WO2023193832A2 - 一种直流无刷电机无极供电电路及控制方法 - Google Patents

一种直流无刷电机无极供电电路及控制方法 Download PDF

Info

Publication number
WO2023193832A2
WO2023193832A2 PCT/CN2023/098508 CN2023098508W WO2023193832A2 WO 2023193832 A2 WO2023193832 A2 WO 2023193832A2 CN 2023098508 W CN2023098508 W CN 2023098508W WO 2023193832 A2 WO2023193832 A2 WO 2023193832A2
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
pin
motor
power supply
power
Prior art date
Application number
PCT/CN2023/098508
Other languages
English (en)
French (fr)
Other versions
WO2023193832A3 (zh
Inventor
宋超
陈飞
徐东强
Original Assignee
广德久汭电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广德久汭电机有限公司 filed Critical 广德久汭电机有限公司
Priority to DE212023000056.3U priority Critical patent/DE212023000056U1/de
Publication of WO2023193832A2 publication Critical patent/WO2023193832A2/zh
Publication of WO2023193832A3 publication Critical patent/WO2023193832A3/zh
Priority to US18/399,639 priority patent/US20240128900A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention belongs to the field of motor technology, and specifically relates to a DC brushless motor stepless power supply circuit and a control method.
  • a brushed DC motor is a traditional DC motor with brushes installed on the stator and a commutator installed on the rotor. Electric energy passes through the brushes and commutator to generate armature current, which then drives the motor to rotate and work.
  • DC Brushed motors are equipped with brushes and commutators, so the structure is complex. Brushed DC motors also have low operating efficiency, high noise, poor reliability, large current pulsation interference on the power supply, large electromagnetic interference, short life, and starting current. Big questions.
  • the brushless DC motor overcomes the shortcomings of the complex structure of the brushless DC motor. There are no brushes and commutators in its structure.
  • the brushless DC motor module consists of a brushless motor and a control circuit that matches the motor. The control circuit The polarity of the power supply input terminal is fixed, and the power supply cannot be connected reversely. If it is connected reversely, the motor will not work at best, or it will cause irreversible damage to the circuit.
  • Brushless DC motors require additional circuits to switch directions, and additional external control signals are required to achieve forward and reverse switching, so the circuit wiring is very complex.
  • the DC brush motor only needs to exchange the wiring positions of the two power cords to switch the direction of rotation, while the polarity of the power input terminal of the brushless DC motor is fixed.
  • the power supply cannot be connected reversely. Once the connection is reversed, the motor will be burned. If you want to control
  • the forward and reverse rotation of the brushless DC motor also requires the chip to read the key switching signal or adjust the line sequence of the brushless motor. That is, additional signals are needed to switch the direction of rotation. Therefore, in actual products, brushless DC motors often cannot be directly replaced. Brush motor.
  • a full-bridge rectifier circuit composed of diodes is generally used to realize the polarity conversion of the power supply.
  • the input current needs to pass through two diodes, so there is a problem of voltage reduction, and the power loss will increase as the current increases.
  • the power loss is the product of the current and the sum of the voltage drops of the two diodes, so the working efficiency of the entire circuit will also be greatly reduced. Therefore, a new solution needs to be designed to solve the problems of complex wiring and low work efficiency.
  • the purpose of the present invention is to provide a DC brushless motor stepless power supply circuit and a control method to solve the technical problems mentioned in the background art.
  • the present invention discloses a DC brushless motor stepless power supply circuit, including
  • Pre-drive and power switching circuit which is connected to the brushless DC motor
  • the microcontroller chip has at least 15 pins, including GPIO1 pin, GPIO2 pin, VDD pin, VSS pin, ADC_IN1 pin, ADC_IN2 pin, ADC_IN3 pin, ADC_IN4 pin, ADC_IN5 pin, PWM1P pin, PWM1N Pin, PWM2P pin, PWM2N pin, PWM3P pin and PWM3N pin; among them, GPIO1 pin and GPIO2 pin are connected to the polarity judgment circuit, VDD pin is the power input terminal, VSS pin is the ground pin, ADC_IN4 pin is connected to the voltage sampling circuit, The ADC_IN5 pin is connected to the current sampling circuit; the ADC_IN1 foot, ADC_IN2 foot and ADC_IN3 foot, PWM1P foot, PWM1N foot, PWM2P foot, PWM2N foot, PWM3P foot and PWM3N foot are all connected to the pre-driver and power switch circuit respectively.
  • the brushless DC motor stepless power supply circuit also includes a rectifier circuit, which is connected to the polarity judgment circuit and the pre-drive and power switch circuits respectively.
  • the brushless DC motor stepless power supply circuit also includes a voltage stabilizing circuit, which is connected to the rectifier circuit, the pre-drive and power switch circuits and the microcontroller chip respectively.
  • the voltage stabilizing circuit includes a pre-drive and power switch circuit power supply voltage stabilizing circuit and a microcontroller chip power supply voltage stabilizing circuit;
  • the pre-drive and power switch circuit power supply voltage stabilizing circuit is connected to the pre-drive and power switch circuit to provide the pre-drive and the power switch circuit provide power supply voltage;
  • the microcontroller chip power supply voltage stabilizing circuit is connected to the VDD pin of the microcontroller chip to provide power supply voltage for the microcontroller chip.
  • the polarity judgment circuit includes a first level detection circuit and a second level detection circuit.
  • the first level detection circuit outputs a power input line level of 1
  • the second level detection circuit outputs a power supply.
  • Incoming line level 2 GPIO1 pin is connected to power incoming line level 1
  • GPIO2 pin is connected to power incoming line level 2.
  • the present invention also claims a control method for the above-mentioned brushless DC motor stepless power supply circuit, which includes the following steps:
  • the polarity judgment circuit reads the power incoming line level. If the incoming line is high level, the microcontroller chip controls the motor to rotate forward. If the incoming line is low level, the defiant chip controls the motor to rotate reversely;
  • the current sampling circuit samples and calculates the current, and then the voltage sampling circuit samples and calculates the voltage. If there is undervoltage or overvoltage, the motor is controlled to stop; based on the current and voltage, algorithm calculation is used to determine whether there is a stalled rotor. , if there is a stalled rotor, control the motor to stop;
  • the polarity judgment circuit reads the power incoming line level and determines whether the motor needs to switch direction. If so, the motor decelerates and then stops and turns. If there is no need to switch direction, it runs normally, and then passes the algorithm according to the current and voltage. The calculation determines whether the motor is running normally. If it is normal, continue the voltage sampling and conversion. If it is not normal, repeat step (2).
  • the brushless DC motor stepless power supply circuit and control method of the present invention have the following advantages:
  • the rotation direction of the brushless DC motor changes with the change of the polarity of the power supply voltage, and can adapt to PWM speed regulation.
  • Figure 1 Hardware structure diagram of an embodiment of a brushless DC motor stepless power supply circuit.
  • Figure 2 Connection circuit diagram of the microcontroller chip and the pre-driver and power switching circuits in the embodiment shown in Figure 1.
  • FIG. 3 Circuit diagram of the microcontroller chip in Figure 2.
  • Figure 4 Circuit diagram of the predriver and power switching circuit in Figure 2.
  • Figure 5 Connection circuit diagram of the rectifier circuit and the polarity judgment circuit in the embodiment shown in Figure 1.
  • Figure 6 Circuit diagram of the rectifier circuit in Figure 5.
  • Figure 7 Circuit diagram of the first level detection circuit in the polarity judgment circuit in Figure 5.
  • Figure 8 Circuit diagram of the second level detection circuit in the polarity judgment circuit in Figure 5.
  • Figure 9 Circuit diagram of the voltage stabilizing circuit supplying the pre-driver and power switching circuits in the embodiment shown in Figure 1.
  • FIG. 10 Circuit diagram of the power supply voltage stabilizing circuit of the microcontroller chip in the embodiment shown in Figure 1.
  • FIG. 11 Circuit diagram of the voltage sampling circuit in the embodiment shown in Figure 1.
  • Figure 12 Circuit diagram of the current sampling circuit in the embodiment shown in Figure 1.
  • Figure 13 Flow chart of the control method of the brushless DC motor stepless power supply circuit in the embodiment shown in Figure 1.
  • the brushless DC motor stepless power supply circuit in this embodiment includes a rectifier circuit 1, a microcontroller chip 2, a voltage stabilizing circuit 3, a polarity judgment circuit 4, a pre-driver and a power switch circuit 5. Voltage sampling circuit 6 and current sampling circuit 7; among them, the pre-drive and power switching circuit 5 is connected to the brushless DC motor 14.
  • the microcontroller chip 2 has at least 15 pins, including GPIO1, GPIO2, VDD, VSS, ADC_IN1, ADC_IN2, ADC_IN3, ADC_IN4, ADC_IN5, PWM1P, PWM1N, PWM2P, PWM2N pin, PWM3P pin and PWM3N pin; among them, GPIO1 pin and GPIO2 pin are connected to the polarity judgment circuit 4.
  • the polarity judgment circuit 4 includes the first level detection circuit 8 and the second level detection circuit 9. One level detection circuit 8 outputs the power incoming line level 1, and the second level detection circuit 9 outputs the power incoming line level 2.
  • the GPIO1 pin is connected to the power incoming line level 1, and the GPIO2 pin is connected to the power incoming line level.
  • Line level 2 is connected
  • the VDD pin is the power input terminal, connected to VDD_IO
  • the VSS pin is the ground pin, connected to GND
  • ADC_IN1 foot, ADC_IN2 foot, ADC_IN3 foot, PWM1P foot, PWM1N foot, PWM2P foot, PWM2N foot, PWM3P foot and PWM3N pins are connected to the pre-drive and power switch circuit 5 respectively
  • the ADC_IN4 pin is connected to the voltage sampling circuit 6
  • the ADC_IN5 pin is connected to the current sampling circuit 7.
  • Rectifier circuit 1 includes resistors R1-R8, Zener diodes D1-D4, P-channel power MOSFETs Q1 and Q2, N-channel power MOSFETs Q3 and Q4, and energy storage capacitor C2.
  • the two ends of the rectifier circuit 1 are connected to the power input signals DCin1 and DCin2 respectively.
  • a capacitor C1 is connected between DCin1 and DCin2.
  • a resistor R9 is connected in parallel to both ends of the capacitor C1. C1 and R9 can suppress the common mode interference of the power supply.
  • the rectifier circuit 1 includes four linear voltage stabilizing circuits, namely a first linear voltage stabilizing circuit 10, a second linear voltage stabilizing circuit 11, a third linear voltage stabilizing circuit 12 and a fourth linear voltage stabilizing circuit 13.
  • the first linear voltage stabilizing circuit 10 The voltage circuit 10 includes D1, R1 and R5, one end of D1, R1 and R5 is connected to the G pole of Q1, the other end of D1 and R1 is connected to the S pole of Q1, the other end of R5 is connected to DCin2; the second linear The voltage stabilizing circuit 11 includes D2, R2 and R6.
  • the linear voltage stabilizing circuit 12 includes D3, R3 and R7. One end of D3, R3 and R7 is connected to the G pole of Q3, the other end of D3 and R3 is connected to the S pole of Q3, and the other end of R7 is connected to DCin2;
  • the four-linear voltage stabilizing circuit 13 includes D4, R4 and R8. One end of D4, R4 and R8 is connected to the G pole of Q4, the other end of D4 and R4 is connected to the S pole of Q4, and the other end of R8 is connected to DCin1.
  • the first linear voltage stabilizing circuit 10, the second linear voltage stabilizing circuit 11, the third linear voltage stabilizing circuit 12 and the fourth linear voltage stabilizing circuit 13 provide driving signals for Q1, Q2, Q3 and Q4 respectively, and the driving signals do not exceed the MOSFET The upper limit of the driving voltage prevents damage to the MOSFET.
  • DCin1 is V+
  • DCin2 is V-
  • V+ charges C2 through the body diode of MOSFET Q1, and flows from the body diode of Q4 to V-, forming a loop.
  • the G pole of Q2 is pulled up to V+ by R6. At this time, the S pole of Q2 is close to V+. VGS of Q2 is low level and Q2 is turned off. The G pole of Q3 is pulled down to V- by R7. At this time, the S pole of Q3 is Close to V-, VGS of Q3 is low level, Q3 is turned off;
  • the G pole of Q4 is pulled up to V+ by R8. At this time, the S pole of Q4 is close to V-, VGS of Q4 is high level, and Q4 is turned on.
  • V+ is connected to the positive terminal of C2 through Q1
  • V- is connected to the negative terminal of C2 through Q4.
  • DCin1 is V-
  • DCin2 is V+
  • V+ charges C2 through the body diode of Q2, and flows from the body diode of Q3 to V-, forming a loop.
  • the G pole of Q2 is pulled down to V- by R6. At this time, the S pole of Q2 is close to V+, the VGS of Q2 is a negative voltage, and Q2 is turned on;
  • the G pole of Q3 is pulled up to V+ by R7. At this time, the S pole of Q3 is close to V-, the VGS of Q3 is high level, and Q3 is turned on;
  • the G pole of Q4 is pulled down to V- by R8. At this time, the S pole of Q4 is close to V-. VGS of Q4 is low level and Q4 is turned off.
  • V+ is connected to the positive terminal of C2 through Q2, and V- is connected to the negative terminal of C2 through Q3.
  • the first level detection circuit 8 includes resistors R10, R11 and R12, capacitor C3 and transistor Q5, in which R10 and R11 are connected in series, C3 is connected in parallel at both ends of R11, and one end of C3 is connected to the transistor Q5
  • the base B of the transistor Q5 is connected, and the other end is connected to the emitter E of the transistor Q5.
  • the collector C of the transistor Q5 is connected to a resistor R12.
  • the other end of R12 is connected to the power supply VDD_IO. Between R12 and the collector C of the transistor Q5, the output Power input level 1.
  • C3 is an optional signal filter capacitor, used to filter out fluctuation signals when the power supply has just been connected and is not reliably connected.
  • the second level detection circuit 9 includes resistors R25, R26 and R27, a capacitor C15 and a transistor Q12, in which R26 and R27 are connected in series, C15 is connected in parallel at both ends of R27, one end of C15 is connected to the base B of the transistor Q12, and the other end is connected to the base B of the transistor Q12. One end is connected to the emitter E of the transistor Q12.
  • the collector C of the transistor Q12 is connected to a resistor R25.
  • the other end of R25 is connected to the power supply VDD_IO. Between R25 and the collector C of the transistor Q12, the output power input line level is 2.
  • the principle of the second level detection circuit 9 is the same as that of the first level detection circuit 8 .
  • the microcontroller chip 2 only needs to determine the forward or reverse rotation of the motor based on one level state.
  • the microcontroller chip 2 can determine the direction of motor rotation based on the relationship between the two level states, and can be mapped to set values such as rotational speed based on the pulse width duty cycle.
  • the pre-drive and power switching circuit 5 is connected to the brushless DC motor 14.
  • the three-phase drive circuit of the motor includes U phase, V phase and W phase.
  • U phase is used as the analysis object, and the principles of V phase and W phase are consistent.
  • MOSFETs Q6 and Q7 form a power switching circuit (half-bridge), and they are not turned on at the same time.
  • R13, R14, and C7 are the U-phase back electromotive force detection circuit of the motor, which divides the back electromotive force and reduces it to the input voltage range of the microcontroller voltage acquisition ADC circuit.
  • U1, D5, and C4 form a MOSFET pre-drive circuit.
  • the input signal of U1 is two PWM signals from the microcontroller. Usually the level of this PWM signal is between 1.8-5.5V.
  • U1 converts the input signal into one with stronger driving capability.
  • the signal is output to LO and HO to drive Q6 and Q7.
  • U1 has built-in logic to ensure that Q6 and Q7 do not turn on at the same time.
  • the low-side Q7 drive signal is LO, the low level is 0V, and the high level is VCC_DRIVE;
  • the high-side Q6 drive signal is HO, and this channel is a floating drive.
  • VCC_DRIVE charges C4 through D5, and the voltage at both ends of C4 is close to VCC_DRIVE.
  • the internal circuit of U1 disconnects VS and HO, turns VB and HO on, the G pole of Q6 receives the driving voltage from C4, and Q6 turns on.
  • U1 disconnects VB and HO, and turns on VS and HO, that is, the G pole and S pole of Q6 are short-circuited, and Q6 is turned off.
  • the U-phase output signal U_CECK is connected to the ADC_IN1 pin
  • the V-phase output signal V_CHECK is connected to the ADC_IN2 pin
  • the W-phase output signal W_CHECK is connected to the ADC_IN3 pin.
  • the voltage stabilizing circuit 3 includes two parts, a voltage stabilizing circuit 15 that supplies power to the pre-drive and power switching circuits, and a voltage stabilizing circuit 16 that supplies power to the microcontroller chip. It provides power to the pre-driving and power switching circuit 5 and the microcontroller chip 2 respectively. .
  • the pre-drive and power switch circuit power supply voltage stabilizing circuit 15 includes a voltage stabilizing chip U4.
  • the voltage stabilizing chip U4 is provided with 3 pins, namely VIN pin, VOUT pin and GND pin. Between the VIN pin and the GND pin, connect There is capacitor C11, and capacitor C12 is connected between the VOUT pin and the GND pin.
  • the GND pin is connected to ground, the VIN pin is connected to VCC, the VOUT pin outputs the VCC_DRIVE signal, and VCC_DRIVE is connected to the pre-driver and power switch circuit.
  • Filter capacitors C11, C12 and voltage stabilizing chip U4 form a linear step-down voltage stabilizing circuit to stabilize the input voltage between 10-15V. If the VCC voltage is low, this voltage stabilizing circuit can be changed to a boost circuit or a boost circuit. voltage circuit. Adjust according to actual power supply conditions.
  • the microcontroller chip power supply voltage stabilizing circuit 16 includes a voltage stabilizing chip U5.
  • the voltage stabilizing chip U5 is provided with three pins, namely VIN pin, VOUT pin and GND pin.
  • a capacitor is connected between the VIN pin and the GND pin.
  • C13, between the VOUT pin and the GND pin, is connected to the capacitor C14, the GND pin is connected to ground, the VIN pin is connected to VCC, the VOUT pin outputs the VCC_IO signal, and VCC_IO is connected to the VDD pin of the microcontroller chip.
  • the power supply voltage of the microcontroller chip 2 is usually between 1.8V-5.5V.
  • the filter capacitors C13, C14 and the voltage stabilizing chip U5 form a linear step-down voltage stabilizing circuit to stabilize the input voltage between 1.8V-5.5V. According to the actual situation The difference in power supply conditions is not limited to adjusting this voltage stabilizing circuit to a buck, boost or buck-boost circuit.
  • Voltage sampling circuit 6 includes resistor R19, resistor R20, capacitor C10 and diode D8.
  • R19 and R20 are connected in series.
  • Capacitor 10 and diode D8 are connected in parallel at both ends of R20.
  • the end of R19 far away from R20 is connected to VCC, and the end of R20 far away from R19 One end is connected to GND, the VBUS SENSE signal is output where R20 and R19 are connected, and then connected to the ADC_IN4 pin on the microcontroller chip;
  • R19 and R20 divide the voltage to divide VCC to within the input voltage range of the microcontroller voltage acquisition ADC circuit.
  • the program can convert the VCC voltage proportionally.
  • C10 is the signal filter capacitor
  • D8 is the Zener diode or TVS diode
  • clamp VBUS_SENSE signal absorbs abnormal spike voltage to prevent damage to the microcontroller chip.
  • the current sampling circuit 7 includes resistors R21, R22, R23 and R24 and an amplifier U6, forming a differential amplifier circuit.
  • the amplifier U6 is provided with 7 pins, namely 1-4 pins and 6-8 pins, of which 7 pins output VCC_DRIVE signal, pin 4 is connected to GND, pin 6 outputs the IBUS_SENSE signal, and then connected to the ADC_IN5 pin on the microcontroller chip; resistor R24 is connected between pin 2 and pin 6, resistor R23 is connected to pin 3 and then connected to GND, resistor R24 The other end is connected to resistor R22, the other end of resistor R23 is connected to resistor R21, the ends of resistors R22 and R21 are connected to current sampling resistor RS1, one end of RS1 is connected to GND, and the other end is connected to PGND.
  • RS1 is the current sampling resistor, and R21, R22, R23, R24, and U6 form a differential amplifier circuit.
  • the current flows from VCC through the power switch circuit to the motor, then to PGND, and then flows through RS1 to GND.
  • a voltage drop is generated at both ends of RS1.
  • the differential amplifier circuit amplifies this signal to the microcontroller voltage. Within the input voltage range of the collected ADC circuit, the instantaneous current of the circuit can be converted.
  • the voltage stabilizing circuit 3 determines whether the power supply voltage is stable. If it is determined to be stable, the polarity judging circuit 4 reads the power incoming line level. If the incoming line is high level, the microcontroller chip controls the motor to rotate forward. If If the input line is low level, the microcontroller chip controls the motor to reverse;
  • the current sampling circuit 7 samples and calculates the current, and performs FOC algorithm calculations to update the PWM output. Then the voltage sampling circuit 6 samples and calculates the voltage. If there is undervoltage or overvoltage, the motor is controlled to stop. According to The current and voltage are calculated through algorithm to determine whether there is a stalled rotor. If there is a stalled rotor, the motor is controlled to stop;
  • the polarity judgment circuit 4 reads the power incoming line level and determines whether the motor needs to switch direction. If so, the motor decelerates and then stops and turns. If it does not need to switch direction, it runs normally, and then passes through according to the current and voltage. The algorithm operation determines whether the motor is running normally. If it is normal, continue the voltage sampling and conversion. If it is not normal, repeat step (2), that is, continue the current sampling and operation, and repeat the aforementioned workflow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本发明公开了一种直流无刷电机无极供电电路及控制方法,属于电机技术领域,包括微控制器芯片、极性判断电路、预驱动和功率开关电路、电压采样电路、以及电流采样电路;微控制器芯片上具有多个引脚,上述各个电路与不同的引脚相连,直流无刷电机与预驱动和功率开关电路相连。利用该无极供电电路,可使直流无刷电机替代传统有刷电机,并且具有高效率、低噪音的优点,相比于传统的直流有刷电机,本发明未增加接线复杂度,可以直接替代,设计方案简单易行。

Description

一种直流无刷电机无极供电电路及控制方法 技术领域
本发明属于电机技术领域,具体涉及一种直流无刷电机无极供电电路及控制方法。
背景技术
直流有刷电机是一种传统型直流电机,在定子上安装有电刷,转子上安装有换向器,电能经过电刷和换向器产生电枢电流,进而驱动电机旋转而工作,在直流有刷电机中设有电刷和换向器,因此结构复杂,并且直流有刷电机还存在工作效率低、噪音高、可靠性差、电流脉动对电源干扰大、电磁干扰大、寿命短、启动电流大等问题。
直流无刷电机克服了直流有刷电机结构复杂的缺点,在其结构上不设置电刷和换向器,直流无刷电机模组由无刷电机和与电机匹配的控制电路组成,该控制电路的电源输入端极性固定,电源不能接反,如有接反,轻则电机不工作,重则会造成电路的不可逆损坏。直流无刷电机切换转向需要额外电路,需要额外的外部控制信号才能实现正反转切换,因此电路接线复杂度高。
直流有刷电机只需交换两根电源线的接线位置即可实现切换旋转方向,而直流无刷电机电源输入端极性固定,电源不能接反,一旦接反就会烧掉电机,如果要控制直流无刷电机的正反转,还需要芯片读取按键切换信号或者调整无刷电机线序才能实现,即需额外信号实现切换旋转方向,所以实际产品中,直流无刷电机往往不能够直接替代有刷电机。为了解决此问题,现有技术中,普遍采用二极管构成的全桥整流电路实现电源的极性转换,输入电流需要经过两个二极管,因此存在电压降低的问题,且功率损耗会随着电流的升高而增大,功率损耗为电流和两个二极管压降之和的乘积,因此整个电路的工作效率也会大大降低。因此需要设计一种新的方案,以解决接线复杂和工作效率低下的问题。
发明内容
本发明的目的在于提供一种直流无刷电机无极供电电路及控制方法,以解决背景技术中提到的技术问题。
为了实现上述目的,本发明公开了一种直流无刷电机无极供电电路,包括
预驱动和功率开关电路,其与直流无刷电机相连接;
极性判断电路;
电压采样电路;
电流采样电路;
微控制器芯片,该微控制器芯片上具有至少15个引脚,包括GPIO1脚、GPIO2脚、VDD脚、VSS脚、ADC_IN1脚、ADC_IN2脚、ADC_IN3脚、ADC_IN4脚、ADC_IN5脚、PWM1P脚、PWM1N脚、PWM2P脚、PWM2N脚、PWM3P脚和PWM3N脚;其中,GPIO1脚和GPIO2脚与极性判断电路相连,VDD脚是电源输入端,VSS脚为接地引脚, ADC_IN4脚与电压采样电路相连,ADC_IN5脚与电流采样电路相连;ADC_IN1脚、ADC_IN2脚和ADC_IN3脚、PWM1P脚、PWM1N脚、PWM2P脚、PWM2N脚、PWM3P脚和PWM3N脚均分别与预驱动和功率开关电路相连。
进一步地,直流无刷电机无极供电电路还包括整流电路,该整流电路分别与极性判断电路以及预驱动和功率开关电路相连。
更进一步地,直流无刷电机无极供电电路还包括稳压电路,该稳压电路分别与整流电路、预驱动和功率开关电路以及微控制器芯片相连。
更进一步地,稳压电路包括预驱动和功率开关电路供电稳压电路以及微控制器芯片供电稳压电路;预驱动和功率开关电路供电稳压电路与预驱动和功率开关电路相连,为预驱动和功率开关电路提供供电电压;微控制器芯片供电稳压电路与微控制器芯片的VDD脚相连,为微控制器芯片提供供电电压。
进一步地,所述极性判断电路包括第一路电平检测电路和第二路电平检测电路,第一路电平检测电路输出电源进线电平1,第二路电平检测电路输出电源进线电平2, GPIO1脚与电源进线电平1相连,GPIO2脚与电源进线电平2相连。
本发明同时要求保护一种上述直流无刷电机无极供电电路的控制方法,包括如下步骤:
(1)极性判断电路读取电源进线电平,如果进线为高电平,则微控制器芯片控制电机正转,如果进线为低电平,则违抗之芯片控制电机反转;
(2)电流采样电路对电流进行采样和运算,然后由电压采样电路对电压进行采样和运算,如果存在欠电压或过电压,则控制电机停机;根据电流和电压通过算法运算判断是否存在堵转,如果存在堵转,则控制电机停机;
(3)极性判断电路读取电源进线电平,判断电机是否需要转向切换,如果需要,则电机减速后停机并转向,如果不需要切换转向,则正常运转,然后根据电流和电压通过算法运算判断电机运行是否正常,如果正常则继续进行电压采样与换算,如果不正常则重复第(2)步。
与现有技术相比,本发明的直流无刷电机无极供电电路及控制方法具有如下优点:
(1)使用直流无刷电机替代传统有刷电机,具有无刷电机的高效率、低噪声、长寿命等优点。
(2)相比于传统直流有刷电机,本方案不增加接线复杂度,仅两根线,可直接替代直流有刷电机,设计方案简单易行。
(3)直流无刷电机的旋转方向随着电源电压极性的变化而变化,可适应PWM调速。
附图说明
图1:直流无刷电机无极供电电路的一个实施例的硬件结构图。
图2:图1所示实施例中微控制器芯片以及预驱动和功率开关电路的连接电路图。
图3:图2中微控制器芯片的电路图。
图4:图2中预驱动和功率开关电路的电路图。
图5:图1所示实施例中整流电路和极性判断电路的连接电路图。
图6:图5中整流电路的电路图。
图7:图5中极性判断电路中的第一路电平检测电路的电路图。
图8:图5中极性判断电路中的第二路电平检测电路的电路图。
图9:图1所示实施例中预驱动和功率开关电路供电稳压电路的电路图。
图10:图1所示实施例中微控制器芯片供电稳压电路的电路图。
图11:图1所示实施例中电压采样电路的电路图。
图12:图1所示实施例中电流采样电路的电路图。
图13:图1所示实施例中直流无刷电机无极供电电路的控制方法流程图。
附图标记说明:1、整流电路;2、微控制器芯片;3、稳压电路;4、极性判断电路;5、预驱动和功率开关电路;6、电压采样电路;7、电流采样电路;8、第一路电平检测电路;9、第二路电平检测电路;10、第一线性稳压电路;11、第二线性稳压电路;12、第三线性稳压电路;13、第四线性稳压电路;14、直流无刷电机;15、预驱动和功率开关电路供电稳压电路;16、微控制器芯片供电稳压电路。
实施方式
下面通过具体实施例进行详细阐述,说明本发明的技术方案。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考附图1至附图13,本实施例中的直流无刷电机无极供电电路,包括整流电路1、微控制器芯片2、稳压电路3、极性判断电路4、预驱动和功率开关电路5、电压采样电路6和电流采样电路7;其中,预驱动和功率开关电路5与直流无刷电机14相连。
微控制器芯片2上具有至少15个引脚,包括GPIO1脚、GPIO2脚、VDD脚、VSS脚、ADC_IN1脚、ADC_IN2脚、ADC_IN3脚、ADC_IN4脚、ADC_IN5脚、PWM1P脚、PWM1N脚、PWM2P脚、PWM2N脚、PWM3P脚和PWM3N脚;其中,GPIO1脚和GPIO2脚与极性判断电4路相连,极性判断电路4包括第一路电平检测电路8和第二路电平检测电路9,第一路电平检测电路8输出电源进线电平1,第二路电平检测电路9输出电源进线电平2,具体地,GPIO1脚与电源进线电平1相连,GPIO2脚与电源进线电平2相连,VDD脚是电源输入端,与VDD_IO相连,VSS脚为接地引脚,连接GND,ADC_IN1脚、ADC_IN2脚、ADC_IN3脚、PWM1P脚、PWM1N脚、PWM2P脚、PWM2N脚、PWM3P脚和PWM3N脚均分别与预驱动和功率开关电路5相连,ADC_IN4脚与电压采样电路6相连,ADC_IN5脚与电流采样电路7相连。
整流电路1包括电阻R1-R8、稳压二极管D1-D4、P沟道功率MOSFET Q1和Q2、N沟道功率MOSFET Q3和Q4以及储能电容C2。
整流电路1的两端分别连接有电源输入信号DCin1和DCin2,在DCin1和DCin2之间连接有电容器C1,在电容器C1的两端并联有电阻R9,C1和R9可抑制电源共模干扰。
在DCin1和DCin2之间设有Q1、Q2、Q3和Q4,其中Q1的S极和Q2的S极相连,Q1的D极与DCin1相连,Q2的D极与DCin2相连;Q3的S极和Q4的S极相连,Q3的D极与DCin1相连,Q4的D极与DCin2相连。
整流电路1包括4个线性稳压电路,分别为第一线性稳压电路10、第二线性稳压电路11、第三线性稳压电路12和第四线性稳压电路13,其中第一线性稳压电路10包括D1、R1和R5,D1、R1和R5的一端均与Q1的G极相连,D1和R1的另一端均与Q1的S极相连,R5的另一端与DCin2相连;第二线性稳压电路11包括D2、R2和R6,D2、R2和R6的一端均与Q2的G极相连,D2和R2的另一端均与Q2的S极相连,R6的另一端与DCin1相连;第三线性稳压电路12包括D3、R3和R7,D3、R3和R7的一端均与Q3的G极相连,D3和R3的另一端均与Q3的S极相连,R7的另一端与DCin2相连;第四线性稳压电路13包括D4、R4和R8,D4、R4和R8的一端均与Q4的G极相连,D4和R4的另一端均与Q4的S极相连,R8的另一端与DCin1相连。第一线性稳压电路10、第二线性稳压电路11、第三线性稳压电路12和第四线性稳压电路13分别为Q1、Q2、Q3、Q4提供驱动信号,且驱动信号不超出MOSFET驱动电压上限,防止损坏MOSFET。
工作原理:当直流电源连接至DCin1和DCin2,分为两种情况:
第一种情况下,DCin1为V+,DCin2为V-,V+经过MOSFET Q1的体二极管给C2充电,并从Q4的体二极管流到V-,形成回路。
同时,Q1的G极由R5拉低到V-,此时Q1的S极接近V+,Q1的VGS为负电压,Q1导通;
Q2的G极由R6拉高到V+,此时Q2的S极接近V+,Q2的VGS为低电平,Q2关断;Q3的G极由R7拉低到V-,此时Q3的S极接近V-,Q3的VGS为低电平,Q3关断;
Q4的G极由R8拉高到V+,此时Q4的S极接近V-,Q4的VGS为高电平,Q4导通。
则,V+经过Q1连接到C2正极,V-经过Q4连接到C2负极。
第二种情况下,DCin1为V-,DCin2为V+,V+经过Q2的体二极管给C2充电,并从Q3的体二极管流到V-,形成回路。
同时,Q1的G极由R5拉高到V+,此时Q1的S极接近V+,Q1的VGS为低电平,Q1关断;
Q2的G极由R6拉低到V-,此时Q2的S极接近V+,Q2的VGS为负电压,Q2导通;
Q3的G极由R7拉高到V+,此时Q3的S极接近V-,Q3的VGS为高电平,Q3导通;
Q4的G极由R8拉低到V-,此时Q4的S极接近V-,Q4的VGS为低电平,Q4关断。
则,V+经过Q2连接到C2正极,V-经过Q3连接到C2负极。
极性判断电路4中,第一路电平检测电路8包括电阻R10、R11和R12,电容器C3和三极管Q5,其中R10和R11串联连接,C3并联在R11的两端,C3的一端与三极管Q5的基极B相连,另一端与三极管Q5的发射极E相连,三极管Q5的集电极C上连接有电阻R12,R12的另一端连接电源VDD_IO,在R12与三极管Q5的集电极C之间,输出电源进线电平1。
当DCin1连接到V-时,R10接低电平,Q5基极电流为0,Q5截止,Q5集电极被R12上拉到VDD_IO,微控制芯片检测到高电平。当DCin1连接到V+时,R10接高电平,Q5基极有电流,Q5达到饱和状态,Q5集电极电压拉低到GND,微控制芯片检测为低电平。C3为可选的信号滤波电容,用于电源刚连接且未可靠连接时,滤除波动信号。
第二路电平检测电路9包括电阻R25、R26和R27,电容器C15和三极管Q12,其中R26和R27串联连接,C15并联在R27的两端,C15的一端与三极管Q12的基极B相连,另一端与三极管Q12的发射极E相连,三极管Q12的集电极C上连接有电阻R25,R25的另一端连接电源VDD_IO,在R25与三极管Q12的集电极C之间,输出电源进线电平2。第二路电平检测电路9的原理与第一路电平检测电路8的原理相同。
若电源线输入恒定的电压源,此时微控制器芯片2只需凭一路电平状态即可决定电机正转或反转。
若电源线输入PWM形式的电源信号,则微控制器芯片2凭两路电平状态关系可判断出电机转动方向,根据脉冲宽度占空比可对应到转速等设置值上。
预驱动和功率开关电路5与直流无刷电机14相连,电机三相驱动电路包括U相、V相和W相,以U相作为分析对象,V相和W相原理一致。
在U相中,MOSFET Q6和Q7组成功率开关电路(半桥),它们不同时导通。
R13、R14、C7为电机U相的反电动势检测电路,将反电动势分压,降低至微控制器电压采集ADC电路的输入电压范围内。
U1、D5、C4构成MOSFET预驱动电路,U1输入信号为来自微控制器的两路PWM信号,通常此PWM信号电平在1.8-5.5V之间,U1将输入信号转为驱动能力更强的信号,输出至LO和HO,实现对Q6和Q7的驱动。U1内置逻辑可确保Q6和Q7不同时导通。
低侧 Q7驱动信号为LO,低电平为0V,高电平为VCC_DRIVE;
高侧Q6驱动信号为HO,此通道为悬浮驱动,低侧Q7导通时,VCC_DRIVE通过D5给C4充电,C4两端电压接近VCC_DRIVE。低侧Q7关断且高侧Q6需导通时,U1内部电路将VS和HO断开,将VB和HO导通,Q6的G极获得来自C4的驱动电压,Q6导通。当Q6需要关断时,U1将VB和HO断开,将VS和HO导通,即Q6的G极与S极短接,Q6关断。
预驱动和功率开关电路5中,U相的输出信号U_CECK与ADC_IN1脚相连,V相的输出信号V_CHECK与ADC_IN2脚相连,W相的输出信号W_CHECK与ADC_IN3脚相连。
稳压电路3包括两部分,分别为预驱动和功率开关电路供电稳压电路15,以及微控制器芯片供电稳压电路16,分别为预驱动和功率开关电路5和微控制器芯片2提供电能。
预驱动和功率开关电路供电稳压电路15包括稳压芯片U4,稳压芯片U4上设有3个引脚,分别为VIN脚、VOUT脚和GND脚,在VIN脚和GND脚之间,连接有电容C11,在VOUT脚和GND脚之间,连接有电容C12,GND脚接地,VIN脚连接VCC,VOUT脚输出VCC_DRIVE信号,VCC_DRIVE与预驱动和功率开关电路相连。
通常MOSFET驱动电压在10-15V之间时,MOSFET导通电阻最小,损耗小,性能最优。滤波电容C11、C12、稳压芯片U4构成线性降压稳压电路,将输入电压稳定在10-15V之间,若VCC电压较低,则可将此稳压电路改为升压电路或升降压电路。根据实际供电条件进行调整。
微控制器芯片供电稳压电路16包括稳压芯片U5,稳压芯片U5上设有3个引脚,分别为VIN脚、VOUT脚和GND脚,在VIN脚和GND脚之间,连接有电容C13,在VOUT脚和GND脚之间,连接有电容C14,GND脚接地,VIN脚连接VCC,VOUT脚输出VCC_IO信号,VCC_IO与微控制器芯片的VDD脚连接。
微控制器芯片2供电电压通常在1.8V-5.5V之间,滤波电容C13、C14、稳压芯片U5构成线性降压稳压电路,将输入电压稳定在1.8V-5.5V之间,根据实际供电条件的不同,不限于将此稳压电路调整为降压、升压或升降压电路。
电压采样电路6包括电阻R19、电阻R20、电容C10和二极管D8,R19和R20串联连接,电容10和二极管D8依次并联在R20的两端,R19上远离R20的一端连接VCC,R20上远离R19的一端连接GND,R20与R19相连的位置处输出VBUS SENSE信号,然后与微控制器芯片上的ADC_IN4脚相连;
R19和R20分压,将VCC分压至微控制器电压采集ADC电路的输入电压范围内,程序可按比例换算出VCC电压,C10为信号滤波电容,D8为稳压二极管或TVS二极管,钳位VBUS_SENSE信号,吸收异常尖峰电压,防止损坏微控制器芯片。
电流采样电路7包括电阻R21、R22、R23和R24以及放大器U6,构成差分放大电路,在放大器U6上设有7个引脚,分别为1-4脚和6-8脚,其中7脚输出VCC_DRIVE信号,4脚连接GND,6脚输出IBUS_SENSE信号,然后与微控制器芯片上的ADC_IN5脚相连;电阻R24连接在2脚和6脚之间,电阻R23与3脚连接后连接GND,电阻R24的另一端连接电阻R22,电阻R23的另一端连接电阻R21,在电阻R22和R21的端部连接有电流采样电阻RS1,RS1的一端连接GND,另一端连接PGND。
RS1为电流采样电阻,R21、R22、R23、R24、U6构成差分放大电路。当驱动电机时,电流从VCC经功率开关电路到电机,再到PGND,再经RS1流到GND,流过RS1时在RS1两端产生压降,差分放大电路将此信号放大到微控制器电压采集ADC电路的输入电压范围内,可换算得电路瞬间电流大小。
本实施例中的直流无刷电机无极供电电路的控制方法为:
(1)稳压电路3判断电源电压是否稳定,如果判断为稳定,极性判断电路4读取电源进线电平,如果进线为高电平,则微控制器芯片控制电机正转,如果进线为低电平,则微控制器芯片控制电机反转;
(2)电流采样电路7对电流进行采样和运算,以及FOC算法运算,更新PWM输出,然后由电压采样电路6对电压进行采样和运算,如果存在欠电压或过电压,则控制电机停机,根据电流和电压通过算法运算判断是否存在堵转,如果存在堵转,则控制电机停机;
(3)极性判断电路4读取电源进线电平,判断电机是否需要转向切换,如果需要,则电机减速后停机并转向,如果不需要切换转向,则正常运转,然后根据电流和电压通过算法运算判断电机运行是否正常,如果正常则继续进行电压采样与换算,如果不正常则重复第(2)步,即继续进行电流采样和运算,重复进行前述工作流程。
本发明中,两根电源线中无论哪个是正极或负极,通过整流电路,即实现“格式化”,将正极或负极固定,电路就可以工作,然后只需要识别出一根电源线是怎么接的,如果接正极,就正转,如果是负极,就反转,电路设计方案简单,控制过程易于实现。
以上所述仅为本发明的较佳实施例,并不用于限制本发明,凡在本发明的设计构思之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种直流无刷电机无极供电电路,包括:
     预驱动和功率开关电路,其与直流无刷电机相连接;
    极性判断电路;
    电压采样电路;
    电流采样电路;
    微控制器芯片,所述微控制器芯片上具有至少15个引脚,包括GPIO1脚、GPIO2脚、VDD脚、VSS脚、ADC_IN1脚、ADC_IN2脚、ADC_IN3脚、ADC_IN4脚、ADC_IN5脚、PWM1P脚、PWM1N脚、PWM2P脚、PWM2N脚、PWM3P脚和PWM3N脚;其中,GPIO1脚和GPIO2脚与极性判断电路相连,VDD脚是电源输入端,VSS脚为接地引脚,ADC_IN4脚与电压采样电路相连,ADC_IN5脚与电流采样电路相连,ADC_IN1脚、ADC_IN2脚和ADC_IN3脚、PWM1P脚、PWM1N脚、PWM2P脚、PWM2N脚、PWM3P脚和PWM3N脚分别与预驱动和功率开关电路相连。
  2. 如权利要求1所述的直流无刷电机无极供电电路,其特征在于:还包括整流电路,该整流电路分别与极性判断电路以及预驱动和功率开关电路相连。
  3. 如权利要求2所述的直流无刷电机无极供电电路,其特征在于:还包括稳压电路,该稳压电路分别与整流电路、预驱动和功率开关电路以及微控制器芯片相连。
  4. 如权利要求3所述的直流无刷电机无极供电电路,其特征在于:所述稳压电路包括预驱动和功率开关电路供电稳压电路以及微控制器芯片供电稳压电路;预驱动和功率开关电路供电稳压电路与预驱动和功率开关电路相连,为预驱动和功率开关电路提供供电电压;微控制器芯片供电稳压电路与微控制器芯片的VDD脚相连,为微控制器芯片提供供电电压。
  5. 如权利要求1所述的直流无刷电机无极供电电路,其特征在于:所述极性判断电路包括第一路电平检测电路和第二路电平检测电路,第一路电平检测电路输出电源进线电平1,第二路电平检测电路输出电源进线电平2,GPIO1脚与电源进线电平1相连,GPIO2脚与电源进线电平2相连。
  6. 一种如权利要求1-5中任一项所述的直流无刷电机无极供电电路的控制方法,其特征在于:包括如下步骤:
    (1)极性判断电路读取电源进线电平,如果进线为高电平,则微控制器芯片控制电机正转,如果进线为低电平,则微控制器芯片控制电机反转;
    (2)电流采样电路对电流进行采样和运算,然后由电压采样电路对电压进行采样和运算,如果存在欠电压或过电压,则控制电机停机;根据电流和电压通过算法运算判断是否存在堵转,如果存在堵转,则控制电机停机;
    (3)极性判断电路读取电源进线电平,判断电机是否需要转向切换,如果需要,则电机减速后停机并转向,如果不需要切换转向,则正常运转,然后根据电流和电压通过算法运算判断电机运行是否正常,如果正常则继续进行电压采样与换算,如果不正常则重复第(2)步。
PCT/CN2023/098508 2022-04-06 2023-06-06 一种直流无刷电机无极供电电路及控制方法 WO2023193832A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212023000056.3U DE212023000056U1 (de) 2022-04-06 2023-06-06 Verpolungssichere Stromversorgungsschaltung für einen bürstenlosen Gleichstrommotor
US18/399,639 US20240128900A1 (en) 2022-04-06 2023-12-28 Non-polar supply circuit for brushless dc motor and control methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210355349.1A CN114744927A (zh) 2022-04-06 2022-04-06 一种直流无刷电机无极供电电路及控制方法
CN202210355349.1 2022-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,639 Continuation US20240128900A1 (en) 2022-04-06 2023-12-28 Non-polar supply circuit for brushless dc motor and control methods thereof

Publications (2)

Publication Number Publication Date
WO2023193832A2 true WO2023193832A2 (zh) 2023-10-12
WO2023193832A3 WO2023193832A3 (zh) 2023-11-30

Family

ID=82280390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098508 WO2023193832A2 (zh) 2022-04-06 2023-06-06 一种直流无刷电机无极供电电路及控制方法

Country Status (4)

Country Link
US (1) US20240128900A1 (zh)
CN (1) CN114744927A (zh)
DE (1) DE212023000056U1 (zh)
WO (1) WO2023193832A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744927A (zh) * 2022-04-06 2022-07-12 苏州创盈智能科技有限公司 一种直流无刷电机无极供电电路及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988133B2 (ja) * 2002-11-26 2007-10-10 ミネベア株式会社 ブラシレス直流1相モータのプリドライブ回路用昇圧回路
CN107086827B (zh) * 2017-06-24 2023-09-22 湖北汽车工业学院 一种电动车永磁直流无刷电机控制器及控制方法
CN110932617B (zh) * 2019-12-02 2021-08-10 西北工业大学 无位置传感器无刷直流电机换相点检测与保护方法
CN211352092U (zh) * 2020-01-20 2020-08-25 王晓云 电机控制电路与电机设备
CN114744927A (zh) * 2022-04-06 2022-07-12 苏州创盈智能科技有限公司 一种直流无刷电机无极供电电路及控制方法

Also Published As

Publication number Publication date
DE212023000056U1 (de) 2024-02-23
CN114744927A (zh) 2022-07-12
US20240128900A1 (en) 2024-04-18
WO2023193832A3 (zh) 2023-11-30

Similar Documents

Publication Publication Date Title
US7880427B2 (en) Method for operation of a two-stranded electronically commutated motor, and motor for carrying out said method
WO2023193832A2 (zh) 一种直流无刷电机无极供电电路及控制方法
US8237396B2 (en) Motor driving device, and control method of motor driving device
JP2010028894A (ja) モータ駆動装置と制御方法
US8823299B2 (en) Power supply module for hall sensorless brushless direct current motor
CA2468429A1 (en) Electronically commutated dc motor comprising a bridge circuit
CN111342685B (zh) 升降压驱动电路、方法、空调器和计算机可读存储介质
JP5163536B2 (ja) 誘起電圧検出回路とそれを有するモータ駆動用半導体装置及びモータ並びに空調機
CN101610056A (zh) 用于动态电动机制动的方法和系统
CN201374671Y (zh) 直流无刷马达的控制器
Lai et al. Assessment of pulse-width modulation techniques for brushless DC motor drives
CN212588281U (zh) 一种电机驱动系统
CN203151079U (zh) 限电流和过电流双电流环保护电路
US7064518B1 (en) Driving circuit of an AC fan motor
CN209299166U (zh) 永磁无刷直流电机调速装置
Singh et al. DICM and DCVM of a PFC-based SEPIC-fed PMBLDCM drive
CN102497144A (zh) 基于硬件比较采集过零点的直流无刷电机驱动控制装置
CN204794730U (zh) Ac转dc的无刷散热风扇驱动电路
JPH11136994A (ja) 3相誘導電動機駆動装置
CN103016378A (zh) 外转子电子控制式风机调整器驱动电路及驱动方法
CN106253767A (zh) 一种直流电机驱动电路
CN104410335A (zh) 智能型小功率电机控制器的控制电路和控制方法
TWI647902B (zh) 具有追相模組之馬達控制系統
JP2008160915A (ja) モータ駆動用インバータ制御装置および該装置を用いた機器
CN203027179U (zh) 一种无刷直流蒸发风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784393

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 212023000056

Country of ref document: DE