WO2019100770A1 - 卤化黑磷纳米片及其制备方法 - Google Patents

卤化黑磷纳米片及其制备方法 Download PDF

Info

Publication number
WO2019100770A1
WO2019100770A1 PCT/CN2018/100585 CN2018100585W WO2019100770A1 WO 2019100770 A1 WO2019100770 A1 WO 2019100770A1 CN 2018100585 W CN2018100585 W CN 2018100585W WO 2019100770 A1 WO2019100770 A1 WO 2019100770A1
Authority
WO
WIPO (PCT)
Prior art keywords
black phosphorus
halogenated
phosphorus nanosheet
anion
electrode
Prior art date
Application number
PCT/CN2018/100585
Other languages
English (en)
French (fr)
Inventor
张晗
汤贤
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019100770A1 publication Critical patent/WO2019100770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the invention relates to the field of black phosphorus, in particular to a halogenated black phosphorus nanosheet and a preparation method thereof.
  • the two-dimensional material black phosphorus has a direct band gap (0.3-2.0 eV) with high number of layers, high carrier mobility (10 3 cm 2 /Vs) and near-infrared response characteristics, in field effect transistors, photodetectors, gas transmission
  • the fields of sensation, photothermal therapy and other fields have important application prospects.
  • due to the serious environmental instability of black phosphorus itself it is easy to degrade rapidly in the air, so that the unique two-dimensional structure of black phosphorus and excellent electronic and photoelectric properties are not effectively exerted, and the life of the device based on black phosphorus is also It will be restricted, and improving the environmental stability of black phosphorus has become a hot issue that needs to be solved urgently.
  • black phosphorus first reacts with oxygen in the air to form phosphorus oxide PO x , and then reacts with water to form phosphoric acid and phosphorous acid, which is continuously lost from the black phosphorus body, and black phosphorus surface appears in the process. Bubbles, black phosphorus gradually disappeared and so on.
  • the currently reported black phosphorus stability treatments include covalent functionalization of aryl diazonium salts and titanium sulfonic acid ligands, non-covalent functionalization of polycyclic aromatic compounds, and AlO x , graphene, boron nitride, etc. Surface packaging of inorganic materials.
  • the present invention provides a halogenated black phosphorus nanosheet and a preparation method thereof.
  • the halogenated black phosphorus nanosheet of the invention is modified with halogen to improve the environmental stability of the black phosphorus nanosheet; the preparation method can realize electrochemical stripping and halogenation modification of the black phosphorus raw material in one step.
  • a first aspect of the present invention provides a halogenated black phosphorus nanosheet comprising a black phosphorus nanosheet and a halogen atom covalently bonded to a surface of the black phosphorus nanosheet and/or the black phosphorus via an XP bond Between the sheets of the nanosheet, the X represents at least one of F, Cl, Br and I, and the P represents a phosphorus atom.
  • the atomic ratio of the halogen atom to the phosphorus atom in the halogenated black phosphorus nanosheet is from 1% to 220%.
  • the halogenated black phosphorus nanosheet has an atomic ratio of the halogen atom to the phosphorus atom of 50% to 150%.
  • the black phosphorus nanosheet has an atomic layer number of 1 to 100 layers.
  • the black phosphorus nanosheet has a number of atomic layers of 3 to 6 layers.
  • the black phosphorus nanosheet has a lateral dimension of 100 nm to 100 ⁇ m.
  • the halogenated black phosphorus nanosheet provided by the invention is modified with a halogen, and the halogenated black phosphorus nanosheet realizes the passivation treatment of black phosphorus by resisting the invasion of external oxygen and water through the halogen covalent functional group on the surface, and the halogenated black phosphorus nanosheet
  • the appearance of the exposure in the air for a week did not change significantly, and the environmental stability was good.
  • a second aspect of the present invention provides a method for preparing a halogenated black phosphorus nanosheet, comprising the following steps:
  • a platinum material or a carbon material is used as a counter electrode, and a black phosphorus raw material is used as a working electrode, and the counter electrode, the working electrode and the electrolyte solution are formed into an electrode system;
  • the black phosphorus raw material is subjected to electrochemical stripping and simultaneous halogenation modification by an electrochemical method to obtain a halogenated black phosphorus nanosheet.
  • halogen anion-containing acid includes at least one of hydrofluoric acid, hydrochloric acid, hydrobromic acid, and hydroiodic acid.
  • the molar concentration of the halogen-containing anion-containing acid solution is 0.01 to 2 mol/L.
  • the ionic liquid containing a halogen anion comprises an ionic liquid containing at least one anion of a tetrafluoroborate anion, a hexafluorophosphate anion, a chloride anion, a bromine anion and an iodine anion.
  • the ionic liquid containing a halogen anion comprises 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-propyl-3-methyl At least one of the pyridyl chloride salts.
  • the molar concentration of the halogen-containing anion-containing acid solution is 0.01 to 2 mol/L, and the molar concentration of the halogen-containing anion-containing ionic liquid solution is 0.01 to 2 mol/L.
  • the electrochemical stripping is performed under the condition that the electrode is pressurized.
  • the electrochemical method comprises a potentiostatic polarization, a linear polarization, a cyclic voltammetric scan or a pulsed polarization method, the potentiostatic polarization, the linear polarization, the cyclic voltammetric scan or the pulse
  • the pressure range of polarization is +2 to +20 V, and the pressurization time is 0.5 to 20 h.
  • the scanning rate of the linear polarization and the cyclic voltammetric scanning is 0.001 to 0.5 V/s; and the voltage conversion frequency of the pulse polarization is 0.01 to 10 times/s.
  • the electrode system further comprises a reference electrode comprising a silver wire, a standard Ag/AgCl electrode, a standard saturated calomel electrode or a standard hydrogen electrode.
  • the black phosphorus raw material is a block of black phosphorus, a column shape, a sheet shape or an amorphous shape.
  • the black phosphorus raw material has a diagonal size of 0.5 cm to 5 cm.
  • the platinum material comprises a platinum wire, a platinum plate, a platinum mesh or a platinum disk
  • the carbon material comprises a carbon rod
  • oxygen in the electrode system is removed by bubbling.
  • the invention provides a process for electrochemical stripping preparation and synchronous halogenation of halogenated black phosphorus, which has the following remarkable beneficial effects: 1.
  • the electrochemical stripping and synchronous halogenation process of the halogenated black phosphorus can ensure the preparation process of halogenated black phosphorus It does not contact the air to prevent oxidation at the same time in the halogenation process, which improves the quality and efficiency of the product.
  • the electrochemical stripping and simultaneous halogenation process enables the preparation of halogenated black phosphorus in one step, thereby improving the environmental stability of black phosphorus by halogenation, avoiding post-passivation treatment of black phosphorus or pre-synthesis of passivating functional groups.
  • the process is complicated and the black phosphorus is oxidized and decomposed in the process. 3.
  • the electrochemical stripping and synchronous halogenation process has high efficiency and can be scaled, and the black phosphorus nanosheet layer measured in grams can be obtained in a few hours, which makes up for the shortcomings of the conventional micromechanical peeling and ultrasonic liquid phase stripping methods.
  • Figure 1 is a photograph of a black phosphorus raw material used in Example 1;
  • Example 2 is a schematic view of an apparatus for preparing a halogenated black phosphorus nanosheet used in Example 1;
  • Example 3 is a photo of a process for preparing a halogenated black phosphorus nanosheet in Example 1;
  • Example 4 is an XPS chart of the halogenated black phosphorus nanosheet prepared in Example 1;
  • Example 5 is an AFM chart of the stability test of the halogenated black phosphorus nanosheet prepared in Example 1 in air.
  • Embodiments of the present invention provide a halogenated black phosphorus nanosheet comprising a black phosphorus nanosheet and a halogen atom covalently bonded to the surface of the black phosphorus nanosheet and/or the black phosphorus nanoparticle through an XP bond.
  • the X represents at least one of F, Cl, Br and I
  • the P represents a phosphorus atom.
  • the black phosphorus nanosheet has an atomic layer number of 1 to 100 layers.
  • the black phosphorus nanosheet has a number of atomic layers of 3-6 layers.
  • the black phosphorus nanosheet has a lateral dimension of 100 nm to 100 ⁇ m.
  • the atomic ratio of the halogen atom to the phosphorus atom in the halogenated black phosphorus nanosheet is 1% to 220%.
  • the atomic ratio refers to the ratio of the number of atoms of a halogen atom to a phosphorus atom, in percentage.
  • the atomic ratio of the halogen atom to the phosphorus atom in the halogenated black phosphorus nanosheet is 50% to 150%.
  • the halogenated black phosphorus nanosheet provided by the invention is modified with a halogen, and the halogenated black phosphorus nanosheet realizes the passivation treatment of black phosphorus by resisting the invasion of external oxygen and water through the halogen covalent functional group on the surface, and the halogenated black phosphorus nanosheet
  • the appearance of the exposure in the air for a week did not change significantly, and the environmental stability was good.
  • a second aspect of the present invention provides a method for preparing a halogenated black phosphorus, comprising the following steps:
  • the halogen anion-containing acid comprises at least one of hydrofluoric acid, hydrochloric acid, hydrobromic acid and hydroiodic acid, and the acid purity of the halogen-containing anion is analytically pure.
  • the halogen acid anion-containing acid solution has a molar concentration of 0.01 to 2 mol/L and a volume of 0.01 to 2 L.
  • the halogen anion-containing acid is at least one of hydrofluoric acid and hydrochloric acid. The purity was analytically pure, the molar concentration was 0.2 mol/L, and the volume was 0.2 L.
  • halogen anion is intercalated between the black phosphorus surface and/or the interlayer layer by pressure polarization to achieve electrochemical stripping and simultaneous halogenation modification of the black phosphorus by the halogen anion.
  • the halogen-containing anion-containing ionic liquid comprises a tetrafluoroborate anion (BF 4 ⁇ ), a hexafluorophosphate anion (PF 6 ⁇ ), and a chloride anion (Cl ⁇ ).
  • the ionic liquid containing a halogen anion comprises 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-propyl-3 At least one of methylimidazolium chloride salts.
  • the halogen-containing anion-containing ionic liquid solution further includes an organic solvent, and the organic solvent includes acetonitrile, water, alcohol, isopropanol, acetone, N-methylpyrrolidone, dimethylformamide, and dimethyl
  • organic solvents such as sulfoxide, tetrahydrofuran and dichloromethane have purity of analytical grade and above.
  • the concentration of the ionic liquid solution containing the halogen anion is 0.01-2 mol/L, and the volume is 0.01-2 L; preferably, the ionic liquid solution containing the halogen anion is 1-ethyl-3- Methyl imidazole tetrafluoroborate in acetonitrile, 1-butyl-3-methylimidazolium hexafluorophosphate in acetonitrile or 1-propyl-3-methylimidazolium chloride in acetonitrile at a molar concentration of 0.2 Mol/L, volume is 0.2L.
  • a halogen anion is obtained by electrolyzing these ionic liquids containing a halogen anion to obtain a halogen radical F, ⁇ Cl, ⁇ Br or ⁇ I, and adsorbing or entering an intercalation layer on the surface of the black phosphorus under pressure. Electrochemical stripping of black phosphorus and simultaneous halogenation modification.
  • the electrode system in step S02, may be a two-electrode system or a three-electrode system.
  • the three electrode system includes a counter electrode, a working electrode, and a reference electrode.
  • the two electrode system includes a counter electrode and a working electrode.
  • the black phosphorus raw material is a block of black phosphorus, a column shape, a sheet shape or an amorphous shape, and the mass is 0.01-10 g.
  • the black phosphorus raw material has a diagonal size of 0.5 cm to 5 cm.
  • the black phosphorus raw material is commercially available.
  • the counter electrode is a platinum wire, a platinum plate, a platinum mesh or a platinum disk, and may also be a carbon rod, wherein the platinum wire has a diameter of 0.1 to 1 mm, and the platinum piece has a size of 0.2 to 2 cm ⁇ 0.2 to 2 cm ⁇ 0.01 to 0.1 cm, and the platinum The disc has a diameter of 0.2 to 2 cm and a carbon rod diameter of 0.2 to 2 cm.
  • the electrode system further comprises a reference electrode comprising a silver wire, a standard Ag/AgCl electrode, a standard saturated calomel electrode or a standard hydrogen electrode.
  • the silver wire has a diameter of 0.1 to 1 mm.
  • the distance between the three electrodes is 1-20 cm.
  • 0.5 g of a black phosphorus block is used as a working electrode, a platinum wire having a diameter of 0.5 mm is used as a counter electrode, and a silver wire having a diameter of 0.5 mm is used as a reference electrode, and the distance between the two is 5 cm.
  • the oxygen in the electrode system is removed by bubbling before electrochemical stripping in step S03.
  • nitrogen or argon having a purity of > 99.9% is bubbled to exclude oxygen in the electrode system for a bubbling time of 5 to 120 min, preferably with a purity of 99.99% nitrogen for 30 min.
  • the electrochemical stripping is performed under the condition that the electrode is pressurized.
  • the electrochemical method comprises potentiostatic polarization, linear polarization, cyclic voltammetry or pulsed polarization, said potentiostatic polarization, linear polarization, cyclic voltammetric scanning or pulsed polarization
  • the pressurization range is +2 to +20 V
  • the pressurization time is 0.5 to 20 h.
  • the linear polarization and cyclic voltammetry scans have a scan rate of 0.001 to 0.5 V/s.
  • the voltage conversion frequency of the pulse polarization is 0.01 to 10 times/s.
  • the electrochemical stripping and simultaneous halogenation of black phosphorus is carried out by a potentiostatic polarization method of +8 V, and the potentiostatic polarization time is 4 h.
  • the pulse polarization method is employed, the voltage is converted from 0 V to a positive voltage, and the switching frequency is 0.01 to 10 times/s.
  • the halogen anion in the electrolyte or the halogen radical generated by electrolysis from the halogen-containing anion group is directionally migrated to the black phosphorus working electrode by an electrochemical polarization process, and then adsorbed on the black phosphorus surface and formed a total of The valence bond causes the black phosphorus to be halogenated, and the halogen ions and the group enter the black phosphorus atomic layer to intercalate, and by weakening the van der Waals force between the black phosphorus atom layers, the black phosphorus atom layers are separated from each other and fall off. Disperse into the electrolyte to achieve electrochemical stripping preparation and simultaneous halogenation of the black phosphorus nanosheet layer.
  • the counter electrode, the black phosphorus working electrode and the electrolyte are all disposed in the electrolytic cell.
  • the black phosphorus working electrode is electrically connected to the electrode line and fixed during the stripping preparation process.
  • the connection may be that the electrode wire is directly connected by soldering, bundling, bonding, or the like, or by means of a conductive intermediate conductive connection.
  • one end of the black phosphorus raw material is clamped by a duckbill-shaped copper clip, and the other end of the copper clip is bundled with a copper wire which is not easily deformed, the copper wire is led to the outside of the electrolytic cell, and the copper wire is clamped by the alligator clip at the end of the electrode wire, and the electrode The wire is then secured to the iron frame by winding it, which also keeps the working electrode black phosphorus stationary.
  • a section of the black phosphorus raw material must be immersed in the electrolyte for stripping, and the other end of the connecting electrode clip or the intermediate conductive joint exposes the electrolyte liquid surface so that the electrode clip or the intermediate conductive joint is more than 2 mm from the liquid surface.
  • electrolysis causes pollution and other unnecessary influence on the electrochemical stripping process of the black phosphorus.
  • the electrolytic cell is made of polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) or glass to resist electrolytic corrosion of the electrolyte.
  • the cell is cylindrical or square in shape and is open or sealed.
  • the volume of different electrolytic cells is 0.01 to 5L.
  • the electrolytic cell used is a 0.5 L polytetrafluoroethylene three-electrode electrolytic cell.
  • the invention provides a process for electrochemical stripping preparation and synchronous halogenation of halogenated black phosphorus, which has the following remarkable beneficial effects: 1.
  • the electrochemical stripping and synchronous halogenation process of the halogenated black phosphorus proposed by the invention can ensure halogenated black The phosphorus is not exposed to air during the preparation process, preventing oxidation at the same time in the halogenation process, thereby improving the quality and efficiency of the product.
  • the electrochemical stripping and simultaneous halogenation process proposed by the invention enables the preparation of halogenated black phosphorus to be completed in one step, thereby improving the environmental stability of black phosphorus by halogenation, avoiding post-passivation treatment of black phosphorus or performing passivation functional groups.
  • the process of pre-synthesis brings about a complicated process and causes black phosphorus to be oxidized and decomposed in the process. 3.
  • the electrochemical stripping and synchronous halogenation process proposed by the invention has high efficiency and can be scaled, and can obtain a black phosphorus nanosheet layer measured in grams in a few hours, thereby making up for the methods of micro-mechanical peeling and ultrasonic liquid phase stripping. Insufficient.
  • a method for preparing a halogenated black phosphorus nanosheet comprises the following steps:
  • a halogenated black phosphorus nanosheet is prepared using the apparatus shown in FIG.
  • the counter electrode is a platinum wire electrode of ⁇ 0.5 mm (indicated by Pt in Fig. 2)
  • the reference electrode is a silver wire electrode of ⁇ 0.5 mm (indicated by Ag in Fig. 2)
  • the counter electrode and the reference electrode are also passed through the rubber stopper.
  • the distance between the two electrodes is 5 cm.
  • the rubber stopper of each copper wire, platinum wire, and silver wire was used to seal the mouth of the flask, and the fourth bottle mouth was inserted into the air pipe and bubbled with nitrogen gas (purity of 99.999%). After bubbling for 10 min, the working electrode was subjected to a constant pressure of +8 V to carry out electrochemical stripping and simultaneous fluorination of black phosphorus, and the constant pressure time was 2 h.
  • Photographs of the electrolyte changes during the entire constant pressure electrochemical stripping and fluorination process at 0 min, 40 min, 80 min, and 120 min are shown in Figure 3. From this, 1-ethyl-3-methylimidazolium tetrafluoroborate/acetonitrile can be seen. The electrolyte gradually changed from the initial colorless to pale yellow, deep yellow and finally brown. The black phosphorus layer was gradually peeled off and fluorinated and dispersed into the electrolyte, the concentration gradually increased, and no large particles appeared. Or the peeling of the sheet, as well as the apparent volume expansion and tear of the black phosphorus, indicates that the electrochemical stripping and simultaneous fluorination process is a mild, easy to control, stable process.
  • the mass of the fluorinated black phosphorus nanosheet was 0.081 g, and the yield was 81%. , indicating that the method is extremely efficient and scalable.
  • the obtained fluorinated black phosphorus was subjected to XPS characterization. It can be seen from the X-ray photoelectron spectroscopy (XPS) spectrum shown in Fig. 4 that a photoelectron peak belonging to the PP bond appeared at a nuclear electron binding energy of 130 eV.
  • XPS X-ray photoelectron spectroscopy
  • a photoelectron peak belonging to the PF bond appeared at 132.5 eV, confirming that black phosphorus has been fluorinated.
  • the atomic force microscopy (AFM) characterization of the prepared fluorinated black phosphorus was carried out, as shown in FIG. 5, from the exposure of a certain fluorinated black phosphorus nanosheet prepared in Example 1 (Fig. a). AFM micrographs exposed to air for half a day (Fig. b), two days (Fig. c), four days (Fig. d) and seven days (Fig. e) show that the nanosheets are exposed to air for one week.
  • the internal morphology did not change significantly, and there was no typical black phosphorus degradation characteristic such as foaming, thus showing a strong environmental stability.
  • AFM test it was found that the prepared fluorinated black phosphorus nanosheets had a lateral dimension between 0.1 and 5 ⁇ m and a number of layers between 2 and 20 layers.
  • the fluorine was found by comparing the P 2p peak and the F 1s peak in the XPS test.
  • the fluorination rate (i.e., the ratio of the number of fluorine atoms to the number of phosphorus atoms) of the black phosphorus nanosheet was 31.6%.
  • a method for preparing a halogenated black phosphorus nanosheet comprises the following steps:
  • the preparation apparatus was the same as in Example 1, in which hydrochloric acid having a volume of 0.1 L and a molar concentration of 0.2 mol/L was used as the electrolytic solution. After the electrolyte was bubbled for 10 min, the working electrode was subjected to linear polarization by applying a voltage of +10 V to electrochemically strip and synchronously fluorinate black phosphorus. The linear polarization scan rate was 0.1 V/s, and the pressurization time was 4 h. , chlorinated black phosphorus nanosheets are prepared.
  • a method for preparing a halogenated black phosphorus nanosheet comprises the following steps:
  • the preparation apparatus was the same as in Example 1, in which 0.01 L of an acetonitrile solution of 2 mol/L of 1-propyl-3-methylimidazolium chloride in acetonitrile was prepared as an electrolytic solution. After bubbling the electrolyte for 10 min, a voltage of +15 V was applied to the working electrode for cyclic voltammetry scanning to electrochemically strip and synchronously fluorinate black phosphorus, and the scanning rate of the cyclic voltammetric scan was 0.1 V/s, and the pressurization time was For 10 h, chlorinated black phosphorus nanosheets were prepared.
  • a method for preparing a halogenated black phosphorus nanosheet comprises the following steps:
  • the preparation apparatus was the same as in Example 1, in which hydrobromic acid having a volume of 1.5 L and a molar concentration of 0.01 mol/L was used as an electrolytic solution. After the electrolyte was bubbled for 10 minutes, the working electrode was applied with a voltage of +8 V for pulse polarization to electrochemically strip and synchronously fluorinate black phosphorus, the voltage conversion frequency was 0.01 times/s, and the pressurization time was 4 h. Brominated black phosphorus nanosheets.
  • a method for preparing a halogenated black phosphorus nanosheet comprises the following steps:
  • the preparation apparatus was the same as in Example 1, in which a 1-butyl-3-methylimidazolium iodide salt having a volume of 1 L and a molar concentration of 0.2 mol/L was used as an electrolytic solution. After the electrolyte was bubbled for 10 minutes, the working electrode was applied with a voltage of +20 V for pulse polarization to electrochemically strip and synchronously fluorinate black phosphorus, the voltage conversion frequency was 10 times/s, and the pressurization time was 4 h. Iodinated black phosphorus nanosheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

提供一种卤化黑磷纳米片,包括黑磷纳米片和卤素原子,卤素原子通过X-P键共价连接在黑磷纳米片的表面和/或黑磷纳米片的片层之间,X代表F、Cl、Br和I中的至少一种,P代表磷原子。卤化黑磷纳米片的环境稳定性良好。还提供一种卤化黑磷纳米片的制备方法,包括:配制含卤素阴离子的酸溶液或者含卤素阴离子的离子液体溶液作为制备卤化黑磷的电解液;以铂材或碳材作为对电极,以黑磷原材料为工作电极,将对电极、工作电极和电解液形成电极体系;通过电化学方法对黑磷原材料进行电化学剥离和同步卤化修饰,得到卤化黑磷纳米片。该方法使得黑磷的电化学剥离与卤化工艺同步进行,方法简单易操作。

Description

卤化黑磷纳米片及其制备方法
本发明要求于2017年11月27日递交的申请号为201711204835.9,发明名称为“卤化黑磷纳米片及其制备方法”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及黑磷领域,具体涉及一种卤化黑磷纳米片及其制备方法。
背景技术
二维材料黑磷具有层数调控的直接带隙(0.3~2.0eV)、高载流子迁移率(10 3cm 2/Vs)和近红外响应特性,在场效应晶体管、光探测器、气体传感、光热治疗等领域具有重要的应用前景。然而由于黑磷本身存在严重的环境不稳定性,易在空气中迅速降解,使得黑磷的独特二维结构和优异的电子和光电性能得不到有效发挥,基于黑磷的器件装置的寿命也会受到限制,提高黑磷的环境稳定性已成为急需解决的热点问题。
黑磷的环境降解过程为:黑磷首先跟空气中的氧气反应生成磷氧化合物PO x,随后与水反应生成磷酸和亚磷酸,从黑磷本体中不断流失,过程中会出现黑磷表面起泡,黑磷逐渐消失等现象。目前报道的黑磷稳定性处理办法包括芳基重氮盐和钛磺酸配位体的共价功能化、多环芳香化合物的非共价功能化、以及AlO x、石墨烯、氮化硼等无机材料的表面封装。虽然这些钝化方法有效阻止了黑磷与氧气和水的反应,使得黑磷展现出优良的环境稳定性,但这些方法要么涉及黑磷的后处理,要么需要预先合成稳定功能团,因此工艺复杂,处 理过程中也可能导致黑磷被氧化和降解。
发明内容
为解决上述问题,本发明提供了一种卤化黑磷纳米片及其制备方法。本发明卤化黑磷纳米片上修饰有卤素,可以提高黑磷纳米片的环境稳定性;所述制备方法可一步实现黑磷原材料的电化学剥离和卤化修饰。
本发明第一方面提供了一种卤化黑磷纳米片,包括黑磷纳米片和卤素原子,所述卤素原子通过X-P键共价连接在所述黑磷纳米片的表面和/或所述黑磷纳米片的片层之间,所述X代表F、Cl、Br和I中的至少一种,所述P代表磷原子。
其中,所述卤化黑磷纳米片中所述卤素原子与所述磷原子的原子数比为1%~220%。
其中,所述卤化黑磷纳米片中所述卤素原子与所述磷原子的原子数比为50%~150%。
其中,所述黑磷纳米片的原子层数为1~100层。
其中,所述黑磷纳米片的原子层数为3~6层。
其中,所述黑磷纳米片的横向尺寸为100nm~100μm。
本发明提供的卤化黑磷纳米片上修饰有卤素,卤化黑磷纳米片通过表面的卤素共价功能团抵抗外部氧气和水的侵入,实现了黑磷的钝化处理,所述卤化黑磷纳米片在空气中暴露一周的时间内的形貌没有明显变化,环境稳定性良好。
本发明实施例第二方面提供了一种卤化黑磷纳米片的制备方法,包括以下步骤:
配制含卤素阴离子的酸溶液或者含卤素阴离子的离子液体溶液作为制备卤化黑磷的电解液;所述卤素阴离子包括F -、Cl -、Br -和I -中的至少一种;
以铂材或碳材作为对电极,以黑磷原材料为工作电极,将所述对电极、工作电极和所述电解液形成电极体系;
通过电化学方法对所述黑磷原材料进行电化学剥离和同步卤化修饰,得到卤化黑磷纳米片。
其中,所述含卤素阴离子的酸包括氢氟酸、盐酸、氢溴酸和氢碘酸中的至少一种。
其中,所述含卤素阴离子的酸溶液的摩尔浓度为0.01~2mol/L。
其中,所述含卤素阴离子的离子液体包括含有四氟硼酸根阴离子、六氟磷酸根阴离子、氯阴离子、溴阴离子和碘阴离子中的至少一种阴离子的离子液体。
其中,所述含卤素阴离子的离子液体包括1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐和1-丙基-3-甲基咪唑氯盐中的至少一种。
其中,所述含卤素阴离子的酸溶液的摩尔浓度为0.01~2mol/L,所述含卤素阴离子的离子液体溶液的摩尔浓度为0.01~2mol/L。
其中,所述电化学剥离在电极加压的条件下进行。
其中,所述电化学方法包括恒电位极化、线性极化、循环伏安扫描或者脉冲极化法,所述恒电位极化、所述线性极化、所述循环伏安扫描或者所述脉冲极化的加压范围为+2~+20V,加压时间为0.5~20h。
其中,所述线性极化和循环伏安扫描的扫描速率为0.001~0.5V/s;所述脉冲极化的电压转换频率为0.01~10次/s。
其中,所述电极体系还包括参比电极,所述参比电极包括银丝、标准 Ag/AgCl电极、标准饱和甘汞电极或标准氢电极。
其中,所述黑磷原材料为黑磷的块体、柱状、片状或者无定形状。
其中,所述黑磷原材料的对角尺寸为0.5cm~5cm。
其中,所述铂材包括铂丝、铂片、铂网或铂盘,所述碳材包括碳棒。
其中,在所述电化学剥离之前,采用鼓泡的方法排除所述电极体系中的氧气。
本发明提出了一种实现卤化黑磷的电化学剥离制备与同步卤化的工艺,具有如下显著的有益效果:1.所述卤化黑磷的电化学剥离与同步卤化工艺可保证卤化黑磷制备过程中不接触空气,防止卤化过程中同时被氧化,提高了产品的质量和效率。2.所述电化学剥离与同步卤化工艺使得卤化黑磷的制备一步完成,便可通过卤化来提高黑磷的环境稳定性,避免了黑磷的钝化后处理或进行钝化官能团的预先合成所带来的工艺复杂、过程中造成黑磷被氧化分解的问题。3.所述电化学剥离与同步卤化工艺效率高、可规模化,可在数小时内得到以克计量的黑磷纳米片层,弥补了以往微机械剥离、超声液相剥离等方法的不足。
附图说明
图1为实施例1中所采用的黑磷原材料的照片;
图2为实施例1中所采用的卤化黑磷纳米片的制备装置的示意图;
图3为实施例1中制备卤化黑磷纳米片的过程照片;
图4为实施例1中制备的卤化黑磷纳米片的XPS图;
图5为实施例1中制备的卤化黑磷纳米片在空气中稳定性测试的AFM图。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本发明实施例提供了一种卤化黑磷纳米片,包括黑磷纳米片和卤素原子,所述卤素原子通过X-P键共价连接在所述黑磷纳米片的表面和/或所述黑磷纳米片的片层之间,所述X代表F、Cl、Br和I中的至少一种,所述P代表磷原子。
本发明实施例中,所述黑磷纳米片的原子层数为1~100层。可选地,所述黑磷纳米片的原子层数为3~6层。
本发明实施例中,所述黑磷纳米片的横向尺寸为100nm~100μm。
本发明实施例中,所述卤化黑磷纳米片中所述卤素原子与所述磷原子的原子数比为1%~220%。所述原子数比指的是卤素原子与磷原子的原子数的比值,以百分数计。可选地,所述卤化黑磷纳米片中所述卤素原子与所述磷原子的原子数比为50%~150%。
本发明提供的卤化黑磷纳米片上修饰有卤素,卤化黑磷纳米片通过表面的卤素共价功能团抵抗外部氧气和水的侵入,实现了黑磷的钝化处理,所述卤化黑磷纳米片在空气中暴露一周的时间内的形貌没有明显变化,环境稳定性良好。
本发明实施例第二方面提供了一种卤化黑磷的制备方法,包括以下步骤:
S01、配制含卤素阴离子的酸溶液或者含卤素阴离子的离子液体溶液作为制备卤化黑磷的电解液;所述卤素阴离子包括F -、Cl -、Br -和I -中的至少一种;
S02、以铂材或碳材作为对电极,以黑磷片层原材料为工作电极,将所述对电极、工作电极和所述电解液形成电极体系;
S03、通过电化学方法对所述黑磷进行电化学剥离和同步卤化修饰,得到卤化黑磷纳米片。
本发明实施例中,步骤S01中,所述的含卤素阴离子的酸包括氢氟酸、盐酸、氢溴酸和氢碘酸中的至少一种,所述的含卤素阴离子的酸纯度为分析纯及以上,所述的含卤素阴离子的酸溶液的摩尔浓度为0.01~2mol/L,体积为0.01~2L,优选地,所述的含卤素阴离子的酸为氢氟酸和盐酸中的至少一种,纯度为分析纯,摩尔浓度为0.2mol/L,体积为0.2L。酸溶液过低或者过高的配制浓度将导致所制得的卤化黑磷卤化不完全,钝化处理不好,或者卤化过重而失去原有的性能。配制过量或者配制过少将导致得到的卤化黑磷分散液浓度过高或者过低,不利于随后的离心分离处理。可选地,通过加压极化作用,使卤素阴离子在黑磷表面和/或进入层间插层,实现卤素阴离子对黑磷的电化学剥离与同步卤化改性。
本发明实施例中,步骤S01中,所述的含卤素阴离子的离子液体为包括含有四氟硼酸根阴离子(BF 4 -)、六氟磷酸根阴离子(PF 6 -)、氯阴离子(Cl -)、溴阴离子(Br -)和碘阴离子(I -)中的至少一种阴离子的离子液体,所述离子液体的纯度≥95%。可选地,所述含卤素阴离子的离子液体包括1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐和1-丙基-3-甲基咪唑氯盐中的至少一种。可选地,所述含卤素阴离子的离子液体溶液中还包括有机溶剂,所述有机溶剂包括乙腈、水、酒精、异丙醇、丙酮、N-甲基吡咯烷酮、二甲基甲酰胺、二甲基亚砜、四氢呋喃、二氯甲烷等各种极性有机溶剂,纯度为分析纯 及以上。可选地,所述的含卤素阴离子的离子液体溶液的浓度为0.01~2mol/L,体积为0.01~2L;优选地,所述的含卤素阴离子的离子液体溶液为1-乙基-3-甲基咪唑四氟硼酸盐的乙腈溶液、1-丁基-3-甲基咪唑六氟磷酸盐的乙腈溶液或1-丙基-3-甲基咪唑氯盐的乙腈溶液,摩尔浓度为0.2mol/L,体积为0.2L。可选地,通过电解这些含卤素阴离子的离子液体得到卤素自由基·F、·Cl、·Br或者·I,并在加压条件下在黑磷表面吸附或进入层间插层,实现卤素阴离子对黑磷的电化学剥离与同步卤化改性。
本发明实施例中,步骤S02中,所述电极体系可为二电极体系,也可以为三电极体系。所述三电极体系包括对电极、工作电极和参比电极。所述二电极体系包括对电极和工作电极。
本发明实施例中,步骤S02中,所述黑磷原材料为黑磷的块体、柱状、片状或者无定形状,质量为0.01~10g。可选地,所述黑磷原材料的对角尺寸为0.5cm~5cm。可选地,所述黑磷原材料可购买得到。所述对电极为铂丝、铂片、铂网或铂盘,也可以为碳棒,其中铂丝直径为0.1~1mm,铂片尺寸为0.2~2cm×0.2~2cm×0.01~0.1cm,铂盘直径为0.2~2cm,碳棒直径为0.2~2cm。可选地,所述电极体系还包括参比电极,所述参比电极包括银丝、标准Ag/AgCl电极、标准饱和甘汞电极或标准氢电极。其中银丝直径为0.1~1mm。三种电极之间两两间距分别为1~20cm。优选地,采用0.5g的黑磷块体作为工作电极,直径为Φ0.5mm的铂丝作为对电极,直径为Φ0.5mm的银丝作为参比电极,两两间距为5cm。
本发明实施例中,在步骤S03电化学剥离之前,采用鼓泡的方法排除电极体系中的氧气。可选地,采用纯度≥99.9%的氮气或者氩气鼓泡以排除电极体 系中的氧气,鼓泡时间为5~120min,优选地,采用纯度为99.99%的氮气鼓泡30min。
本发明实施例中,步骤S03中,所述电化学剥离在电极加压的条件下进行。可选地,所述电化学方法包括恒电位极化、线性极化、循环伏安扫描或者脉冲极化法,所述的恒电位极化、线性极化、循环伏安扫描或者脉冲极化的加压范围为+2~+20V,加压时间为0.5~20h。所述的线性极化和循环伏安扫描的扫描速率为0.001~0.5V/s。所述脉冲极化的电压转换频率为0.01~10次/s。优选地,采用+8V的恒电位极化方法进行黑磷的电化学剥离与同步卤化,恒电位极化时间为4h。可选地,当采用所述脉冲极化方法时,对电压从0V到正压进行转换,转换频率为0.01~10次/s。
本发明实施例通过电化学极化过程,使得电解液中的卤素阴离子或者从含卤素阴离子基团中电解产生的卤素自由基向黑磷工作电极发生定向迁移,随后吸附在黑磷表面并形成共价键,使黑磷被卤化,进而卤素离子和基团进入黑磷的原子层间进行插层,通过削弱黑磷原子层之间的范德华力作用,使黑磷原子层之间相互分离、脱落,分散到电解液中,从而实现黑磷纳米片层的电化学剥离制备与同步卤化。
本发明实施例中,所述对电极、黑磷工作电极和电解液均设置在电解池中。
本发明实施例中,黑磷工作电极与电极线连接通电,并在剥离制备过程中固定。所述的连接可以是电极线直接通过焊接、捆绑、粘接等方式,或者借助导电中间导电连接物的方式实现导通。优选地,采用鸭嘴形铜夹夹住黑磷原材料一端,铜夹另一端用不易变形的铜线捆绑,铜线引到电解池外部,再用电极线末端的鳄鱼夹夹住铜线,电极线再通过缠绕在铁架台上固定住,这也使工作 电极黑磷保持静止。另外,黑磷原材料的一段必须浸没在电解液中,以用于剥离,而连接电极夹或中间导电连接物的另一端露出电解液液面,使电极夹或中间导电连接物距离液面2mm以上,以防止电极线或中间导电连接物浸入电解液发生电解,对黑磷的电化学剥离过程产生污染和其它不必要的影响。
本发明实施例中,步骤S02中,所述电解池材质为聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)或者玻璃,以抵抗电解液的电解腐蚀。电解池形状为圆柱形或者方形,敞口或者加盖密封。除了普通的三电极或者两电极聚四氟乙烯或聚醚醚酮电解池,也可以用两口、三口、或四口的平底或者圆底的烧瓶,或者烧杯作为电解池。不同电解池容积为统一为0.01~5L。优选地,所采用的电解池为0.5L的聚四氟乙烯三电极电解池。
本发明提出了一种实现卤化黑磷的电化学剥离制备与同步卤化的工艺,具有如下显著的有益效果:1.本发明所提出的卤化黑磷的电化学剥离与同步卤化工艺可保证卤化黑磷制备过程中不接触空气,防止卤化过程中同时被氧化,提高了产品的质量和效率。2.本发明所提出的电化学剥离与同步卤化工艺使得卤化黑磷的制备一步完成,便可通过卤化来提高黑磷的环境稳定性,避免了黑磷的钝化后处理或进行钝化官能团的预先合成所带来的工艺复杂、过程中造成黑磷被氧化分解的问题。3.本发明所提出的电化学剥离与同步卤化工艺效率高、可规模化,可在数小时内得到以克计量的黑磷纳米片层,弥补了以往微机械剥离、超声液相剥离等方法的不足。
实施例1:
一种卤化黑磷纳米片的制备方法,包括以下步骤:
本实施例采用如图2所示的装置制备卤化黑磷纳米片。
配制0.1mol/L的1-乙基-3-甲基咪唑四氟硼酸盐的乙腈溶液0.1L,倒入0.2L的平底四口烧瓶,将0.1g的黑磷片(实物照片见图1)用铜夹夹住,铜夹尾部用Φ0.5mm的铜线捆绑,铜线再穿过橡胶塞引出到四口烧瓶的瓶口,并用工作电极线末端的电极夹夹住。电极线缠绕在铁架台上使黑磷工作电极固定,通过调整使大部分黑磷(图2中用数字1表示)浸入电解液(图2中用数字2表示)中,同时保持铜夹与电解液液面的距离为2mm。对电极采用Φ0.5mm的铂丝电极(图2中用Pt表示),参比电极采用Φ0.5mm的银丝电极(图2中用Ag表示),对电极和参比电极同样穿过橡胶塞,三个电极之间的两两间距为5cm。将穿有各个铜线、铂丝、银丝的橡胶塞将烧瓶口封住,第四个瓶口插入导气管并通入氮气(纯度99.999%)进行鼓泡。鼓泡10min后,将工作电极施加+8V的恒压进行黑磷的电化学剥离与同步氟化,恒压时间为2h。
整个恒压电化学剥离与氟化过程在0min、40min、80min和120min的电解液变化照片如图3所示,从中可以看出1-乙基-3-甲基咪唑四氟硼酸盐/乙腈电解液从最初的无色,逐渐变成淡黄色、深黄色和最终的棕色,黑磷片层逐渐被剥离和氟化并分散到电解液中,浓度逐渐增加,并且并未出现较大的颗粒或者片层脱落,以及明显的黑磷体积膨胀和撕裂,说明该电化学剥离和同步氟化过程是一个温和、易于控制、稳定的过程。
对所制得的氟化黑磷纳米片的产量(所剥离得到的氟化黑磷与黑磷原材料的质量比)进行计算,得到氟化黑磷纳米片的质量为0.081g,产量达到81%,表明该方法具有极高的效率和可规模化程度。将制得的氟化黑磷进行XPS表征,从图4所示的X射线光电子能谱分析(XPS)图谱中可以看出,除了在核 电子结合能为130eV处出现了属于P-P键的光电子峰以外,在132.5eV处也出现了属于P-F键的光电子峰,证实了黑磷已经被氟化。进一步对所制得的氟化黑磷进行环境稳定性的原子力显微镜(AFM)表征,如图5所示,从对实施例1制得的某一氟化黑磷纳米片没有暴露(图a)、在空气中暴露半天(图b)、两天(图c)、四天(图d)和七天(图e)后的AFM显微照片可以看出,该纳米片在空气中暴露一周的时间内的形貌没有明显变化,没有出现起泡等典型的黑磷降解特征,因此显示了极强的环境稳定性。通过AFM测试发现,所制得的氟化黑磷纳米片的横向尺寸位于0.1~5μm之间,层数为2~20层之间;通过比较XPS测试中P 2p峰和F 1s峰发现,氟化黑磷纳米片的氟化率(即氟原子数与磷原子数之比)为31.6%。
实施例2:
一种卤化黑磷纳米片的制备方法,包括以下步骤:
制备装置和实施例1相同,其中采用体积为0.1L、摩尔浓度为0.2mol/L的盐酸作为电解液。将电解液鼓泡10min后,将工作电极施加+10V的电压进行线性极化以对黑磷的电化学剥离与同步氟化,线性极化的扫描速率为0.1V/s,加压时间为4h,制得氯化黑磷纳米片。
实施例3:
一种卤化黑磷纳米片的制备方法,包括以下步骤:
制备装置和实施例1相同,其中配制2mol/L的1-丙基-3-甲基咪唑氯盐的乙腈溶液的乙腈溶液0.01L作为电解液。将电解液鼓泡10min后,将工作电 极施加+15V的电压进行循环伏安扫描以对黑磷的电化学剥离与同步氟化,循环伏安扫描的扫描速率为0.1V/s,加压时间为10h,制得氯化黑磷纳米片。
实施例4:
一种卤化黑磷纳米片的制备方法,包括以下步骤:
制备装置和实施例1相同,其中采用体积为1.5L、摩尔浓度为0.01mol/L的氢溴酸作为电解液。将电解液鼓泡10min后,将工作电极施加+8V的电压进行脉冲极化以对黑磷的电化学剥离与同步氟化,电压转换频率为0.01次/s,加压时间为4h,制得溴化黑磷纳米片。
实施例5:
一种卤化黑磷纳米片的制备方法,包括以下步骤:
制备装置和实施例1相同,其中采用体积为1L、摩尔浓度为0.2mol/L的1-丁基-3-甲基咪唑碘盐作为电解液。将电解液鼓泡10min后,将工作电极施加+20V的电压进行脉冲极化以对黑磷的电化学剥离与同步氟化,电压转换频率为10次/s,加压时间为4h,制得碘化黑磷纳米片。
经过测试发现,上述实施例2-5制得的卤化黑磷纳米片的环境稳定性均较好。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变 形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种卤化黑磷纳米片,其中,包括黑磷纳米片和卤素原子,所述卤素原子通过X-P键共价连接在所述黑磷纳米片的表面和/或所述黑磷纳米片的片层之间,所述X代表F、Cl、Br和I中的至少一种,所述P代表磷原子。
  2. 如权利要求1所述的卤化黑磷纳米片,其中,所述卤化黑磷纳米片中所述卤素原子与所述磷原子的原子数比为1%~220%。
  3. 如权利要求2所述的卤化黑磷纳米片,其中,所述卤化黑磷纳米片中所述卤素原子与所述磷原子的原子数比为50%~150%。
  4. 如权利要求1所述的卤化黑磷纳米片,其中,所述黑磷纳米片的原子层数为1~100层。
  5. 如权利要求4所述的卤化黑磷纳米片,其中,所述黑磷纳米片的原子层数为3~6层。
  6. 如权利要求1所述的卤化黑磷纳米片,其中,所述黑磷纳米片的横向尺寸为100nm~100μm。
  7. 一种卤化黑磷纳米片的制备方法,其中,包括以下步骤:
    配制含卤素阴离子的酸溶液或者含卤素阴离子的离子液体溶液作为制备卤化黑磷的电解液;所述卤素阴离子包括F -、Cl -、Br -和I -中的至少一种;
    以铂材或碳材作为对电极,以黑磷原材料为工作电极,将所述对电极、所述工作电极和所述电解液形成电极体系;
    通过电化学方法对所述黑磷原材料进行电化学剥离和同步卤化修饰,得到卤化黑磷纳米片。
  8. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述含卤素阴离子的酸包括氢氟酸、盐酸、氢溴酸和氢碘酸中的至少一种。
  9. 如权利要求8所述的卤化黑磷纳米片的制备方法,其中,所述含卤素阴离子的酸溶液的摩尔浓度为0.01~2mol/L。
  10. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述含卤素阴离子的离子液体包括含有四氟硼酸根阴离子、六氟磷酸根阴离子、氯阴离子、溴阴离子和碘阴离子中的至少一种阴离子的离子液体。
  11. 如权利要求10所述的卤化黑磷纳米片的制备方法,其中,所述含卤素阴离子的离子液体包括1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐和1-丙基-3-甲基咪唑氯盐中的至少一种。
  12. 如权利要求10所述的卤化黑磷纳米片的制备方法,其中,所述含卤素 阴离子的离子液体溶液的摩尔浓度为0.01~2mol/L。
  13. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述电化学剥离在电极加压的条件下进行。
  14. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述电化学方法包括恒电位极化、线性极化、循环伏安扫描或者脉冲极化法,所述恒电位极化、所述线性极化、所述循环伏安扫描或者所述脉冲极化的加压范围为+2~+20V,加压时间为0.5~20h。
  15. 如权利要求14所述的卤化黑磷纳米片的制备方法,其中,所述线性极化和所述循环伏安扫描的扫描速率为0.001~0.5V/s;所述脉冲极化的电压转换频率为0.01~10次/s。
  16. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述电极体系还包括参比电极,所述参比电极包括银丝、标准Ag/AgCl电极、标准饱和甘汞电极或标准氢电极。
  17. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述黑磷原材料为黑磷的块体、柱状、片状或者无定形状。
  18. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述黑磷原 材料的对角尺寸为0.5cm~5cm。
  19. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,所述铂材包括铂丝、铂片、铂网或铂盘,所述碳材包括碳棒。
  20. 如权利要求7所述的卤化黑磷纳米片的制备方法,其中,在所述电化学剥离之前,采用鼓泡的方法排除所述电极体系中的氧气。
PCT/CN2018/100585 2017-11-27 2018-08-15 卤化黑磷纳米片及其制备方法 WO2019100770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711204835.9 2017-11-27
CN201711204835.9A CN108163825A (zh) 2017-11-27 2017-11-27 卤化黑磷纳米片及其制备方法

Publications (1)

Publication Number Publication Date
WO2019100770A1 true WO2019100770A1 (zh) 2019-05-31

Family

ID=62524473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100585 WO2019100770A1 (zh) 2017-11-27 2018-08-15 卤化黑磷纳米片及其制备方法

Country Status (2)

Country Link
CN (1) CN108163825A (zh)
WO (1) WO2019100770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279228A (zh) * 2019-07-23 2021-01-29 西北工业大学 一种黑磷纳米片及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163825A (zh) * 2017-11-27 2018-06-15 深圳大学 卤化黑磷纳米片及其制备方法
CN108817374B (zh) * 2018-06-28 2020-11-27 同济大学 一种黑磷-银纳米复合材料的制备方法
CN109019540A (zh) * 2018-08-17 2018-12-18 深圳市中科墨磷科技有限公司 一种制备黑磷纳米片的方法
CN109368607B (zh) * 2018-11-15 2020-10-16 深圳大学 黑磷纳米片及其制备方法和应用
CN113666348A (zh) * 2021-09-25 2021-11-19 湖北兴发化工集团股份有限公司 一种电化学法制备黑磷纳米片的装置及方法
CN114180543B (zh) * 2021-12-29 2023-12-26 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN114956178B (zh) * 2022-04-08 2023-08-08 湖南大学 一种二维层状材料的电化学剥离方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270211A (ja) * 1985-09-19 1987-03-31 Mitsubishi Petrochem Co Ltd 黒リン・ヨウ素層間化合物
CN108163825A (zh) * 2017-11-27 2018-06-15 深圳大学 卤化黑磷纳米片及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270211A (ja) * 1985-09-19 1987-03-31 Mitsubishi Petrochem Co Ltd 黒リン・ヨウ素層間化合物
CN108163825A (zh) * 2017-11-27 2018-06-15 深圳大学 卤化黑磷纳米片及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TANG, XIAN ET AL.: "Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability", SMALL, vol. 13, 2 November 2017 (2017-11-02), pages 1 - 10, XP55614275 *
ZHANG, LONG ET AL.: "Modulation of Electronic Structure of Phosphorene Nanoribbon", JOURNAL OF SHENZHEN UNIVERSITY ( SCIENCE & ENGINEERING, vol. 32, no. 4, 31 July 2015 (2015-07-31), pages 343 - 349, XP55614279 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279228A (zh) * 2019-07-23 2021-01-29 西北工业大学 一种黑磷纳米片及其制备方法和应用
CN112279228B (zh) * 2019-07-23 2023-12-26 西北工业大学 一种黑磷纳米片及其制备方法和应用

Also Published As

Publication number Publication date
CN108163825A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019100770A1 (zh) 卤化黑磷纳米片及其制备方法
Liu et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons
McDonough et al. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes
JP5965395B2 (ja) 複合体の調製法、得られる複合体及びその用途
Oularbi et al. Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers
Zhang et al. Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode
Chen et al. Carbon nanotube and polypyrrole composites: coating and doping
Li et al. Synthesis and application of widely soluble graphene sheets
JP6814996B2 (ja) MoSxOy/カーボンナノコンポジット材料、その調製方法およびその使用
JP5806618B2 (ja) 酸化グラフェンの還元方法およびその方法を利用した電極材料の製造方法
Kong et al. Raising the performance of a 4 V supercapacitor based on an EMIBF 4–single walled carbon nanotube nanofluid electrolyte
Ghasemi et al. Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell
Gao et al. Design and synthesis of MWNTs-TiO2 nanotube hybrid electrode and its supercapacitance performance
Chaudhari et al. Synthesis and supercapacitor performance of Au-nanoparticle decorated MWCNT
Hu et al. Carbon nanomaterials for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid: from one-dimensional to the quasi one-dimensional
Adekunle et al. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers
Li et al. Optical microscopy unveils rapid, reversible electrochemical oxidation and reduction of graphene
Lü et al. Dye-functionalized graphene/polyaniline nanocomposite as an electrode for efficient electrochemical supercapacitor
Guo et al. Ultralong In2S3 nanotubes on graphene substrate with enhanced electrocatalytic activity
Jahanbakhshi In situ synthesis of rhodium nanoparticles-Mesoporous carbon hybrid via a novel and facile nanocasting method for simultaneous determination of morphine and buprenorphine
Giannakopoulou et al. Electrochemically deposited graphene oxide thin film supercapacitors: Comparing liquid and solid electrolytes
Hoang et al. Preparation and properties of electrodes modified by polymeric films with pendant anthraquinone groups
Xin et al. Sensitive detection of estriol with an electrochemical sensor based on core-shell N-MWCNT/GONR-imprinted electrode
CN105420792B (zh) 一种使聚苯胺在中性介质中电化学活性增强的方法
Esmaili et al. Sensitization of TiO2 nanoarrays by a novel palladium decorated naphthalene diimide functionalized graphene nanoribbons for enhanced photoelectrochemical water splitting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18880112

Country of ref document: EP

Kind code of ref document: A1