing unit When the power supply is powered off, if the driving motor continues to rotate to generate a counter electromotive force to turn on the electronic switch module, the reverse biasing unit is reversely turned off, and the current generated by the counter electromotive force passes through the electronic switch
  • the module and the first filtering unit are output to a power ground to prevent a current generated by the counter electromotive force from flowing into the control module through the electronic switch module, the reverse bias module, and the voltage stabilizing module in sequence, thereby avoiding The control module is powered on.
  • connection relationship between the electronic switch module 20 and other modules is:
  • the input end of the first electronic switch unit 21, the input end of the second electronic switch unit 22, and the input end of the third electronic switch unit 23 are connected to form an input end of the electronic switch module 20, and the first receive of the first electronic switch unit 21
  • the control end, the bootstrap connection end and the second controlled end are respectively the first controlled end of the electronic switch module 20, the first bootstrap connection end and the second controlled end, and the first controlled by the second electronic switch unit 22
  • the terminal, the bootstrap connection end and the second controlled end are respectively a third controlled end, a second bootstrap connection end and a fourth controlled end of the electronic switch module 20, and the first controlled end of the third electronic switch unit 23
  • the bootstrap connection end and the second controlled end are respectively a fifth controlled end, a third bootstrap connection end and a sixth controlled end of the electronic switch module 20, an output end of the first electronic switch unit 21, and a second electronic
  • the output of the switching unit 22 and the output of the third electronic switching unit 23 are connected in common to form an output of the electronic switching module 20.
  • the first electronic switch unit, the second electronic switch unit, and the third electronic switch unit can each constitute an electronic switch circuit through the MOS transistor.
  • the input end of the electronic switch module 20 is connected to the output end of the switch control module 40, and the first controlled end, the second controlled end, the third controlled end, the fourth controlled end, and the fifth controlled end of the electronic switch module 20
  • the sixth controlled end is respectively connected to the first control end, the second control end, the third control end, the fourth control end, the fifth control end, and the sixth control end of the driving module 30, and the electronic switch module is connected.
  • the first bootstrap end of the driver module 20 is coupled to the first bootstrap end of the drive module 201, the second bootstrap end of the electronic switch module, and the second bootstrap end of the drive module 30.
  • the third bootstrap end of the electronic switch module 20 and the third bootstrap end of the drive module 30 are connected to the third phase connection end of the drive motor 201.
  • the electronic switch module is connected to the second phase connection end of the drive motor 201.
  • the output terminals of 20 are connected to the power ground and are respectively connected to the current sampling end of the current sampling module 50 and the low voltage power supply end of
  • any one of the first electronic switch unit, the second electronic switch unit, and the third electronic switch unit inputs a current signal of the power source to be turned on to output a drive pulse. Controlling the rotation of the drive motor;
  • the first electronic switching unit, the second electronic switching unit, and the third electronic switching unit When the power supply is powered off, if the driving motor continues to rotate to generate a counter electromotive force, the first electronic switching unit, the second electronic switching unit, and the third electronic switching unit input the counter electromotive force generated The current is conducted, and the current generated by the counter electromotive force is output to the reverse bias module.
  • the driving module controls any two of the first electronic switch unit, the second electronic switch unit or the third electronic switch unit, and outputs a driving pulse to the first phase connection end of the driving motor, Any two terminals of the second phase connection terminal or the third phase connection terminal to rotate the drive motor.
  • connection relationship between the driving module 30 and other modules is:
  • the first power terminal of the first driving unit 31, the first power terminal of the second driving unit 32, and the first power terminal of the third driving unit 33 are connected to form a first power terminal of the driving module 30, and the first driving unit 31
  • the second power terminal, the second power terminal of the second driving unit 32, and the second power terminal of the third driving unit 33 are connected to form a second power terminal of the driving module 30, and the low voltage power terminal of the first driving unit 31 is second.
  • the low voltage power supply end of the driving unit 32 and the low voltage power supply end of the third driving unit 33 are connected to form a low voltage power supply end of the driving module 30, a high voltage controlled end of the first driving unit 31, a high voltage controlled end of the second driving unit 32, and
  • the high voltage controlled ends of the third driving unit 33 are respectively the first high voltage controlled end, the second high voltage controlled end and the third high voltage controlled end of the driving module 30, the low voltage controlled end of the first driving unit 31, and the second
  • the low-voltage controlled end of the driving unit 32 and the low-voltage controlled end of the third driving unit 33 are respectively a first low-voltage controlled end, a second low-voltage controlled end and a third low-voltage controlled end of the driving module 30, and the first driving unit
  • the first control end of the first control unit and the third control unit 33 are respectively a first control end, a second control end and a third control end of the driving module 30, and the second control end and the second driving end of
  • the first driving unit, the second driving unit and the third driving unit may be specifically configured by a motor driving chip.
  • the first power terminal and the second power terminal of the driving module 30 are respectively connected to the first output end and the third output end of the voltage stabilizing module 60.
  • the low voltage power supply end of the driving module 30 is connected to the output end of the electronic switch module 20, and the driving module is
  • the first high-voltage controlled end, the second high-voltage controlled end, and the third high-voltage controlled end of the control module 40 are respectively connected to the first high-voltage control end, the second high-voltage control end, and the third high-voltage control end of the control module 40
  • the first low-voltage controlled end, the second low-voltage controlled end, and the third low-voltage controlled end of the driving module 30 respectively correspond to the first low-voltage control end, the second low-voltage control end, and the third low-voltage control end of the control module 40.
  • Connecting, the first bootstrap end, the second bootstrap end and the third bootstrap end of the driving module 30 are respectively connected to the first bootstrap terminal, the second bootstrap terminal and the third bootstrap terminal of
  • the first driving unit, the second driving unit, and the third driving unit are powered on and output a driving signal according to the control signal, and the first driving unit, the first Two output control signals of the two driving units and the third driving unit control the corresponding two electronic switching units to be turned on, so that the first phase connection end, the second phase connection end and the third phase of the driving motor
  • the corresponding two phases in the connection are powered up to drive the drive motor to rotate.
  • the driving module controls the power-on of the first phase connection end, the second phase connection end and the third phase connection end of the drive motor through the first drive unit, the second drive unit and the third drive unit, respectively.
  • connection relationship between the current sampling module 50 and other modules is:
  • the current sampling end of the current sampling module 50 is connected to the output end of the electronic switch module 20, the power supply end of the current sampling module 50 is connected to the third output end of the voltage stabilization module 60, and the first sampling output end of the current sampling module 50 is second.
  • the sampling output end and the third sampling output end are respectively connected to the first sampling end, the second sampling end and the third sampling end of the control module 40 in one-to-one correspondence.
  • the current sampling module collects the working current of the driving motor through the first phase connection end, the second phase connection end and the third phase connection end of the driving motor, respectively, and passes through the first sampling output end respectively.
  • the second sampling output end and the third sampling output end are output to the control module.
  • connection relationship between the voltage stabilizing module 60 and other modules is:
  • the input end of the first voltage stabilizing unit 61 is the input end of the voltage stabilizing module 60, and the output end of the first voltage stabilizing unit 61 and the input end of the second voltage stabilizing unit 62 are connected to form a first output end of the voltage stabilizing module 60.
  • the output end of the second voltage stabilizing unit 62 and the input end of the third voltage stabilizing unit 63 are connected to form a second output end of the voltage stabilizing module 60, and the output end of the third voltage stabilizing unit 63 is the third output end of the voltage stabilizing module 60. .
  • the first voltage stabilizing unit, the second voltage stabilizing unit, and the third voltage stabilizing unit may be specifically implemented by a voltage regulator, a DC-DC converter, or a voltage regulator chip.
  • the first voltage regulator unit can select MP4560 type buck converter
  • the second voltage regulator unit can select MP2314 type voltage regulator chip
  • the third voltage regulator unit can specifically select SGM2013 type low dropout linear regulator. .
  • the voltage regulator module sequentially converts the current signal outputted by the power source into a first preset voltage, a second preset voltage, and a first voltage through the first voltage stabilizing unit, the second voltage stabilizing unit, and the third voltage stabilizing unit. Three preset voltages are output through their three outputs.
  • the first voltage stabilizing unit when the voltage of the power output is 24V DC, the first voltage stabilizing unit is used to step down the 24V DC power to 12V DC power, and the second voltage stabilizing unit is used to step down the 12V DC power to 5V DC power.
  • the third regulator unit is used to step down the 5V DC to 3.3V DC and output.
  • connection relationship between the voltage sampling module 70 and other modules is:
  • the first voltage sampling end, the second voltage sampling end, the sampling output end and the ground end of the voltage sampling module 70 are respectively connected to the power source 202, the third output end of the voltage stabilizing module 60, the voltage sampling end of the control module 40, and the power ground. Corresponding connection.
  • control module controls the voltage sampling module to sample the power voltage signal and the voltage signal outputted by the third output of the voltage regulator module to detect whether the voltage of the entire servo drive circuit is normal.
  • connection relationship between the temperature collection module 80 and other modules is:
  • the power terminal, the sampling signal output terminal and the ground terminal of the temperature collecting module 80 are respectively connected to the third output end of the voltage stabilizing module 30, the temperature collecting end of the control module 40, and the power ground.
  • the temperature collecting module is disposed near the driving motor for controlling the temperature of the collecting driving motor by the control module. If the temperature of the collected driving motor is greater than a preset temperature threshold, the control module controls the driving motor to stop rotating, or Reduce the rotational speed of the drive motor.
  • the reverse bias unit 11 includes a three-terminal diode D1
  • the first filter unit 12 includes a first current limiting resistor R1 and a first filter capacitor C1.
  • connection relationship of each electronic component in the reverse bias module 10 is:
  • the two positive terminals of the three-terminal diode D1 are connected in common to form the input terminal 24V of the reverse biasing unit 11, and the negative terminal of the three-terminal diode D1 is the output terminal 24V_MOS of the reverse biasing unit 11;
  • One end of the first current limiting resistor R1 is coupled to the anode of the first filter capacitor C1 to form an input terminal 24V_MOS of the first filter unit 12, and the other end of the first current limiting resistor R1 and the cathode of the first filter capacitor C1 are connected together.
  • the first electronic switch unit 21 includes a first NMOS transistor Q1 and a second NMOS transistor Q2, and the second electronic switch unit 22 includes a third NMOS transistor Q3 and a fourth NMOS.
  • the tube Q4, the third electronic switching unit 23 includes a fifth NMOS transistor Q5 and a sixth N MOS transistor Q6.
  • connection relationship of each electronic component in the electronic switch module 20 is:
  • the gate and the drain of the first NMOS transistor Q1 are respectively the first controlled terminal PWM_AT and the input terminal 24V_MOS of the first electronic switching unit 21, and the source of the first NMOS transistor Q1 and the drain of the second NMOS transistor Q2 are connected.
  • the gate and source of the second NMOS transistor Q2 are respectively the second controlled terminal PWM_AB and the output terminal I_PHASE_A of the first electronic switch unit 21;
  • the gate and the drain of the third NMOS transistor Q3 are respectively the first controlled terminal PWM_BT of the second electronic switching unit 21 and the input terminal 24V_MOS, and the source of the third NMOS transistor Q3 and the drain of the fourth NMOS transistor Q4 are connected.
  • the bootstrap terminal PHASE_B of the second electronic switch unit 22, the gate and source of the fourth NMOS transistor Q4 are respectively the second controlled terminal PWM_BB and the output terminal I_PHASE_A of the second electronic switch unit 22;
  • the gate and the drain of the fifth NMOS transistor Q5 are respectively the first controlled terminal PWM_CT of the third electronic switching unit 23 and the input terminal 24V_MOS, and the source of the fifth NMOS transistor Q5 and the drain of the sixth NMOS transistor Q6 are connected.
  • the bootstrap terminal PHASE_C of the third electronic switch unit 23 is formed, and the gate and the source of the sixth NMOS transistor Q6 are respectively the second controlled terminal PWM_CB and the output terminal I_PHASE_A of the third electronic switch unit.
  • the electronic switch module 20 further includes a second filtering unit 24, an input end of the second filtering unit 24, an output end of the first electronic switching unit 21, an output end of the second electronic switching unit 22, and a third electronic
  • the output end of the switching unit 23 and the current sampling end of the current sampling module 50 are connected in common, and the output end of the second filtering unit 24 is connected to the power ground.
  • the specific circuit structure of the second filtering unit 24 is:
  • the second filtering unit 24 includes a second current limiting resistor R2 and a second filtering capacitor C2. One end of the second current limiting resistor R2 is coupled to the anode of the second filtering capacitor C2 to form an input terminal I_PHASE_A of the second filtering unit 24, and a second The other end of the current limiting resistor R2 and the negative electrode of the second filter capacitor C2 are connected in common to form an output end of the second filtering unit 24.
  • the first driving unit 31 includes a first driving chip U1, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, and a seventh resistor. R7, a third capacitor C3, a fourth capacitor C4, a second diode D2, a second diode D3, and a third diode D4.
  • the first driving core U1 specifically selects a DGD1503 type motor driving chip.
  • connection relationship between the devices in the first driving unit 31 is:
  • the power supply terminal VCC of the first driving chip U1 is coupled to the anode of the third capacitor C3 and the anode of the second diode D2 to form a first power terminal 3.3V of the first driving unit 31, and the cathode of the third capacitor C3 is connected to the power source.
  • the high-voltage controlled terminal HIN of the first driving chip U1 and one end of the third resistor R3 are connected to form a high-voltage controlled terminal MCU_AT of the first driving unit 31, and the other end of the third resistor R3 is connected to the power ground, and the first driving chip U1
  • the low-voltage controlled terminal LIN and the fourth resistor R4 are connected to form a low-voltage controlled terminal MCU_AB of the first driving unit 31, and the other end of the fourth resistor R4 is connected to the power ground.
  • the low-voltage power supply terminal COM of the first driving chip U1 is The low-voltage power supply terminal I_PHASE_A of the first driving unit 31, the low-voltage driving terminal LO of the first driving chip U1 is connected to one end of the fifth resistor R5 and the negative electrode of the third diode D3, and the other end of the fifth resistor R5 and the third The positive pole of the diode D3 is connected to form the second control terminal PWM_AB of the first driving unit 31.
  • the first high voltage power supply terminal VS of the first driving chip U1 and the anode of the fourth capacitor C4 are connected to form the first driving unit 31.
  • the second driving unit 32 includes a second driving chip U2, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, an eleventh resistor R11, a twelfth resistor R12, a fifth capacitor C5, and a sixth capacitor C6.
  • the second driving core U1 specifically selects a DGD1503 type motor driving chip.
  • connection relationship between the devices in the second driving unit 32 is:
  • the power terminal VCC of the second driving chip U2 is connected to the anode of the fifth capacitor C5 and the anode of the fifth diode D5 to form a first power terminal 3.3V of the second driving unit 32, and the cathode of the fifth capacitor C5 is connected to the power source.
  • the high-voltage controlled terminal HIN of the second driving chip U2 and the one end of the eighth resistor R8 are connected to form a high-voltage controlled terminal MCU_BT of the second driving unit 32, and the other end of the eighth resistor R8 is connected to the power ground, and the second driving chip U2
  • the low-voltage controlled terminal LIN is connected to one end of the ninth resistor R9 to form a low-voltage controlled terminal MCU_BB of the second driving unit 32, the other end of the ninth resistor R9 is connected to the power ground, and the low-voltage power supply terminal COM of the second driving chip U2 is
  • the low-voltage power supply terminal I_PHASE_B of the second driving unit 32, the low-voltage driving terminal LO of the second driving chip U2 is connected to one end of the tenth resistor R10 and the cathode of the sixth diode D6, and the other end of the tenth resistor R10 and the sixth
  • the anode of the diode D6 is connected to
  • the first high voltage power supply terminal VS of the second driving chip U2 and the anode of the sixth capacitor C6 are connected to form the second driving unit 32.
  • Lifting terminal PHASE_B, high voltage driving terminal HO of second driving chip U2 One end of the eleventh resistor R11 and the cathode of the seventh diode D7 are connected in common, and the other end of the eleventh resistor R11 and the anode of the seventh diode D7 are connected to form a first control terminal PWM_BT of the second driving unit 32.
  • the second high voltage power supply terminal VB of the second driving chip U2 is connected to one end of the twelfth resistor R12 and the negative electrode of the sixth capacitor C6, and the other end of the twelfth resistor R12 is connected to the cathode of the fifth diode D5.
  • the third driving unit 33 includes a third driving chip U3, a thirteenth resistor R13, a fourteenth resistor R14, a fifteenth resistor R15, a sixteenth resistor R16, a seventeenth resistor R17, a seventh capacitor C7, and an eighth capacitor.
  • the third driving core U1 specifically selects a DGD1503 type motor driving chip.
  • connection relationship between the devices in the third driving unit 33 is:
  • the power terminal VCC of the third driving chip U3 is connected to the anode of the seventh capacitor C7 and the anode of the eighth diode D8 to form a first power terminal 3.3V of the third driving unit 33, and the cathode of the seventh capacitor C7 is connected to the power source.
  • the high-voltage controlled terminal HIN of the third driving chip U3 and one end of the thirteenth resistor R13 are connected to form a high-voltage controlled terminal MCU_CT of the third driving unit 33, and the other end of the thirteenth resistor R13 is connected to the power ground, and the third driving
  • the low-voltage controlled terminal LIN of the chip U3 and the one end of the fourteenth resistor R14 are connected to form a low-voltage controlled terminal MCU_CB of the third driving unit 33, and the other end of the fourteenth resistor R14 is connected to the power ground, and the low voltage of the third driving chip U3.
  • the power supply terminal COM is the low voltage power supply terminal I_PHASE_C of the third driving unit 33, and the low voltage driving terminal LO of the third driving chip U3 is connected to one end of the fifteenth resistor R15 and the negative electrode of the ninth diode D9, and the fifteenth resistor R15
  • the other end of the ninth diode D9 is connected to the positive terminal of the third driving unit 33, and the first high voltage power supply terminal VS of the third driving chip U3 is connected to the positive electrode of the eighth capacitor C8.
  • the bootstrap terminal PHASE_C of the three driving unit 33, the third driving chip U The high-voltage driving terminal HO of the three is connected to one end of the sixteenth resistor R16 and the negative electrode of the tenth diode D10, and the other end of the sixteenth resistor R16 and the anode of the tenth diode D10 are connected to form a third driving unit.
  • the first control terminal PWM_CT of 33, the second high voltage power supply terminal VB of the third driving chip U3 is connected to one end of the seventeenth resistor R17 and the negative terminal of the eighth capacitor C8, and the other end of the seventeenth resistor R17 is connected to the eighth two.
  • the current sampling module 50 includes an eighteenth resistor R18, a nineteenth resistor R19, a twentieth resistor R20, a twenty-first resistor R21, and a ninth capacitor C9.
  • connection relationship between the electronic components in the current sampling module is:
  • One end of the eighteenth resistor R18 is the current sampling end I_PHASE_A of the current sampling module 50, and the other end of the eighteenth resistor R18 is connected with one end of the nineteenth resistor R19 and the anode of the ninth capacitor C9 to form the current sampling module 50.
  • One sampling output terminal PA1 the other end of the nineteenth resistor R19 is 3.3V of the power supply terminal of the current sampling module 50
  • the other end of the twentieth resistor R20 is shared with one end of the twenty-first resistor R21 and the negative pole of the tenth capacitor C10.
  • Connected to the third sampling output terminal PA3 of the current sampling module 50 the other end of the twenty-first resistor R21 and the anode of the tenth capacitor C10 are connected to form a second sampling output terminal PA2 of the current sampling module 50.
  • the voltage collecting module 70 includes a twenty-second resistor R22, a twenty-third resistor R23, an eleventh capacitor C11, and an eleventh diode (specifically, Special base diode) D11.
  • connection relationship between the electronic components in the voltage collecting module 70 is:
  • One end of the twenty-second resistor R22 is the first voltage sampling terminal 24V of the voltage collecting module 70, the other end of the twenty-second resistor R22 and one end of the twenty-third resistor R23, the anode of the eleventh capacitor C11, and the tenth
  • the anode of a diode D11 is commonly connected to form a sampling output terminal Vdet of the voltage collecting module 70, and the other end of the twenty-third resistor R23 is connected with the cathode of the eleventh capacitor C11 to form a grounding end of the voltage sampling module 70.
  • the cathode of a diode D11 constitutes a second voltage sampling terminal 3.3V of the voltage sampling module 70.
  • the temperature acquisition module 80 includes a twenty-fourth resistor R24, a twenty-fifth resistor R25 (specifically a thermistor), and a twelfth capacitor C12.
  • connection relationship between the electronic components in the current sampling module is:
  • One end of the twenty-fourth resistor R24 is 3.3V of the power terminal of the temperature collecting module 80, and the other end of the twenty-fourth resistor R24 is connected with one end of the twenty-fifth resistor R25 and the anode of the twelfth capacitor C12 to form a temperature collection.
  • the sampling signal output terminal NTC of the module 80, the other end of the twenty-fifth resistor R25 and the cathode of the twelfth capacitor C12 are both ground terminals of the temperature acquisition module 80.
  • control module 40 specifically selects the STM32F302RBT6 type microcontroller; the first voltage stabilizing unit specifically selects the MP4560 type buck converter, and the second voltage stabilizing unit specifically selects the MP2314 type voltage regulator chip, and the third voltage stabilizing unit specifically SGM2013 low dropout linear regulator is selected.
  • an embodiment of the present invention further provides a robot 00, which includes a steering gear 200, a CAN bus transceiver 300, and a magnetic positioning sensor 400.
  • the steering gear 200 includes the driving control circuit 100 in the above embodiment.
  • the CAN bus transceiver 300 is respectively connected to the voltage stabilizing module 60 and the control module 40.
  • the magnetic positioning sensor 400 is respectively connected to the voltage stabilizing module 60 and the control module 40.
  • the control module 40 is also communicably connected to the external device through the CAN bus transceiver 300.

Abstract

一种驱动控制电路(100)及机器人(00),驱动控制电路(100)用于控制舵机(200)的驱动电机(201)运动,驱动控制电路(100)包括逆向偏压模块(10)、电子开关模块(20)、驱动模块(30)、控制模块(40)、电流采样模块(50)和稳压模块(60);逆向偏压模块(10)接入舵机(200)的电源(202)并与电子开关模块(20)连接,驱动模块(30)通过电子开关模块(20)与驱动电机(201)连接,控制模块(40)与驱动模块(30)连接并通过电流采样模块(50)与电子开关模块(20)连接,稳压模块(60)接入电源(202)并分别与驱动模块(30)、控制模块(40)和电流采样模块(50)连接。在舵机(200)断电之后,舵机(200)的驱动电机(201)因人为推动进行机械运动而产生反电动势时,包括逆向偏压模块(10)的驱动控制电路(100)可以阻止反电动势产生的电流流向舵机(200)的主板,避免舵机(200)的主板上电。

Description

一种驱动控制电路及机器人 技术领域
本发明实施例属于舵机控制技术领域,尤其涉及一种驱动控制电路及机器人。
背景技术
随着可学技术的不断发展,机器人、自动导引车等各种自动化设备不断被开发出来应用于人们的日常生产和生活,为人们的生活带来了极大便利。舵机因其易于控制、转矩大、制造技术成熟等优点而被广泛应用于机器人等自动化设备上。
然而,现有的通过舵机驱动的机器人、自动导引车等在舵机断电之后,若被人为牵引运动,则会导致舵机的驱动电机因为机械运动而产生方向电动势,生成少量电流而使舵机的主板在非正常情况下上电,降低了主板的使用寿命。
发明内容
本发明实施例提供一种驱动控制电路及机器人,通过提供一种包括逆向偏压模块的驱动控制电路,可以在舵机断电之后,舵机的驱动电机因人为推动进行机械运动而产生反电动势时,阻止反电动势产生的电流流向舵机的主板,避免舵机的主板上电。
本发明实施例一方面提供一种驱动控制电路,用于控制舵机的驱动电机运动,所述驱动控制电路包括逆向偏压模块、电子开关模块、驱动模块、控制模块、电流采样模块和稳压模块;
所述逆向偏压模块接入所述舵机的电源并与所述电子开关模块连接,所述驱动模块通过所述电子开关模块与所述驱动电机连接,所述控制模块与所述驱 动模块连接并通过所述电流采样模块与所述电子开关模块连接,所述稳压模块接入所述电源并分别与所述驱动模块、所述控制模块和所述电流采样模块连接;
当所述电源上电时,所述逆向偏压模块正向导通输入电流信号,所述控制模块上电启动并输出控制信号,所述驱动模块上电启动并根据所述控制信号输出驱动信号,所述电子开关模块根据所述电流信号和所述驱动信号导通并输出驱动脉冲,所述驱动电机受所述驱动脉冲驱动旋转,所述控制模块还通过所述电流采样模块采集所述驱动电机的工作电流,以根据所述工作电流调整输出给所述驱动模块的控制信号;
当所述电源断电时,若所述驱动电机继续旋转产生反电动势使所述电子开关模块导通,则所述逆向偏压模块反向截止,阻止所述反电动势产生的电流流向所述控制模块,避免所述控制模块上电启动。
优选的,所述逆向偏压模块包括逆向偏压单元和第一滤波单元;
所述逆向偏压单元的输入端为所述逆向偏压模块的输入端,所述逆向偏压单元的输出端与所述第一滤波单元的输入端共接构成所述逆向偏压模块的输出端,所述第一滤波单元的输出端为所述逆向偏压模块的接地端;
所述逆向偏压模块的输入端与所述稳压模块的输入端共接于所述电源,所述逆向偏压模块的输出端接所述电子开关模块的输入端,所述逆向偏压模块的接地端接电源地;
当所述电源上电时,所述逆向偏压单元正向导通,所述电源输出的电流信号通过所述逆向偏压单元输出至所述电子开关模块;
当所述电源断电时,若所述驱动电机继续旋转产生反电动势使所述电子开关模块导通,则所述逆向偏压单元反向截止,所述反电动势产生的电流经所述电子开关模块和所述第一滤波单元输出至电源地,以阻止所述反电动势产生的电流依次通过所述电子开关模块、所述逆向偏压模块和所述稳压模块流入所述控制模块,避免所述控制模块上电启动。
优选的,所述逆向偏压单元包括三端二极管,所述第一滤波单元包括第一 限流电阻和第一滤波电容;
所述三端二极管的两个正极共接构成所述逆向偏压单元的输入端,所述三端二极管的负极为所述逆向偏压单元的输出端;
所述第一限流电阻的一端与所述第一滤波电容的正极共接构成所述第一滤波单元的输入端,所述第一限流电阻的另一端和所述第一滤波电容的的负极共接构成所述第一滤波单元的输出端。
优选的,所述电子开关模块包括第一电子开关单元、第二电子开关单元和第三电子开关单元;
所述第一电子开关单元的输入端、所述第二电子开关单元的输入端和所述第三电子开关单元的输入端共接构成所述电子开关模块的输入端,所述第一电子开关单元的第一受控端、自举连接端和第二受控端分别为所述电子开关模块的第一受控端、第一自举连接端和第二受控端,所述第二电子开关单元的第一受控端、自举连接端和第二受控端分别为所述电子开关模块的第三受控端、第二自举连接端和第四受控端,所述第三电子开关单元的第一受控端、自举连接端和第二受控端分别为所述电子开关模块的第五受控端、第三自举连接端和第六受控端,所述第一电子开关单元的输出端、所述第二电子开关单元的输出端和所述第三电子开关单元的输出端共接构成所述电子开关模块的输出端;
所述电子开关模块的输入端接所述开关控制模块的输出端,所述电子开关模块的第一受控端、第二受控端、第三受控端、第四受控端、第五受控端、第六受控端分别接与所述驱动模块的第一控制端、第二控制端、第三控制端、第四控制端、第五控制端、第六控制端一一对应连接,所述电子开关模块的第一自举连接端与所述驱动模块的第一自举端共接于所述驱动电机的第一相连接端,所述电子开关模块的第二自举连接端与所述驱动模块的第二自举端共接于所述驱动电机的第二相连接端,所述电子开关模块的第三自举连接端与所述驱动模块的第三自举端共接于所述驱动电机的第三相连接端,所述电子开关模块的输出端接电源地并分别与所述电流采样模块的电流采样端和所述驱动模块的低压 供电端连接;
当所述电源上电时,所述第一电子开关单元、所述第二电子开关单元和所述第三电子开关单元中的任意两个输入所述电源的电流信号导通,以输出驱动脉冲控制所述驱动电机旋转;
当所述电源断电时,若所述驱动电机继续旋转产生反电动势,则所述第一电子开关单元、所述第二电子开关单元和所述第三电子开关单元输入所述反电动势产生的电流导通,并将所述反电动势产生的电流输出至所述逆向偏压模块。
优选的,所述第一电子开关单元包括第一NMOS管和第二NMOS管,所述第二电子开关单元包括第三NMOS管和第四NMOS管,所述第三电子开关单元包括第五NMOS管和第六N MOS管;
所述第一NMOS管的栅极和漏极分别为所述第一电子开关单元的第一受控端和输入端,所述第一NMOS管的源极和所述第二NMOS管的漏极共接构成所述第一电子开关单元的自举连接端,所述第二NMOS管的栅极和源极分别为所述第一电子开关单元的第二受控端和输出端;
所述第三NMOS管的栅极和漏极分别为所述第二电子开关单元的第一受控端和输入端,所述第三NMOS管的源极和所述第四NMOS管的漏极共接构成所述第二电子开关单元的自举连接端,所述第四NMOS管的栅极和源极分别为所述第二电子开关单元的第二受控端和输出端;
所述第五NMOS管的栅极和漏极分别为所述第三电子开关单元的第一受控端和输入端,所述第五NMOS管的源极和所述第六NMOS管的漏极共接构成所述第三电子开关单元的自举连接端,所述第六NMOS管的栅极和源极分别为所述第三电子开关单元的第二受控端和输出端;
所述电子开关模块还包括第二滤波单元,所述第二滤波单元的输入端与所述第一电子开关单元的输出端、所述第二电子开关单元的输出端、所述第三电子开关单元的输出端和所述电流采样模块的电流采样端共接,所述第二滤波单元的输出端接电源地;
所述第二滤波单元包括第二限流电阻和第二滤波电容,所述第二限流电阻的一端与所述第二滤波电容的正极共接构成所述第二滤波单元的输入端,所述第二限流电阻的另一端和所述第二滤波电容的的负极共接构成所述第二滤波单元的输出端。
优选的,所述驱动模块包括第一驱动单元、第二驱动单元和第三驱动单元;
所述第一驱动单元的第一电源端、所述第二驱动单元的第一电源端和所述第三驱动单元的第一电源端共接构成所述驱动模块的第一电源端,所述第一驱动单元的第二电源端、所述第二驱动单元的第二电源端和所述第三驱动单元的第二电源端共接构成所述驱动模块的第二电源端,所述第一驱动单元的低压供电端、所述第二驱动单元的低压供电端和所述第三驱动单元的低压供电端共接构成所述驱动模块的低压供电端,所述第一驱动单元的高压受控端、所述第二驱动单元的高压受控端和所述第三驱动单元的高压受控端分别为所述驱动模块的第一高压受控端、第二高压受控端和第三高压受控端,所述第一驱动单元的低压受控端、所述第二驱动单元的低压受控端和所述第三驱动单元的低压受控端分别为所述驱动模块的第一低压受控端、第二低压受控端和第三低压受控端,所述第一驱动单元的第一控制端、所述第二驱动单元的第一控制端和所述第三驱动单元的第一控制端分别为所述驱动模块的第一控制端、第二控制端和第三控制端,所述第一驱动单元的第二控制端、所述第二驱动单元的第二控制端和所述第三驱动单元的第二控制端分别为所述驱动模块的第四控制端、第五控制端和第六控制端,所述第一驱动单元的第二自举端、所述第二驱动单元的第二自举端和所述第三驱动单元的第二自举端分别为所述驱动模块的第一自举端、第二自举端和第三自举端;
所述驱动模块的第一电源端和第二电源端分别与所述稳压模块的第一输出端和第三输出端连接,所述驱动模块的低压供电端与所述电子开关模块的输出端连接,所述驱动模块的第一高压受控端、第二高压受控端和第三高压受控端分别与所述控制模块的第一高压控制端、第二高压控制端和第三高压控制端一 一对应连接,所述驱动模块的第一低压受控端、第二低压受控端和第三低压受控端分别与所述控制模块的第一低压控制端、第二低压控制端和第三低压控制端一一对应连接,所述驱动模块的第一自举端、第二自举端和第三自举端分别与所述电子开关模块的第一自举接线端、第二自举接线端和第三自举接线端一一对应连接;
当所述电源上电时,所述第一驱动单元、所述第二驱动单元和所述第三驱动单元上电启动并根据所述控制信号输出驱动信号,同时第一驱动单元、所述第二驱动单元和所述第三驱动单元中的任意两个输出控制信号控制对应的两个电子开关单元导通,使所述驱动电机的第一相连接端、第二相连接端和第三相连接端中对应的两相上电,以驱动所述驱动电机转动。
优选的,所述第一驱动单元包括第一驱动芯片、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第三电容、第四电容、第二二极管、第二二极管和第三二极管;
所述第一驱动芯片的电源端与所述第三电容的正极和所述第二二极管的正极共接构成所述第一驱动单元的第一电源端,所述第三电容的负极接电源地,所述第一驱动芯片的高压受控端与所述第三电阻的一端共接构成所述第一驱动单元的高压受控端,所述第三电阻的另一端接电源地,所述第一驱动芯片的低压受控端与所述第四电阻的一端共接构成所述第一驱动单元的低压受控端,所述第四电阻的另一端接电源地,所述第一驱动芯片的低压供电端为所述第一驱动单元的低压供电端,所述第一驱动芯片的低压驱动端与所述第五电阻的一端和所述第三二极管的负极共接,所述第五电阻的另一端和所述第三二极管的正极共接构成所述第一驱动单元的第二控制端,所述第一驱动芯片的第一高压供电端与所述第四电容的正极共接构成所述第一驱动单元的自举端,所述第一驱动芯片的高压驱动端与所述第六电阻的一端和所述第四二极管的负极共接,所述第六电阻的另一端和所述第四二极管的正极共接构成所述第一驱动单元的第一控制端,所述第一驱动芯片的第二高压供电端与所述第七电阻的一端和所述 第四电容的负极共接,所述第七电阻的另一端接所述第二二极管的负极;
所述第二驱动单元包括第二驱动芯片、第八电阻、第九电阻、第十电阻、第十一电阻、第十二电阻、第五电容、第六电容、第五二极管、第六二极管和第七二极管;
所述第二驱动芯片的电源端与所述第五电容的正极和所述第五二极管的正极共接构成所述第二驱动单元的第一电源端,所述第五电容的负极接电源地,所述第二驱动芯片的高压受控端与所述第八电阻的一端共接构成所述第二驱动单元的高压受控端,所述第八电阻的另一端接电源地,所述第二驱动芯片的低压受控端与所述第九电阻的一端共接构成所述第二驱动单元的低压受控端,所述第九电阻的另一端接电源地,所述第二驱动芯片的低压供电端为所述第二驱动单元的低压供电端,所述第二驱动芯片的低压驱动端与所述第十电阻的一端和所述第六二极管的负极共接,所述第十电阻的另一端和所述第六二极管的正极共接构成所述第二驱动单元的第二控制端,所述第二驱动芯片的第一高压供电端与所述第六电容的正极共接构成所述第二驱动单元的自举端,所述第二驱动芯片的高压驱动端与所述第十一电阻的一端和所述第七二极管的负极共接,所述第十一电阻的另一端和所述第七二极管的正极共接构成所述第二驱动单元的第一控制端,所述第二驱动芯片的第二高压供电端与所述第十二电阻的一端和所述第六电容的负极共接,所述第十二电阻的另一端接所述第五二极管的负极;
所述第三驱动单元包括第三驱动芯片、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第七电容、第八电容、第八二极管、第九二极管和第十二极管;
所述第三驱动芯片的电源端与所述第七电容的正极和所述第八二极管的正极共接构成所述第三驱动单元的第一电源端,所述第七电容的负极接电源地,所述第三驱动芯片的高压受控端与所述第十三电阻的一端共接构成所述第三驱动单元的高压受控端,所述第十三电阻的另一端接电源地,所述第三驱动芯片 的低压受控端与所述第十四电阻的一端共接构成所述第三驱动单元的低压受控端,所述第十四电阻的另一端接电源地,所述第三驱动芯片的低压供电端为所述第三驱动单元的低压供电端,所述第三驱动芯片的低压驱动端与所述第十五电阻的一端和所述第九二极管的负极共接,所述第十五电阻的另一端和所述第九二极管的正极共接构成所述第三驱动单元的第二控制端,所述第三驱动芯片的第一高压供电端与所述第八电容的正极共接构成所述第三驱动单元的自举端,所述第三驱动芯片的高压驱动端与所述第十六电阻的一端和所述第十二极管的负极共接,所述第十六电阻的另一端和所述第十二极管的正极共接构成所述第三驱动单元的第一控制端,所述第三驱动芯片的第二高压供电端与所述第十七电阻的一端和所述第八电容的负极共接,所述第十七电阻的另一端接所述第八二极管的负极。
优选的,所述电流采样模块包括第十八电阻、第十九电阻、第二十电阻、第二十一电阻、第九电容和第十电容;
所述第十八电阻的一端为所述电流采样模块的电流采样端,所述第十八电阻的另一端与所述第十九电阻的一端、所述第九电容的正极共接构成所述电流采样模块的第一采样输出端,所述第十九电阻的另一端为所述电流采样模块的电源端,所述第二十电阻的另一端与所述第二十一电阻的一端和所述第十电容的负极共接构成所述电流采样模块的第三采样输出端,所述第二十一电阻的另一端和所述第十电容的正极共接构成所述电流采样模块的第二采样输出端;
所述电流采样模块的电流采样端与所述电子开关模块的输出端连接,所述电流采样模块的电源端与所述稳压模块的第三输出端连接,所述电流采样模块的第一采样输出端、第二采样输出端和第三采样输出端分别与所述控制模块的第一采样端、第二采样端和第三采样端一一对应连接;
当所述电源上电、所述驱动电机转动时,所述电流采样模块分别通过所述驱动电机的第一相连接端、第二相连接端和第三相连接端采集所述驱动电机的工作电流,并分别通过所述第一采样输出端、所述第二采样输出端和所述第三 采样输出端输出给所述控制模块。
优选的,所述稳压模块包括第一稳压单元、第二稳压单元和第三稳压单元;
所述第一稳压单元的输入端为所述稳压模块的输入端,所述第一稳压单元的输出端与所述第二稳压单元的输入端共接构成所述稳压模块的第一输出端,所述第二稳压单元的输出端与所述第三稳压单元的输入端共接构成所述稳压模块的第二输出端,所述第三稳压单元输出端为所述稳压模块的第三输出端;
当所述电源上电时,所述稳压模块通过所述第一稳压单元、所述第二稳压单元和所述第三稳压单元依次将所述电源的输出的电流信号转换为第一预设电压、第二预设电压和第三预设电压并通过其三个输出端分别输出。
本发明实施例另一方面还提供一种机器人,其包括舵机、CAN总线收发器和磁定位传感器,所述舵机包括上述的驱动控制电路,所述CAN总线收发器分别与所述稳压模块和所述控制模块连接,所述磁定位传感器分别与所述稳压模块和所述控制模块连接,所述控制模块还通过所述CAN总线收发器与外部设备通信连接。
本发明实施例通过提供一种包括逆向偏压模块的驱动控制电路,可以在舵机断电之后,舵机的驱动电机因人为推动进行机械运动而产生反电动势时,阻止反电动势产生的电流流向舵机的主板,避免舵机的主板上电。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的一个实施例提供的驱动控制电路的基本结构框图;
图2是本发明的一个实施例提供的驱动控制电路的具体结构框图;
图3是本发明的一个实施例提供的逆向偏压模块的电路结构示意图;
图4是本发明的一个实施例提供的电子开关模块的电路结构示意图;
图5是本发明的一个实施例提供的驱动模块的电路结构示意图;
图6是本发明的一个实施例提供的电流采样模块的电路结构示意图;
图7是本发明的一个实施例提供的电压采样模块的电路结构示意图;
图8是本发明的一个实施例提供的温度采集模块的电路结构示意图;
图9是本发明的一个实施例提供的机器人的基本结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。
如图1所示,本发明的一个实施例提供一种驱动控制电路100,用于控制舵机200的驱动电机201工作或停止工作,其包括逆向偏压模块10、电子开关模块20、驱动模块30、控制模块40、电流采样模块50和稳压模块60。
逆向偏压模块10接入舵机200的电源202并与电子开关模块20连接,驱动模块30通过电子开关模块20与驱动电机201连接,控制模块40与驱动模块30连接并通过电流采样模块50与电子开关模块20连接,稳压模块60接入电源202并分别与驱动模块30、控制模块40和电流采样模块50连接。
在具体应用中,驱动电机201具体可以为三相直流伺服电机,电源202具体可以为24V直流电源,控制模块40具体可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
本实施例所提供的驱动控制电路的工作原理为:
当电源上电时,逆向偏压模块正向导通输入电流信号,控制模块上电启动输出控制信号,驱动模块上电启动根据控制信号输出驱动信号,电子开关模块根据电流信号和驱动信号导通输出驱动脉冲,驱动电机受驱动脉冲驱动旋转,控制模块还通过电流采样模块采集驱动电机的工作电流,以根据工作电流调整输出给驱动模块的控制信号;
当电源断电时,若驱动电机继续旋转产生反电动势使电子开关模块导通,则逆向偏压模块反向截止,阻止反电动势产生的电流流向控制模块,避免控制模块上电启动。
本实施例通过提供一种包括逆向偏压模块的驱动控制电路,可以在舵机断电之后,舵机的驱动电机因人为推动进行机械运动而产生反电动势时,阻止反电动势产生的电流流向控制模块,避免舵机的控制模块(即舵机的主板)上电。
如图2所示,在本发明的一个实施例中,逆向偏压模块10包括逆向偏压单元11和第一滤波单元12;电子开关模块20包括第一电子开关单元21、第二电子开关单元22和第三电子开关单元23;驱动模块30包括第一驱动单元31、第二驱动单元32和第三驱动单元33;稳压模块60包括第一稳压单元61、第二稳压单元62和第三稳压单元63;舵机驱动模块100还包括电压采样模块70和温度采样模块80。
如图2所示,在本实施例中,逆向偏压模块10与其他各模块之间的连接关系为:
逆向偏压单元11的输入端为逆向偏压模块10的输入端,逆向偏压单元11的输出端与第一滤波单元12的输入端共接构成逆向偏压模块10的输出端,第 一滤波单元12的输出端为逆向偏压模块10的接地端。
在具体应用中,逆向偏压单元11具体可以选用二极管,第一滤波单元具体可以选用任意常用的滤波电路结构。
逆向偏压模块10的输入端与稳压模块60的输入端共接于电源202,逆向偏压模块10的输出端接电子开关模块20的输入端,逆向偏压模块10的接地端接电源地。
本实施例所提供的逆向偏压模块的工作原理为:
当所述电源上电时,所述逆向偏压单元正向导通,所述电源输出的电流信号通过所述逆向偏压单元输出至所述电子开关模块;
当所述电源断电时,若所述驱动电机继续旋转产生反电动势使所述电子开关模块导通,则所述逆向偏压单元反向截止,所述反电动势产生的电流经所述电子开关模块和所述第一滤波单元输出至电源地,以阻止所述反电动势产生的电流依次通过所述电子开关模块、所述逆向偏压模块和所述稳压模块流入所述控制模块,避免所述控制模块上电启动。
如图2所示,在本实施例中,电子开关模块20与其他各模块之间的连接关系为:
第一电子开关单元21的输入端、第二电子开关单元22的输入端和第三电子开关单元23的输入端共接构成电子开关模块20的输入端,第一电子开关单元21的第一受控端、自举连接端和第二受控端分别为电子开关模块20的第一受控端、第一自举连接端和第二受控端,第二电子开关单元22的第一受控端、自举连接端和第二受控端分别为电子开关模块20的第三受控端、第二自举连接端和第四受控端,第三电子开关单元23的第一受控端、自举连接端和第二受控端分别为电子开关模块20的第五受控端、第三自举连接端和第六受控端,第一电子开关单元21的输出端、第二电子开关单元22的输出端和第三电子开关单元23的输出端共接构成电子开关模块20的输出端。
在具体应用中,第一电子开关单元、第二电子开关单元和第三电子开关单 元均可以通过MOS管来构成电子开关电路。
电子开关模块20的输入端接开关控制模块40的输出端,电子开关模块20的第一受控端、第二受控端、第三受控端、第四受控端、第五受控端、第六受控端分别接与驱动模块30的第一控制端、第二控制端、第三控制端、第四控制端、第五控制端、第六控制端一一对应连接,电子开关模块20的第一自举连接端与驱动模块的第一自举端共接于驱动电机201的第一相连接端,电子开关模块的第二自举连接端与驱动模块30的第二自举端共接于驱动电机201的第二相连接端,电子开关模块20的第三自举连接端与驱动模块30的第三自举端共接于驱动电机201的第三相连接端,电子开关模块20的输出端接电源地并分别与电流采样模块50的电流采样端和驱动模块40的低压供电端连接。
本实施例所提供的电子开关模块的工作原理为:
当所述电源上电时,所述第一电子开关单元、所述第二电子开关单元和所述第三电子开关单元中的任意两个输入所述电源的电流信号导通,以输出驱动脉冲控制所述驱动电机旋转;
当所述电源断电时,若所述驱动电机继续旋转产生反电动势,则所述第一电子开关单元、所述第二电子开关单元和所述第三电子开关单元输入所述反电动势产生的电流导通,并将所述反电动势产生的电流输出至所述逆向偏压模块。
在具体应用中,在电源上电时,驱动模块控制第一电子开关单元、第二电子开关单元或第三电子开关单元中的任意两个,输出驱动脉冲至驱动电机的第一相连接端、第二相连接端或第三相连接端的任意两个端子,以使驱动电机旋转。
如图2所示,在本实施例中,驱动模块30与其他各模块之间的连接关系为:
第一驱动单元31的第一电源端、第二驱动单元32的第一电源端和第三驱动单元33的第一电源端共接构成驱动模块30的第一电源端,第一驱动单元31的第二电源端、第二驱动单元32的第二电源端和第三驱动单元33的第二电源端共接构成驱动模块30的第二电源端,第一驱动单元31的低压供电端、第二 驱动单元32的低压供电端和第三驱动单元33的低压供电端共接构成驱动模块30的低压供电端,第一驱动单元31的高压受控端、第二驱动单元32的高压受控端和第三驱动单元33的高压受控端分别为驱动模块30的第一高压受控端、第二高压受控端和第三高压受控端,第一驱动单元31的低压受控端、第二驱动单元32的低压受控端和第三驱动单元33的低压受控端分别为驱动模块30的第一低压受控端、第二低压受控端和第三低压受控端,第一驱动单元31的第一控制端、第二驱动单元32的第一控制端和第三驱动单元33的第一控制端分别为驱动模块30的第一控制端、第二控制端和第三控制端,第一驱动单元31的第二控制端、第二驱动单元32的第二控制端和第三驱动单元33的第二控制端分别为驱动模块30的第四控制端、第五控制端和第六控制端,第一驱动单元31的第二自举端、第二驱动单元32的第二自举端和第三驱动单元33的第二自举端分别为驱动模块30的第一自举端、第二自举端和第三自举端。
在具体应用中,第一驱动单元、第二驱动单元和第三驱动单元具体可以通过电机驱动芯片来构成。
驱动模块30的第一电源端和第二电源端分别与稳压模块60的第一输出端和第三输出端连接,驱动模块30的低压供电端与电子开关模块20的输出端连接,驱动模块30的第一高压受控端、第二高压受控端和第三高压受控端分别与控制模块40的第一高压控制端、第二高压控制端和第三高压控制端一一对应连接,驱动模块30的第一低压受控端、第二低压受控端和第三低压受控端分别与控制模块40的第一低压控制端、第二低压控制端和第三低压控制端一一对应连接,驱动模块30的第一自举端、第二自举端和第三自举端分别与电子开关模块的第一自举接线端、第二自举接线端和第三自举接线端一一对应连接;
本实施例所提供的驱动模块的工作原理为:
当所述电源上电时,所述第一驱动单元、所述第二驱动单元和所述第三驱动单元上电启动并根据所述控制信号输出驱动信号,同时第一驱动单元、所述第二驱动单元和所述第三驱动单元中的任意两个输出控制信号控制对应的两个 电子开关单元导通,使所述驱动电机的第一相连接端、第二相连接端和第三相连接端中对应的两相上电,以驱动所述驱动电机转动。
在具体应用中,驱动模块通过其第一驱动单元、第二驱动单元和第三驱动单元分别控制驱动电机的第一相连接端、第二相连接端和第三相连接端的上电情况。
如图2所示,在本实施例中,电流采样模块50与其他各模块之间的连接关系为:
电流采样模块50的电流采样端与电子开关模块20的输出端连接,电流采样模块50的电源端与稳压模块60的第三输出端连接,电流采样模块50的第一采样输出端、第二采样输出端和第三采样输出端分别与控制模块40的第一采样端、第二采样端和第三采样端一一对应连接。
本实施例所提供的电流采样模块的工作原理为:
当电源上电、驱动电机转动时,电流采样模块分别通过驱动电机的第一相连接端、第二相连接端和第三相连接端采集驱动电机的工作电流,并分别通过第一采样输出端、第二采样输出端和第三采样输出端输出给控制模块。
如图2所示,在本实施例中,稳压模块60与其他各模块之间的连接关系为:
第一稳压单元61的输入端为稳压模块60的输入端,第一稳压单元61的输出端与第二稳压单元62的输入端共接构成稳压模块60的第一输出端,第二稳压单元62的输出端与第三稳压单元63的输入端共接构成稳压模块60的第二输出端,第三稳压单元63输出端为稳压模块60的第三输出端。
在具体应用中,第一稳压单元、第二稳压单元和第三稳压单元具体可以通过稳压器、DC-DC转换器或稳压芯片来实现。在具体应用中,第一稳压单元具体可以选用MP4560型降压转换器,第二稳压单元具体可以选用MP2314型稳压芯片,第三稳压单元具体可以选用SGM2013型低压差线性稳压器。
本实施例所提供的稳压模块的工作原理为:
当电源上电时,稳压模块通过第一稳压单元、第二稳压单元和第三稳压单 元依次将电源的输出的电流信号转换为第一预设电压、第二预设电压和第三预设电压并通过其三个输出端分别输出。
在具体应用中,当电源输出的电压大小为24V的直流电时,第一稳压单元用于将24V直流电降压为12V直流电后输出,第二稳压单元用于将12V直流电降压为5V直流电后输出,第三稳压单元用于将5V直流电降压为3.3V直流电后输出。
如图2所示,在本实施例中,电压采样模块70与其他各模块之间的连接关系为:
电压采样模块70的第一电压采样端、第二电压采样端、采样输出端和接地端分别与电源202、稳压模块60的第三输出端、控制模块40的电压采样端和电源地一一对应连接。
本实施例所提供的电压采样模块的工作原理为:
在电源上电时,控制模块控制电压采样模块采样电源电压信号和稳压模块的第三输出端输出的电压信号,以检测整个舵机驱动电路的电压是否正常。
如图2所示,在本实施例中,温度采集模块80与其他各模块之间的连接关系为:
温度采集模块80的电源端、采样信号输出端和接地端分别与接稳压模块30的第三输出端、控制模块40的温度采集端和电源地一一对应连接。
本实施例所提供的温度采集模块的工作原理为:
温度采集模块设置在靠近驱动电机的位置,用于受控制模块控制采集驱动电机的温度,若所采集到的驱动电机的温度大于预设温度阈值,则控制模块控制所述驱动电机停止旋转,或降低驱动电机的旋转速度。
如图3所示,在本发明的一个实施例中,逆向偏压单元11包括三端二极管D1,第一滤波单元12包括第一限流电阻R1和第一滤波电容C1。
逆向偏压模块10中各电子元器件的连接关系为:
三端二极管D1的两个正极共接构成逆向偏压单元11的输入端24V,三端 二极管D1的负极为逆向偏压单元11的输出端24V_MOS;
第一限流电阻R1的一端与第一滤波电容C1的正极共接构成第一滤波单元12的输入端24V_MOS,第一限流电阻R1的另一端和第一滤波电容的C1的负极共接构成第一滤波单元12的输出端。
如图4所示,在本发明的一个实施例中,第一电子开关单元21包括第一NMOS管Q1和第二NMOS管Q2,第二电子开关单元22包括第三NMOS管Q3和第四NMOS管Q4,第三电子开关单元23包括第五NMOS管Q5和第六N MOS管Q6。
电子开关模块20中各电子元器件的连接关系为:
第一NMOS管Q1的栅极和漏极分别为第一电子开关单元21的第一受控端PWM_AT和输入端24V_MOS,第一NMOS管Q1的源极和第二NMOS管Q2的漏极共接构成第一电子开关单元21的自举连接端PHASE_A,第二NMOS管Q2的栅极和源极分别为第一电子开关单元21的第二受控端PWM_AB和输出端I_PHASE_A;
第三NMOS管Q3的栅极和漏极分别为第二电子开关单元21的第一受控端PWM_BT和输入端24V_MOS,第三NMOS管Q3的源极和第四NMOS管Q4的漏极共接构成第二电子开关单元22的自举连接端PHASE_B,第四NMOS管Q4的栅极和源极分别为第二电子开关单元22的第二受控端PWM_BB和输出端I_PHASE_A;
第五NMOS管Q5的栅极和漏极分别为第三电子开关单元23的第一受控端PWM_CT和输入端24V_MOS,第五NMOS管Q5的源极和第六NMOS管Q6的漏极共接构成第三电子开关单元23的自举连接端PHASE_C,第六NMOS管Q6的栅极和源极分别为第三电子开关单元的第二受控端PWM_CB和输出端I_PHASE_A。
在本实施例中,电子开关模块20还包括第二滤波单元24,第二滤波单元24的输入端与第一电子开关单元21的输出端、第二电子开关单元22的输出端、 第三电子开关单元23的输出端和电流采样模块50的电流采样端共接,第二滤波单元24的输出端接电源地。
本实施例中,第二滤波单元24的具体电路结构为:
第二滤波单元24包括第二限流电阻R2和第二滤波电容C2,第二限流电阻R2的一端与第二滤波电容C2的正极共接构成第二滤波单元24的输入端I_PHASE_A,第二限流电阻R2的另一端和第二滤波电容的C2的负极共接构成第二滤波单元24的输出端。
如图5所示,在本发明的一个实施例中,第一驱动单元31包括第一驱动芯片U1、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第三电容C3、第四电容C4、第二二极管D2、第二二极管D3和第三二极管D4。
本实施例中,第一驱动芯U1具体选用DGD1503型电机驱动芯片。
本实施例中,第一驱动单元31中各器件之间的连接关系为:
第一驱动芯片U1的电源端VCC与第三电容C3的正极和第二二极管D2的正极共接构成第一驱动单元31的第一电源端3.3V,第三电容C3的负极接电源地,第一驱动芯片U1的高压受控端HIN与第三电阻R3的一端共接构成第一驱动单元31的高压受控端MCU_AT,第三电阻R3的另一端接电源地,第一驱动芯片U1的低压受控端LIN与第四电阻R4的一端共接构成第一驱动单元31的低压受控端MCU_AB,第四电阻R4的另一端接电源地,第一驱动芯片U1的低压供电端COM为第一驱动单元31的低压供电端I_PHASE_A,第一驱动芯片U1的低压驱动端LO与第五电阻R5的一端和第三二极管D3的负极共接,第五电阻R5的另一端和第三二极管D3的正极共接构成第一驱动单元31的第二控制端PWM_AB,第一驱动芯片U1的第一高压供电端VS与第四电容C4的正极共接构成第一驱动单元31的自举端PHASE_A,第一驱动芯片U1的高压驱动端HO与第六电阻R6的一端和第四二极管D4的负极共接,第六电阻R6的另一端和第四二极管D4的正极共接构成第一驱动单元31的第一控制端PWM_AT,第一驱动芯片U1的第二高压供电端VB与第七电阻R7的一端和第 四电容C4的负极共接,第七电阻R7的另一端接第二二极管D2的负极。
第二驱动单元32包括第二驱动芯片U2、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第五电容C5、第六电容C6、第五二极管D5、第六二极管D6和第七二极管D7。
本实施例中,第二驱动芯U1具体选用DGD1503型电机驱动芯片。
本实施例中,第二驱动单元32中各器件之间的连接关系为:
第二驱动芯片U2的电源端VCC与第五电容C5的正极和第五二极管D5的正极共接构成第二驱动单元32的第一电源端3.3V,第五电容C5的负极接电源地,第二驱动芯片U2的高压受控端HIN与第八电阻R8的一端共接构成第二驱动单元32的高压受控端MCU_BT,第八电阻R8的另一端接电源地,第二驱动芯片U2的低压受控端LIN与第九电阻R9的一端共接构成第二驱动单元32的低压受控端MCU_BB,第九电阻R9的另一端接电源地,第二驱动芯片U2的低压供电端COM为第二驱动单元32的低压供电端I_PHASE_B,第二驱动芯片U2的低压驱动端LO与第十电阻R10的一端和第六二极管D6的负极共接,第十电阻R10的另一端和第六二极管D6的正极共接构成第二驱动单元32的第二控制端PWM_BB,第二驱动芯片U2的第一高压供电端VS与第六电容C6的正极共接构成第二驱动单元32的自举端PHASE_B,第二驱动芯片U2的高压驱动端HO与第十一电阻R11的一端和第七二极管D7的负极共接,第十一电阻R11的另一端和第七二极管D7的正极共接构成第二驱动单元32的第一控制端PWM_BT,第二驱动芯片U2的第二高压供电端VB与第十二电阻R12的一端和第六电容C6的负极共接,第十二电阻R12的另一端接第五二极管D5的负极。
第三驱动单元33包括第三驱动芯片U3、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十六电阻R16、第十七电阻R17、第七电容C7、第八电容C8、第八二极管D8、第九二极管D9和第十二极管D10。
本实施例中,第三驱动芯U1具体选用DGD1503型电机驱动芯片。
本实施例中,第三驱动单元33中各器件之间的连接关系为:
第三驱动芯片U3的电源端VCC与第七电容C7的正极和第八二极管D8的正极共接构成第三驱动单元33的第一电源端3.3V,第七电容C7的负极接电源地,第三驱动芯片U3的高压受控端HIN与第十三电阻R13的一端共接构成第三驱动单元33的高压受控端MCU_CT,第十三电阻R13的另一端接电源地,第三驱动芯片U3的低压受控端LIN与第十四电阻R14的一端共接构成第三驱动单元33的低压受控端MCU_CB,第十四电阻R14的另一端接电源地,第三驱动芯片U3的低压供电端COM为第三驱动单元33的低压供电端I_PHASE_C,第三驱动芯片U3的低压驱动端LO与第十五电阻R15的一端和第九二极管D9的负极共接,第十五电阻R15的另一端和第九二极管D9的正极共接构成第三驱动单元33的第二控制端PWM_CB,第三驱动芯片U3的第一高压供电端VS与第八电容C8的正极共接构成第三驱动单元33的自举端PHASE_C,第三驱动芯片U3的高压驱动端HO与第十六电阻R16的一端和第十二极管D10的负极共接,第十六电阻R16的另一端和第十二极管D10的正极共接构成第三驱动单元33的第一控制端PWM_CT,第三驱动芯片U3的第二高压供电端VB与第十七电阻R17的一端和第八电容C8的负极共接,第十七电阻R17的另一端接第八二极管D8的负极。
如图6所示,在本发明的一个实施例中,电流采样模块50包括第十八电阻R18、第十九电阻R19、第二十电阻R20、第二十一电阻R21、第九电容C9和第十电容C10。
在本实施例中,电流采样模块中各电子元器件之间的连接关系为:
第十八电阻R18的一端为电流采样模块50的电流采样端I_PHASE_A,第十八电阻R18的另一端与第十九电阻R19的一端、第九电容C9的正极共接构成电流采样模块50的第一采样输出端PA1,第十九电阻R19的另一端为电流采样模块50的电源端3.3V,第二十电阻R20的另一端与第二十一电阻R21的一端和第十电容C10的负极共接构成电流采样模块50的第三采样输出端PA3, 第二十一电阻R21的另一端和第十电容C10的正极共接构成电流采样模块50的第二采样输出端PA2。
如图7所示,在本发明的一个实施例中,电压采集模块70包括第二十二电阻R22、第二十三电阻R23、第十一电容C11、第十一二极管(具体为肖特基二极管)D11。
在本实施例中,电压采集模块70中各电子元器件之间的连接关系为:
第二十二电阻R22的一端为电压采集模块70的第一电压采样端24V,第二十二电阻R22的另一端与第二十三电阻R23的一端、第十一电容C11的正极和第十一二极管D11的正极共接构成电压采集模块70的采样输出端Vdet,第二十三电阻R23的另一端与第十一电容C11的负极共接构成电压采样模块70的接地端,第十一二极管D11的负极构成电压采样模块70的第二电压采样端3.3V。
如图8所示,在本发明的一个实施例中,温度采集模块80包括第二十四电阻R24、第二十五电阻R25(具体为热敏电阻)和第十二电容C12。
在本实施例中,电流采样模块中各电子元器件之间的连接关系为:
第二十四电阻R24的一端为温度采集模块80的电源端3.3V,第二十四电阻R24的另一端与第二十五电阻R25的一端和第十二电容C12的正极共接构成温度采集模块80的采样信号输出端NTC,第二十五电阻R25的另一端和第十二电容C12的负极均为温度采集模块80的接地端。
在本发明的一个实施例中,附图3~8所对应的所有实施例均共同实施,附图中所有标注相同的端口均共接。在本实施例中,控制模块40具体选用STM32F302RBT6型微控制器;第一稳压单元具体选用MP4560型降压转换器,第二稳压单元具体选用MP2314型稳压芯片,第三稳压单元具体选用SGM2013型低压差线性稳压器。由于在具体应用中,STM32F302RBT6型微控制器、MP4560型降压转换器、MP2314型稳压芯片和SGM2013型低压差线性稳压器各引脚的功能均为已知,因此,本实施例中不再对这些芯片应用在驱动控制电 路100中时的具体电路连接结构作详细介绍。
如图9所示,本发明的一个实施例还提供一种机器人00,其包括舵机200、CAN总线收发器300和磁定位传感器400,舵机200包括上述实施例中的驱动控制电路100,CAN总线收发器300分别与稳压模块60和控制模块40连接,磁定位传感器400分别与稳压模块60和控制模块40连接,控制模块40还通过CAN总线收发器300与外部设备通信连接。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种驱动控制电路,用于控制舵机运动,其特征在于,所述驱动控制电路包括逆向偏压模块、电子开关模块、驱动模块、控制模块、电流采样模块和稳压模块;
    所述逆向偏压模块接入所述舵机的电源并与所述电子开关模块连接,所述驱动模块通过所述电子开关模块与所述驱动电机连接,所述控制模块与所述驱动模块连接并通过所述电流采样模块与所述电子开关模块连接,所述稳压模块接入所述电源并分别与所述驱动模块、所述控制模块和所述电流采样模块连接;
    当所述电源上电时,所述逆向偏压模块正向导通输入电流信号,所述控制模块上电启动并输出控制信号,所述驱动模块上电启动并根据所述控制信号输出驱动信号,所述电子开关模块根据所述电流信号和所述驱动信号导通并输出驱动脉冲,所述驱动电机受所述驱动脉冲驱动旋转,所述控制模块还通过所述电流采样模块采集所述驱动电机的工作电流,以根据所述工作电流调整输出给所述驱动模块的控制信号;
    当所述电源断电时,若所述驱动电机继续旋转产生反电动势使所述电子开关模块导通,则所述逆向偏压模块反向截止,阻止所述反电动势产生的电流流向所述控制模块,避免所述控制模块上电启动。
  2. 如权利要求1所述的驱动控制电路,其特征在于,所述逆向偏压模块包括逆向偏压单元和第一滤波单元;
    所述逆向偏压单元的输入端为所述逆向偏压模块的输入端,所述逆向偏压单元的输出端与所述第一滤波单元的输入端共接构成所述逆向偏压模块的输出端,所述第一滤波单元的输出端为所述逆向偏压模块的接地端;
    所述逆向偏压模块的输入端与所述稳压模块的输入端共接于所述电源,所述逆向偏压模块的输出端接所述电子开关模块的输入端,所述逆向偏压模块的接地端接电源地;
    当所述电源上电时,所述逆向偏压单元正向导通,所述电源输出的电流信 号通过所述逆向偏压单元输出至所述电子开关模块;
    当所述电源断电时,若所述驱动电机继续旋转产生反电动势使所述电子开关模块导通,则所述逆向偏压单元反向截止,所述反电动势产生的电流经所述电子开关模块和所述第一滤波单元输出至电源地,以阻止所述反电动势产生的电流依次通过所述电子开关模块、所述逆向偏压模块和所述稳压模块流入所述控制模块,避免所述控制模块上电启动。
  3. 如权利要求2所述的驱动控制电路,其特征在于,所述逆向偏压单元包括三端二极管,所述第一滤波单元包括第一限流电阻和第一滤波电容;
    所述三端二极管的两个正极共接构成所述逆向偏压单元的输入端,所述三端二极管的负极为所述逆向偏压单元的输出端;
    所述第一限流电阻的一端与所述第一滤波电容的正极共接构成所述第一滤波单元的输入端,所述第一限流电阻的另一端和所述第一滤波电容的的负极共接构成所述第一滤波单元的输出端。
  4. 如权利要求1所述的驱动控制电路,其特征在于,所述电子开关模块包括第一电子开关单元、第二电子开关单元和第三电子开关单元;
    所述第一电子开关单元的输入端、所述第二电子开关单元的输入端和所述第三电子开关单元的输入端共接构成所述电子开关模块的输入端,所述第一电子开关单元的第一受控端、自举连接端和第二受控端分别为所述电子开关模块的第一受控端、第一自举连接端和第二受控端,所述第二电子开关单元的第一受控端、自举连接端和第二受控端分别为所述电子开关模块的第三受控端、第二自举连接端和第四受控端,所述第三电子开关单元的第一受控端、自举连接端和第二受控端分别为所述电子开关模块的第五受控端、第三自举连接端和第六受控端,所述第一电子开关单元的输出端、所述第二电子开关单元的输出端和所述第三电子开关单元的输出端共接构成所述电子开关模块的输出端;
    所述电子开关模块的输入端接所述开关控制模块的输出端,所述电子开关模块的第一受控端、第二受控端、第三受控端、第四受控端、第五受控端、第 六受控端分别接与所述驱动模块的第一控制端、第二控制端、第三控制端、第四控制端、第五控制端、第六控制端一一对应连接,所述电子开关模块的第一自举连接端与所述驱动模块的第一自举端共接于所述驱动电机的第一相连接端,所述电子开关模块的第二自举连接端与所述驱动模块的第二自举端共接于所述驱动电机的第二相连接端,所述电子开关模块的第三自举连接端与所述驱动模块的第三自举端共接于所述驱动电机的第三相连接端,所述电子开关模块的输出端接电源地并分别与所述电流采样模块的电流采样端和所述驱动模块的低压供电端连接;
    当所述电源上电时,所述第一电子开关单元、所述第二电子开关单元和所述第三电子开关单元中的任意两个输入所述电源的电流信号导通,以输出驱动脉冲控制所述驱动电机旋转;
    当所述电源断电时,若所述驱动电机继续旋转产生反电动势,则所述第一电子开关单元、所述第二电子开关单元和所述第三电子开关单元输入所述反电动势产生的电流导通,并将所述反电动势产生的电流输出至所述逆向偏压模块。
  5. 如权利要求4所述的驱动控制电路,其特征在于,所述第一电子开关单元包括第一NMOS管和第二NMOS管,所述第二电子开关单元包括第三NMOS管和第四NMOS管,所述第三电子开关单元包括第五NMOS管和第六N MOS管;
    所述第一NMOS管的栅极和漏极分别为所述第一电子开关单元的第一受控端和输入端,所述第一NMOS管的源极和所述第二NMOS管的漏极共接构成所述第一电子开关单元的自举连接端,所述第二NMOS管的栅极和源极分别为所述第一电子开关单元的第二受控端和输出端;
    所述第三NMOS管的栅极和漏极分别为所述第二电子开关单元的第一受控端和输入端,所述第三NMOS管的源极和所述第四NMOS管的漏极共接构成所述第二电子开关单元的自举连接端,所述第四NMOS管的栅极和源极分别为所述第二电子开关单元的第二受控端和输出端;
    所述第五NMOS管的栅极和漏极分别为所述第三电子开关单元的第一受控端和输入端,所述第五NMOS管的源极和所述第六NMOS管的漏极共接构成所述第三电子开关单元的自举连接端,所述第六NMOS管的栅极和源极分别为所述第三电子开关单元的第二受控端和输出端;
    所述电子开关模块还包括第二滤波单元,所述第二滤波单元的输入端与所述第一电子开关单元的输出端、所述第二电子开关单元的输出端、所述第三电子开关单元的输出端和所述电流采样模块的电流采样端共接,所述第二滤波单元的输出端接电源地;
    所述第二滤波单元包括第二限流电阻和第二滤波电容,所述第二限流电阻的一端与所述第二滤波电容的正极共接构成所述第二滤波单元的输入端,所述第二限流电阻的另一端和所述第二滤波电容的的负极共接构成所述第二滤波单元的输出端。
  6. 如权利要求1所述的驱动控制电路,其特征在于,所述驱动模块包括第一驱动单元、第二驱动单元和第三驱动单元;
    所述第一驱动单元的第一电源端、所述第二驱动单元的第一电源端和所述第三驱动单元的第一电源端共接构成所述驱动模块的第一电源端,所述第一驱动单元的第二电源端、所述第二驱动单元的第二电源端和所述第三驱动单元的第二电源端共接构成所述驱动模块的第二电源端,所述第一驱动单元的低压供电端、所述第二驱动单元的低压供电端和所述第三驱动单元的低压供电端共接构成所述驱动模块的低压供电端,所述第一驱动单元的高压受控端、所述第二驱动单元的高压受控端和所述第三驱动单元的高压受控端分别为所述驱动模块的第一高压受控端、第二高压受控端和第三高压受控端,所述第一驱动单元的低压受控端、所述第二驱动单元的低压受控端和所述第三驱动单元的低压受控端分别为所述驱动模块的第一低压受控端、第二低压受控端和第三低压受控端,所述第一驱动单元的第一控制端、所述第二驱动单元的第一控制端和所述第三驱动单元的第一控制端分别为所述驱动模块的第一控制端、第二控制端和第三 控制端,所述第一驱动单元的第二控制端、所述第二驱动单元的第二控制端和所述第三驱动单元的第二控制端分别为所述驱动模块的第四控制端、第五控制端和第六控制端,所述第一驱动单元的第二自举端、所述第二驱动单元的第二自举端和所述第三驱动单元的第二自举端分别为所述驱动模块的第一自举端、第二自举端和第三自举端;
    所述驱动模块的第一电源端和第二电源端分别与所述稳压模块的第一输出端和第三输出端连接,所述驱动模块的低压供电端与所述电子开关模块的输出端连接,所述驱动模块的第一高压受控端、第二高压受控端和第三高压受控端分别与所述控制模块的第一高压控制端、第二高压控制端和第三高压控制端一一对应连接,所述驱动模块的第一低压受控端、第二低压受控端和第三低压受控端分别与所述控制模块的第一低压控制端、第二低压控制端和第三低压控制端一一对应连接,所述驱动模块的第一自举端、第二自举端和第三自举端分别与所述电子开关模块的第一自举接线端、第二自举接线端和第三自举接线端一一对应连接;
    当所述电源上电时,所述第一驱动单元、所述第二驱动单元和所述第三驱动单元上电启动并根据所述控制信号输出驱动信号,同时第一驱动单元、所述第二驱动单元和所述第三驱动单元中的任意两个输出控制信号控制对应的两个电子开关单元导通,使所述驱动电机的第一相连接端、第二相连接端和第三相连接端中对应的两相上电,以驱动所述驱动电机转动。
  7. 如权利要求6所述的驱动控制电路,其特征在于,所述第一驱动单元包括第一驱动芯片、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第三电容、第四电容、第二二极管、第二二极管和第三二极管;
    所述第一驱动芯片的电源端与所述第三电容的正极和所述第二二极管的正极共接构成所述第一驱动单元的第一电源端,所述第三电容的负极接电源地,所述第一驱动芯片的高压受控端与所述第三电阻的一端共接构成所述第一驱动单元的高压受控端,所述第三电阻的另一端接电源地,所述第一驱动芯片的低 压受控端与所述第四电阻的一端共接构成所述第一驱动单元的低压受控端,所述第四电阻的另一端接电源地,所述第一驱动芯片的低压供电端为所述第一驱动单元的低压供电端,所述第一驱动芯片的低压驱动端与所述第五电阻的一端和所述第三二极管的负极共接,所述第五电阻的另一端和所述第三二极管的正极共接构成所述第一驱动单元的第二控制端,所述第一驱动芯片的第一高压供电端与所述第四电容的正极共接构成所述第一驱动单元的自举端,所述第一驱动芯片的高压驱动端与所述第六电阻的一端和所述第四二极管的负极共接,所述第六电阻的另一端和所述第四二极管的正极共接构成所述第一驱动单元的第一控制端,所述第一驱动芯片的第二高压供电端与所述第七电阻的一端和所述第四电容的负极共接,所述第七电阻的另一端接所述第二二极管的负极;
    所述第二驱动单元包括第二驱动芯片、第八电阻、第九电阻、第十电阻、第十一电阻、第十二电阻、第五电容、第六电容、第五二极管、第六二极管和第七二极管;
    所述第二驱动芯片的电源端与所述第五电容的正极和所述第五二极管的正极共接构成所述第二驱动单元的第一电源端,所述第五电容的负极接电源地,所述第二驱动芯片的高压受控端与所述第八电阻的一端共接构成所述第二驱动单元的高压受控端,所述第八电阻的另一端接电源地,所述第二驱动芯片的低压受控端与所述第九电阻的一端共接构成所述第二驱动单元的低压受控端,所述第九电阻的另一端接电源地,所述第二驱动芯片的低压供电端为所述第二驱动单元的低压供电端,所述第二驱动芯片的低压驱动端与所述第十电阻的一端和所述第六二极管的负极共接,所述第十电阻的另一端和所述第六二极管的正极共接构成所述第二驱动单元的第二控制端,所述第二驱动芯片的第一高压供电端与所述第六电容的正极共接构成所述第二驱动单元的自举端,所述第二驱动芯片的高压驱动端与所述第十一电阻的一端和所述第七二极管的负极共接,所述第十一电阻的另一端和所述第七二极管的正极共接构成所述第二驱动单元的第一控制端,所述第二驱动芯片的第二高压供电端与所述第十二电阻的一端 和所述第六电容的负极共接,所述第十二电阻的另一端接所述第五二极管的负极;
    所述第三驱动单元包括第三驱动芯片、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第七电容、第八电容、第八二极管、第九二极管和第十二极管;
    所述第三驱动芯片的电源端与所述第七电容的正极和所述第八二极管的正极共接构成所述第三驱动单元的第一电源端,所述第七电容的负极接电源地,所述第三驱动芯片的高压受控端与所述第十三电阻的一端共接构成所述第三驱动单元的高压受控端,所述第十三电阻的另一端接电源地,所述第三驱动芯片的低压受控端与所述第十四电阻的一端共接构成所述第三驱动单元的低压受控端,所述第十四电阻的另一端接电源地,所述第三驱动芯片的低压供电端为所述第三驱动单元的低压供电端,所述第三驱动芯片的低压驱动端与所述第十五电阻的一端和所述第九二极管的负极共接,所述第十五电阻的另一端和所述第九二极管的正极共接构成所述第三驱动单元的第二控制端,所述第三驱动芯片的第一高压供电端与所述第八电容的正极共接构成所述第三驱动单元的自举端,所述第三驱动芯片的高压驱动端与所述第十六电阻的一端和所述第十二极管的负极共接,所述第十六电阻的另一端和所述第十二极管的正极共接构成所述第三驱动单元的第一控制端,所述第三驱动芯片的第二高压供电端与所述第十七电阻的一端和所述第八电容的负极共接,所述第十七电阻的另一端接所述第八二极管的负极。
  8. 如权利要求1所述的驱动控制电路,其特征在于,所述电流采样模块包括第十八电阻、第十九电阻、第二十电阻、第二十一电阻、第九电容和第十电容;
    所述第十八电阻的一端为所述电流采样模块的电流采样端,所述第十八电阻的另一端与所述第十九电阻的一端、所述第九电容的正极共接构成所述电流采样模块的第一采样输出端,所述第十九电阻的另一端为所述电流采样模块的 电源端,所述第二十电阻的另一端与所述第二十一电阻的一端和所述第十电容的负极共接构成所述电流采样模块的第三采样输出端,所述第二十一电阻的另一端和所述第十电容的正极共接构成所述电流采样模块的第二采样输出端;
    所述电流采样模块的电流采样端与所述电子开关模块的输出端连接,所述电流采样模块的电源端与所述稳压模块的第三输出端连接,所述电流采样模块的第一采样输出端、第二采样输出端和第三采样输出端分别与所述控制模块的第一采样端、第二采样端和第三采样端一一对应连接;
    当所述电源上电、所述驱动电机转动时,所述电流采样模块分别通过所述驱动电机的第一相连接端、第二相连接端和第三相连接端采集所述驱动电机的工作电流,并分别通过所述第一采样输出端、所述第二采样输出端和所述第三采样输出端输出给所述控制模块。
  9. 如权利要求1所述的驱动控制电路,其特征在于,所述稳压模块包括第一稳压单元、第二稳压单元和第三稳压单元;
    所述第一稳压单元的输入端为所述稳压模块的输入端,所述第一稳压单元的输出端与所述第二稳压单元的输入端共接构成所述稳压模块的第一输出端,所述第二稳压单元的输出端与所述第三稳压单元的输入端共接构成所述稳压模块的第二输出端,所述第三稳压单元输出端为所述稳压模块的第三输出端;
    当所述电源上电时,所述稳压模块通过所述第一稳压单元、所述第二稳压单元和所述第三稳压单元依次将所述电源的输出的电流信号转换为第一预设电压、第二预设电压和第三预设电压并通过其三个输出端分别输出。
  10. 一种机器人,其特征在于,所述机器人包括舵机、CAN总线收发器和磁定位传感器,所述舵机包括如权利要求1~9任一项所述的驱动控制电路,所述CAN总线收发器分别与所述稳压模块和所述控制模块连接,所述磁定位传感器分别与所述稳压模块和所述控制模块连接,所述控制模块还通过所述CAN总线收发器与外部设备通信连接。
PCT/CN2017/119787 2016-12-30 2017-12-29 一种驱动控制电路及机器人 WO2018121727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611266570.0A CN106597907B (zh) 2016-12-30 一种驱动控制电路及机器人
CN201611266570.0 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018121727A1 true WO2018121727A1 (zh) 2018-07-05

Family

ID=58582007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119787 WO2018121727A1 (zh) 2016-12-30 2017-12-29 一种驱动控制电路及机器人

Country Status (1)

Country Link
WO (1) WO2018121727A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767816A (zh) * 2018-08-10 2018-11-06 中国科学院合肥物质科学研究院 一种移动机器人电源处理系统
CN109044195A (zh) * 2018-09-04 2018-12-21 深圳市东陆科技有限公司 一种灰尘量指示控制电路及吸尘器
CN109261817A (zh) * 2018-10-28 2019-01-25 丹阳金城配件有限公司 一种汽车天窗无铆钉铆接机
CN109618462A (zh) * 2019-01-04 2019-04-12 厦门赢科光电有限公司 一种基于有线通信的照明控制装置及系统
CN110212610A (zh) * 2019-06-21 2019-09-06 深圳无限续航科技有限公司 一种共享充电器用电路及其工作方法
CN114732300A (zh) * 2022-04-29 2022-07-12 深圳朗特智能控制股份有限公司 一种食物处理设备及其食物处理方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207490A (ja) * 1984-03-30 1985-10-19 Rohm Co Ltd モ−タ駆動回路
CN2368220Y (zh) * 1999-03-24 2000-03-08 点晶科技股份有限公司 具有过电压保护的无刷风扇控制电路装置
JP2003169475A (ja) * 2001-11-30 2003-06-13 Hitachi High-Technologies Corp Dc電源オン/オフ回路の誤動作防止装置
CN2706959Y (zh) * 2004-06-17 2005-06-29 达隆科技股份有限公司 无刷风扇马达控制电路
CN101399511A (zh) * 2007-09-28 2009-04-01 升达科技股份有限公司 利用回圈技术抑制马达反应电动势的控制结构
CN102055398A (zh) * 2009-11-02 2011-05-11 本田技研工业株式会社 自励式发电机的容性负载保护装置
CN102441875A (zh) * 2010-10-01 2012-05-09 苏州宝时得电动工具有限公司 动力工具及其稳速控制系统
CN103057712A (zh) * 2012-12-31 2013-04-24 北京航空航天大学 微小型飞行机器人集成飞行控制系统
CN103706924A (zh) * 2013-12-20 2014-04-09 华南理工大学 一种智能型弧焊机器人潜水送丝机
CN104682792A (zh) * 2013-11-27 2015-06-03 德昌电机(深圳)有限公司 直流电机控制电路
CN106597907A (zh) * 2016-12-30 2017-04-26 深圳市优必选科技有限公司 一种驱动控制电路及机器人
CN206363107U (zh) * 2016-12-30 2017-07-28 深圳市优必选科技有限公司 一种驱动控制电路及机器人

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207490A (ja) * 1984-03-30 1985-10-19 Rohm Co Ltd モ−タ駆動回路
CN2368220Y (zh) * 1999-03-24 2000-03-08 点晶科技股份有限公司 具有过电压保护的无刷风扇控制电路装置
JP2003169475A (ja) * 2001-11-30 2003-06-13 Hitachi High-Technologies Corp Dc電源オン/オフ回路の誤動作防止装置
CN2706959Y (zh) * 2004-06-17 2005-06-29 达隆科技股份有限公司 无刷风扇马达控制电路
CN101399511A (zh) * 2007-09-28 2009-04-01 升达科技股份有限公司 利用回圈技术抑制马达反应电动势的控制结构
CN102055398A (zh) * 2009-11-02 2011-05-11 本田技研工业株式会社 自励式发电机的容性负载保护装置
CN102441875A (zh) * 2010-10-01 2012-05-09 苏州宝时得电动工具有限公司 动力工具及其稳速控制系统
CN103057712A (zh) * 2012-12-31 2013-04-24 北京航空航天大学 微小型飞行机器人集成飞行控制系统
CN104682792A (zh) * 2013-11-27 2015-06-03 德昌电机(深圳)有限公司 直流电机控制电路
CN103706924A (zh) * 2013-12-20 2014-04-09 华南理工大学 一种智能型弧焊机器人潜水送丝机
CN106597907A (zh) * 2016-12-30 2017-04-26 深圳市优必选科技有限公司 一种驱动控制电路及机器人
CN206363107U (zh) * 2016-12-30 2017-07-28 深圳市优必选科技有限公司 一种驱动控制电路及机器人

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767816A (zh) * 2018-08-10 2018-11-06 中国科学院合肥物质科学研究院 一种移动机器人电源处理系统
CN108767816B (zh) * 2018-08-10 2024-04-19 中国科学院合肥物质科学研究院 一种移动机器人电源处理系统
CN109044195A (zh) * 2018-09-04 2018-12-21 深圳市东陆科技有限公司 一种灰尘量指示控制电路及吸尘器
CN109261817A (zh) * 2018-10-28 2019-01-25 丹阳金城配件有限公司 一种汽车天窗无铆钉铆接机
CN109261817B (zh) * 2018-10-28 2023-09-29 丹阳金城配件有限公司 一种汽车天窗无铆钉铆接机
CN109618462A (zh) * 2019-01-04 2019-04-12 厦门赢科光电有限公司 一种基于有线通信的照明控制装置及系统
CN110212610A (zh) * 2019-06-21 2019-09-06 深圳无限续航科技有限公司 一种共享充电器用电路及其工作方法
CN114732300A (zh) * 2022-04-29 2022-07-12 深圳朗特智能控制股份有限公司 一种食物处理设备及其食物处理方法

Also Published As

Publication number Publication date
CN106597907A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018121727A1 (zh) 一种驱动控制电路及机器人
CN104362910A (zh) 基于直流无刷电动工具的恒功率双速控制系统及控制方法
CN204308952U (zh) 一种机器人数字舵机的控制装置
CN102013802A (zh) 一种具有短路保护功能的boost电路
CN112644583A (zh) 电动助力转向系统的控制器电路及采样、控制方法
CN206363107U (zh) 一种驱动控制电路及机器人
CN207339695U (zh) 用于电子水泵的无刷电机控制电路
CN207427014U (zh) 一种无刷直流电机用的集成控制电路
WO2023193832A2 (zh) 一种直流无刷电机无极供电电路及控制方法
CN106597907B (zh) 一种驱动控制电路及机器人
CN105958881B (zh) 一种直流电机运动驱动装置
CN210490752U (zh) 一种基于btn芯片以及多传感器的直流电机驱动电路
WO2022247040A1 (zh) 一种电子调速器智能同步整流系统及其控制方法
CN109669429A (zh) 一种紧凑型无刷eps控制器
CN203027175U (zh) 电机驱动电路
CN210578327U (zh) 一种电动升降桌的电机驱动与检测电路
CN103762909B (zh) 一种模块组合式多通道交流驱动器
CN214544009U (zh) 电机外置驱动器电路及外置驱动器
CN214544008U (zh) 电机内置驱动器及内置驱动器电路
US10478967B2 (en) Servo control system and robot
CN216599463U (zh) 一种变频控制系统驱动控制电路
CN110611294A (zh) 一种无刷直流电机驱动控制系统
CN215897620U (zh) 一种单相无刷电机驱动电路
CN220544885U (zh) 一种便携式风扇的电机驱动控制电路
CN104410335A (zh) 智能型小功率电机控制器的控制电路和控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887633

Country of ref document: EP

Kind code of ref document: A1