WO2022247040A1 - 一种电子调速器智能同步整流系统及其控制方法 - Google Patents

一种电子调速器智能同步整流系统及其控制方法 Download PDF

Info

Publication number
WO2022247040A1
WO2022247040A1 PCT/CN2021/115678 CN2021115678W WO2022247040A1 WO 2022247040 A1 WO2022247040 A1 WO 2022247040A1 CN 2021115678 W CN2021115678 W CN 2021115678W WO 2022247040 A1 WO2022247040 A1 WO 2022247040A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
freewheeling
control
synchronous rectification
Prior art date
Application number
PCT/CN2021/115678
Other languages
English (en)
French (fr)
Inventor
刘友辉
师雷雷
戴小宁
Original Assignee
深圳市好盈科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市好盈科技有限公司 filed Critical 深圳市好盈科技有限公司
Publication of WO2022247040A1 publication Critical patent/WO2022247040A1/zh
Priority to US18/297,070 priority Critical patent/US20230283209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the present application relates to the field of synchronous rectification, in particular to an electronic governor intelligent synchronous rectification system and a control method thereof.
  • brushless DC motors with smooth operation and light weight are often needed.
  • brushless DC motors are connected with ESCs, which can adjust the power of brushless DC motors according to control signals. Rotating speed.
  • the control of the brushless DC motor by the ESC usually adopts PWM (pulse width modulation) technology, and generally chooses the PWM of the upper-side MOSFET (metal oxide semiconductor field-effect transistor) and the normally-on method of the lower-side MOSFET.
  • PWM pulse width modulation
  • the motor winding coil and the built-in freewheeling diode of the MOSFET tube form a freewheeling circuit to generate freewheeling; at the same time, freewheeling will also be generated during the commutation of the motor.
  • the freewheeling diode protects the safety of other components in the circuit, the freewheeling diode has a large voltage drop and large freewheeling loss, which will also cause large heat generation in the bridge arm and reduce the efficiency of the ESC.
  • open-pair tube synchronous rectification is a simple version of synchronous rectification technology, which does not need to detect freewheeling When it is over, only turn on the lower bridge MOSFET tube after the upper MOSFET tube is turned off, and the electric remote control model car reduces the rectification loss after using the open pair tube synchronous rectification technology.
  • the corresponding lower-side MOSFET tube in the open-pair synchronous rectification technology is turned on, and the phase winding is clamped to the ground, and because the PWM modulation method with the lower side switch normally open is selected, the corresponding phase winding will also be grounded At this time, the two-phase windings are directly short-circuited and grounded, which will cause the two-phase windings to short-circuit the braking effect, thus causing the electric remote control model car to have an active braking effect during the deceleration phase, resulting in a sense of frustration and inconvenient manipulation.
  • the inventor believes that there is a Can not reduce rectification loss and smooth operation defects.
  • the present application provides an electronic governor intelligent synchronous rectification system and a control method thereof.
  • an electronic governor intelligent synchronous rectification system provided by this application adopts the following technical solution:
  • An electronic speed governor intelligent synchronous rectification system including a Hall sensor, which is arranged on the peripheral side of the brushless DC motor, and is used to obtain the rotor position information of the brushless DC motor; a second control module, whose signal is connected to the Hall sensor, It is used to receive the rotor position information sent by the Hall sensor, and generate a synchronous rectification switch signal, and is also used to generate a freewheeling end signal;
  • the three-phase inverter is electrically connected to the winding coil of the brushless DC motor, and is used for It is used to drive the movement of the brushless DC motor;
  • the first control module is connected to the three-phase inverter, and is used to receive the synchronous rectification switch signal or the freewheeling end signal sent by the second control module, and switch according to the synchronous rectification signal or the freewheeling end signal to control the three-phase inverter;
  • the freewheeling detection module is electrically connected between the three-phase inverter and the brushless DC motor, and the signal
  • the signal is sent to the second control module, and the second control module obtains the real-time speed signal of the brushless DC motor according to the position signal, and compares with the set After the speed signals are compared, a PWM signal is sent to the first control module, and the first control module drives the three-phase inverter to perform PWM.
  • the freewheeling detection module detects the three-phase current in the three-phase inverter in real time, and sends the detection signal to the second control module.
  • the second control module judges whether the freewheeling is over according to the detection signal.
  • the first The second control module After receiving the freewheeling end signal, the first The second control module sends the rectification off signal to the first control module, and the first control module controls the three-phase inverter to turn off the synchronous rectification.
  • the synchronous rectification is turned off in time after the freewheeling, which can reduce heat generation and remove the active braking effect of models such as electric remote control model cars during the deceleration phase, making the entire power system safe, stable and efficient running.
  • the three-phase inverter includes a first bridge arm, a second bridge arm, and a third bridge arm, and one end of the first bridge arm, the second bridge arm, and the third bridge arm each It is electrically connected with the positive pole of the power module, and the other end is electrically connected with the negative pole of the power module.
  • the three-phase inverter is divided into three bridge arms, and by controlling the conduction and disconnection of the first bridge arm, the second bridge arm and the third bridge arm, the control of the brushless DC motor is realized. change direction.
  • the freewheeling detection module includes a plurality of resistors connected to each bridge arm and an operational amplifier corresponding to the number of the plurality of resistors, and the inverting input terminal a and the non-inverting input terminal b of the operational amplifier are respectively connected to Corresponding to both ends of the resistor, the output terminal o of the operational amplifier is connected to the second control module.
  • the three-phase current in the three-phase inverter can be detected by detecting the current at both ends of the resistance; after the current signal is amplified by the operational amplifier, it is output to the second control module to process the current change signal, so as to realize real-time monitoring of freewheeling state.
  • the first control module includes a driver intelligent control submodule and a driver submodule
  • the driver intelligent control submodule is signal-connected to the driver submodule and the second control module respectively, and the driver intelligent control
  • the sub-module is used to receive the synchronous rectification on-off signal or the freewheel end signal of the second control module, and send the synchronous rectification on-off signal or the freewheel end signal to the driver sub-module after processing.
  • the driver intelligent control sub-module when the freewheeling starts, by setting the driver intelligent control sub-module and the driver sub-module, the driver intelligent control sub-module receives the synchronous rectification start signal of the second control module, and sends the signal to the driver sub-module Processing; after the freewheeling is finished, the synchronous rectification shutdown signal of the second control module is also received through the driver intelligent control submodule, and the signal is sent to the driver submodule for processing.
  • the driver intelligent control submodule includes a plurality of signal selection switch units, and the signal selection switch units are signal-connected to the second control module and the driver submodule, and the signal selection unit is configured to The synchronous rectification on-off signal or the freewheeling end signal sent by the second control module generates a turn-on signal or a turn-off signal, and sends the turn-on signal or turn-off signal to the driver sub-module.
  • the corresponding control signal is transmitted through different level signals, so as to realize the processing of the second control module to send the conduction signal or disconnection signal, and then realize the control of the three-phase inverter on and off.
  • the driver sub-module is signal-connected to the three-phase inverter, and is used to receive the on-signal or off-signal sent by the driver intelligent control sub-module, and control the On-off of the three-phase inverter.
  • the driver sub-module processes the signal and sends it to the three-phase inverter to control the on-off of each bridge arm in the three-phase inverter , so as to control the opening and closing of the synchronous rectification.
  • the application provides a control method for an electronic governor intelligent synchronous rectification system, which adopts the following technical scheme:
  • a control method for an electronic speed governor intelligent synchronous rectification system includes obtaining a motor set speed signal and a real-time speed signal, comparing them, performing pulse width modulation based on the comparison result, and generating a pulse width modulation signal;
  • a three-phase inverter shutdown signal for turning off the synchronous rectification of the three-phase inverter is generated.
  • the synchronous rectification is turned on when the freewheeling flow is generated, and the synchronous rectification is turned off in time after the freewheeling flow ends, which can reduce heat generation and remove the active braking effect of models such as electric remote control model cars during the deceleration phase, making the entire power system safe , stable and efficient operation.
  • the steps to turn off a signal include:
  • a three-phase inverter shutdown signal is generated that causes the three-phase inverter to turn off synchronous rectification.
  • the present application includes at least one of the following beneficial technical effects:
  • the second control module can judge whether the freewheeling is over according to the detection signal, and turn off the synchronous rectification in time after the freewheeling is over, which can reduce heat generation and remove electric current.
  • the active braking effect of the remote control model car and other models in the deceleration stage, that is, the electric remote control model car and other models have both reduced rectification loss and smooth operation;
  • the expected freewheeling time point is calculated by the second control module, and compared with the time point when the pulse width modulation control of the three-phase inverter is turned on, and the synchronous rectification is turned off before the time point when the pulse width modulation control is turned on, resulting in a protection circuit structure and The effect of components.
  • Fig. 1 is the overall functional block diagram of embodiment 1 of the present application.
  • Embodiment 1 of the present application is a schematic diagram of a partial circuit structure of Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of the pins of the second control module in Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of the circuit structure of the first control module in Embodiment 1 of the present application.
  • Fig. 5 is a schematic diagram of the commutation freewheeling cycle of the brushless DC motor according to Embodiment 1 of the present application;
  • FIG. 6 is a schematic diagram of the pins of the second control module in Embodiment 2 of the present application.
  • FIG. 7 is a schematic structural diagram of a three-phase inverter circuit in Embodiment 3 of the present application.
  • FIG. 8 is a schematic diagram of the pins of the driver sub-module in Embodiment 3 of the present application.
  • the embodiment of the present application discloses an electronic governor intelligent synchronous rectification system.
  • the electronic governor intelligent synchronous rectification system includes a three-phase inverter 1 , a first control module 3 , a second control module 4 and a power supply module 5 .
  • the three-phase inverter 1 is connected to the three winding coils of the brushless DC motor 2;
  • the signal of the first control module 3 is connected to the three-phase inverter 1, and is used to control the three-phase inverter 1 to perform synchronous rectification;
  • the second control module 4 is signal-connected to the first control module 3 for sending rectification signals and processing freewheeling detection signals.
  • a freewheel detection module 7 is connected between the three-phase inverter 1 and the brushless DC motor 2, and the signal of the freewheel detection module 7 is connected to the second control module 4 for detecting the three-phase current in the three-phase inverter 1 , and send the signal to the second control module 4 .
  • the brushless DC motor 2 is provided with a Hall sensor 6, and the signal of the Hall sensor 6 is connected to the second control module 4 for detecting the rotor position signal of the brushless DC motor 2, and the power module 5 is used for controlling the three-phase inverter 1.
  • the first control module 3, the second control module 4, the Hall sensor 6 and the freewheeling detection module 7 supply power.
  • the second control module 4 in this application preferably adopts MCU (micro control unit), and the MCU model can be STM32F3 series, EFM32 series, STM32G4 series, GD32F3 series, preferably STM32F373RC in this application.
  • MCU micro control unit
  • the Hall sensor 6 obtains the rotor position signal of the brushless DC motor 2
  • the signal is sent to the IN1 pin of the second control module 4, and the second control module 4 obtains the real-time rotational speed signal of the brushless DC motor 2 according to the position signal, and After being compared with the set speed signal, a rectification signal is sent to the first control module 3, and the first control module 3 drives the three-phase inverter 1 to operate.
  • the freewheeling detection module 7 detects the three-phase current in the three-phase inverter 1 in real time, and sends the detection signal to the second control module 4, and the second control module 4 judges whether the freewheeling ends according to the detection signal.
  • the second control module 4 After receiving the signal, the second control module 4 sends the rectification off signal to the first control module 3, and the first control module 3 controls the three-phase inverter 1 to turn off the synchronous rectification.
  • the synchronous rectification is turned off in time after the freewheeling, which can reduce heat generation and remove the active braking effect of models such as electric remote control model cars during the deceleration phase, making the entire power system safe, stable and efficient running.
  • the three-phase winding coil of the brushless DC motor 2 in the present application adopts a star connection mode, and the three phases corresponding to the brushless DC motor 2 are provided with A phase, B phase and C phase, A phase, Phase B and phase C are respectively connected to the three-phase inverter 1 , and the brushless DC motor 2 is driven through the three-phase inverter 1 .
  • the power supply module 5 includes a first power supply unit and a second power supply unit (not shown in the figure), the first power supply unit is used to supply power to the DC brushless motor, the three-phase inverter 1 and the freewheeling detection module 7 , the second power supply unit is used to supply power to the first control module 3, the second control module 4 and the Hall sensor 6, and separating the power supply can avoid the interference generated by the motor rotation on the first control module 3, the second control module 4 and the Hall sensor Er sensor 6 is affected.
  • the basic circuit in the three-phase inverter 1 includes a first bridge arm 11, a second bridge arm 12 and a third bridge arm 13, wherein the first bridge arm 11, the second bridge arm 12 and the third bridge arm One end of each arm 13 is electrically connected to the positive pole of the first power supply unit, and the other end is electrically connected to the negative pole of the first power supply unit.
  • the first bridge arm 11, the second bridge arm 12 and the third bridge arm 13 are all connected by a plurality of MOSFET tubes, and each MOSFET tube has a built-in freewheeling diode, and the MOSFET tube close to the positive pole of the first power supply unit is the upper bridge MOSFET. tube, and the MOSFET tube close to the negative pole of the first power supply unit is the lower bridge MOSFET tube.
  • the first bridge arm 11 includes two N-channel MOSFETs M1 and M2, wherein the drain of M1 is electrically connected to the anode of the first power supply unit, and the source of M2 is electrically connected to the first power supply unit The source of M1 is electrically connected to the drain of M2, and the gates of M1 and M2 are both signal-connected to the first control module 3 .
  • the second bridge arm 12 includes two N-channel MOSFETs M3 and M4, wherein the drain of M3 is electrically connected to the positive pole of the first power supply unit, and the source of M4 is electrically connected to the positive pole of the first power supply unit.
  • the source of M3 is electrically connected to the drain of M4 , and the gates of M3 and M4 are both signal-connected to the first control module 3 .
  • the third bridge arm 13 includes two N-channel MOSFETs M5 and M6, wherein the drain of M5 is electrically connected to the positive pole of the first power supply unit, the source of M6 is electrically connected to the negative pole of the first power supply unit, and the drain of M5 is electrically connected to the negative pole of the first power supply unit.
  • the source of M6 is electrically connected to the drain of M6, and the gates of M5 and M6 are both signally connected to the first control module 3 .
  • the freewheeling detection module 7 detects the three-phase current in the three-phase inverter 1 in real time, and outputs the current change signal to the second control module 4 for processing, so as to realize real-time monitoring of the freewheeling state.
  • the freewheeling detection module 7 is made up of several resistors and operational amplifiers provided with corresponding resistors. In the present application, several resistors are respectively connected between the source of the upper bridge MOSFET tube and the drain electrode of the lower bridge MOSFET tube.
  • the inverting input terminal a and the non-inverting input terminal b are respectively arranged at two ends of the corresponding resistors.
  • the first bridge arm 11 is connected with the first resistor R1, and the other end of the first resistor R1 is connected with the A phase of the brushless DC motor 2;
  • the second bridge arm 12 is connected with the second resistor R2, and the other end of the second resistor R2 One end is connected to phase B of the brushless DC motor 2 ;
  • the third bridge arm 13 is connected to a third resistor R3 , and the other end of the third resistor R3 is connected to phase C of the brushless DC motor 2 .
  • the resistance values of the first resistor R1, the second resistor R2 and the third resistor R3 are all extremely low.
  • the first resistor R1, the second resistor The resistance values of R2 and the third resistor R3 are both preferably 0.25m.
  • an operational amplifier U1 is connected to both ends of the first resistor R1, and the output terminal o signal of the operational amplifier U1 is connected to the second control module 4; both ends of the second resistor R2 are connected to an operational amplifier U2, and the operational amplifier U2
  • the signal of the output terminal o of the third resistor R3 is connected to the second control module 4 ; the two ends of the third resistor R3 are connected to the operational amplifier U3 , and the signal of the output terminal o of the operational amplifier U3 is connected to the second control module 4 .
  • the current sampling values IA_AD, IB_AD and IC_AD are input to the IN2 pins, IN3 pins and IN4 pins of the second control module 4 .
  • the first control module 3 comprises a driver intelligent control submodule 31 and a driver submodule 32
  • the driver intelligent control submodule 31 is connected with the driver submodule 32 and the second control module 4 signals respectively
  • the driver submodule 32 is also signal connected
  • the driver intelligent control sub-module 31 is used to receive the control signal of the second control module 4 and transmit the control signal to the driver sub-module 32
  • the driver sub-module 32 is used to process Control the signal and control the on-off of six MOSFET tubes.
  • the driver intelligent control sub-module 31 When starting freewheeling, the driver intelligent control sub-module 31 receives the synchronous rectification enable signal from the second control module 4 and sends the signal to the driver sub-module 32 , and the driver sub-module 32 drives the corresponding MOSFET to turn on and off.
  • the driver intelligent control sub-module 31 includes a plurality of signal selection switch units and peripheral circuits thereof, each signal selection unit is used for correspondingly controlling the on and off of a MOSFET tube, and the signal selection switch unit corresponds to There are six MOSFET tubes provided.
  • the driver intelligent control sub-module 31 is provided with a signal selection switch unit S1 corresponding to the MOSFET tube M1.
  • the first pin B2 of the signal selection switch unit S1 is connected to a pull-down resistor R4, and the other end of the pull-down resistor R4 is connected to the negative pole of the second power supply unit.
  • the second pin GND is connected to the negative pole of the second power supply unit
  • the third pin B1 of S1 is connected to the first output pin HIN_A of the second control module 4
  • the fourth pin A of S1 is connected to the corresponding MOSFET of the driver sub-module 32
  • the first input pin HIN1 of the tube M1 is connected to the anode of the second power supply unit
  • the sixth pin of S1 is connected to the second output pin HA_EN of the second control module 4 .
  • the signal selection switch unit S1 is provided with a signal selection switch.
  • the fourth pin A of S1 and the third pin B1 are turned on, and the second The first output pin HIN_A of the control module 4 sends a signal to the first input pin HIN1 of the driver sub-module 32 to control the on and off of the MOSFET M1; when the second output pin HA_EN of the second control module 4 When outputting a high level signal, the fourth pin A of S1 is connected to the first pin B2, and the second output pin HA_EN of the second control module 4 sends the signal to the first input pin HIN1 of the driver sub-module 32 , to control the turn-on and turn-off of the MOSFET tube M1.
  • the driver intelligent control sub-module 31 is provided with a signal selection switch unit S2 corresponding to the MOSFET tube M2, the first pin B2 of the signal selection switch unit S2 is connected to a pull-down resistor R5, and the other end of the pull-down resistor R5 is connected to the second pin B2.
  • the negative pole of the power supply unit, the second pin GND of S2 is connected to the negative pole of the second power supply unit, the third pin B1 of S2 is connected to the third output pin HIN_B of the second control module 4, and the fourth pin A of S2 is connected to There is a driver sub-module 32 corresponding to the second input pin HIN2 of the MOSFET M2, the fifth pin of S2 is connected to the positive pole of the second power supply unit, and the sixth pin of S2 is connected to the fourth output pin of the second control module 4 HB_EN.
  • the signal selection switch unit S2 is provided with a signal selection switch.
  • the fourth output pin HB_EN of the second control module 4 When the fourth output pin HB_EN of the second control module 4 outputs a low-level signal, the fourth pin A of S2 and the third pin B1 are turned on, and the second The third output pin HIN_B of the control module 4 sends a signal to the second input pin HIN2 of the driver sub-module 32 to control the on and off of the MOSFET tube M2; when the fourth output pin HB_EN of the second control module 4 When outputting a high level signal, the fourth pin A of S2 is connected to the first pin B2, and the fourth output pin HB_EN of the second control module 4 sends the signal to the second input pin HIN2 of the driver sub-module 32 , to control the turn-on and turn-off of the MOSFET tube M2.
  • the driver intelligent control sub-module 31 is provided with a signal selection switch unit S3 corresponding to the MOSFET tube M3, the first pin B2 of the signal selection switch unit S3 is connected to a pull-down resistor R6, and the other end of the pull-down resistor R6 is connected to the second pin B2.
  • the negative pole of the power supply unit, the second pin GND of S3 is connected to the negative pole of the second power supply unit, the third pin B1 of S3 is connected to the fifth output pin HIN_C of the second control module 4, and the fourth pin A of S3 is connected to There is a driver sub-module 32 corresponding to the third input pin HIN3 of the MOSFET tube M3, the fifth pin of S3 is connected to the positive pole of the second power supply unit, and the sixth pin of S3 is connected to the sixth output pin of the second control module 4 HC_EN.
  • the signal selection switch unit S3 is provided with a signal selection switch.
  • the fourth pin A of S3 and the third pin B1 are turned on, and the second The fifth output pin HIN_C of the control module 4 sends a signal to the third input pin HIN3 of the driver sub-module 32 to control the on and off of the MOSFET tube M3; when the sixth output pin HC_EN of the second control module 4 When outputting a high-level signal, the fourth pin A of S3 is connected to the first pin B2, and the sixth output pin HC_EN of the second control module 4 sends the signal to the third input pin HIN3 of the driver sub-module 32 , to control the turn-on and turn-off of the MOSFET tube M3.
  • the driver intelligent control sub-module 31 is provided with a signal selection switch unit S4 corresponding to the MOSFET tube M4, the first pin B2 of the signal selection switch unit S4 is connected to a pull-down resistor R7, and the other end of the pull-down resistor R7 is connected to the second pin B2.
  • the negative pole of the power supply unit, the second pin GND of S4 is connected to the negative pole of the second power supply unit, the third pin B1 of S4 is connected to the seventh output pin LIN_A of the second control module 4, and the fourth pin A of S4 is connected to There is a driver sub-module 32 corresponding to the fourth input pin HIN4 of the MOSFET tube M4, the fifth pin of S4 is connected to the positive pole of the second power supply unit, and the sixth pin of S4 is connected to the eighth output pin of the second control module 4 LA_EN.
  • the signal selection switch unit S4 is provided with a signal selection switch, when the eighth output pin LA_EN of the second control module 4 outputs a low-level signal, the fourth pin A of S4 and the third pin B1 conduct, and the second The seventh output pin LIN_A of the control module 4 sends a signal to the fourth input pin HIN4 of the driver sub-module 32 to control the turn-on and turn-off of the MOSFET M4; when the eighth output pin LA_EN of the second control module 4 When outputting a high-level signal, the fourth pin A of S4 is connected to the first pin B2, and the eighth output pin LA_EN of the second control module 4 sends the signal to the fourth input pin HIN4 of the driver sub-module 32 , to control the turn-on and turn-off of the MOSFET M4.
  • the driver intelligent control sub-module 31 is provided with a signal selection switch unit S5 corresponding to the MOSFET tube M5, the first pin B2 of the signal selection switch unit S5 is connected to a pull-down resistor R8, and the other end of the pull-down resistor R8 is connected to the second pin B2.
  • the negative pole of the power supply unit, the second pin GND of S5 is connected to the negative pole of the second power supply unit, the third pin B1 of S5 is connected to the ninth output pin LIN_B of the second control module 4, and the fourth pin A of S5 is connected to There is a driver sub-module 32 corresponding to the fifth input pin HIN5 of the MOSFET tube M5, the fifth pin of S5 is connected to the positive pole of the second power supply unit, and the sixth pin of S5 is connected to the tenth output pin of the second control module 4 LB_EN.
  • the signal selection switch unit S5 is provided with a signal selection switch.
  • the fourth pin A of S5 and the third pin B1 are turned on, and the second The ninth output pin LIN_B of the control module 4 sends a signal to the fifth input pin HIN5 of the driver sub-module 32 to control the on and off of the MOSFET tube M5; when the tenth output pin LB_EN of the second control module 4 When outputting a high level signal, the fourth pin A of S5 is connected to the first pin B2, and the tenth output pin LB_EN of the second control module 4 sends the signal to the fifth input pin HIN5 of the driver sub-module 32 , to control the turn-on and turn-off of the MOSFET tube M5.
  • the driver intelligent control sub-module 31 is provided with a signal selection switch unit S6 corresponding to the MOSFET tube M6, the first pin B2 of the signal selection switch unit S6 is connected to a pull-down resistor R8, and the other end of the pull-down resistor R8 is connected to the second pin B2.
  • the negative pole of the power supply unit, the second pin GND of S6 is connected to the negative pole of the second power supply unit, the third pin B1 of S6 is connected to the eleventh output pin LIN_C of the second control module 4, and the fourth pin A of S6
  • the driver sub-module 32 is connected to the sixth input pin HIN6 of the MOSFET M6, the fifth pin of S6 is connected to the positive pole of the second power supply unit, and the sixth pin of S6 is connected to the twelfth output of the second control module 4 Pin LC_EN.
  • the signal selection switch unit S6 is provided with a signal selection switch.
  • the fourth pin A of S6 and the third pin B1 are turned on, and the second The eleventh output pin LIN_C of the second control module 4 sends a signal to the sixth input pin HIN6 of the driver sub-module 32 to control the conduction and shutdown of the MOSFET tube M6; when the twelfth output pin of the second control module 4 When the pin LC_EN outputs a high-level signal, the fourth pin A of S6 is connected to the first pin B2, and the twelfth output pin LC_EN of the second control module 4 sends the signal to the sixth pin of the driver submodule 32.
  • the input pin HIN6 controls the turn-on and turn-off of the MOSFET tube M6.
  • the first output pin HO1 on the driver sub-module 32 is connected to the gate of the MOSFET M1, and HO_1 outputs the control signal HO_A to the MOSFET M1, so as to control the on-off of the MOSFET M1;
  • the driver sub-module The second output pin HO2 on the module 32 is connected to the gate of the MOSFET M3, and HO_2 outputs the control signal HO_B to the MOSFET M3, thereby realizing the on-off control of the MOSFET M3;
  • the third output pin on the driver sub-module 32 HO3 is connected to the gate of the MOSFET M5, and HO_3 outputs the control signal HO_C to the MOSFET M5, so as to control the on-off of the MOSFET M5;
  • the fourth output pin LO1 on the driver sub-module 32 is connected to the gate of the MOSFET M2 , LO_1 outputs the control signal LO_A to the MOSFET M
  • the conduction sequence of two pairs is AB phase conduction, AC phase conduction, BC phase conduction, BA phase conduction, CA phase conduction, and CB phase conduction, if If the motor is reversed, the conduction sequence will be reversed.
  • Positive electrode of the first power supply unit-MOSFET tube M1-first resistor R1-phase winding coil of BLDC motor 2A-phase winding coil of BLDC motor 2B-second resistor R2-MOSFET tube M4-negative pole of the first power supply unit. becomes:
  • the counter electromotive force BEMF_B is generated at the 2B phase winding coil of the brushless DC motor, corresponding to the generation of freewheeling, the second control module 4 outputs a high-level control signal, and the high-level control signal is transmitted to the control driver intelligence through the fifth output pin HIN_C Control the signal selection switch unit S3 in the sub-module 31.
  • the fourth pin A of the signal selection switch unit S3 is turned on with the third pin B1, so as to send a high-level signal to the third input of the driver sub-module 32 Pin HIN3, after the driver sub-module 32 receives and processes the signal, outputs a high-level signal HO_B through the second output pin HO2 on the driver sub-module 32 and sends it to the gate of the MOSFET M3, and the MOSFET M3 is turned on to form a complete
  • the freewheeling path that is, the synchronous rectification is turned on.
  • the freewheeling direction at this time is:
  • Brushless DC motor 2B phase winding coil-second resistor R2-MOSFET tube M3-MOSFET tube M1-first resistor R1-brushless DC motor 2A phase winding coil-brushless DC motor 2B phase winding coil.
  • the first resistor R1 is in the AC phase loop, and there is always a current, and there is a freewheeling current in the second resistor R2, and with the end of the freewheeling current, the freewheeling current gradually decreases until it is zero.
  • the operational amplifier U2 connected to both ends of the second resistor R2 continuously sends the collected current sampling value IB_AD to the second control module 4; when the sampling value IB_AD is zero, the second The second control module 4 detects the end of freewheeling, the second control module 4 sends a high-level signal, and transmits the high-level control signal to the intelligent control sub-module 31 of the control driver through the sixth output pin HC_EN of the second control module 4
  • the signal selection switch unit S3, the fourth pin A of the signal selection switch unit S3 is connected to the first pin B2, and the sixth output pin HC_EN of the second control module 4 sends the signal to the third pin of the driver sub-module 32.
  • the input pin HIN3 after the driver sub-module 32 receives and processes the signal, outputs a low-level signal HO_B through the second output pin HO2 on the driver sub-module 32 and sends it to the gate of the MOSFET M3, and the MOSFET M3 is turned off, that is Disable synchronous rectification.
  • the synchronous rectification can be turned off in time, which can reduce heat generation and avoid the situation that the two-phase windings of electric remote control model cars and other models are directly short-circuited and grounded during the deceleration phase, and the active braking effect is eliminated. , so that the entire power system can run safely, stably and efficiently.
  • the freewheeling processing method in the commutation process of AC phase-BC phase is consistent with that in the commutation process of AB phase-AC phase, and the freewheeling start signal transmission is as follows:
  • the back electromotive force BEMF_A is generated at the coil of the A-phase winding in the brushless DC motor 2, corresponding to the generation of freewheeling, the second control module 4 outputs a high-level control signal, and the high-level control signal is transmitted to the controller through the third output pin HIN_B
  • the driver intelligently controls the signal selection switch unit S2 in the sub-module 31.
  • the fourth pin A of the signal selection switch unit S2 is connected to the third pin B1, thereby sending a high-level signal to the first pin of the driver sub-module 32.
  • the second input pin HIN2 after the driver sub-module 32 receives and processes the signal, outputs a high-level signal LO_A through the fourth output pin LO1 on the driver sub-module 32 and transmits it to the gate of the MOSFET M2, and the MOSFET M2 is turned on.
  • a complete freewheeling path is formed, that is, synchronous rectification is turned on.
  • the freewheeling direction at this time is:
  • the third resistor R3 is in the BC phase loop, and there is always a current, and there is a freewheeling current in the first resistor R1, and with the end of the freewheeling current, the freewheeling current gradually decreases until it is zero.
  • the operational amplifier U1 connected to both ends of the first resistor R1 continuously sends the collected current sampling value IA_AD to the second control module 4; when the sampling value IA_AD is zero, the second The second control module 4 detects the end of freewheeling, and the second control module 4 sends a high-level signal, and transmits the high-level control signal to the intelligent control sub-module 31 of the control driver through the fourth output pin HB_EN of the second control module 4
  • the signal selection switch unit S2, the fourth pin A of the signal selection switch unit S2 is connected to the first pin B2, and the fourth output pin HB_EN of the second control module 4 sends the signal to the second pin of the driver sub-module 32.
  • the input pin HIN2 after the driver sub-module 32 receives and processes the signal, outputs a low-level signal LO_A through the fourth output pin LO1 on the driver sub-module 32 and transmits it to the gate of the MOSFET M2, and the MOSFET M2 is turned off, that is Disable synchronous rectification.
  • the back electromotive force BEMF_C is generated at the winding coil of the 2A phase of the brushless DC motor, corresponding to the generation of freewheeling, the second control module 4 outputs a high-level control signal, and the high-level control signal is transmitted to the control driver intelligence through the ninth output pin LIN_B Control the signal selection switch unit S5 in the sub-module 31.
  • the fourth pin A and the third pin B1 of the signal selection switch unit S5 are turned on, so as to send a high-level signal to the fifth input of the driver sub-module 32 Pin HIN5, after the driver sub-module 32 receives and processes the signal, outputs a high-level signal HO_C through the third output pin HO3 on the driver sub-module 32 and sends it to the gate of the MOSFET M5, and the MOSFET M5 is turned on to form a complete
  • the freewheeling path that is, the synchronous rectification is turned on.
  • the freewheeling direction at this time is:
  • the second resistor R2 is in the BA phase loop, and there is always a current, and there is a freewheeling current in the third resistor R3, and with the end of the freewheeling current, the freewheeling current gradually decreases until it is zero.
  • the operational amplifier U3 connected to both ends of the third resistor R3 continuously sends the collected current sampling value IC_AD to the second control module 4; when the sampling value IC_AD is zero, the second The second control module 4 detects the end of freewheeling, and the second control module 4 sends a high-level signal, and transmits the high-level control signal to the intelligent control sub-module 31 of the control driver through the tenth output pin LB_EN of the second control module 4
  • the signal selection switch unit S5, the fourth pin A of the signal selection switch unit S5 is connected to the first pin B2, and the tenth output pin LB_EN of the second control module 4 sends the signal to the fifth pin of the driver sub-module 32.
  • the input pin HIN5 after the driver sub-module 32 receives and processes the signal, outputs a low-level signal HO_C through the third output pin HO3 on the driver sub-module 32 and transmits it to the gate of the MOSFET M5, and the MOSFET M5 is turned off, that is Disable synchronous rectification.
  • the back electromotive force BEMF_B is generated at the winding coil of the 2A phase of the brushless DC motor, corresponding to the generation of freewheeling, the second control module 4 outputs a high-level control signal, and the high-level control signal is transmitted to the control driver intelligence through the seventh output pin LIN_A Control the signal selection switch unit S4 in the sub-module 31.
  • the fourth pin A of the signal selection switch unit S4 is turned on with the third pin B1, so as to send a high-level signal to the fourth input of the driver sub-module 32 Pin HIN4, after the driver sub-module 32 receives and processes the signal, outputs a high-level signal LO_B through the fifth output pin LO2 on the driver sub-module 32 and sends it to the gate of the MOSFET M4, and the MOSFET M4 is turned on to form a complete
  • the freewheeling path that is, the synchronous rectification is turned on.
  • the freewheeling direction at this time is:
  • the first resistor R1 is in the CA phase loop, and there is always a current, and there is a freewheeling current in the second resistor R2, and with the end of the freewheeling current, the freewheeling current gradually decreases until it is zero.
  • the operational amplifier U2 connected to both ends of the second resistor R2 continuously sends the collected current sampling value IB_AD to the second control module 4; when the sampling value IB_AD is zero, the second The second control module 4 detects the end of freewheeling, and the second control module 4 sends a high-level signal, and transmits the high-level control signal to the intelligent control sub-module 31 of the control driver through the eighth output pin LA_EN of the second control module 4
  • the signal selection switch unit S4, the fourth pin A of the signal selection switch unit S4 is connected to the first pin B2, and the eighth output pin LA_EN of the second control module 4 sends the signal to the fourth pin A of the driver sub-module 32.
  • the input pin HIN4 after the driver sub-module 32 receives and processes the signal, outputs a low-level signal LO_B through the fifth output pin LO2 on the driver sub-module 32 and sends it to the gate of the MOSFET M4, and the MOSFET M4 is turned off, that is Disable synchronous rectification.
  • the freewheeling start signal transmission is as follows:
  • the back electromotive force BEMF_A is generated at the winding coil of the 2A phase of the brushless DC motor, corresponding to the generation of freewheeling, the second control module 4 outputs a high-level control signal, and the high-level control signal is transmitted to the control driver intelligence through the first output pin HIN_A Control the signal selection switch unit S1 in the sub-module 31.
  • the fourth pin A and the third pin B1 of the signal selection switch unit S1 are turned on, so as to send a high-level signal to the first input of the driver sub-module 32 Pin HIN1, after the driver sub-module 32 receives and processes the signal, outputs a high-level signal HO_A through the first output pin HO1 on the driver sub-module 32 and sends it to the gate of the MOSFET M1, and the MOSFET M1 is turned on to form a complete
  • the freewheeling path that is, the synchronous rectification is turned on.
  • the freewheeling direction at this time is:
  • the third resistor R3 is in the CB phase loop, and there is always a current, and there is a freewheeling current in the first resistor R1, and with the end of the freewheeling current, the freewheeling current gradually decreases until it is zero.
  • the operational amplifier U1 connected to both ends of the first resistor R1 continuously sends the collected current sampling value IA_AD to the second control module 4; when the sampling value IA_AD is zero, the second The second control module 4 detects the end of freewheeling, and the second control module 4 sends a high-level signal, and transmits the high-level control signal to the intelligent control sub-module 31 of the control driver through the second output pin HA_EN of the second control module 4
  • the signal selection switch unit S1, the fourth pin A of the signal selection switch unit S1 is connected to the first pin B2, and the second output pin HA_EN of the second control module 4 sends the signal to the first pin of the driver sub-module 32.
  • the input pin HIN1 after the driver sub-module 32 receives and processes the signal, outputs a low-level signal HO_A through the first output pin HO1 on the driver sub-module 32 and sends it to the gate of the MOSFET M1, and the MOSFET M1 is turned off, that is Disable synchronous rectification.
  • the counter electromotive force BEMF_C is generated at the 2A phase winding coil of the brushless DC motor, corresponding to the generation of freewheeling, the second control module 4 outputs a high-level control signal, and the high-level control signal is transmitted to the control driver through the eleventh output pin LIN_C
  • the signal in the intelligent control sub-module 31 selects the switch unit S6.
  • the fourth pin A of the signal selection switch unit S6 is connected to the third pin B1, thereby sending a high-level signal to the sixth pin of the driver sub-module 32.
  • the input pin HIN6 after the driver sub-module 32 receives and processes the signal, outputs a high-level signal LO_C through the sixth output pin LO3 on the driver sub-module 32 and transmits it to the gate of the MOSFET M6, and the MOSFET M6 is turned on, forming Complete freewheeling path, that is, open synchronous rectification.
  • the freewheeling direction at this time is:
  • the second resistor R2 is in the CB phase loop, and there is always a current, and there is a freewheeling current in the third resistor R3, and with the end of the freewheeling current, the freewheeling current gradually decreases until it is zero.
  • the operational amplifier U3 connected to both ends of the third resistor R3 continuously sends the collected current sampling value IC_AD to the second control module 4; when the sampling value IC_AD is zero, the second The second control module 4 detects the end of freewheeling, and the second control module 4 sends a high-level signal, and transmits the high-level control signal to the intelligent control sub-module 31 of the control driver through the twelfth output pin LC_EN of the second control module 4
  • the fourth pin A of the signal selection switch unit S6 is connected to the first pin B2, and the twelfth output pin LC_EN of the second control module 4 sends the signal to the driver sub-module 32.
  • the sixth input pin HIN6 after the driver sub-module 32 receives and processes the signal, outputs a low-level signal LO_C through the sixth output pin LO3 on the driver sub-module 32 and sends it to the gate of the MOSFET M6, and the MOSFET M6 is turned off , which turns off synchronous rectification.
  • the back electromotive force BEMF_A and the back electromotive force BEMF_B are generated at the coil of the 2A phase winding of the brushless DC motor, corresponding to the generation of freewheeling, the second control module 4 outputs a high level control signal, and the third output pin HIN_B turns the high level
  • the control signal is transmitted to the signal selection switch unit S2 in the intelligent control sub-module 31 of the control driver.
  • the fourth pin A and the third pin B1 of the signal selection switch unit S2 are turned on, thereby sending a high-level signal to the driver
  • the second input pin HIN2 of the sub-module 32 after the driver sub-module 32 receives and processes the signal, outputs a high-level signal LO_A through the fourth output pin LO1 on the driver sub-module 32 and transmits it to the gate of the MOSFET tube M2, and the MOSFET
  • the tube M2 is turned on to form a complete freewheeling path, that is, the synchronous rectification is turned on.
  • the freewheeling direction at this time is:
  • the second control module 4 obtains the PWM control information of the six MOSFETs, and calculates the freewheeling time point according to the current sampling value continuously obtained by the operational amplifier, and compares the freewheeling time point with the lower bridge MOSFET PWM_ON The time points are compared, and when the freewheeling time point is compared with the PWM_ON time point of the lower-bridge MOSFET, the second control module 4 controls the corresponding lower-bridge MOSFET to turn off before the upper MOSFET is turned on, and the synchronous rectification is forcibly turned off, thereby Realize the protection of the circuit.
  • the implementation principle of an electronic speed governor intelligent synchronous rectification system in the embodiment of the present application is as follows: the second control module 4 obtains the real-time speed signal of the brushless DC motor 2 through the Hall sensor 6, and after comparing with the set speed signal, The rectification signal is sent to the first control module 3, and the first control module 3 drives the three-phase inverter 1 to operate.
  • the freewheeling detection module 7 detects the three-phase current in the three-phase inverter 1 in real time, and sends the detection signal to the second control module 4, and the second control module 4 judges whether the freewheeling ends according to the detection signal.
  • the second control module 4 sends the rectification off signal to the first control module 3, and the first control module 3 controls the corresponding MOSFETs in the three-phase inverter 1 to turn off the synchronous rectification.
  • the second control module 4 includes a first control submodule 41 and a second control submodule 42; wherein, the first control submodule 41 uses To collect the Hall sensor 6 signal, control the driver intelligent control sub-module 31, so that the motor runs normally, IN1 is the input of the first control sub-module 41, HIN_A, HIN_B, HIN_C, LIN_A, LIN_B, LIN_C are the first control sub-module 41 output.
  • IA_AD, IB_AD and IC_AD are the inputs of the second control sub-module 42
  • HA_EN, HB_EN, HC_EN, LA_EN, LB_EN, and LC_EN are all outputs of the MCU2
  • the second control sub-module 42 is used to collect three-phase current detection signals and judge the continuation in time.
  • the driver intelligent control sub-module 31 is then controlled to turn off the driver, that is, turn off the corresponding MOSFET tube, and end the synchronous rectification.
  • both the first control sub-module 41 and the second control sub-module 42 use an MCU as a controller.
  • the second control submodule 42 needs to obtain the PWM control information of six MOSFETs from the first control submodule 41 to determine the relationship between the freewheeling time and Comparison of the PWM_ON time of the lower tube.
  • the OUT7 pin is provided on the first control sub-module 41 for outputting PWM control information of the six MOSFETs
  • the IN5 pin is provided on the second control sub-module 42 for receiving the PWM control of the six MOSFETs information, when the freewheeling time is greater than the PWM_ON time of the lower MOSFET, the second control sub-module 42 judges the time comparison information in time, and turns off the synchronous rectification in time before the upper MOSFET is turned on.
  • Using two sub-modules to realize the functions of the second control module 4 can reduce the calculation amount of the second control module 4, increase the response speed, reduce the calorific value of the second control module 4, and improve work efficiency.
  • the implementation principle of an electronic speed governor intelligent synchronous rectification system in the embodiment of the present application is as follows: the first control sub-module 41 obtains the real-time speed signal of the brushless DC motor 2 through the Hall sensor 6, and compares it with the set speed signal , sending a rectification signal to the first control module 3, and the first control module 3 drives the three-phase inverter 1 to operate.
  • the freewheeling detection module 7 detects the three-phase current in the three-phase inverter 1 in real time, and sends the detection signal to the second control submodule 42, and the second control submodule 42 judges whether the freewheeling ends according to the detection signal.
  • the second control sub-module 42 sends a rectification off signal to the first control module 3, and the first control module 3 controls the corresponding MOSFETs in the three-phase inverter 1 to turn off the synchronous rectification.
  • MOSFET tubes M1, M2, M3, M4, M5, and M6 are connected in parallel with multiple MOSFET tubes, corresponding to the drain electrodes of the MOSFET tubes It is electrically connected to the drain of the parallel-connected MOSFET, and the source of the corresponding MOSFET is electrically connected to the source of the parallel-connected MOSFET, corresponding to the signal received by the gate of the MOSFET and the gate of the parallel-connected MOSFET. unanimous.
  • MOSFET tubes M1, M2, M3, M4, M5, and M6 are respectively connected in parallel with two MOSFET tubes, MOSFET tube M1 is connected in parallel with MOSFET tubes M11 and M12; MOSFET tube M2 is connected in parallel with MOSFET tubes M21 and M22 MOSFET tube M3 is connected in parallel with MOSFET tubes M31 and M32; MOSFET tube M4 is connected in parallel with MOSFET tubes M41 and M42; MOSFET tube M5 is connected in parallel with MOSFET tubes M51 and M52; MOSFET tube M6 is connected in parallel with MOSFET tubes M61 and M62.
  • the driver sub-module 33 is provided with a plurality of pins connected to the gates of parallel MOSFET tubes, wherein:
  • the HO1.1 output pin on the driver sub-module 33 is electrically connected to the gate of the MOSFET M11, the HO1.2 output pin is electrically connected to the gate of the MOSFET M12, and the HO1.1 output pin and the HO1.2
  • the output signal of the output pin is consistent with the output signal of the first output pin HO1;
  • the HO2.1 output pin on the driver sub-module 33 is electrically connected to the gate of the MOSFET M21, the HO2.2 output pin is electrically connected to the gate of the MOSFET M22, and the HO2.1 output pin and the HO2.2
  • the output signal of the output pin is consistent with the output signal of the second output pin HO2;
  • the HO3.1 output pin on the driver sub-module 33 is electrically connected to the gate of the MOSFET M31, the HO3.2 output pin is electrically connected to the gate of the MOSFET M32, and the HO3.1 output pin and the HO3.2
  • the output signal of the output pin is consistent with the output signal of the third output pin HO3;
  • the LO1.1 output pin on the driver sub-module 33 is electrically connected to the gate of the MOSFET M41, the LO1.2 output pin is electrically connected to the gate of the MOSFET M42, and the LO1.1 output pin and the LO1.2
  • the output signal of the output pin is consistent with the output signal of the fourth output pin LO1;
  • the LO2.1 output pin on the driver sub-module 33 is electrically connected to the gate of the MOSFET M51, the LO2.2 output pin is electrically connected to the gate of the MOSFET M52, and the LO2.1 output pin and the LO2.2
  • the output signal of the output pin is consistent with the output signal of the fifth output pin LO2;
  • the LO3.1 output pin on the driver sub-module 33 is electrically connected to the gate of the MOSFET M61, the LO3.2 output pin is electrically connected to the gate of the MOSFET M62, and the LO3.1 output pin and the LO3.2 The output signal of the output pin is consistent with the output signal of the sixth output pin LO3.
  • each MOSFET tube acts as a shunt, which can reduce the heating of the ESC.
  • the implementation principle of an electronic speed governor intelligent synchronous rectification system in the embodiment of the present application is as follows: the first control sub-module 41 obtains the real-time speed signal of the brushless DC motor 2 through the Hall sensor 6, and compares it with the set speed signal , sending a rectification signal to the first control module 3, and the first control module 3 drives the three-phase inverter 1 to operate.
  • the freewheeling detection module 7 detects the three-phase current in the three-phase inverter 1 in real time, and sends the detection signal to the second control submodule 42, and the second control submodule 42 judges whether the freewheeling ends according to the detection signal.
  • the second control sub-module 42 sends a rectification off signal to the first control module 3, and the first control module 3 controls the corresponding multiple MOSFETs in the three-phase inverter 1 to turn off the synchronous rectification.
  • the embodiment of the present application also discloses a control method based on an electronic speed governor intelligent synchronous rectification system.
  • An electronic governor intelligent synchronous rectification control method comprising:
  • Step1 Obtain the set speed signal and real-time speed signal of the motor, compare them, and perform pulse width modulation based on the comparison result to generate a pulse width modulation signal;
  • Step2 Based on the pulse width modulation signal, generate a three-phase inverter turn-on signal to enable the three-phase inverter 1 to perform synchronous rectification;
  • Step3 Obtain the freewheeling current in real time, and obtain the freewheeling end signal according to the change of the freewheeling current;
  • Step 4 Based on the freewheeling end signal, generate a three-phase inverter shutdown signal for turning off the synchronous rectification of the three-phase inverter 1 .
  • Step4 includes:
  • Step41 obtaining the pulse width modulation control information of the three-phase inverter 1;
  • Step42 Obtain the sampling value of the freewheeling current, and calculate the expected freewheeling time point;
  • Step43 compare the expected freewheeling time point with the pulse width modulation control opening time point
  • Step44 Based on the comparison, generate a three-phase inverter shutdown signal for turning off the synchronous rectification of the three-phase inverter 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

本申请涉及一种电子调速器智能同步整流系统及其控制方法,系统包括霍尔传感器,用于获取无刷直流电机转子位置信息;第二控制模块用于接收霍尔传感器发出的转子位置信息,并生成同步整流开闭信号,还用于生成续流结束信号;三相逆变器,用于驱动无刷直流电机运动;第一控制模块,用于接收第二控制模块发出的同步整流开闭信号或者续流结束信号,并根据同步整流开闭信号或者续流结束信号控制三相逆变器;续流检测模块,用于检测三相逆变器中的三相电流,并将信号发送到第二控制模块;电源模块,用于对三相逆变器、第一控制模块、第二控制模块、霍尔传感器和续流检测模块进行供电。本申请具有兼具降低整流损耗和操作的流畅性的效果。

Description

一种电子调速器智能同步整流系统及其控制方法
相关申请的交叉参考
本申请要求于2021年05月26日提交中国专利局,申请号为202110577757.7,名称为“一种电子调速器智能同步整流系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及同步整流的领域,尤其是涉及一种电子调速器智能同步整流系统及其控制方法。
背景技术
在电动遥控模型车、飞机模型、船用模型中,往往需要用到运行顺畅、质量轻便的无刷直流电机,通常无刷直流电机连接有电调,电调能够根据控制信号调节无刷直流电机的转速。电调对无刷直流电机的控制,通常采用PWM(脉冲宽度调制)技术,且一般选择上桥MOSFET管(金氧半场效晶体管)PWM,下桥MOSFET管常开的方式。在电机两相导通,上桥MOSFET管PWM_OFF阶段,电机绕组线圈及MOSFET管内置的续流二极管形成续流回路,产生续流;同时在电机换相也会产生续流。虽然续流二极管的存在保护了电路中的其它元件的安全,但是续流二极管存在较大压降,续流损耗大,亦会造成桥臂发热大,降低了电调效率。
现有的整流技术采用开对管同步整流技术,采用通态电阻极低的专用功率MOSFET管来取代续流二极管以降低整流损耗;开对管同步整流为简易版同步整流技术,不用检测续流何时结束,仅在上MOSFET管关闭后打开下桥MOSFET管,电动遥控模型车在使用开对管同步整流技术后,降低了整流损耗。
针对上述中的相关技术,开对管同步整流技术中对应的下桥MOSFET管导通,此相绕组被钳至接地,且因为选择下管常开的PWM调制方式,对应的相绕组亦会接地,此时两相绕组直接短接而且接地,会造成两相绕组短接制动效果,从而造成电动遥控模型车在减速阶段会有主动刹车效果,产生顿挫感,操控不便,发明人认为存在有无法兼具降低整流损 耗和操作流畅性的缺陷。
申请内容
为了兼具降低整流损耗和操作的流畅性,本申请提供一种电子调速器智能同步整流系统及其控制方法。
第一方面,本申请提供的一种电子调速器智能同步整流系统,采用如下的技术方案:
一种电子调速器智能同步整流系统,包括霍尔传感器,设置于无刷直流电机周侧,用于获取无刷直流电机转子位置信息;第二控制模块,信号连接于所述霍尔传感器,用于接收所述霍尔传感器发出的转子位置信息,并生成同步整流开闭信号,还用于生成续流结束信号;三相逆变器,电性连接于无刷直流电机的绕组线圈,用于驱动无刷直流电机运动;第一控制模块,信号连接于所述三相逆变器,用于接收第二控制模块发出的同步整流开闭信号或者续流结束信号,并根据同步整流开闭信号或者续流结束信号控制所述三相逆变器;续流检测模块,电性连接于所述三相逆变器与无刷直流电机之间,所述续流检测模块信号连接于所述第二控制模块,用于检测所述三相逆变器中的三相电流,并将信号发送到所述第二控制模块;电源模块,用于对三相逆变器、第一控制模块、第二控制模块、霍尔传感器和续流检测模块进行供电。
通过采用上述技术方案,霍尔传感器获取无刷直流电机的转子位置信号后,将信号发送到第二控制模块,第二控制模块根据位置信号获得无刷直流电机的实时转速信号,并与设定转速信号进行比较后,对第一控制模块发出PWM信号,第一控制模块驱动三相逆变器进行PWM。续流检测模块实时检测三相逆变器中的三相电流,并将检测信号发送到第二控制模块,第二控制模块根据检测信号判断续流是否结束,当得到续流结束信号后,第二控制模块将整流关闭信号发送给第一控制模块,第一控制模块控制三相逆变器关闭同步整流。电动遥控模型车等模型在运动过程中,在续流结束后及时地关闭同步整流,能够减少发热和去除电动遥控模型车等模型在减速阶段的主动刹车效果,使整个动力系统安全、稳定和高效的运行。
可选的,所述三相逆变器包括第一桥臂、第二桥臂和第三桥臂,所述第一桥臂、所述第二桥臂和所述第三桥臂的一端均与所述电源模块的正极电性连接,另一端与所述电源模块的负极电性连接。
通过采用上述技术方案,将三相逆变器分为三个桥臂,通过控制第 一桥臂、第二桥臂和第三桥臂的导通与断开,从而实现控制无刷直流电机的换向。
可选的,所述续流检测模块包括多个连接于各个桥臂的电阻和对应多个所述电阻数量设置的运算放大器,所述运算放大器的反相输入端a和同相输入端b分别连接对应电阻两端,所述运算放大器的输出端o信号连接于所述第二控制模块。
通过采用上述技术方案,通过对电阻的设置,能够通过检测电阻两端的电流检测三相逆变器中的三相电流;经运算放大器对电流信号放大处理后,输出到第二控制模块处理电流变化信号,从而实现实时监测续流状态。
可选的,所述第一控制模块包括驱动器智能控制子模块和驱动器子模块,所述驱动器智能控制子模块分别信号连接于所述驱动器子模块和所述第二控制模块,所述驱动器智能控制子模块用于接收所述第二控制模块的同步整流开闭信号或者续流结束信号,并将同步整流开闭信号或者续流结束信号处理后发送至所述驱动器子模块。
通过采用上述技术方案,在开始续流时,通过对驱动器智能控制子模块和驱动器子模块的设置,驱动器智能控制子模块接收第二控制模块的同步整流开启信号,并将信号发送到驱动器子模块进行处理;在续流结束后,同样是通过驱动器智能控制子模块接收第二控制模块的同步整流关闭信号,并将信号发送到驱动器子模块进行处理。
可选的,所述驱动器智能控制子模块包括多个信号选择开关单元,所述信号选择开关单元信号连接于所述第二控制模块和所述驱动器子模块,所述信号选择单元用于根据第二控制模块发出的同步整流开闭信号或者续流结束信号生成导通信号或者断开信号,并将导通信号或者断开信号发送到所述驱动器子模块。
通过采用上述技术方案,通过对信号选择开关单元的设置,通过不同的电平信号传递对应控制信号,从而实现处理第二控制模块发出导通信号或者断开信号,进而实现控制三相逆变器的导通与关闭。
可选的,所述驱动器子模块信号连接于所述三相逆变器,用于接收所述驱动器智能控制子模块发出的导通信号或者断开信号,并根据导通信号或者断开信号控制所述三相逆变器的通断。
通过采用上述技术方案,驱动器子模块在接收到同步整流开启信号和同步整流关闭信号后,将信号处理后,发送到三相逆变器,控制三相逆变器中各个桥臂中的通断,从而实现控制同步整流的开启与关闭。
第二方面,本申请提供一种电子调速器智能同步整流系统的控制方 法,采用如下的技术方案:
可选的,一种电子调速器智能同步整流系统的控制方法包括获取电机设定转速信号和实时转速信号,进行比较,基于比较结果,进行脉冲宽度调制,生成脉冲宽度调制信号;
基于脉冲宽度调制信号,生成使三相逆变器进行同步整流的三相逆变器导通信号;
实时获取续流电流,根据续流电流变化获取续流结束信号;
基于续流结束信号,生成使三相逆变器关闭同步整流的三相逆变器关闭信号。
通过采用上述技术方案,在续流产生时开启同步整流,在续流结束后及时地关闭同步整流,能够减少发热和去除电动遥控模型车等模型在减速阶段的主动刹车效果,使整个动力系统安全、稳定和高效的运行。
可选的,所述基于续流结束信号,生成使三相逆变器关闭同步整流的三相逆变器
关闭信号的步骤包括:
获取三相逆变器的脉冲宽度调制控制信息;
获取续流电流采样值,计算预计续流时间点;
将预计续流时间点与脉冲宽度调制控制开启时间点进行比较;
基于比较,生成使三相逆变器关闭同步整流的三相逆变器关闭信号。
通过采用上述技术方案,若续流时间点后于脉冲宽度调制控制开启时间点,不及时停止同步整流,将导致三相逆变器上的整个桥臂短接,会损坏电路结构。通过计算出预计续流时间点,并与脉冲宽度调制控制开启时间点比较,在脉冲宽度调制控制开启时间点前关闭同步整流,从而实现对电路进行保护。
综上所述,本申请包括以下至少一种有益技术效果:
1.通过对续流检测模块的设置和第二控制模块的设置,可以使第二控制模块根据检测信号判断续流是否结束,在续流结束后及时的关闭同步整流,能够减少发热和去除电动遥控模型车等模型在减速阶段的主动刹车效果,即使得电动遥控模型车等模型兼具降低整流损耗和操作的流畅性;
2.通过第二控制模块计算出预计续流时间点,并与三相逆变器脉冲宽度调制控制开启时间点比较,在脉冲宽度调制控制开启时间点前关闭同步整流,产生了保护电路结构与元器件的效果。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例1的整体原理框图;
图2是本申请实施例1的部分电路结构示意图;
图3是本申请实施例1的第二控制模块的管脚示意图;
图4是本申请实施例1的第一控制模块电路结构示意图;
图5是本申请实施例1的无刷直流电机换相续流周期示意图;
图6是本申请实施例2的第二控制模块的管脚示意图;
图7是本申请实施例3的三相逆变器电路结构示意图;
图8是本申请实施例3的驱动器子模块的管脚示意图。
附图标记说明:1、三相逆变器;11、第一桥臂;12、第二桥臂;13、第三桥臂;2、无刷直流电机;3、第一控制模块;31、驱动器智能控制子模块;32、驱动器子模块;4、第二控制模块;41、第一控制子模块;42、第二控制子模块;5、电源模块;6、霍尔传感器;7、续流检测模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本申请各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
以下结合附图1-8对本申请作进一步详细说明。
本申请实施例公开一种电子调速器智能同步整流系统。
实施例一
参照图1和图2,电子调速器智能同步整流系统包括三相逆变器1、第一控制模块3、第二控制模块4和电源模块5。其中,三相逆变器1连接于无刷直流电机2的三个绕组线圈;第一控制模块3信号连接于三相逆变器1,用于控制三相逆变器1进行同步整流;第二控制模块4信号连接于第一控制模块3,用于发出整流信号和处理续流检测信号。三相逆变器1与无刷直流电机2之间连接有续流检测模块7,续流检测模块7信号连接于第二控制模块4,用于检测三相逆变器1中的三相电流,并将信号发送到第二控制模块4。无刷直流电机2上设置有霍尔传感器6,霍尔传感器6信号连接于第二控制模块4,用于检测无刷直流电机2的转子位置信号,电源模块5用于对三相逆变器1、第一控制模块3、第二控制模块4、霍尔传感器6和续流检测模块7进行供电。
参照图2和图3,由于本申请主要运用于电动遥控模型车等模型上,需要各器件体积较小,本申请中第二控制模块4优选采用MCU(微控制单元),MCU型号可以是STM32F3系列、EFM32系列、STM32G4系列、GD32F3系列,本申请中优选为STM32F373RC。霍尔传感器6获取无刷直流电机2的转子位置信号后,将信号发送到第二控制模块4的IN1管脚,第二控制模块4根据位置信号获得无刷直流电机2的实时转速信号,并与设定转速信号进行比较后,对第一控制模块3发送整流信号,第一控制模块3驱动三相逆变器1运作。续流检测模块7实时检测三相逆变器1中的三相电流,并将检测信号发送到第二控制模块4,第二控制模块4根据检测信号判断续流是否结束,当得到续流结束信号后,第二控制模块4将整流关闭信号发送给第一控制模块3,第一控制模块3控制三相逆变器1关闭同步整流。电动遥控模型车等模型在运动过程中,在续流结束后及时的关闭同步整流,能够减少发热和去除电动遥控模型车等模型在减速阶段的主动刹车效果,使整个动力系统安全、稳定和高效的运行。
参照图1和图2,本申请中无刷直流电机2的三相绕组线圈采用星形连接方式,且对应无刷直流电机2的三相设置有A相、B相和C相,A相、B相和C相分别连接于三相逆变器1,通过三相逆变器1实现对无刷直流电机2的驱动。本申请中,电源模块5包括第一供电单元和对第二供电单元(图中未显示),第一供电单元用于对直流无刷电机、三相逆变器1和续流检测模块7供电,第二供电单元用于对第一控制模块3、 第二控制模块4和霍尔传感器6供电,将供电分开能够避免电机转动产生的干扰对第一控制模块3、第二控制模块4和霍尔传感器6造成影响。
参照图2,三相逆变器1中的基本电路包括第一桥臂11、第二桥臂12和第三桥臂13,其中,第一桥臂11、第二桥臂12和第三桥臂13的一端均与第一供电单元的正极电性连接,另一端与第一供电单元的负极电性连接。第一桥臂11、第二桥臂12和第三桥臂13均由多个MOSFET管连接组成,且每个MOSFET管内置有续流二极管,靠近第一供电单元正极的MOSFET管为上桥MOSFET管,靠近第一供电单元负极的MOSFET管为下桥MOSFET管。
参照图2,第一桥臂11包括两个N沟道MOSFET管M1和M2,其中,M1的漏极电性连接于第一供电单元的正极,M2的源极电性连接于第一供电单元的负极,M1的源极电性连接于M2的漏极,并且M1、M2的栅极均信号连接于第一控制模块3。对应的,第二桥臂12包括两个N沟道MOSFET管M3和M4,其中,M3的漏极电性连接于第一供电单元的正极,M4的源极电性连接于第一供电单元的负极,M3的源极电性连接于M4的漏极,并且M3、M4的栅极均信号连接于第一控制模块3。第三桥臂13包括两个N沟道MOSFET管M5和M6,其中,M5的漏极电性连接于第一供电单元的正极,M6的源极电性连接于第一供电单元的负极,M5的源极电性连接于M6的漏极,并且M5、M6的栅极均信号连接于第一控制模块3。
参照图2,续流检测模块7实时检测三相逆变器1中的三相电流,输出到第二控制模块4处理电流变化信号,从而实现实时监测续流状态。续流检测模块7由若干个电阻和若干个对应电阻设置的运算放大器组成,本申请中若干个电阻分别连接于上桥MOSFET管的源极和下桥MOSFET管的漏极之间,运算放大器的反相输入端a和同相输入端b分别设置在对应电阻两端。其中,第一桥臂11连接有第一电阻R1,第一电阻R1的另一端连接于无刷直流电机2的A相;第二桥臂12连接有第二电阻R2,第二电阻R2的另一端连接于无刷直流电机2的B相;第三桥臂13连接有第三电阻R3,第三电阻R3的另一端连接于无刷直流电机2的C相。
参照图2,为了降低对无刷直流电机2三相的分流,第一电阻R1、第二电阻R2和第三电阻R3的阻值均极低,本申请中,第一电阻R1、第二电阻R2和第三电阻R3的阻值均优选为0.25m。
参照图2和图3,第一电阻R1两端连接有运算放大器U1,运算放大器U1的输出端o信号连接于第二控制模块4;第二电阻R2两端连接有运算放大器U2,运算放大器U2的输出端o信号连接于第二控制模块 4;第三电阻R3两端连接有运算放大器U3,运算放大器U3的输出端o信号连接于第二控制模块4。由于第一电阻的电流对应A相电流;第二电阻的电流对应B相电流;第三电阻的电流对应C相电流,经过对应的运算放大器放大,能够分别得到A、B、C三相对应的电流采样值IA_AD、IB_AD和IC_AD,电流采样值IA_AD、IB_AD和IC_AD输入到第二控制模块4的IN2管脚、IN3管脚、IN4管脚。
参照图4,第一控制模块3包括驱动器智能控制子模块31和驱动器子模块32,驱动器智能控制子模块31分别与驱动器子模块32和第二控制模块4信号连接,驱动器子模块32还信号连接于三相逆变器1中六个MOSFET管的栅极,驱动器智能控制子模块31用于接收第二控制模块4的控制信号和传递控制信号至驱动器子模块32,驱动器子模块32用于处理控制信号并控制六个MOSFET管的通断。在开始续流时,驱动器智能控制子模块31接收第二控制模块4的同步整流开启信号,并将信号发送到驱动器子模块32,驱动器子模块32驱动对应的MOSFET管导通与关断。
参照图2和图4,驱动器智能控制子模块31包括多个信号选择开关单元及其外围电路组成,每个信号选择单元用于对应控制一个MOSFET管的导通与关断,信号选择开关单元对应六个MOSFET管设置有六个。驱动器智能控制子模块31对应MOSFET管M1设置有信号选择开关单元S1,信号选择开关单元S1的第一管脚B2连接有下拉电阻R4,下拉电阻R4另一端连接第二供电单元的负极,S1的第二管脚GND连接第二供电单元的负极,S1的第三管脚B1连接有第二控制模块4的第一输出管脚HIN_A,S1的第四管脚A连接有驱动器子模块32对应MOSFET管M1的第一输入管脚HIN1,S1的第五管脚连接第二供电单元的正极,S1的第六管脚连接有第二控制模块4的第二输出管脚HA_EN。信号选择开关单元S1内设置有信号选择开关,当第二控制模块4的第二输出管脚HA_EN输出低电平信号时,S1的第四管脚A与第三管脚B1导通,第二控制模块4的第一输出管脚HIN_A将信号发送到驱动器子模块32的第一输入管脚HIN1,控制MOSFET管M1的导通与关断;当第二控制模块4的第二输出管脚HA_EN输出高电平信号时,S1的第四管脚A与第一管脚B2导通,第二控制模块4的第二输出管脚HA_EN将信号发送到驱动器子模块32的第一输入管脚HIN1,控制MOSFET管M1的导通与关断。
参照图2和图4,驱动器智能控制子模块31对应MOSFET管M2设置有信号选择开关单元S2,信号选择开关单元S2的第一管脚B2连接有下拉电阻R5,下拉电阻R5另一端连接第二供电单元的负极,S2的第二管 脚GND连接第二供电单元的负极,S2的第三管脚B1连接有第二控制模块4的第三输出管脚HIN_B,S2的第四管脚A连接有驱动器子模块32对应MOSFET管M2的第二输入管脚HIN2,S2的第五管脚连接第二供电单元的正极,S2的第六管脚连接有第二控制模块4的第四输出管脚HB_EN。信号选择开关单元S2内设置有信号选择开关,当第二控制模块4的第四输出管脚HB_EN输出低电平信号时,S2的第四管脚A与第三管脚B1导通,第二控制模块4的第三输出管脚HIN_B将信号发送到驱动器子模块32的第二输入管脚HIN2,控制MOSFET管M2的导通与关断;当第二控制模块4的第四输出管脚HB_EN输出高电平信号时,S2的第四管脚A与第一管脚B2导通,第二控制模块4的第四输出管脚HB_EN将信号发送到驱动器子模块32的第二输入管脚HIN2,控制MOSFET管M2的导通与关断。
参照图2和图4,驱动器智能控制子模块31对应MOSFET管M3设置有信号选择开关单元S3,信号选择开关单元S3的第一管脚B2连接有下拉电阻R6,下拉电阻R6另一端连接第二供电单元的负极,S3的第二管脚GND连接第二供电单元的负极,S3的第三管脚B1连接有第二控制模块4的第五输出管脚HIN_C,S3的第四管脚A连接有驱动器子模块32对应MOSFET管M3的第三输入管脚HIN3,S3的第五管脚连接第二供电单元的正极,S3的第六管脚连接有第二控制模块4的第六输出管脚HC_EN。信号选择开关单元S3内设置有信号选择开关,当第二控制模块4的第六输出管脚HC_EN输出低电平信号时,S3的第四管脚A与第三管脚B1导通,第二控制模块4的第五输出管脚HIN_C将信号发送到驱动器子模块32的第三输入管脚HIN3,控制MOSFET管M3的导通与关断;当第二控制模块4的第六输出管脚HC_EN输出高电平信号时,S3的第四管脚A与第一管脚B2导通,第二控制模块4的第六输出管脚HC_EN将信号发送到驱动器子模块32的第三输入管脚HIN3,控制MOSFET管M3的导通与关断。
参照图2和图4,驱动器智能控制子模块31对应MOSFET管M4设置有信号选择开关单元S4,信号选择开关单元S4的第一管脚B2连接有下拉电阻R7,下拉电阻R7另一端连接第二供电单元的负极,S4的第二管脚GND连接第二供电单元的负极,S4的第三管脚B1连接有第二控制模块4的第七输出管脚LIN_A,S4的第四管脚A连接有驱动器子模块32对应MOSFET管M4的第四输入管脚HIN4,S4的第五管脚连接第二供电单元的正极,S4的第六管脚连接有第二控制模块4的第八输出管脚LA_EN。信号选择开关单元S4内设置有信号选择开关,当第二控制模块 4的第八输出管脚LA_EN输出低电平信号时,S4的第四管脚A与第三管脚B1导通,第二控制模块4的第七输出管脚LIN_A将信号发送到驱动器子模块32的第四输入管脚HIN4,控制MOSFET管M4的导通与关断;当第二控制模块4的第八输出管脚LA_EN输出高电平信号时,S4的第四管脚A与第一管脚B2导通,第二控制模块4的第八输出管脚LA_EN将信号发送到驱动器子模块32的第四输入管脚HIN4,控制MOSFET管M4的导通与关断。
参照图2和图4,驱动器智能控制子模块31对应MOSFET管M5设置有信号选择开关单元S5,信号选择开关单元S5的第一管脚B2连接有下拉电阻R8,下拉电阻R8另一端连接第二供电单元的负极,S5的第二管脚GND连接第二供电单元的负极,S5的第三管脚B1连接有第二控制模块4的第九输出管脚LIN_B,S5的第四管脚A连接有驱动器子模块32对应MOSFET管M5的第五输入管脚HIN5,S5的第五管脚连接第二供电单元的正极,S5的第六管脚连接有第二控制模块4的第十输出管脚LB_EN。信号选择开关单元S5内设置有信号选择开关,当第二控制模块4的第十输出管脚LB_EN输出低电平信号时,S5的第四管脚A与第三管脚B1导通,第二控制模块4的第九输出管脚LIN_B将信号发送到驱动器子模块32的第五输入管脚HIN5,控制MOSFET管M5的导通与关断;当第二控制模块4的第十输出管脚LB_EN输出高电平信号时,S5的第四管脚A与第一管脚B2导通,第二控制模块4的第十输出管脚LB_EN将信号发送到驱动器子模块32的第五输入管脚HIN5,控制MOSFET管M5的导通与关断。
参照图2和图4,驱动器智能控制子模块31对应MOSFET管M6设置有信号选择开关单元S6,信号选择开关单元S6的第一管脚B2连接有下拉电阻R8,下拉电阻R8另一端连接第二供电单元的负极,S6的第二管脚GND连接第二供电单元的负极,S6的第三管脚B1连接有第二控制模块4的第十一输出管脚LIN_C,S6的第四管脚A连接有驱动器子模块32对应MOSFET管M6的第六输入管脚HIN6,S6的第五管脚连接第二供电单元的正极,S6的第六管脚连接有第二控制模块4的第十二输出管脚LC_EN。信号选择开关单元S6内设置有信号选择开关,当第二控制模块4的第十二输出管脚LC_EN输出低电平信号时,S6的第四管脚A与第三管脚B1导通,第二控制模块4的第十一输出管脚LIN_C将信号发送到驱动器子模块32的第六输入管脚HIN6,控制MOSFET管M6的导通与关断;当第二控制模块4的第十二输出管脚LC_EN输出高电平信号时,S6的第四管脚A与第一管脚B2导通,第二控制模块4的第十二输出管脚 LC_EN将信号发送到驱动器子模块32的第六输入管脚HIN6,控制MOSFET管M6的导通与关断。
参照图2和图4,驱动器子模块32上的第一输出管脚HO1连接于MOSFET管M1的栅极,HO_1输出控制信号HO_A至MOSFET管M1,从而实现控制MOSFET管M1的通断;驱动器子模块32上的第二输出管脚HO2连接于MOSFET管M3的栅极,HO_2输出控制信号HO_B至MOSFET管M3,从而实现控制MOSFET管M3的通断;驱动器子模块32上的第三输出管脚HO3连接于MOSFET管M5的栅极,HO_3输出控制信号HO_C至MOSFET管M5,从而实现控制MOSFET管M5的通断;驱动器子模块32上的第四输出管脚LO1连接于MOSFET管M2的栅极,LO_1输出控制信号LO_A至MOSFET管M2,从而实现控制MOSFET管M2的通断;驱动器子模块32上的第五输出管脚LO2连接于MOSFET管M4的栅极,LO_2输出控制信号LO_B至MOSFET管M4,从而实现控制MOSFET管M4的通断;驱动器子模块32上的第六输出管脚LO3连接于MOSFET管M6的栅极,LO_3输出控制信号LO_C至MOSFET管M6,从而实现控制MOSFET管M6的通断。
参照图5,无刷直流电机2的一个周期内两两导通顺序为AB相导通,AC相导通,BC相导通,BA相导通,CA相导通,CB相导通,如果电机反转,导通顺序会反过来。
参照图2和图5,在AB相-AC相的换相过程中,导通电流的流向由:
第一供电单元正极-MOSFET管M1-第一电阻R1-无刷直流电机2A相绕组线圈-无刷直流电机2B相绕组线圈-第二电阻R2-MOSFET管M4-第一供电单元负极。变为:
第一供电单元正极-MOSFET管M1-第一电阻R1-无刷直流电机2A相绕组线圈-无刷直流电机2C相绕组线圈-第三电阻R3-MOSFET管M6-第一供电单元负极。
在无刷直流电机2B相绕组线圈处产生反电动势BEMF_B,对应产生续流,第二控制模块4输出高电平控制信号,通过第五输出管脚HIN_C将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S3,此时信号选择开关单元S3的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第三输入管脚HIN3,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第二输出管脚HO2输出高电平信号HO_B传送至MOSFET管M3的栅极,MOSFET管M3导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2B相绕组线圈-第二电阻R2-MOSFET管M3-MOSFET管M1-第一电阻R1-无刷直流电机2A相绕组线圈-无刷直流电机2B相绕组 线圈。
此时,第一电阻R1处于AC相回路中,始终存在电流,第二电阻R2中存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第二电阻R2的电流变化过程中,连接于第二电阻R2两端的运算放大器U2持续将采集到的电流采样值IB_AD发送到第二控制模块4;当采样值IB_AD为零时,第二控制模块4检测到续流结束,第二控制模块4发出高电平信号,通过第二控制模块4的第六输出管脚HC_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S3,信号选择开关单元S3的第四管脚A与第一管脚B2导通,第二控制模块4的第六输出管脚HC_EN将信号发送到驱动器子模块32的第三输入管脚HIN3,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第二输出管脚HO2输出低电平信号HO_B传送至MOSFET管M3的栅极,MOSFET管M3关断,即关闭同步整流。
电动遥控模型车等模型在运动过程中,通过及时的关闭同步整流,能够减少发热和避免出现电动遥控模型车等模型在减速阶段两相绕组直接短接而且接地的情况发生,去除了主动刹车效果,使整个动力系统安全、稳定和高效的运行。
参照图2和图5,在AC相-BC相的换相过程中续流处理方式与AB相-AC相的换相过程中一致,其续流开始信号传递为:
在无刷直流电机2中A相绕组线圈处产生反电动势BEMF_A,对应产生续流,第二控制模块4输出高电平控制信号,通过第三输出管脚HIN_B将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S2,此时信号选择开关单元S2的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第二输入管脚HIN2,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第四输出管脚LO1输出高电平信号LO_A传送至MOSFET管M2的栅极,MOSFET管M2导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2A相绕组线圈-无刷直流电机2C相绕组线圈-第三电阻R3-MOSFET管M6-MOSFET管M2-第一电阻R1-无刷直流电机2A相绕组线圈。
此时,第三电阻R3处于BC相回路中,始终存在电流,第一电阻R1中存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第一电阻R1的电流变化过程中,连接于第一电阻R1两端的运算放大器U1持续将采集到的电流采样值IA_AD发送到第二控制模块4;当采样值IA_AD为零时,第二控制模块4检测到续流结束,第二控制模块 4发出高电平信号,通过第二控制模块4的第四输出管脚HB_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S2,信号选择开关单元S2的第四管脚A与第一管脚B2导通,第二控制模块4的第四输出管脚HB_EN将信号发送到驱动器子模块32的第二输入管脚HIN2,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第四输出管脚LO1输出低电平信号LO_A传送至MOSFET管M2的栅极,MOSFET管M2关断,即关闭同步整流。
参照图2和图5,在BC相-BA相的换相过程中,其续流开始信号传递为:
在无刷直流电机2A相绕组线圈处产生反电动势BEMF_C,对应产生续流,第二控制模块4输出高电平控制信号,通过第九输出管脚LIN_B将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S5,此时信号选择开关单元S5的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第五输入管脚HIN5,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第三输出管脚HO3输出高电平信号HO_C传送至MOSFET管M5的栅极,MOSFET管M5导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2C相绕组线圈-第三电阻R3-MOSFET管M5-MOSFET管M3-第二电阻R2-无刷直流电机2B相绕组线圈-无刷直流电机2C相绕组线圈。
此时,第二电阻R2处于BA相回路中,始终存在电流,第三电阻R3中存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第三电阻R3的电流变化过程中,连接于第三电阻R3两端的运算放大器U3持续将采集到的电流采样值IC_AD发送到第二控制模块4;当采样值IC_AD为零时,第二控制模块4检测到续流结束,第二控制模块4发出高电平信号,通过第二控制模块4的第十输出管脚LB_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S5,信号选择开关单元S5的第四管脚A与第一管脚B2导通,第二控制模块4的第十输出管脚LB_EN将信号发送到驱动器子模块32的第五输入管脚HIN5,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第三输出管脚HO3输出低电平信号HO_C传送至MOSFET管M5的栅极,MOSFET管M5关断,即关闭同步整流。
参照图2和图5,在BA相-CA相的换相过程中,其续流开始信号传递为:
在无刷直流电机2A相绕组线圈处产生反电动势BEMF_B,对应产生 续流,第二控制模块4输出高电平控制信号,通过第七输出管脚LIN_A将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S4,此时信号选择开关单元S4的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第四输入管脚HIN4,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第五输出管脚LO2输出高电平信号LO_B传送至MOSFET管M4的栅极,MOSFET管M4导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2B相绕组线圈-无刷直流电机2A相绕组线圈-第一电阻R1-MOSFET管M2-MOSFET管M4-第二电阻R2-无刷直流电机2B相绕组线圈。
此时,第一电阻R1处于CA相回路中,始终存在电流,第二电阻R2中存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第二电阻R2的电流变化过程中,连接于第二电阻R2两端的运算放大器U2持续将采集到的电流采样值IB_AD发送到第二控制模块4;当采样值IB_AD为零时,第二控制模块4检测到续流结束,第二控制模块4发出高电平信号,通过第二控制模块4的第八输出管脚LA_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S4,信号选择开关单元S4的第四管脚A与第一管脚B2导通,第二控制模块4的第八输出管脚LA_EN将信号发送到驱动器子模块32的第四输入管脚HIN4,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第五输出管脚LO2输出低电平信号LO_B传送至MOSFET管M4的栅极,MOSFET管M4关断,即关闭同步整流。
参照图2和图5,在CA相-CB相的换相过程中,其续流开始信号传递为:
在无刷直流电机2A相绕组线圈处产生反电动势BEMF_A,对应产生续流,第二控制模块4输出高电平控制信号,通过第一输出管脚HIN_A将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S1,此时信号选择开关单元S1的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第一输入管脚HIN1,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第一输出管脚HO1输出高电平信号HO_A传送至MOSFET管M1的栅极,MOSFET管M1导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2A相绕组线圈-第一电阻R1-MOSFET管M1-MOSFET管M5-第三电阻R3-无刷直流电机2C相绕组线圈-无刷直流电机2A相绕组线圈。
此时,第三电阻R3处于CB相回路中,始终存在电流,第一电阻R1中存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第一电阻R1的电流变化过程中,连接于第一电阻R1两端的运算放大器U1持续将采集到的电流采样值IA_AD发送到第二控制模块4;当采样值IA_AD为零时,第二控制模块4检测到续流结束,第二控制模块4发出高电平信号,通过第二控制模块4的第二输出管脚HA_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S1,信号选择开关单元S1的第四管脚A与第一管脚B2导通,第二控制模块4的第二输出管脚HA_EN将信号发送到驱动器子模块32的第一输入管脚HIN1,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第一输出管脚HO1输出低电平信号HO_A传送至MOSFET管M1的栅极,MOSFET管M1关断,即关闭同步整流。
参照图2和图5,在CB相-AB相的换相过程中,其续流开始信号传递为:
在无刷直流电机2A相绕组线圈处产生反电动势BEMF_C,对应产生续流,第二控制模块4输出高电平控制信号,通过第十一输出管脚LIN_C将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S6,此时信号选择开关单元S6的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第六输入管脚HIN6,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第六输出管脚LO3输出高电平信号LO_C传送至MOSFET管M6的栅极,MOSFET管M6导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2C相绕组线圈-无刷直流电机2B相绕组线圈-第二电阻R2-MOSFET管M4-MOSFET管M6-第三电阻R3-无刷直流电机2C相绕组线圈。
此时,第二电阻R2处于CB相回路中,始终存在电流,第三电阻R3中存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第三电阻R3的电流变化过程中,连接于第三电阻R3两端的运算放大器U3持续将采集到的电流采样值IC_AD发送到第二控制模块4;当采样值IC_AD为零时,第二控制模块4检测到续流结束,第二控制模块4发出高电平信号,通过第二控制模块4的第十二输出管脚LC_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S6,信号选择开关单元S6的第四管脚A与第一管脚B2导通,第二控制模块4的第十二输出管脚LC_EN将信号发送到驱动器子模块32的第六输入管脚HIN6,驱动器子模块32接收并处理信号后,通过驱动器 子模块32上的第六输出管脚LO3输出低电平信号LO_C传送至MOSFET管M6的栅极,MOSFET管M6关断,即关闭同步整流。
参照图2和图5,不仅在无刷直流电机2换相时会产生续流,在无刷直流电机2上MOSFET管PWM_OFF时,也会有续流产生,对应的原理与刷直流电机换相时一致,以MOSFET管M1在PWM_OFF时为例:
此时,在无刷直流电机2A相绕组线圈处产生反电动势BEMF_A与反电动势BEMF_B,对应产生续流,第二控制模块4输出高电平控制信号,通过第三输出管脚HIN_B将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S2,此时信号选择开关单元S2的第四管脚A与第三管脚B1导通,从而将高电平信号发送到驱动器子模块32的第二输入管脚HIN2,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第四输出管脚LO1输出高电平信号LO_A传送至MOSFET管M2的栅极,MOSFET管M2导通,形成完整续流通路,即开启同步整流。此时的续流方向为:
无刷直流电机2B相绕组线圈-第二电阻R2-MOSFET管M4-MOSFET管M2-第一电阻R1-无刷直流电机2A相绕组线圈。
此时,第二电阻R2、第一电阻R1中均存在续流电流,并随着续流的结束,续流电流逐渐降低,直至为零。在流经第二电阻R2、第一电阻R1的电流变化过程中,分别连接于第二电阻R2、第一电阻R1两端的运算放大器U2、U1持续将采集到的电流采样值IB_AD、IA_AD发送到第二控制模块4;当采样值IB_AD、IA_AD为零时,第二控制模块4检测到续流结束,第二控制模块4发出高电平信号,通过第二控制模块4的第四输出管脚HB_EN将高电平控制信号传送到控制驱动器智能控制子模块31中的信号选择开关单元S2,信号选择开关单元S2的第四管脚A与第一管脚B2导通,第二控制模块4的第四输出管脚HB_EN将信号发送到驱动器子模块32的第二输入管脚HIN2,驱动器子模块32接收并处理信号后,通过驱动器子模块32上的第四输出管脚LO1输出低电平信号LO_A传送至MOSFET管M2的栅极,MOSFET管M2关断,即关闭同步整流。
参照图2和图5,针对PWM_OFF阶段续流,如果因为油门信号(转速调节信号)过大或者其他因素,导致续流时间大于下桥MOSFET管PWM_ON的时间,若此时不关闭下桥MOSFET管,将导致上MOSFET管与下桥MOSFET管导通,而同步整流采用的是通态电阻极低的专用功率MOSFET管,即可以将整个桥臂等同于几乎没有电阻的导线,使得第一供电单元正负极短接,会损坏电路结构。为避免上述情况的发生,第二控制模块4获取六个MOSFET管的PWM控制信息,并根据运算放大器持续获取的电 流采样值计算出续流时间点,将续流时间点与下桥MOSFET管PWM_ON时间点进行比较,当比较得到续流时间点后于下桥MOSFET管PWM_ON时间点时,第二控制模块4在上MOSFET管导通前控制对应的下桥MOSFET管关闭,强制关闭同步整流,从而实现对电路进行保护。
本申请实施例一种电子调速器智能同步整流系统的实施原理为:第二控制模块4通过霍尔传感器6获取无刷直流电机2的实时转速信号,并与设定转速信号进行比较后,对第一控制模块3发送整流信号,第一控制模块3驱动三相逆变器1运作。续流检测模块7实时检测三相逆变器1中的三相电流,并将检测信号发送到第二控制模块4,第二控制模块4根据检测信号判断续流是否结束,当得到续流结束信号后,第二控制模块4将整流关闭信号发送给第一控制模块3,第一控制模块3控制三相逆变器1中对应的MOSFET管关闭同步整流。
实施例2
参照图6,本实施例与实施例1的不同之处在于,本实施例中第二控制模块4包括第一控制子模块41和第二控制子模块42;其中,第一控制子模块41用于收集霍尔传感器6信号,控制驱动器智能控制子模块31,让电机正常运行,IN1为第一控制子模块41的输入,HIN_A、HIN_B、HIN_C、LIN_A、LIN_B、LIN_C均为第一控制子模块41的输出。IA_AD、IB_AD和IC_AD为第二控制子模块42的输入,HA_EN、HB_EN、HC_EN、LA_EN、LB_EN、LC_EN均为MCU2的输出,第二控制子模块42用于收集三相电流检测信号,及时判断续流结束时刻,然后控制驱动器智能控制子模块31关闭驱动器,即关闭对应MOSFET管,结束同步整流。本实施例中,第一控制子模块41和第二控制子模块42均采用MCU作为控制器。
参照图6,为了在续流时长大于下桥MOSFET管PWM_ON时长时保护电路,第二控制子模块42需要从第一控制子模块41获取六个MOSFET管的PWM控制信息,以判断续流时间与下管PWM_ON时间的大小比较。在第一控制子模块41上设置有OUT7管脚,用于输出六个MOSFET管的PWM控制信息,在第二控制子模块42上设置有IN5管脚,用于接收六个MOSFET管的PWM控制信息,当续流时间大于下管PWM_ON的时间,第二控制子模块42及时判断时间比较信息,在上MOSFET管导通前及时关闭同步整流。采用两个子模块实现第二控制模块4的功能,能够降低第二控制模块4的计算量,增快了响应速度,同时也降低了第二控制模块4的发热量,提高了工作效率。
本申请实施例一种电子调速器智能同步整流系统的实施原理为:第一控制子模块41通过霍尔传感器6获取无刷直流电机2的实时转速信 号,并与设定转速信号进行比较后,对第一控制模块3发送整流信号,第一控制模块3驱动三相逆变器1运作。续流检测模块7实时检测三相逆变器1中的三相电流,并将检测信号发送到第二控制子模块42,第二控制子模块42根据检测信号判断续流是否结束,当得到续流结束信号后,第二控制子模块42将整流关闭信号发送给第一控制模块3,第一控制模块3控制三相逆变器1中对应的MOSFET管关闭同步整流。
实施例3
参照图7,本实施例与实施例2的不同之处在于,本实施例中,MOSFET管M1、M2、M3、M4、M5、M6上均并联有多个MOSFET管,对应MOSFET管的漏极与相并联的MOSFET管的漏极电性连接,对应MOSFET管的源极与相并联的MOSFET管的源极电性连接,对应MOSFET管的栅极与相并联的MOSFET管的栅极接收的信号一致。本实施例中,MOSFET管M1、M2、M3、M4、M5、M6上分别并联有两个MOSFET管,MOSFET管M1上并联有MOSFET管M11和M12;MOSFET管M2上并联有MOSFET管M21和M22;MOSFET管M3上并联有MOSFET管M31和M32;MOSFET管M4上并联有MOSFET管M41和M42;MOSFET管M5上并联有MOSFET管M51和M52;MOSFET管M6上并联有MOSFET管M61和M62。
参照图7和图8,驱动器子模块33上设置有多个管脚连接于并联的MOSFET管的栅极,其中:
驱动器子模块33上HO1.1输出管脚电性连接于MOSFET管M11的栅极,HO1.2输出管脚电性连接于MOSFET管M12的栅极,且HO1.1输出管脚和HO1.2输出管脚的输出信号与第一输出管脚HO1的输出信号一致;
驱动器子模块33上HO2.1输出管脚电性连接于MOSFET管M21的栅极,HO2.2输出管脚电性连接于MOSFET管M22的栅极,且HO2.1输出管脚和HO2.2输出管脚的输出信号与第二输出管脚HO2的输出信号一致;
驱动器子模块33上HO3.1输出管脚电性连接于MOSFET管M31的栅极,HO3.2输出管脚电性连接于MOSFET管M32的栅极,且HO3.1输出管脚和HO3.2输出管脚的输出信号与第三输出管脚HO3的输出信号一致;
驱动器子模块33上LO1.1输出管脚电性连接于MOSFET管M41的栅极,LO1.2输出管脚电性连接于MOSFET管M42的栅极,且LO1.1输出管脚和LO1.2输出管脚的输出信号与第四输出管脚LO1的输出信号一致;
驱动器子模块33上LO2.1输出管脚电性连接于MOSFET管M51的栅极,LO2.2输出管脚电性连接于MOSFET管M52的栅极,且LO2.1输出管脚和LO2.2输出管脚的输出信号与第五输出管脚LO2的输出信号一致;
驱动器子模块33上LO3.1输出管脚电性连接于MOSFET管M61的栅 极,LO3.2输出管脚电性连接于MOSFET管M62的栅极,且LO3.1输出管脚和LO3.2输出管脚的输出信号与第六输出管脚LO3的输出信号一致。
由于电动遥控模型车等模型在满油门运行(最大运行状态)时电流会很大,通过对MOSFET管M1、M2、M3、M4、M5、M6上均并联多个MOSFET管,能够有效地降低每个MOSFET管上承担的导通电流,起到分流作用,能够降低电调发热。
本申请实施例一种电子调速器智能同步整流系统的实施原理为:第一控制子模块41通过霍尔传感器6获取无刷直流电机2的实时转速信号,并与设定转速信号进行比较后,对第一控制模块3发送整流信号,第一控制模块3驱动三相逆变器1运作。续流检测模块7实时检测三相逆变器1中的三相电流,并将检测信号发送到第二控制子模块42,第二控制子模块42根据检测信号判断续流是否结束,当得到续流结束信号后,第二控制子模块42将整流关闭信号发送给第一控制模块3,第一控制模块3控制三相逆变器1中对应的多个MOSFET管关闭同步整流。
本申请实施例还公开一种基于电子调速器智能同步整流系统的控制方法。
一种电子调速器智能同步整流控制方法,包括:
Step1、获取电机设定转速信号和实时转速信号,进行比较,基于比较结果,进行脉冲宽度调制,生成脉冲宽度调制信号;
Step2、基于脉冲宽度调制信号,生成使三相逆变器1进行同步整流的三相逆变器导通信号;
Step3、实时获取续流电流,根据续流电流变化获取续流结束信号;
Step4、基于续流结束信号,生成使三相逆变器1关闭同步整流的三相逆变器关闭信号。
针对PWM_OFF阶段续流,续流时长大于下桥MOSFET管PWM_ON时长的情况,Step4包括:
Step41、获取三相逆变器1的脉冲宽度调制控制信息;
Step42、获取续流电流采样值,计算预计续流时间点;
Step43、将预计续流时间点与脉冲宽度调制控制开启时间点进行比较;
Step44、基于比较,生成使三相逆变器1关闭同步整流的三相逆变器关闭信号。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (8)

  1. 一种电子调速器智能同步整流系统,其特征在于:包括
    霍尔传感器(6),设置于无刷直流电机(2)周侧,用于获取无刷直流电机(2)转子位置信息;
    第二控制模块(4),信号连接于所述霍尔传感器(6),用于接收所述霍尔传感器(6)发出的转子位置信息,并生成同步整流开闭信号,还用于生成续流结束信号;
    三相逆变器(1),电性连接于无刷直流电机(2)的绕组线圈,用于驱动无刷直流电机(2)运动;
    第一控制模块(3),信号连接于所述三相逆变器(1),用于接收第二控制模块(4)发出的同步整流开闭信号或者续流结束信号,并根据同步整流开闭信号或者续流结束信号控制所述三相逆变器(1);
    续流检测模块(7),电性连接于所述三相逆变器(1)与无刷直流电机(2)之间,所述续流检测模块(7)信号连接于所述第二控制模块(4),用于检测所述三相逆变器(1)中的三相电流,并将信号发送到所述第二控制模块(4);
    电源模块(5),用于对三相逆变器(1)、第一控制模块(3)、第二控制模块(4)、霍尔传感器(6)和续流检测模块(7)进行供电。
  2. 根据权利要求1所述的一种电子调速器智能同步整流系统,其特征在于:所述三相逆变器(1)包括第一桥臂(11)、第二桥臂(12)和第三桥臂(13),所述第一桥臂(11)、所述第二桥臂(12)和所述第三桥臂(13)的一端均与所述电源模块(5)的正极电性连接,另一端与所述电源模块(5)的负极电性连接。
  3. 根据权利要求2所述的一种电子调速器智能同步整流系统,其特征在于:所述续流检测模块(7)包括多个连接于各个桥臂的电阻和对应多个所述电阻数量设置的运算放大器,所述运算放大器的反相输入端a和同相输入端b分别连接对应电阻两端,所述运算放大器的输出端o信号连接于所述第二控制模块(4)。
  4. 根据权利要求2所述的一种电子调速器智能同步整流系统,其特征在于:所述第一控制模块(3)包括驱动器智能控制子模块(31)和驱动器子模块(32),所述驱动器智能控制子模块(31)分别信号连接于所述驱动器子模块(32)和所述第二控制模块(4),所述驱动器智能控制子模块(31)用于接收所述第二控制模块(4)的同步整流开闭信号或者续流结束 信号,并将同步整流开闭信号或者续流结束信号处理后发送至所述驱动器子模块(32)。
  5. 根据权利要求4所述的一种电子调速器智能同步整流系统,其特征在于:所述驱动器智能控制子模块(31)包括多个信号选择开关单元,所述信号选择开关单元信号连接于所述第二控制模块(4)和所述驱动器子模块(32),所述信号选择单元用于根据第二控制模块(4)发出的同步整流开闭信号或者续流结束信号生成导通信号或者断开信号,并将导通信号或者断开信号发送到所述驱动器子模块(32)。
  6. 根据权利要求5所述的一种电子调速器智能同步整流系统,其特征在于:所述驱动器子模块(32)信号连接于所述三相逆变器(1),用于接收所述驱动器智能控制子模块(31)发出的导通信号或者断开信号,并根据导通信号或者断开信号控制所述三相逆变器(1)的通断。
  7. 一种电子调速器智能同步整流系统的控制方法,其特征在于,基于权利要求1-6中任意一项所述的电子调速器智能同步整流系统,至少包括如下步骤:
    获取电机设定转速信号和实时转速信号,进行比较,基于比较结果,进行脉冲宽度调制,生成脉冲宽度调制信号;
    基于脉冲宽度调制信号,生成使三相逆变器(1)进行同步整流的三相逆变器导通信号;实时获取续流电流,根据续流电流变化获取续流结束信号;
    基于续流结束信号,生成使三相逆变器(1)关闭同步整流的三相逆变器关闭信号。
  8. 根据权利要求7所述的一种电子调速器智能同步整流控制方法,其特征在于:所述基于续流结束信号,生成使三相逆变器(1)关闭同步整流的三相逆变器关闭信号的步骤包括:
    获取三相逆变器(1)的脉冲宽度调制控制信息;
    获取续流电流采样值,计算预计续流时间点;
    将预计续流时间点与脉冲宽度调制控制开启时间点进行比较;
    基于比较,生成使三相逆变器(1)关闭同步整流的三相逆变器关闭信号。
PCT/CN2021/115678 2021-05-26 2021-08-31 一种电子调速器智能同步整流系统及其控制方法 WO2022247040A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/297,070 US20230283209A1 (en) 2021-05-26 2023-04-07 Intelligent synchronous rectification system of electronic speed controller, and control method for intelligent synchronous rectification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110577757.7 2021-05-26
CN202110577757.7A CN113193795B (zh) 2021-05-26 2021-05-26 一种电子调速器智能同步整流系统及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/297,070 Continuation US20230283209A1 (en) 2021-05-26 2023-04-07 Intelligent synchronous rectification system of electronic speed controller, and control method for intelligent synchronous rectification system

Publications (1)

Publication Number Publication Date
WO2022247040A1 true WO2022247040A1 (zh) 2022-12-01

Family

ID=76985230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115678 WO2022247040A1 (zh) 2021-05-26 2021-08-31 一种电子调速器智能同步整流系统及其控制方法

Country Status (3)

Country Link
US (1) US20230283209A1 (zh)
CN (1) CN113193795B (zh)
WO (1) WO2022247040A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193795B (zh) * 2021-05-26 2022-12-16 深圳市好盈科技股份有限公司 一种电子调速器智能同步整流系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486743A (en) * 1992-11-19 1996-01-23 Kabushiki Kaisha Toshiba Inverter and air conditioner controlled by the same
CN101154907A (zh) * 2007-08-21 2008-04-02 南京航空航天大学 无位置传感器无刷直流电机位置信号相位误差校正方法
CN109391177A (zh) * 2017-08-09 2019-02-26 马渊马达株式会社 马达控制电路及马达装置
CN109818538A (zh) * 2017-11-21 2019-05-28 英飞凌科技奥地利有限公司 用于减少bldc驱动器的逆变器损耗的块换向
CN109861591A (zh) * 2019-02-25 2019-06-07 东北大学 一种低损耗的大功率纯方波无刷直流电机控制装置及方法
CN110535378A (zh) * 2019-08-27 2019-12-03 江苏科技大学 无刷直流电机高精度换相控制的方法及系统
CN113193795A (zh) * 2021-05-26 2021-07-30 深圳市好盈科技有限公司 一种电子调速器智能同步整流系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236690A (ja) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動制御装置
JP5034633B2 (ja) * 2006-10-17 2012-09-26 日本精工株式会社 モータ駆動制御装置、モータ駆動制御方法及びモータ駆動制御装置を使用した電動パワーステアリング装置
CN104734581B (zh) * 2015-03-19 2017-04-19 南京航空航天大学 一种永磁无刷直流电机无位置传感器的驱动方法
CN110460269B (zh) * 2018-05-03 2021-08-27 南京德朔实业有限公司 电动工具
CN108900118A (zh) * 2018-08-13 2018-11-27 魏海峰 一种无刷直流电机换相续流控制方法
CN211557184U (zh) * 2019-12-20 2020-09-22 江苏东成工具科技有限公司 一种无刷电机控制机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486743A (en) * 1992-11-19 1996-01-23 Kabushiki Kaisha Toshiba Inverter and air conditioner controlled by the same
CN101154907A (zh) * 2007-08-21 2008-04-02 南京航空航天大学 无位置传感器无刷直流电机位置信号相位误差校正方法
CN109391177A (zh) * 2017-08-09 2019-02-26 马渊马达株式会社 马达控制电路及马达装置
CN109818538A (zh) * 2017-11-21 2019-05-28 英飞凌科技奥地利有限公司 用于减少bldc驱动器的逆变器损耗的块换向
CN109861591A (zh) * 2019-02-25 2019-06-07 东北大学 一种低损耗的大功率纯方波无刷直流电机控制装置及方法
CN110535378A (zh) * 2019-08-27 2019-12-03 江苏科技大学 无刷直流电机高精度换相控制的方法及系统
CN113193795A (zh) * 2021-05-26 2021-07-30 深圳市好盈科技有限公司 一种电子调速器智能同步整流系统及其控制方法

Also Published As

Publication number Publication date
CN113193795B (zh) 2022-12-16
CN113193795A (zh) 2021-07-30
US20230283209A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP3971520B2 (ja) 空気調和機の室外ファン用ブラシレスモータの駆動装置
CN205304653U (zh) 一种基于无刷直流电机的双面式通风机控制系统
CN110474580B (zh) 一种起动发电系统功率变换器及其控制方法
CN101272114B (zh) 直流电动机变频控制装置
WO2019024712A1 (zh) 电动汽车的电机驱动系统
CN111619351A (zh) 一种安全状态控制方法、装置及汽车
CN105915130B (zh) 一种泵用无位置传感器永磁电机的控制方法及其装置
WO2014139315A1 (zh) 电机控制系统及具有其的空调器
WO2022247040A1 (zh) 一种电子调速器智能同步整流系统及其控制方法
CN113740772B (zh) 一种双凸极电机驱动系统开路故障诊断方法
CN108092564B (zh) 一种双电机八开关逆变器驱动系统及其控制方法
CN205693592U (zh) 一种三相无刷电机控制系统
CN108011559A (zh) 电动工具及电动工具的控制方法
WO2021031138A1 (zh) 交流电动工具及其启动方法
CN108233783B (zh) 一种双电机三桥臂逆变器及其控制方法
CN108173472B (zh) 一种双三相电机五相逆变器及控制方法
CN206432928U (zh) 一种单相电动机变频驱动电路
CN205610508U (zh) 一种无刷直流电机硬件换相电路
JP3763291B2 (ja) ハイブリッド車の駆動装置の制御方法
CN205647310U (zh) 一种无刷直流电机的dsp控制装置
WO2021195945A1 (zh) 一种多电机驱动电路及其控制方法
CN108134543B (zh) 一种双三相电机四桥臂逆变器及其控制方法
CN111585479A (zh) 一种三相无传感器无刷直流电机控制系统
TWI647902B (zh) 具有追相模組之馬達控制系統
CN200941593Y (zh) 一种六相开关磁阻电动机系统的功率逆变电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942607

Country of ref document: EP

Kind code of ref document: A1