WO2020057374A1 - 一种供电电路及电子设备 - Google Patents

一种供电电路及电子设备 Download PDF

Info

Publication number
WO2020057374A1
WO2020057374A1 PCT/CN2019/104426 CN2019104426W WO2020057374A1 WO 2020057374 A1 WO2020057374 A1 WO 2020057374A1 CN 2019104426 W CN2019104426 W CN 2019104426W WO 2020057374 A1 WO2020057374 A1 WO 2020057374A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
circuit
power
output terminal
Prior art date
Application number
PCT/CN2019/104426
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020057374A1 publication Critical patent/WO2020057374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the present invention relates to the field of electronic technology, and in particular, to a power supply circuit and an electronic device having the power supply circuit.
  • electronic devices have more and more functions. Taking drones as an example, a variety of functions are integrated on the drones, such as shooting, transportation, and interference. Correspondingly, the circuits of electronic equipment are getting larger and larger, and there are more and more components on the lines, and this will inevitably increase the power load.
  • a high-power power supply is usually used as the power supply source of the electronic equipment.
  • a high-power power supply can meet the demand for high power consumption, when the electronic device is in low power consumption, such as when the electronic device is in a sleep state or standby state, if a high-power power supply is used, it will cause a large Excessive power supply causes waste, that is, to a certain extent, it is not convenient to better meet different power consumption requirements.
  • the purpose of the embodiments of the present invention is to provide a power supply circuit and an electronic device, which can meet different power consumption requirements, such as high power consumption or low power consumption.
  • the embodiments of the present invention provide the following technical solutions:
  • an embodiment of the present invention provides a power supply circuit including a power input terminal and a power output terminal.
  • the power supply circuit further includes:
  • a voltage detection circuit connected to the switching circuit and configured to detect the voltage of the power supply input terminal and the voltage of the power output terminal, and control the operation of the switch circuit according to the voltage of the power supply input terminal and the voltage of the power output terminal In on-state or off-state;
  • a voltage adjustment circuit connected to the switch circuit, and the voltage adjustment circuit is connected between the power input terminal and the power output terminal;
  • the switch circuit When the switch circuit is in an off state, the voltage at the power supply input terminal is adjusted by the voltage adjustment circuit and transmitted to the power supply output terminal as an output voltage to supply power to the load.
  • the switch circuit works In the conducting state, the voltage of the power supply input terminal is biased at the power supply output terminal through the switch circuit and serves as an output voltage to power the load.
  • the switch circuit includes a first switch, a startup circuit, and a second switch;
  • the voltage detection circuit is connected to the first switch, the first switch is connected to the startup circuit, the startup circuit is connected to the second switch, and the second switch is connected in parallel to the voltage adjustment circuit Between the power input terminal and the power output terminal;
  • the voltage detection circuit detects that the voltage difference between the voltage at the power input terminal and the voltage at the power output terminal is less than or equal to a first preset voltage, and the voltage at the power output terminal is less than a second preset voltage
  • the first switch is operated in a conducting state so that the second switch is operated in a conducting state through the startup circuit; when the voltage detection circuit detects that the voltage at the power output terminal is greater than a third preset voltage, Controlling the first switch to work in an off state, so that the second switch works in an off state through the startup circuit.
  • the first switch is a first MOS transistor
  • the second switch is a second MOS transistor
  • the startup circuit includes a startup input terminal, a first startup output terminal, and a second startup output terminal
  • the gate of the first MOS tube is connected to the voltage detection circuit, the source of the first MOS tube is grounded, the drain of the first MOS tube is connected to the second startup output terminal, and the first A start-up output terminal is connected to the gate of the second MOS tube, the start-up input terminal is connected to the source of the second MOS tube, and is connected to the power input terminal, and the drain of the second MOS tube is connected.
  • a pole is connected to the power output terminal.
  • the first MOS transistor is an N-channel MOS transistor
  • the second MOS transistor is a P-channel MOS transistor
  • the startup circuit includes a first resistor and a second resistor
  • One end of the first resistor is connected to the source of the second MOS transistor as the start input terminal, the other end of the first resistor is connected to one end of the second resistor, and the first resistor is The other end of the second resistor and one end of the second resistor are connected to the gate of the second MOS transistor as the first startup output terminal;
  • the other end of the second resistor is connected to the drain of the first MOS transistor as the second startup output terminal.
  • the first switch is an NPN transistor and the second switch is a PNP transistor.
  • the voltage detection circuit includes: a first sampling circuit, a second sampling circuit, and a controller;
  • the first sampling circuit includes a first sampling input terminal and a first sampling output terminal
  • the second sampling circuit includes a second sampling input terminal and a second sampling output terminal
  • the first sampling input terminal is connected to the power supply input terminal, and the first sampling output terminal is connected to the controller;
  • the second sampling input terminal is connected to the power output terminal, and the second sampling output terminal is connected to the controller.
  • the first sampling circuit includes a third resistor and a fourth resistor
  • the second sampling circuit includes a fifth resistor and a sixth resistor
  • One end of the third resistor is connected to the power supply input terminal as the first sampling input terminal, the other end of the third resistor is connected to one end of the fourth resistor, and the other of the third resistor is One end and one end of the fourth resistor are connected to the controller as the first sampling output end, and the other end of the fourth resistor is grounded;
  • One end of the fifth resistor is connected to the power supply output terminal as the second sampling input terminal, the other end of the fifth resistor is connected to one end of the sixth resistor, and another one of the fifth resistor is One end and one end of the sixth resistor are connected to the controller as the second sampling output end, and the other end of the sixth resistor is grounded.
  • the first sampling circuit further includes a first filtering capacitor
  • the second sampling circuit further includes a second filtering capacitor
  • One end of the first filtering capacitor is connected to the first sampling output terminal, and the other end of the first filtering capacitor is grounded; one end of the second filtering capacitor is connected to the second sampling output terminal, and the first The other end of the two filter capacitors is grounded.
  • the voltage adjustment circuit includes a low-dropout linear regulator LDO, and the LDO includes a regulated input terminal and a regulated output terminal;
  • the voltage stabilization input terminal is connected to the power supply input terminal, and the voltage stabilization output terminal is connected to the power supply output terminal.
  • the voltage adjustment circuit further includes a third filter capacitor and a fourth filter capacitor;
  • One end of the third filter capacitor is connected to the power input terminal, and the other end of the third filter capacitor is grounded;
  • One end of the fourth filter capacitor is connected to the power output terminal, and the other end of the fourth filter capacitor is grounded.
  • an embodiment of the present invention provides an electronic device including a power supply circuit and a load, the power supply circuit is connected to the load, the power supply circuit is the power supply circuit as described above, and the power supply circuit is used for The load is powered.
  • the electronic device is a remote controller
  • the load includes an image display device and a communication device
  • the power supply circuit is configured to supply power to the image display device and the communication device.
  • the voltage of the power supply input terminal and the power supply output terminal are detected by a voltage detection circuit to determine the power consumption of the load, so as to control the switching circuit to work in an on state or an off state, and to work in the switching circuit.
  • the voltage at the power input terminal is transmitted to the power output terminal after being adjusted by the voltage adjustment circuit, and is used as the output voltage to power the load.
  • the switch circuit is in the on state, the voltage at the power input terminal is biased through the switch circuit. It is placed on the power output and used as the output voltage to power the load in order to meet different power consumption requirements.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a circuit structure of a power supply circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a specific circuit structure of a power supply circuit according to an embodiment of the present invention.
  • FIG. 4 is a specific circuit diagram of a power supply circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a switching circuit in FIG. 2;
  • FIG. 6 is a schematic diagram of a voltage detection circuit in FIG. 2;
  • FIG. 7 is a schematic diagram of the voltage adjustment circuit in FIG. 2.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present invention.
  • the electronic device 1 includes a power supply circuit 100 and a load 200.
  • the power supply circuit 100 is connected to the load 200.
  • the power supply circuit 100 is used to supply power to the load 200 to ensure the operation of the electronic device 1.
  • the electronic device 1 may be any suitable electrical equipment.
  • the electronic device 1 may be a remote controller.
  • the electronic controller 1 can send control signals to achieve the required operation requirements for controlling the controlled equipment such as an aircraft, air conditioner, and set-top box.
  • the communication device of the remote control is powered through the power supply circuit 100 to make the communication device work, thereby The control signal is sent to the controlled device.
  • the electronic device 1 may also be an aircraft, a mobile phone, a tablet computer, a personal computer, a wearable device, an MP3, an MP4, or a digital camera.
  • the electronic device 1 takes an aircraft as an example, and an aircraft (such as an unmanned aerial vehicle) is used as a flying vehicle, which is mainly used to complete various flight tasks.
  • an aircraft such as an unmanned aerial vehicle
  • the power supply circuit 100 provides power to the flight controller, radio transceiver module, motor, and ESC of the aircraft to ensure normal flight.
  • the load 200 of the electronic device 1 refers to an electronic component or device that consumes power in the electronic device 1 to perform work.
  • the load 200 may be a single electronic component, a functional module, or a system.
  • the load 200 may be a power-consuming component such as a resistor, an engine, a motor, a communication module, a flight control system, and the like.
  • the load 200 may include an image display device and a communication device.
  • the load 200 can convert electrical energy into other forms of energy. For example, motors convert electrical energy into mechanical energy.
  • the power supply circuit 100 is used to provide power to the load 200.
  • the power supply circuit 100 of the remote controller may supply power to the image display device so that an image can be displayed on the image display device.
  • the power supply circuit 100 can also supply power to the communication device, so that the control signal is sent to the controlled device through the communication device.
  • the circuit in the electronic device 1 becomes larger and more complex, and the number of electronic components in the circuit becomes larger and larger, so that the power consumed by the load 200 is also increased. getting bigger.
  • it is usually by increasing the power supply's low load capacity, that is, using a large power consumption power supply as the power supply power to supply the load 200.
  • the power supply circuit 100 consumes a large amount of power, for example, using a remote control as an example, when the power consumption of an image display device or a communication device is large, such as an image
  • the switch circuit controlling the power supply circuit 100 works in the off state, and the voltage at the power supply input terminal 10 of the power supply circuit 100 is biased to the power supply circuit 100 through the switch circuit.
  • the power supply output terminal 20 is used as an output voltage to power the load 200 to meet the needs of large power consumption; when the power consumption of the load 200 is small, for example, when the power consumption of an image display device or a communication device is small, such as an image display device
  • the switch circuit of the power supply circuit 100 is controlled to operate in a conductive state, and the voltage at the power supply input terminal 10 of the power supply circuit 100 passes the voltage of the power supply circuit 100
  • the adjustment circuit transmits the power to the power output terminal 20 of the power supply circuit 100 after the adjustment, and serves as an output voltage to supply power to the load 200 to Require little power consumption.
  • Supplying power for different power consumption by turning on and off the switch circuit can meet different power consumption requirements on the one hand; on the other hand, it can also avoid the increase in device costs caused by the use of high-power power supplies, thereby Save costs, reduce heat generation, and improve power conversion efficiency.
  • the power supply circuit 100 of the electronic device 1 is described in detail below with reference to FIG. 2.
  • FIG. 2 is a schematic diagram of a power supply circuit 100 of the electronic device 1 according to an embodiment of the present invention.
  • the power supply circuit 100 includes: a power input terminal 10, a power output terminal 20, a switch circuit 30, a voltage detection circuit 40, and a voltage adjustment circuit 50.
  • the power supply input terminal 10 of the power supply circuit 100 is used to connect the power supply power POWER, so that the voltage output by the power supply power POWER is applied to the power supply input terminal 10 of the power supply circuit 100.
  • the voltage output by the power supply is a DC voltage.
  • the power output terminal 20 of the power supply circuit 100 is used to access the load 200 to input the voltage output from the power output terminal 20 to the load 200 to supply power to the load 200.
  • the voltage detection circuit is connected to the switch circuit 30 and is configured to detect a voltage of the power supply input terminal 10 and a voltage of the power supply output terminal 20.
  • the voltage detection circuit controls the switching circuit 30 to work in an on state or an off state according to the voltage of the power input terminal 10 and the voltage of the power output terminal 20.
  • the voltage adjusting circuit 50 is connected to the switching circuit 30, and the voltage adjusting circuit 50 is connected between the power input terminal 10 and the power output terminal 20.
  • the switch circuit 30 When the switch circuit 30 is in an off state, the voltage of the power input terminal 10 is transmitted to the power output terminal 20 after being adjusted by the voltage adjustment circuit 50, and is used as an output voltage to power the load 200; When the switching circuit 30 operates in a conducting state, the voltage of the power input terminal 10 is biased at the power output terminal 20 through the switch circuit 30 and serves as an output voltage to power the load 200.
  • the power supply circuit 100 provided in the embodiment of the present invention can meet different power consumption requirements. For example, when the power consumption of the load 200 is large, the voltage detection circuit controls the switching circuit 30 to work in an on state, and the voltage of the power supply input terminal 10 is biased to the power supply output terminal 20 through the switch circuit 30 as an output voltage in order to maintain a relatively high voltage. Large power consumption requirement; when the power consumption is small, the voltage detection circuit controls the switching circuit 30 to work in a closed state, and the voltage of the power supply input terminal 10 is adjusted by the voltage adjustment circuit 50 and transmitted to the power supply output terminal 20 as an output voltage. In order to maintain the stability of the output voltage to meet the requirements of smaller power consumption.
  • the power supply circuit 100 and the switch circuit 30, the voltage detection circuit 40 and the voltage adjustment circuit 50 in the power supply circuit 100 according to the embodiments of the present invention will be described in detail below with reference to FIGS. 3 to 7.
  • FIG. 3 is a specific structural schematic diagram of a power supply circuit according to an embodiment of the present invention
  • FIG. 4 is a specific circuit diagram of a power supply circuit according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a switching circuit 30
  • FIG. 6 is a voltage A schematic diagram of the detection circuit 40
  • FIG. 7 is a schematic diagram of the voltage adjustment circuit 50.
  • the switch circuit 30 includes a first switch 301, a startup circuit 302, and a second switch 303.
  • the voltage detection circuit 40 is connected to the first switch 301, the first switch 301 is connected to the startup circuit 302, the startup circuit 302 is connected to the second switch 303, and the second switch 303 is connected in parallel with the voltage adjustment circuit 50 between the power input terminal 10 and the power output terminal 20.
  • the voltage detection circuit 40 detects that the voltage difference between the voltage of the power input terminal 10 and the voltage of the power output terminal 20 is less than or equal to the first preset voltage Vd, and the voltage of the power output terminal 20 is less than
  • the first switch 301 is controlled to operate in an on state, so that the second switch 303 is operated in an on state through the startup circuit 302.
  • the second switch 303 is in an on state, the voltage of the power input terminal 10 is biased to the power output terminal 20 through the second switch 303 and used as an output voltage to power the load 200. In order to meet the power demand of low power consumption.
  • the voltage detection circuit 40 detects that the voltage of the power output terminal 20 is greater than a third preset voltage Voff
  • the first switch 301 is controlled to work in an off state, so that the first The second switch 303 works in the off state.
  • the voltage of the power supply input terminal 10 is adjusted by the voltage adjustment circuit 50 and transmitted to the power supply output terminal 20 as an output voltage to power the load 200. In order to meet the power demand of high power consumption.
  • the first preset voltage Vd, the second preset voltage Von, and the third preset voltage Voff are used to define the power consumption of the load 200, that is, when the voltage of the power input terminal 10 and the power output terminal 20 When the voltage difference of the voltage is less than or equal to the first preset voltage Vd, and the voltage of the power output terminal 20 is less than the second preset voltage Von, it is determined that the load 200 consumes a large amount of power; when the voltage of the power output terminal 20 When it is greater than the third preset voltage Voff, it is determined that the power consumption of the load 200 is small.
  • the first preset voltage Vd, the second preset voltage Von, and the third preset voltage Voff can be set according to the specific use environment to meet the power supply needs of different loads.
  • the voltage of the load 200 is 3.3V.
  • the first preset voltage Vd may be 0.3V
  • the second preset voltage Von may be 3.5V
  • the third preset voltage Voff may be 3.4V.
  • the first switch 301 may be a first MOS transistor Q1
  • the second switch 303 may be a second MOS transistor Q2
  • the startup circuit 302 includes a startup input terminal 3021, a first startup output terminal 3022, and a second Start output 3023.
  • the first MOS transistor Q1 is an N-channel MOS transistor
  • the second MOS transistor Q2 is a P-channel MOS transistor.
  • a gate (G pole) of the first MOS transistor Q1 is connected to the voltage detection circuit 40, a source (S pole) of the first MOS transistor Q1 is grounded, and a drain ( D pole) is connected to the second startup output terminal 3023, the first startup output terminal 3022 is connected to the gate (G pole) of the second MOS transistor Q2, the startup input terminal 3021 and the second A source (S pole) of the MOS transistor Q2 is connected to the power supply input terminal 10, and a drain (D pole) of the second MOS transistor Q2 is connected to the power output terminal 20.
  • the voltage detection circuit 40 controls the first MOS transistor Q1 to work in an on state.
  • the second MOS transistor Q2 is also operated through the startup circuit 302. The conducting state, so that the voltage of the power input terminal 10 is biased at the power output terminal 20 through the second MOS transistor Q2 and used as an output voltage to power the load 200. Because the internal resistance of the second MOS transistor Q2 is low, the voltage of the power supply input terminal 10 biased at the power output terminal 20 through the second MOS tube Q2 will be relatively small, and less heat will be generated. Higher efficiency and lower cost.
  • the voltage detection circuit 40 controls the first MOS transistor Q1 to work in the off state, and after the first MOS transistor Q1 works in the off state, the second MOS transistor Q2 also works in the off state, thereby
  • the voltage of the power input terminal 10 is transmitted to the power output terminal 20 after being adjusted by the voltage adjustment circuit 50, and is used as an output voltage to power the load 200.
  • the first MOS transistor Q1 and the second MOS transistor Q2 may be replaced by other devices that can implement the functions of the first MOS transistor Q1 and the second MOS transistor Q2.
  • an NPN transistor or a PNP transistor is used.
  • the first switch is an NPN transistor
  • the second switch is a PNP transistor.
  • the first switch is a PNP transistor
  • the second switch is an NPN transistor.
  • the first MOS transistor Q1 may also be a P-channel MOS transistor
  • the second MOS transistor Q2 may be an N-channel MOS transistor.
  • the startup circuit 302 includes a first resistor R1 and a second resistor R2; one end of the first resistor R1 is used as the startup input terminal 3021 to be connected to the source of the second MOS transistor Q2, The other end of the first resistor R1 is connected to one end of the second resistor R2, and the other end of the first resistor R1 and one end of the second resistor R2 serve as the first startup output terminal 3022 and The gate of the second MOS transistor Q2 is connected; the other end of the second resistor R2 is connected to the drain of the first MOS transistor Q1 as the second startup output terminal 3023.
  • resistors with different resistance values can be selected as the first resistor R1 and the second resistor R2, that is, the resistance range of the first resistor R1 and the second resistor R2 is not limited, and can be selected according to needs as long as it can be achieved.
  • the function of the circuit 302 is sufficient.
  • the voltage detection circuit 40 includes a first sampling circuit 401, a second sampling circuit 402 and a controller 403.
  • the first sampling circuit 401 includes a first sampling input terminal 4011 and a first sampling output terminal 4012
  • the second sampling circuit 402 includes a second sampling input terminal 4021 and a second sampling output terminal 4022.
  • the first sampling input terminal 4011 is connected to the power input terminal 10, and the first sampling output terminal 4012 is connected to the controller 403.
  • the second sampling input terminal 4021 is connected to the power output terminal 20, and the second sampling output terminal 4022 is connected to the controller 403.
  • the first sampling circuit 401 is configured to collect the voltage of the power input terminal 10 so that the controller 403 obtains the voltage of the power input terminal 10.
  • the second sampling circuit 402 is configured to collect the voltage of the power output terminal 20 so that the controller 403 obtains the voltage of the power output terminal 20.
  • the controller 403 is configured to control the switching circuit 30 to work in an on state or an off state according to the voltage of the power input terminal 10 and the voltage of the power output terminal 20.
  • the first sampling circuit 401 includes a third resistor R3 and a fourth resistor R4.
  • One end of the third resistor R3 is connected to the power supply input terminal 10 as the first sampling input terminal 4011, and the other end of the third resistor R3 is connected to one end of the fourth resistor R4.
  • the other end of the third resistor R3 and one end of the fourth resistor R4 are connected to the controller 403 as the first sampling output terminal 4012, and the other end of the fourth resistor R4 is grounded.
  • the second sampling circuit 402 includes a fifth resistor R5 and a sixth resistor R6.
  • One end of the fifth resistor R5 is connected to the power supply output terminal 20 as the second sampling input terminal 4021.
  • the other end of the fifth resistor R5 is connected to one end of the sixth resistor R6.
  • the other end of the fifth resistor R5 and one end of the sixth resistor R6 are connected to the controller 403 as the second sampling output terminal 4022, and the other end of the sixth resistor R6 is grounded.
  • resistors with different resistance values can be selected as the third resistor R3, the fourth resistor R4, the fifth resistor R5, and the sixth resistor R6, that is, the third resistor R3, the fourth resistor R4, the fifth resistor R5,
  • the resistance value range of the sixth resistor R6 is not limited, and can be selected according to needs, as long as the functions of the first sampling circuit 401 and the second sampling circuit 402 can be realized.
  • the controller 403 may be any suitable controller, for example, a Microcontroller Unit (MCU), a single-chip microcomputer, or another control chip.
  • MCU Microcontroller Unit
  • the first voltage sampling pin (such as ADC1) of the MCU is connected to the first sampling output terminal 4012 to obtain the voltage of the first sampling output terminal 4012.
  • the second voltage sampling pin (such as ADC2) of the MCU is connected to the second sampling output terminal 4022 to obtain the voltage of the second sampling output terminal 4022.
  • the I / 0 pin of the MCU is connected to the gate of the first MOS transistor Q1 to control the first MOS transistor Q1 to work in an on state or an off state.
  • the first sampling circuit 401 further includes a first filter capacitor C1
  • the second sampling circuit 402 further includes The second filter capacitor C2.
  • One end of the first filtering capacitor C1 is connected to the first sampling output terminal 4012, and the other end of the first filtering capacitor C1 is grounded; one end of the second filtering capacitor C2 is connected to the second sampling output.
  • the terminal 4022 is connected, and the other end of the second filter capacitor C2 is grounded.
  • the first filter capacitor C1 and the second filter capacitor C2 are not necessary components of the power supply circuit 100. That is, in some embodiments, the first filter capacitor C1 and the second filter capacitor C2 may be omitted.
  • the voltage adjustment circuit 50 includes a low dropout linear regulator LDO (Low Dropout Regulator).
  • LDO Low Dropout Regulator
  • the LDO and the second MOS transistor Q2 are connected in parallel between the power input terminal 10 and the power output terminal 20.
  • the LDO includes a regulated input terminal 501 and a regulated output terminal 502.
  • the stabilized voltage input terminal 501 is connected to the power supply input terminal 10, and the stabilized voltage output terminal 502 is connected to the power supply output terminal 20.
  • the voltage detection circuit 40 controls the second MOS transistor Q2 to work in an off state, and the voltage of the power supply input terminal 10 is regulated by the LDO and then transmitted to the power output terminal. 20, and as the output voltage, to power the load 200, to maintain the stability of the voltage that powers the load 200, and to avoid a large excess of power.
  • the LDO is a linear regulator, it will sacrifice a part of the energy into heat, so the energy conversion efficiency in this way is relatively low.
  • the voltage detection circuit 40 controls the second MOS tube Q2 to work in a closed state.
  • the voltage at the input terminal 10 is biased at the power output terminal 20 through the second MOS transistor Q2 and is used as an output voltage to power the load 200 to maintain a larger power consumption requirement of the load 200.
  • the voltage adjustment circuit 50 may also be other suitable circuits that can implement a voltage reduction function.
  • the voltage adjustment circuit 50 includes a step-down transformer and the like, so as to realize the function of transmitting the voltage to the power output terminal 20 after the voltage of the power input terminal 10 is pulled down.
  • the voltage adjustment circuit 50 further includes a third filter capacitor C3 and a fourth filter capacitor C4.
  • One end of the third filter capacitor C3 is connected to the power input terminal 10, and the other end of the third filter capacitor C3 is grounded; one end of the fourth filter capacitor C4 is connected to the power output terminal 20, the The other end of the fourth filter capacitor C4 is grounded.
  • the third filter capacitor C3 and the fourth filter capacitor C4 are not necessary components of the voltage adjustment circuit 50. That is, in some embodiments, the third filter capacitor C3 and the fourth filter capacitor C4 may be omitted.
  • the second MOS transistor Q2 works in the off state.
  • the voltage of the power supply input terminal 10 is adjusted to the voltage by the LDO and then transmitted to all
  • the power supply output terminal 20 is described as an output voltage, that is, the voltage of the load Load_Voltage, to supply power to the load 200, and to maintain stable power supply to the load 200.
  • the MCU monitors the voltage changes of the power supply input terminal 10 and the power supply output terminal 20 in real time, so as to respond to changes in the power consumption of the load 200 accordingly.
  • the voltage of the load 200 Load_Voltage is lowered due to the larger load current, that is, the power output terminal 20 The voltage is pulled low.
  • the MCU detects through the first sampling circuit 401 and the second sampling circuit 402 that the voltage difference between the voltage of the power input terminal 10 and the voltage of the power output terminal 20 is less than or equal to the first preset
  • the MCU controls the first MOS transistor Q1 to work in a conducting state.
  • the first MOS transistor Q1 After the first MOS transistor Q1 is operated in an ON state, a voltage difference exists between the gate and the source of the second MOS transistor Q2, and thus the second MOS transistor Q2 is also operated in an ON state. After the second MOS transistor Q2 also operates in the on state, the voltage of the power supply input terminal 10 is biased at the power output terminal 20 through the switch circuit 30 and used as an output voltage to power the load 200.
  • the MCU passes the second sampling circuit 402 When it is detected that the voltage of the power output terminal 20 is greater than the third preset voltage Voff, the MCU controls the first MOS transistor Q1 to work in an off state. When the first MOS transistor Q1 operates in the off state, there is no voltage difference between the gate and the source of the second MOS transistor Q2, so that the second MOS transistor Q2 operates in the off state.
  • the voltage of the power supply input terminal 10 After the LDO is stepped down and adjusted, it is transmitted to the power output terminal 20 and used as an output voltage to power the load 200.
  • the MCU controls the first MOS transistor Q1 to work in an on state or an off state according to the voltage of the power input terminal 10 and the voltage at the power output terminal 20, and then controls the second MOS transistor Q2 to be in an on state or The off state can realize the power supply demand for different power consumption.
  • the power supply circuit 100 provided by the embodiment of the present invention detects the voltage of the power supply input terminal 10 and the voltage of the power supply output terminal 20 through the voltage detection circuit 40 to determine the power consumption of the load 200, so as to control the switch circuit 30 to work in a conducting state or When the switch circuit 30 is in the off state, the voltage of the power supply input terminal 10 is adjusted by the voltage adjustment circuit 50 and transmitted to the power supply output terminal 20 as an output voltage to power the load 200; when the switch circuit When 30 is working in a conducting state, the voltage of the power supply input terminal 10 is biased to the power supply output terminal 20 through the switch circuit 30 and used as an output voltage to power the load 200 so as to meet different power consumption requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种供电电路及电子设备,该供电电路包括供电输入端(10)与供电输出端(20);开关电路(30);电压检测电路(40),与开关电路(30)连接,用于检测供电输入端(10)的电压及供电输出端(20)的电压,根据供电输入端(10)的电压及供电输出端(20)的电压,控制开关电路(30)工作在导通状态或关断状态;电压调整电路(50),与开关电路(30)连接,电压调整电路(50)连接于供电输入端(10)与供电输出端(20)之间;当开关电路(30)工作在关断状态时,供电输入端(10)的电压经电压调整电路(50)进行调整后传输至供电输出端(20),并作为输出电压;当开关电路(30)工作在导通状态时,供电输入端(10)的电压通过开关电路(30)偏置在供电输出端(20),并作为输出电压。该供电电路及电子设备,可以满足不同的功耗需求。

Description

一种供电电路及电子设备
相关申请交叉引用
本申请要求于2018年9月21日申请的、申请号为201811108847.6、申请名称为“一种供电电路及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域,特别是涉及一种供电电路,以及具有该供电电路的电子设备。
背景技术
目前的电子设备的功能越来越多,以无人机为例,无人机上集成了多种功能,如拍摄、运输、实施干扰等。相应地,电子设备的电路也越来越庞大,线路上也拥有越来越多的元器件,而这势必会增加用电负荷。
为了满足电子设备大功耗的需求,通常会采用大功率的电源作为电子设备的供电电源。然而,采用大功率的电源虽然能满足大功耗的需求,但当电子设备处于低功耗时,如电子设备处于休眠状态或待机状态时,若采用大功率的电源供电,又会导致较大的电源过剩,造成浪费,也即采用大功率的电源在一定程度上不便于较好的满足不同的功耗需求。
发明内容
本发明实施例目的在于提供一种供电电路及电子设备,可以满足不同的功耗需求,如大功耗或低功耗等。
为解决上述技术问题,本发明实施例提供以下技术方案:
在第一方面,本发明实施例提供一种供电电路,包括供电输入端与供电输出端,所述供电电路还包括:
开关电路;
电压检测电路,与所述开关电路连接,用于检测所述供电输入端的电压及所述供电输出端的电压,并根据所述供电输入端的电压及所述供电输出端的电压,控制所述开关电路工作在导通状态或关断状态;
电压调整电路,与所述开关电路连接,并且,所述电压调整电路连接于所述供电输入端与所述供电输出端之间;
当所述开关电路工作在关断状态时,所述供电输入端的电压经所述电压调整电路进行调整后传输至所述供电输出端,并作为输出电压,以为负载供电;当所述开关电路工作在导通状态时,所述供电输入端的电压通过所述开关电路偏置在所述供电输出端,并作为输出电压,以为所述负载供电。
在一些实施例中,所述开关电路包括第一开关、启动电路及第二开关;
所述电压检测电路与所述第一开关连接,所述第一开关与所述启动电路连接,所述启动电路与所述第二开关连接,所述第二开关与所述电压调整电路并联连接于所述供电输入端与所述供电输出端之间;
当所述电压检测电路检测到所述供电输入端的电压与所述供电输出端的电压的电压差小于或等于第一预设电压,并且所述供电输出端的电压小于第二预设电压时,控制所述第一开关工作在导通状态,以通过所述启动电路使得所述第二开关工作在导通状态;当所述电压检测电路检测到所述供电输出端的电压大于第三预设电压时,控制所述第一开关工作在关断状态,以通过所述启动电路使得所述第二开关工作在关断状态。
在一些实施例中,所述第一开关为第一MOS管,所述第二开关为第二MOS管,所述启动电路包括启动输入端、第一启动输出端及第二启动输出端;
所述第一MOS管的栅极与所述电压检测电路连接,所述第一MOS管的源极接地,所述第一MOS管的漏极与所述第二启动输出端连接,所述第一启动输出端与所述第二MOS管的栅极连接,所述启动输入端及所述 第二MOS管的源极连接,且连接于所述供电输入端,所述第二MOS管的漏极连接于所述供电输出端。
在一些实施例中,所述第一MOS管为N沟道MOS管,第二MOS管为P沟道MOS管。
在一些实施例中,所述启动电路包括第一电阻和第二电阻;
所述第一电阻的一端作为所述启动输入端与所述第二MOS管的源极连接,所述第一电阻的另一端与所述第二电阻的一端连接,并且,所述第一电阻的另一端及所述第二电阻的一端作为所述第一启动输出端与所述第二MOS管的栅极连接;
所述第二电阻的另一端作为所述第二启动输出端与所述第一MOS管的漏极连接。
在一些实施例中,所述第一开关为NPN三极管,所述第二开关为PNP三极管。
在一些实施例中,所述电压检测电路包括:第一采样电路、第二采样电路及控制器;
所述第一采样电路包括第一采样输入端和第一采样输出端,所述第二采样电路包括第二采样输入端和第二采样输出端;
所述第一采样输入端连接于所述供电输入端,所述第一采样输出端与所述控制器连接;
所述第二采样输入端连接于所述供电输出端,所述第二采样输出端与所述控制器连接。
在一些实施例中,所述第一采样电路包括第三电阻和第四电阻,所述第二采样电路包括第五电阻和第六电阻;
所述第三电阻的一端作为所述第一采样输入端连接于所述供电输入端,所述第三电阻的另一端与所述第四电阻的一端连接,并且,所述第三电阻的另一端及所述第四电阻的一端作为所述第一采样输出端与所述控制器连接,所述第四电阻的另一端接地;
所述第五电阻的一端作为所述第二采样输入端连接于所述供电输出端,所述第五电阻的另一端与所述第六电阻的一端连接,并且,所述 第五电阻的另一端及所述第六电阻的一端作为所述第二采样输出端与所述控制器连接,所述第六电阻的另一端接地。
在一些实施例中,所述第一采样电路还包括第一滤波电容,所述第二采样电路还包括第二滤波电容;
所述第一滤波电容的一端与所述第一采样输出端连接,所述第一滤波电容的另一端接地;所述第二滤波电容的一端与所述第二采样输出端连接,所述第二滤波电容的另一端接地。
在一些实施例中,所述电压调整电路包括低压差线性稳压器LDO,所述LDO包括稳压输入端和稳压输出端;
所述稳压输入端连接于所述供电输入端,所述稳压输出端连接于所述供电输出端。
在一些实施例中,所述电压调整电路还包括第三滤波电容及第四滤波电容;
所述第三滤波电容的一端连接于所述供电输入端,所述第三滤波电容的另一端接地;
所述第四滤波电容的一端连接于所述供电输出端,所述第四滤波电容的另一端接地。
在第二方面,本发明实施例提供一种电子设备,包括供电电路及负载,所述供电电路与所述负载连接,所述供电电路为如上所述的供电电路,所述供电电路用于为所述负载供电。
在一些实施例中,所述电子设备为遥控器,所述负载包括图像显示装置和通信装置,所述供电电路用于为所述图像显示装置和通信装置供电。
在本发明的实施例中,通过电压检测电路检测供电输入端的电压及供电输出端的电压以确定负载的功耗的大小,从而控制开关电路工作在导通状态或关断状态,并在开关电路工作在关断状态时,供电输入端的电压经电压调整电路进行调整后传输至供电输出端,并作为输出电压, 以为负载供电;当开关电路工作在导通状态时,供电输入端的电压通过开关电路偏置在供电输出端,并作为输出电压,以为负载供电,以便满足不同的功耗需求。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供一种电子设备的示意图;
图2是本发明实施例提供一种供电电路的电路结构示意图;
图3是本发明实施例提供一种供电电路的电路具体结构示意图;
图4是本发明实施例提供一种供电电路的具体电路图;
图5是图2中的开关电路的示意图;
图6是图2中的电压检测电路的示意图;
图7是图2中的电压调整电路的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是本发明实施例提供的一种电子设备的示意图。其中,该电子设备1包括供电电路100及负载200。该供电电路100与负载200连接,供电电路100用于为负载200供电,以保证电子设备1的运行。
该电子设备1可以为任何合适的电器设备。例如,该电子设备1可以为遥控器,遥控器作为一种用来远控机械的装置,可通过发送控制信号来达到控制飞行器、空调、机顶盒等被控设备完成所需的操作要求。为了保证遥控器的正常运行以实现其控制其它设备的功能,需要通过遥控器的供电电路100为其负载200供电,例如,通过供电电路100为遥控器的通信装置供电,使得通信装置工作,从而实现将控制信号发送给被控设备。
在一些实施例中,该电子设备1还可以为飞行器、手机、平板电脑、个人计算机、可穿戴设备、MP3、MP4或数码相机等等。例如,电子设备1以飞行器为例,飞行器(如无人机)作为一种飞行载具,其主要用于完成各种飞行任务。为了完成各种飞行任务,需要通过飞行器的供电电路100为其负载200,如飞行器的各个系统或模块提供电力。例如,通过供电电路100为飞行器的飞行控制器、无线电收发模块、电机、电调等提供电力,以保证飞行的正常飞行。
其中,电子设备1的负载200是指在电子设备1中消耗电能以进行工作的电子元件或装置。该负载200可以为单个电子元件、功能模块或系统等。例如,负载200可以为电阻、引擎、电机、通信模块、飞行控制系统等可消耗功率的元件。例如,当电子设备1为遥控器时,该负载200可以包括图像显示装置和通信装置。通过负载200可以将电能转换 成其他形式的能。例如,电机将电能转换为机械能等。
该供电电路100用于为负载200提供电力。例如,遥控器的供电电路100可以为图像显示装置供电,以使图像可以显示于该图像显示装置。并且,该供电电路100还可为通信装置供电,以使控制信号通过该通信装置发送给被控设备。
随着电子设备1的功能越来越大,使得电子设备1中的电路越来越庞大、越来越复杂,电路中的电子元件的数量也越来越大,从而使得负载200消耗的功率也越来越大。为了满足大功耗低供电需求,通常是通过增大供电电源低负载能力,也即采用大功耗电源作为供电电源,为负载200供电。
然而,采用大功率电源供电一方面会增加器件的成本,且发热严重,电能转换效率低;另一方面,不能很好的适用于低功耗的供电需求,例如,当负载200功耗较小时,如电子设备1处于休眠状态或待机状态时,若采用大功率的电源供电,会导致较大的电源过剩,造成浪费。
基于此,请参阅图2,本发明实施例提供的供电电路100,在负载200功耗较大时,例如,以遥控器为例,图像显示装置或通信装置的功耗较大时,如图像显示装置的屏幕亮度增大的时候,或者通信距离加大的时候,控制供电电路100的开关电路工作在关断状态,供电电路100的供电输入端10的电压通过开关电路偏置在供电电路100的供电输出端20,并作为输出电压,以为负载200供电,以满足大功耗的需要;在负载200功耗较小时,例如,图像显示装置或通信装置的功耗较小时,如图像显示装置的屏幕亮度降低的时候,或者通信距离减少的时候,或者休眠或待机的时候,控制供电电路100的开关电路工作在导通状态,供电电路100的供电输入端10的电压经供电电路100的电压调整电路进行调整后传输至供电电路100的供电输出端20,并作为输出电压,以为负载200供电,以满足小功耗的需要。
通过开关电路的导通与闭合来针对不同的功耗进行供电,一方面可以很好的满足不同的功耗需求;另一方面还可以避免因采用大功率电源而导致的器件成本的增加,从而节约成本、减少发热、提高电能转换效 率。
下面结合图2对本发明实施例提供的电子设备1的供电电路100进行具体描述。
请参阅图2,为本发明实施例提供的电子设备1的供电电路100的示意图。其中,该供电电路100包括:供电输入端10、供电输出端20、开关电路30、电压检测电路40及电压调整电路50。
其中,供电电路100的供电输入端10用于接入供电电源POWER,以使供电电源POWER输出的电压施加于供电电路100的供电输入端10。其中,该供电电源输出的电压供电电源输出的电压为直流电压。供电电路100的供电输出端20用于接入负载200,以将供电输出端20输出的电压输入至负载200,以为负载200供电。
具体的,所述电压检测电路与所述开关电路30连接,用于检测所述供电输入端10的电压及所述供电输出端20的电压。并且,所述电压检测电路根据所述供电输入端10的电压及所述供电输出端20的电压,控制所述开关电路30工作在导通状态或关断状态。所述电压调整电路50与所述开关电路30连接,并且,所述电压调整电路50连接于所述供电输入端10与所述供电输出端20之间。
当所述开关电路30工作在关断状态时,所述供电输入端10的电压经所述电压调整电路50进行调整后传输至所述供电输出端20,并作为输出电压,以为负载200供电;当所述开关电路30工作在导通状态时,所述供电输入端10的电压通过所述开关电路30偏置在所述供电输出端20,并作为输出电压,以为所述负载200供电。
本发明实施例提供的供电电路100,可以满足不同的功耗需求。例如,当负载200功耗较大时,电压检测电路控制开关电路30工作在导通状态,供电输入端10的电压通过开关电路30偏置在供电输出端20,以作为输出电压,以便维持较大的功耗需求;当在功耗较小时,电压检测电路控制开关电路30工作在闭合状态,供电输入端10的电压经电压调整电路50进行调整后传输至供电输出端20,以作为输出电压,以便维持输出电压的稳定,以满足较小的功耗需求。
下面结合图3-图7对本发明实施例提供的供电电路100及供电电路100中的开关电路30、电压检测电路40及电压调整电路50进行详细说明。
其中,图3是本发明实施例提供一种供电电路的电路具体结构示意图;图4为本发明实施例提供的一种供电电路的具体电路图;图5为开关电路30的示意图;图6为电压检测电路40的示意图;图7为电压调整电路50的示意图。
请参阅图3-图5,该开关电路30包括第一开关301、启动电路302及第二开关303。其中,所述电压检测电路40与所述第一开关301连接,所述第一开关301与所述启动电路302连接,所述启动电路302与所述第二开关303连接,所述第二开关303与所述电压调整电路50并联连接于所述供电输入端10与所述供电输出端20之间。
当所述电压检测电路40检测到所述供电输入端10的电压与所述供电输出端20的电压的电压差小于或等于第一预设电压Vd,并且所述供电输出端20的电压小于第二预设电压Von时,控制所述第一开关301工作在导通状态,以通过所述启动电路302使得所述第二开关303工作在导通状态。当所述第二开关303工作在导通状态后,所述供电输入端10的电压通过所述第二开关303偏置在所述供电输出端20,并作为输出电压,以为所述负载200供电,以便满足低功耗的供电需求。
当所述电压检测电路40检测到所述供电输出端20的电压大于第三预设电压Voff时,控制所述第一开关301工作在关断状态,以通过所述启动电路302使得所述第二开关303工作在关断状态。当所述第二开关303工作在关断状态后,所述供电输入端10的电压经所述电压调整电路50进行调整后传输至所述供电输出端20,并作为输出电压,以为负载200供电,以便满足高功耗的供电需求。
其中,第一预设电压Vd、第二预设电压Von及第三预设电压Voff用于界定负载200的功耗情况,也即当所述供电输入端10的电压与所述供电输出端20的电压的电压差小于或等于第一预设电压Vd,并且所述供电输出端20的电压小于第二预设电压Von时,确定负载200功耗 较大;当所述供电输出端20的电压大于第三预设电压Voff时确定负载200功耗较小。
此外,第一预设电压Vd、第二预设电压Von及第三预设电压Voff可以根据具体使用环境进行设置,以满足不同的负载的供电需要。例如,负载200的电压以3.3V为例,第一预设电压Vd可以为0.3V,第二预设电压Von可以为3.5V,第三预设电压Voff可以为3.4V。
其中,所述第一开关301可以为第一MOS管Q1,所述第二开关303可以为第二MOS管Q2,所述启动电路302包括启动输入端3021、第一启动输出端3022及第二启动输出端3023。其中,第一MOS管Q1为N沟道MOS管,第二MOS管Q2为P沟道MOS管。
所述第一MOS管Q1的栅极(G极)与所述电压检测电路40连接,所述第一MOS管Q1的源极(S极)接地,所述第一MOS管Q1的漏极(D极)与所述第二启动输出端3023连接,所述第一启动输出端3022与所述第二MOS管Q2的栅极(G极)连接,所述启动输入端3021及所述第二MOS管Q2的源极(S极)连接,且连接于所述供电输入端10,所述第二MOS管Q2的漏极(D极)连接于所述供电输出端20。
当负载200功耗较大时,电压检测电路40控制第一MOS管Q1工作在导通状态,第一MOS管Q1工作在导通状态后,通过启动电路302使得第二MOS管Q2也工作在导通状态,从而使得所述供电输入端10的电压通过所述第二MOS管Q2偏置在所述供电输出端20,并作为输出电压,以为所述负载200供电。由于第二MOS管Q2内阻较低,因此,所述供电输入端10的电压通过所述第二MOS管Q2偏置在所述供电输出端20的供电损耗会比较小,且发热较少,效率较高、成本低。
当负载200功耗较小时,电压检测电路40控制第一MOS管Q1工作在关断状态,第一MOS管Q1工作在关断状态后,使得第二MOS管Q2也工作在关断状态,从而所述供电输入端10的电压经所述电压调整电路50进行调整后传输至所述供电输出端20,并作为输出电压,以为负载200供电。
需要说明的是,在一些其它实施例中,上述第一MOS管Q1、第二 MOS管Q2也可以用其它可实现上述第一MOS管Q1、第二MOS管Q2的功能的器件进行替代,例如,用NPN三极管或PNP三极管替代上述各个MOS管。例如,所述第一开关为NPN三极管,所述第二开关为PNP三极管。或者,所述第一开关为PNP三极管,所述第二开关为NPN三极管。此外,第一MOS管Q1还可为P沟道MOS管,第二MOS管Q2为N沟道MOS管等。
在一些实现方式中,所述启动电路302包括第一电阻R1和第二电阻R2;所述第一电阻R1的一端作为所述启动输入端3021与所述第二MOS管Q2的源极连接,所述第一电阻R1的另一端与所述第二电阻R2的一端连接,并且,所述第一电阻R1的另一端及所述第二电阻R2的一端作为所述第一启动输出端3022与所述第二MOS管Q2的栅极连接;所述第二电阻R2的另一端作为所述第二启动输出端3023与所述第一MOS管Q1的漏极连接。
其中,可以根据需要选择不同阻值的电阻作为第一电阻R1和第二电阻R2,也即,第一电阻R1和第二电阻R2的阻值范围不受限制,可以根据需要选取,只要能实现启动电路302的功能即可。
请参阅图3、图4和图6,该电压检测电路40包括第一采样电路401、第二采样电路402及控制器403。其中,所述第一采样电路401包括第一采样输入端4011和第一采样输出端4012,所述第二采样电路402包括第二采样输入端4021和第二采样输出端4022。
所述第一采样输入端4011连接于所述供电输入端10,所述第一采样输出端4012与所述控制器403连接。所述第二采样输入端4021连接于所述供电输出端20,所述第二采样输出端4022与所述控制器403连接。
第一采样电路401用于采集所述供电输入端10的电压,以便控制器403获取得到所述供电输入端10的电压。第二采样电路402用于采集所述供电输出端20的电压,以便控制器403获取得到所述供电输出端20的电压。所述控制器403用于根据所述供电输入端10的电压及所述供电输出端20的电压,控制所述开关电路30工作在导通状态或关断状态。
在一些实现方式中,所述第一采样电路401包括第三电阻R3和第四电阻R4。所述第三电阻R3的一端作为所述第一采样输入端4011连接于所述供电输入端10,所述第三电阻R3的另一端与所述第四电阻R4的一端连接,并且,所述第三电阻R3的另一端及所述第四电阻R4的一端作为所述第一采样输出端4012与所述控制器403连接,所述第四电阻R4的另一端接地。
在一些实现方式中,所述第二采样电路402包括第五电阻R5和第六电阻R6。所述第五电阻R5的一端作为所述第二采样输入端4021连接于所述供电输出端20,所述第五电阻R5的另一端与所述第六电阻R6的一端连接,并且,所述第五电阻R5的另一端及所述第六电阻R6的一端作为所述第二采样输出端4022与所述控制器403连接,所述第六电阻R6的另一端接地。
其中,可以根据需要选择不同阻值的电阻作为第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6,也即,第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6的阻值范围不受限制,可以根据需要选取,只要能实现第一采样电路401、第二采样电路402的功能即可。
所述控制器403可以为任何合适的控制器,例如,微控制单元(Microcontroller Unit,MCU)、单片机或其它控制芯片等。以MCU为例,MCU的第一电压采样引脚(如ADC1)连接于第一采样输出端4012,以获取第一采样输出端4012的电压。MCU的第二电压采样引脚(如ADC2)连接于第二采样输出端4022,以获取第二采样输出端4022的电压。并且,MCU的I/0引脚与第一MOS管Q1的栅极连接,以控制第一MOS管Q1工作在导通状态或关断状态。
在一些实施例中,为了保证第一采样电路401、第二采样电路402所采集的电压的稳定,所述第一采样电路401还包括第一滤波电容C1,所述第二采样电路402还包括第二滤波电容C2。其中,所述第一滤波电容C1的一端与所述第一采样输出端4012连接,所述第一滤波电容C1的另一端接地;所述第二滤波电容C2的一端与所述第二采样输出端4022连接,所述第二滤波电容C2的另一端接地。
需要说明的是,在一些其它实施例中,第一滤波电容C1和第二滤波电容C2并非供电电路100的必要器件。也即,在一些实施例中,第一滤波电容C1和第二滤波电容C2可以省略。
请参阅图3、图4和图7,该电压调整电路50包括低压差线性稳压器LDO(Low Dropout Regulator)。所述LDO与第二MOS管Q2并联连接于所述供电输入端10与供电输出端20之间。
其中,所述LDO包括稳压输入端501和稳压输出端502。所述稳压输入端501连接于所述供电输入端10,所述稳压输出端502连接于所述供电输出端20。
当负载200功耗较小时,通过电压检测电路40控制使得第二MOS管Q2工作在关断状态,所述供电输入端10的电压经所述LDO进行稳压调整后传输至所述供电输出端20,并作为输出电压,以为负载200供电,以维持为负载200供电的电压的稳定,避免较大的电源过剩。
由于LDO是一种线性稳压器,因此,会牺牲掉一部分能量转换为热量,所以该方式电能转换效率相对较低。当负载200功耗增大的时候,经过LDO损耗的能量也会增大,故当负载200功耗较大时,通过电压检测电路40控制使得第二MOS管Q2工作在闭合状态,所述供电输入端10的电压通过所述第二MOS管Q2偏置在所述供电输出端20,并作为输出电压,以为所述负载200供电,以维持较大的负载200功耗需求。
在一些实施例中,所述电压调整电路50还可以为其它合适的可以实现降压功能的电路。例如,所述电压调整电路50包括降压变压器等,以实现使供电输入端10的电压拉低后传输到供电输出端20的功能。
在一些实施例中,为了保证稳压输入端501的电压及稳压输出端502的电压的稳定,所述电压调整电路50还包括第三滤波电容C3及第四滤波电容C4。所述第三滤波电容C3的一端连接于所述供电输入端10,所述第三滤波电容C3的另一端接地;所述第四滤波电容C4的一端连接于所述供电输出端20,所述第四滤波电容C4的另一端接地。
需要说明的是,在一些其它实施例中,第三滤波电容C3和第四滤波电容C4并非电压调整电路50的必要器件。也即,在一些实施例中, 第三滤波电容C3和第四滤波电容C4可以省略。
以下是本发明实施例提供的供电电路100的工作原理:
请参阅图3和图4,当负载200功耗较小时,第二MOS管Q2工作在关断状态,此时,所述供电输入端10的电压经所述LDO进行降压调整后传输至所述供电输出端20,并作为输出电压,也即负载的电压Load_Voltage,以为负载200供电,以维持稳定的为负载200供电。同时,MCU实时监控供电输入端10和供电输出端20的电压的变化,以便对负载200功耗的变化作出相应的反应。
当负载200功耗增大时,如图像显示装置的屏幕亮度增大时,或者通信距离加大时,由于较大的负载电流,使得负载200的电压Load_Voltage拉低,也即供电输出端20的电压拉低,此时,如果MCU通过第一采样电路401和第二采样电路402检测到所述供电输入端10的电压与所述供电输出端20的电压的电压差小于或等于第一预设电压Vd,并且通过第二采样电路402检测到所述供电输出端20的电压小于第二预设电压Von时,则MCU控制第一MOS管Q1工作在导通状态。第一MOS管Q1工作在导通状态后,使得第二MOS管Q2的栅极与源极存在电压差,进而使得第二MOS管Q2也工作在导通状态。第二MOS管Q2也工作在导通状态后,所述供电输入端10的电压通过所述开关电路30偏置在所述供电输出端20,并作为输出电压,以为所述负载200供电。
并且,当负载200的功耗减少时,如图像显示装置的屏幕亮度降低时,或者通信距离减少时,或者休眠或待机时,负载200的电压会逐渐升高,如果MCU通过第二采样电路402检测到所述供电输出端20的电压大于第三预设电压Voff时,MCU控制第一MOS管Q1工作在关断状态。当第一MOS管Q1工作在关断状态后,第二MOS管Q2的栅极与源极不存在电压差,从而使得第二MOS管Q2工作在关断状态,所述供电输入端10的电压经所述LDO进行降压调整后传输至所述供电输出端20,并作为输出电压,以为负载200供电。
该MCU根据所述供电输入端10的电压及所述供电输出端20的电压,控制第一MOS管Q1工作在导通状态或关断状态,进而控制第二MOS管 Q2作在导通状态或关断状态,即可实现对不同功耗的供电需求。
本发明实施例提供的供电电路100,通过电压检测电路40检测供电输入端10的电压及供电输出端20的电压以确定负载200的功耗的大小,从而控制开关电路30工作在导通状态或关断状态,并在开关电路30工作在关断状态时,供电输入端10的电压经电压调整电路50进行调整后传输至供电输出端20,并作为输出电压,以为负载200供电;当开关电路30工作在导通状态时,供电输入端10的电压通过开关电路30偏置在供电输出端20,并作为输出电压,以为负载200供电,以便满足不同的功耗需求。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种供电电路,包括供电输入端与供电输出端,其特征在于,所述供电电路还包括:
    开关电路;
    电压检测电路,与所述开关电路连接,用于检测所述供电输入端的电压及所述供电输出端的电压,并根据所述供电输入端的电压及所述供电输出端的电压,控制所述开关电路工作在导通状态或关断状态;
    电压调整电路,与所述开关电路连接,并且,所述电压调整电路连接于所述供电输入端与所述供电输出端之间;
    当所述开关电路工作在关断状态时,所述供电输入端的电压经所述电压调整电路进行调整后传输至所述供电输出端,并作为输出电压,以为负载供电;当所述开关电路工作在导通状态时,所述供电输入端的电压通过所述开关电路偏置在所述供电输出端,并作为输出电压,以为所述负载供电。
  2. 根据权利要求1所述的供电电路,其特征在于,所述开关电路包括第一开关、启动电路及第二开关;
    所述电压检测电路与所述第一开关连接,所述第一开关与所述启动电路连接,所述启动电路与所述第二开关连接,所述第二开关与所述电压调整电路并联连接于所述供电输入端与所述供电输出端之间;
    当所述电压检测电路检测到所述供电输入端的电压与所述供电输出端的电压的电压差小于或等于第一预设电压,并且所述供电输出端的电压小于第二预设电压时,控制所述第一开关工作在导通状态,以通过所述启动电路使得所述第二开关工作在导通状态;当所述电压检测电路检测到所述供电输出端的电压大于第三预设电压时,控制所述第一开关工作在关断状态,以通过所述启动电路使得所述第二开关工作在关断状态。
  3. 根据权利要求2所述的供电电路,其特征在于,所述第一开关为第一MOS管,所述第二开关为第二MOS管,所述启动电路包括启动输入端、第一启动输出端及第二启动输出端;
    所述第一MOS管的栅极与所述电压检测电路连接,所述第一MOS管的源极接地,所述第一MOS管的漏极与所述第二启动输出端连接,所述第一启动输出端与所述第二MOS管的栅极连接,所述启动输入端及所述第二MOS管的源极连接,且连接于所述供电输入端,所述第二MOS管的漏极连接于所述供电输出端。
  4. 根据权利要求3所述的供电电路,其特征在于,所述第一MOS管为N沟道MOS管,第二MOS管为P沟道MOS管。
  5. 根据权利要求3所述的供电电路,其特征在于,所述启动电路包括第一电阻和第二电阻;
    所述第一电阻的一端作为所述启动输入端与所述第二MOS管的源极连接,所述第一电阻的另一端与所述第二电阻的一端连接,并且,所述第一电阻的另一端及所述第二电阻的一端作为所述第一启动输出端与所述第二MOS管的栅极连接;
    所述第二电阻的另一端作为所述第二启动输出端与所述第一MOS管的漏极连接。
  6. 根据权利要求2所述的供电电路,其特征在于,所述第一开关为NPN三极管,所述第二开关为PNP三极管。
  7. 根据权利要求1-6任一项所述的供电电路,其特征在于,所述电压检测电路包括:第一采样电路、第二采样电路及控制器;
    所述第一采样电路包括第一采样输入端和第一采样输出端,所述第二采样电路包括第二采样输入端和第二采样输出端;
    所述第一采样输入端连接于所述供电输入端,所述第一采样输出端 与所述控制器连接;
    所述第二采样输入端连接于所述供电输出端,所述第二采样输出端与所述控制器连接。
  8. 根据权利要求7所述的供电电路,其特征在于,所述第一采样电路包括第三电阻和第四电阻,所述第二采样电路包括第五电阻和第六电阻;
    所述第三电阻的一端作为所述第一采样输入端连接于所述供电输入端,所述第三电阻的另一端与所述第四电阻的一端连接,并且,所述第三电阻的另一端及所述第四电阻的一端作为所述第一采样输出端与所述控制器连接,所述第四电阻的另一端接地;
    所述第五电阻的一端作为所述第二采样输入端连接于所述供电输出端,所述第五电阻的另一端与所述第六电阻的一端连接,并且,所述第五电阻的另一端及所述第六电阻的一端作为所述第二采样输出端与所述控制器连接,所述第六电阻的另一端接地。
  9. 根据权利要求8所述的供电电路,其特征在于,所述第一采样电路还包括第一滤波电容,所述第二采样电路还包括第二滤波电容;
    所述第一滤波电容的一端与所述第一采样输出端连接,所述第一滤波电容的另一端接地;所述第二滤波电容的一端与所述第二采样输出端连接,所述第二滤波电容的另一端接地。
  10. 根据权利要求1-9任一项所述的供电电路,其特征在于,所述电压调整电路包括低压差线性稳压器LDO,所述LDO包括稳压输入端和稳压输出端;
    所述稳压输入端连接于所述供电输入端,所述稳压输出端连接于所述供电输出端。
  11. 根据权利要求10所述的供电电路,其特征在于,所述电压调 整电路还包括第三滤波电容及第四滤波电容;
    所述第三滤波电容的一端连接于所述供电输入端,所述第三滤波电容的另一端接地;
    所述第四滤波电容的一端连接于所述供电输出端,所述第四滤波电容的另一端接地。
  12. 一种电子设备,包括供电电路及负载,所述供电电路与所述负载连接,其特征在于,所述供电电路为权利要求1至11任一所述的供电电路,所述供电电路用于为所述负载供电。
  13. 根据权利要求12所述的电子设备,其特征在于,所述电子设备为遥控器,所述负载包括图像显示装置和通信装置,所述供电电路用于为所述图像显示装置和通信装置供电。
PCT/CN2019/104426 2018-09-21 2019-09-04 一种供电电路及电子设备 WO2020057374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811108847.6A CN109245526B (zh) 2018-09-21 2018-09-21 一种供电电路及电子设备
CN201811108847.6 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020057374A1 true WO2020057374A1 (zh) 2020-03-26

Family

ID=65057277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104426 WO2020057374A1 (zh) 2018-09-21 2019-09-04 一种供电电路及电子设备

Country Status (2)

Country Link
CN (1) CN109245526B (zh)
WO (1) WO2020057374A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525796A (zh) * 2020-06-04 2020-08-11 深圳市亿道数码技术有限公司 适用高压电池的系统供电电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245526B (zh) * 2018-09-21 2024-04-12 深圳市道通智能航空技术股份有限公司 一种供电电路及电子设备
CN111583868A (zh) * 2019-02-18 2020-08-25 华为技术有限公司 一种基于显示驱动电路的终端设备
CN112018863B (zh) * 2020-08-31 2023-02-14 广州极飞科技股份有限公司 供电调整电路和供电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158080A (zh) * 2010-03-02 2011-08-17 成都芯源系统有限公司 一种电压变换器及其控制方法
US9755527B2 (en) * 2015-11-19 2017-09-05 Fuji Electric Co., Ltd. Switching power supply device
CN109245526A (zh) * 2018-09-21 2019-01-18 深圳市道通智能航空技术有限公司 一种供电电路及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100505494C (zh) * 2002-12-24 2009-06-24 三垦电气株式会社 开关电源装置及开关电源装置控制方法
JP4387170B2 (ja) * 2003-11-27 2009-12-16 株式会社リコー スイッチングレギュレータ
TWI278172B (en) * 2004-12-03 2007-04-01 Delta Electronics Inc Power supply device and operating method thereof
CN101674026B (zh) * 2009-10-12 2012-12-05 华南理工大学 一种可自动检测负载的开关电源低待机损耗控制电路
TWI446155B (zh) * 2010-08-04 2014-07-21 Acbel Polytech Inc Can automatically switch the standby power supply power supply path
CN203617892U (zh) * 2013-10-31 2014-05-28 美的集团股份有限公司 电饭煲的线圈盘驱动控制装置
JP6352733B2 (ja) * 2014-08-28 2018-07-04 ラピスセミコンダクタ株式会社 電源回路及びその制御方法
CN106911255B (zh) * 2015-12-22 2020-02-14 天津三星电子有限公司 一种电源适配器
CN106981983A (zh) * 2016-01-15 2017-07-25 深圳市绎立锐光科技开发有限公司 电子设备、电源控制电路及其驱动方法
US20170271988A1 (en) * 2016-03-17 2017-09-21 Le Holdings (Beijing) Co., Ltd. Apparatus and method for improving standby efficiency of handheld device
CN209088813U (zh) * 2018-09-21 2019-07-09 深圳市道通智能航空技术有限公司 一种供电电路及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158080A (zh) * 2010-03-02 2011-08-17 成都芯源系统有限公司 一种电压变换器及其控制方法
US9755527B2 (en) * 2015-11-19 2017-09-05 Fuji Electric Co., Ltd. Switching power supply device
CN109245526A (zh) * 2018-09-21 2019-01-18 深圳市道通智能航空技术有限公司 一种供电电路及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525796A (zh) * 2020-06-04 2020-08-11 深圳市亿道数码技术有限公司 适用高压电池的系统供电电路

Also Published As

Publication number Publication date
CN109245526A (zh) 2019-01-18
CN109245526B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2020057374A1 (zh) 一种供电电路及电子设备
KR101800560B1 (ko) 디지털 전력 게이트 드라이버와 통합된 ldo 전압 조정기
US10140931B2 (en) Shadow mask assemblies and reusing methods of shadow mask assemblies thereof
US20100001589A1 (en) Power supply circuit for motherboard
JP2012502354A (ja) Usb装置における適応フィードバックおよび電力制御
TWI510879B (zh) 電源供應裝置
WO2019184363A1 (zh) 用于降低功耗的供电系统及电子设备
CN201041734Y (zh) 液晶显示装置供电电路与液晶显示装置
EP3933543A1 (en) Low-dropout regulator for low voltage applications
US20190115828A1 (en) Output voltage adjustable circuit, voltage adjustment method and display apparatus
US8510579B2 (en) Power supply system with energy-saving function
CN209088813U (zh) 一种供电电路及电子设备
WO2015149474A1 (zh) 模拟电压源电路及显示装置
US7990373B2 (en) Power supply circuit for liquid crystal display device and liquid crystal display device using the same
US8255711B2 (en) Power supply circuit
CN216356513U (zh) 离线式开关电源电路及其反馈控制芯片
CN211701852U (zh) 一种降压模块和移动终端
US20130124880A1 (en) Power supply device for central processing unit
CN210234712U (zh) 无人机电压调节电路以及无人机挂载电源调节装置
CN108196481B (zh) 一种供电调节方法和电子设备
US10338671B2 (en) Power supply circuit and power supply system
CN107436669B (zh) 能量调节电路及操作系统
CN115079761B (zh) 电压调节电路、驱动芯片及电子设备
CN219919005U (zh) 上电时序可控的供电电路及显示设备
CN210839024U (zh) 一种多功能移动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863193

Country of ref document: EP

Kind code of ref document: A1