WO2019100669A1 - 用于电机的永磁体和具有其的转子组件、电机及压缩机 - Google Patents

用于电机的永磁体和具有其的转子组件、电机及压缩机 Download PDF

Info

Publication number
WO2019100669A1
WO2019100669A1 PCT/CN2018/086760 CN2018086760W WO2019100669A1 WO 2019100669 A1 WO2019100669 A1 WO 2019100669A1 CN 2018086760 W CN2018086760 W CN 2018086760W WO 2019100669 A1 WO2019100669 A1 WO 2019100669A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
electric machine
present
motor
machine according
Prior art date
Application number
PCT/CN2018/086760
Other languages
English (en)
French (fr)
Inventor
乔正忠
郑立宇
邱小华
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711188364.7A external-priority patent/CN107707051A/zh
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Priority to JP2020543665A priority Critical patent/JP2021501560A/ja
Priority to EP18881175.6A priority patent/EP3713047A4/en
Publication of WO2019100669A1 publication Critical patent/WO2019100669A1/zh
Priority to US15/930,685 priority patent/US11600417B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Definitions

  • the present invention relates to the field of compressors, and more particularly to a permanent magnet for an electric machine and a rotor assembly therewith, a motor and a compressor.
  • the intrinsic coercive force of the rare earth permanent magnets is generally required to be Hcj ⁇ 1500 kA/m or higher.
  • the related art employs the addition of 3% or more and even 5% or more of heavy rare earth elements such as lanthanum or cerium to the permanent magnet.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a permanent magnet which can have less or no heavy rare earth elements and which is excellent in performance and cost-effective.
  • the present invention also proposes a rotor assembly having the above permanent magnet.
  • the invention also proposes a motor having the rotor assembly described above.
  • the present invention also proposes a compressor having the above motor.
  • a permanent magnet for an electric machine wherein a main phase of the permanent magnet is neodymium iron boron, and a grain size of the main phase is 4 ⁇ m or less, and a crucible and/or in the permanent magnet
  • the mass ratio of the lanthanum element is ⁇ 0.5%, and the internal coercive force Hcj of the permanent magnet at 25 ° C satisfies: Hcj ⁇ 1500 kA/m.
  • the permanent magnet according to an embodiment of the present invention may have less or no heavy rare earth elements and has excellent performance and an improved cost performance.
  • the permanent magnet according to the above embodiment of the present invention may further have the following additional technical features:
  • the remanence Br of the permanent magnet at 25 ° C satisfies: Br ⁇ 1.2T.
  • the maximum magnetic energy product (BH)max of the permanent magnet at 25 ° C satisfies: (BH)max ⁇ 300 kJ/m 3 .
  • the mass ratio of the lanthanum and/or lanthanum element in the permanent magnet is ⁇ 0.5%.
  • the area of the working face of the permanent magnet is less than or equal to the product of the maximum length and the maximum width of the working face of the permanent magnet.
  • the working surface of the permanent magnet is square.
  • the work surface has at least one of a notch and a hole.
  • a rotor assembly according to an embodiment of the present invention includes a permanent magnet according to an embodiment of the present invention.
  • the rotor assembly includes: a rotor core having a plurality of magnet slots extending along an axial direction thereof and spaced apart in a circumferential direction thereof, wherein each of the magnet slots is provided with the permanent a magnet; two end plates, two of which are respectively disposed at axial ends of the rotor core; at least one balance block, at least one of the two end plates is provided with the balance block.
  • An electric machine includes a rotor assembly in accordance with an embodiment of the present invention.
  • a compressor according to an embodiment of the present invention includes a motor according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a permanent magnet according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a working surface of a permanent magnet according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a working surface of a permanent magnet according to another embodiment of the present invention.
  • FIG. 4 is a radial cross-sectional view of a rotor assembly in accordance with an embodiment of the present invention
  • Figure 5 is an axial cross-sectional view of a rotor assembly in accordance with an embodiment of the present invention.
  • Figure 6 is a radial cross-sectional view of a motor in accordance with an embodiment of the present invention.
  • Fig. 7 is a schematic structural view of a compressor according to an embodiment of the present invention.
  • Compressor 100
  • Motor 110 cylinder 120; main bearing 130; sub-bearing 140; piston 150; crankshaft 160;
  • Rotor assembly 111 magnet slot 101; stator assembly 112; stator core 1121; stator winding 1122;
  • Permanent magnet 10 working surface 11; rotor core 20; end plate 30; weight 40.
  • FIG. 1 is a schematic perspective view of a permanent magnet 10 in accordance with one embodiment of the present invention.
  • the main phase of the permanent magnet 10 according to the embodiment of the present invention is neodymium iron boron, and the grain size of the main phase is 4 ⁇ m or less, and the mass ratio of the lanthanum and/or lanthanum element in the permanent magnet 10 is ⁇ 0.5%.
  • the mass ratio is the ratio of the mass of the yttrium and/or lanthanum element to the total mass of the permanent magnet 10, that is, when the permanent magnet 10 contains one of the yttrium and lanthanum elements, the yttrium and lanthanum elements are The ratio of the mass of one of the masses to the total mass of the permanent magnets 10 is less than or equal to 0.5%.
  • the ratio of the total mass of the lanthanum and lanthanum elements to the total mass of the permanent magnets 10 is less than or equal to 0.5%.
  • the internal coercive force Hcj of the permanent magnet 10 satisfying the above conditions at 25 ° C satisfies: Hcj ⁇ 1500 kA/m, and the anti-demagnetization capability is improved, so that the performance of the motor 110 is stable and reliable.
  • the size of the internal coercive force Hcj is controlled by the content of heavy rare earth elements (Dy, Tb, etc.), and in order to satisfy the requirement of intrinsic coercive force, it is usually necessary to add a heavy rare earth element such as Dy or Tb.
  • a heavy rare earth element such as Dy or Tb.
  • the amount reaches 3% or more, or even 5% or more.
  • the amount of heavy rare earth elements is large and the cost is high.
  • Some related technologies also use a surface diffusion process for preparation, but the proportion of heavy rare earth elements still reaches 1% to 3%, the amount of reduction is not obvious, and the cost performance of the permanent magnet 10 is still low.
  • the permanent magnet 10 no longer meets the requirements of intrinsic coercivity and the like by a conventional method of adding a heavy rare earth element or a surface diffusion process, but adopts a new mode, that is, through control and control.
  • the composition of the main phase and the size of the crystal grains adjust the intrinsic coercive force of the permanent magnet 10, specifically, the main phase of the permanent magnet 10 is set to NdFeB, and the grain size of the main phase is 4 ⁇ m or less. For example, 1 micron, 2 micron or 3 micron, etc.
  • the magnetic properties of the permanent magnet 10 in the permanent magnet 10 in the proportion of the mass of the yttrium and/or lanthanum element in the permanent magnet 10 ⁇ 0.5% may also be at a good level, for example, a permanent magnet.
  • the internal coercive force Hcj at 25 ° C can satisfy: Hcj ⁇ 1500 kA / m, strong anti-demagnetization ability, and can save expensive heavy rare earth elements, while eliminating the diffusion process, thereby greatly reducing the permanent magnet
  • the cost of 10 increases the cost performance.
  • the permanent magnet 10 according to the embodiment of the present invention has a reduced cost, excellent performance, high reliability, and improved cost performance.
  • the remanence Br of the permanent magnet 10 at 25 ° C can satisfy: Br ⁇ 1.2T.
  • the magnetic flux density of the permanent magnet 10 is relatively large, the magnetic performance is strong, the efficiency of the motor 110 is high, and the cost can be kept low.
  • the maximum magnetic energy product (BH)max of the permanent magnet 10 at 25 ° C may satisfy: (BH)max ⁇ 300 kJ/m 3 , which is strong in magnetic properties and low in cost.
  • helium and/or neodymium elements may also be disposed within the permanent magnet 10, and the tantalum and/or niobium elements also contribute to the improvement of magnetic properties, wherein the permanent magnets 10 are/or/or The mass ratio of lanthanum elements is ⁇ 0.5%.
  • the motor 110 can have excellent magnetic properties, but also the cost can be controlled.
  • the shape of the working surface 11 of the permanent magnet 10 is not particularly limited, and the shape of the working surface 11 of the permanent magnet 10 can be flexibly set according to actual conditions to facilitate the manufacture, installation, and maintenance of excellent performance and the like.
  • it may be in the shape of a square or a trapezoid.
  • the square shape may be a complete shape having no notch at the corners, for example, as shown in 2, and may have notches and/or holes or the like.
  • the notches may be provided at the sides of the square, for example forming a recess, or at the corners, for example forming a chamfer, the holes may be arranged inside the square, for example adjacent to the edge of the working surface 11 and along the axial direction of the motor 110 extend.
  • the square working faces 11 are provided with notches at the four corners.
  • the permanent magnet 10 of these structures has the advantages of high end magnetic flux utilization and the like.
  • the area of the working face 11 of the permanent magnet 10 is less than or equal to the product of the maximum length L of the working face 11 of the permanent magnet 10 and the maximum width W.
  • the area of the working surface 11 of the permanent magnet 10 is equal to the maximum length L and the maximum width W of the working surface 11 of the permanent magnet 10.
  • the working surface 11 of the permanent magnet 10 is a square having a notch, the area of the working surface 11 of the permanent magnet 10 is smaller than the maximum length L and maximum of the working surface 11 of the permanent magnet 10.
  • the working face 11 of the permanent magnet 10 is generally perpendicular to the axial direction of the motor 110.
  • a square can be understood as a collective term for squares and rectangles.
  • a rotor assembly 111 in accordance with an embodiment of the invention includes a permanent magnet 10 in accordance with an embodiment of the present invention. Since the permanent magnet 10 according to the embodiment of the present invention has the above-described advantageous technical effects, the rotor assembly 111 according to the embodiment of the present invention has higher electromagnetic performance and lower cost.
  • the rotor assembly 111 can include a rotor core 20, two end plates 30, a weight 40 having a plurality of magnet slots extending along its axial direction and spaced circumferentially therefrom 101, that is, the rotor core 20 has magnet slots 101 thereon, and the magnet slots 101 include a plurality of circumferentially spaced apart rotor cores 20, each of which extends in the axial direction of the rotor core 20.
  • Each of the magnet slots 101 is provided with a permanent magnet 10, and two end plates 30 are respectively disposed at both axial ends of the rotor core 20 to function to restrict the axial movement of the permanent magnet 10.
  • a weight 40 is provided on at least one of the two end plates 30. That is to say, the weight 40 may have one and may be disposed on any one of the two end plates 30; the weight 40 may also include two, and each of the end plates 30 may be provided with a weight 40 to lift the rotor. Dynamic balance when rotating.
  • connection between the rotor core 20, the end plate 30 and the weight 40 is not particularly limited, and may include, but is not limited to, rivet joints, bolted joints, welding, bonding, and the like.
  • a motor 110 in accordance with an embodiment of the present invention includes a rotor assembly 111 in accordance with an embodiment of the present invention. Since the rotor assembly 111 according to the embodiment of the present invention has the above-described advantageous technical effects, the rotor assembly 111 according to the embodiment of the present invention has higher electromagnetic performance and lower cost. It will be appreciated that the electric machine 110 also includes a stator assembly 112 that includes a stator core 1121 and a stator winding 1122, which are known to those skilled in the art and will not be described in detail herein.
  • a compressor 100 in accordance with an embodiment of the present invention includes a motor 110 in accordance with an embodiment of the present invention. Since the motor 110 according to the embodiment of the present invention has the above-described advantageous technical effects, the compressor 100 according to the embodiment of the present invention also has the above-described advantageous technical effects. It will be understood that the compressor 100 also includes compression components such as the cylinder 120, the main bearing 130, the sub-bearing 140, the piston 150, and the crankshaft 160. Other configurations and operations of the compressor 100 in accordance with embodiments of the present invention are common to the art. It is known to the personnel and will not be described in detail here.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the description of the terms “embodiment”, “specific example”, or “example” and the like means that the specific features, structures, materials or characteristics described in connection with the embodiment or the examples are included in the present invention. In one embodiment or example. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples without interference or contradiction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种用于电机(110)的永磁体(10)和具有其的转子组件(111)、电机(110)及压缩机,永磁体(10)的主相为钕铁硼,且主相的晶粒粒径小于等于4微米,永磁体(10)中的镝和/或铽元素的质量占比≤0.5%,永磁体(10)在25℃下的内秉矫顽力Hcj满足:Hcj≥1500kA/m。根据本发明实施例的永磁体(10)可以具有更少或没有重稀土元素且性能优良,性价比提升。

Description

用于电机的永磁体和具有其的转子组件、电机及压缩机 技术领域
本发明涉及压缩机领域,特别涉及一种用于电机的永磁体和具有其的转子组件、电机以及压缩机。
背景技术
在压缩机领域,高能效是一个长期研究与应用的课题。因此,变频压缩机的永磁驱动电机的永磁体的高性能化是一个长期研究的课题。同时,为了实现高可靠性,添加有重稀土元素的稀土永磁体长期以来是作为高性能压缩机的永磁电机的永磁体的首选。重稀土材料,一方面是国家的战略资源;另一方面价格昂贵,使得搭载该永磁体的压缩机性价比低。
要满足压缩机高温下的可靠运行而不退磁,一般要求稀土永磁体的内禀矫顽力Hcj≥1500kA/m或者更高。为满足前述的内禀矫顽力的要求,相关技术中采用了在永磁体中加入3%以上甚至5%以上的镝或/和铽等重稀土元素。
近两年来,重稀土表面扩散工艺被加以研究与应用,达到同样的性能,永磁体中添加的重稀土元素的占比大大减小,一定程度上提升了压缩机的性价比。但采用表面扩散工艺的永磁体,重稀土元素的占比仍达到1%-3%,永磁体的性价比仍然较低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种永磁体,所述永磁体可以具有更少或没有重稀土元素且性能优良,性价比提升。
本发明还提出了一种具有上述永磁体的转子组件。
本发明还提出了一种具有上述转子组件的电机。
本发明还提出了一种具有上述电机的压缩机。
根据本发明实施例的用于电机的永磁体,所述永磁体的主相为钕铁硼,且所述主相的晶粒粒径小于等于4微米,所述永磁体中的镝和/或铽元素的质量占比≤0.5%,所述永磁体在25℃下的内秉矫顽力Hcj满足:Hcj≥1500kA/m。
根据本发明实施例的永磁体可以具有更少或没有重稀土元素且性能优良,性价比提升。
另外,根据本发明上述实施例的永磁体还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述永磁体在25℃下的剩磁Br满足:Br≥1.2T。
根据本发明的一些实施例,所述永磁体在25℃下的最大磁能积(BH)max满足:(BH)max≥300kJ/m 3
可选地,所述永磁体中的钆和/或钬元素的质量占比≤0.5%。
根据本发明的一些实施例,所述永磁体的工作面的面积小于等于所述永磁体的工作面的最大长度与最大宽度的乘积。
进一步地,所述永磁体的工作面为方形。
更进一步地,所述工作面具有缺口和孔洞中的至少一个。
根据本发明实施例的转子组件,包括根据本发明实施例的永磁体。
可选地,转子组件包括:转子铁芯,所述转子铁芯上具有沿其轴向延伸且沿其周向间隔开设置的多个磁体槽,每个所述磁体槽内设有所述永磁体;两个端板,两个所述端板分别设在所述转子铁芯的轴向两端;至少一个平衡块,两个所述端板的至少一个上设有所述平衡块。
根据本发明实施例的电机,包括根据本发明实施例的转子组件。
根据本发明实施例的压缩机,包括根据本发明实施例的电机。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的永磁体的结构示意图;
图2是根据本发明一个实施例的永磁体的工作面的结构示意图;
图3是根据本发明另一个实施例的永磁体的工作面的结构示意图;
图4是根据本发明实施例的转子组件的径向剖视图;
图5是根据本发明实施例的转子组件的轴向剖视图;
图6是根据本发明实施例的电机的径向剖视图;
图7是根据本发明实施例的压缩机的结构示意图。
附图标记:
压缩机100;
电机110;气缸120;主轴承130;副轴承140;活塞150;曲轴160;
转子组件111;磁体槽101;定子组件112;定子铁芯1121;定子绕组1122;
永磁体10;工作面11;转子铁芯20;端板30;平衡块40。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“内”、“外”、“轴向”、“周向”、“轴向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是根据本发明一个实施例的永磁体10的立体结构示意图。根据本发明实施例的永磁体10的主相为钕铁硼,且主相的晶粒粒径小于等于4微米,永磁体10中的镝和/或铽元素的质量占比≤0.5%。这里,质量占比也就是镝和/或铽元素的质量与永磁体10的总质量的比值,也就是说,当永磁体10中含有镝和铽元素中的其中一个时,镝和铽元素中的其中一个的质量与永磁体10的总质量的比值小于等于0.5%,当永磁体10中同时含有镝和铽元素时,镝和铽元素的总质量与永磁体10的总质量的比值小于等于0.5%。其中,满足以上条件的永磁体10在25℃下的内秉矫顽力Hcj满足:Hcj≥1500kA/m,抗退磁能力提升,使得电机110的性能稳定且可靠。
在相关技术中,内秉矫顽力Hcj的大小通过重稀土元素(Dy、Tb等)的含量进行控制,为满足内禀矫顽力的要求,通常需要使Dy或Tb等重稀土元素的添加量达到3%以上,甚至5%以上。重稀土元素的用量较大,成本较高。一些相关技术中还有采用表面扩散工艺进行制备,但是重稀土元素的占比仍达到1%-3%,降低量并不明显,永磁体10的性价比仍然较低。
而根据本发明实施例的永磁体10,不再通过常规的添加重稀土元素的方法或者表面扩散工艺来满足内禀矫顽力等要求,而是采用了一种新的方式,即通过控制控制主相的成分以及晶粒的大小来调整永磁体10的内禀矫顽力,具体为将永磁体10的主相设置为钕铁硼,并且使主相的晶粒粒径小于等于4微米,例如,1微米、2微米或3微米等。
经试验验证,这样的永磁体10在永磁体10中的镝和/或铽元素的质量占比≤0.5%的情况下,永磁体10的磁性能也可以处于较好的水平,例如,永磁体10在25℃下的内秉矫顽力Hcj可以满足:Hcj≥1500kA/m,抗退磁能力较强,同时可以节省价格昂贵的重稀土元素,同时省去了扩散工序,从而大幅降低了永磁体10的成本,提升了性价比。根据本发明实施例的永磁体10成本降低、性能优良且可靠性高,性价比提升。
根据本发明的一些实施例,永磁体10在25℃下的剩磁Br可以满足:Br≥1.2T。由此, 永磁体10向外输出的磁通密度较大,磁性能较强,电机110的效率较高且可以保持较低的成本。在本发明的一些实施例中,永磁体10在25℃下的最大磁能积(BH)max可以满足:(BH)max≥300kJ/m 3,磁性能较强且成本较低。
在本发明的一些可选实施例中,永磁体10内还可以设置钆和/或钬元素,钆和/或钬元素也有利于磁性能的提升,其中,永磁体10中的钆和/或钬元素的质量占比≤0.5%。由此,不仅使电机110可以具有优异的磁性能,同时可以控制成本。
在本发明中,对于永磁体10的工作面11的形状不做特殊限制,可以根据实际情况灵活设置永磁体10的工作面11的形状,以方便制造、安装及保持优异的性能等。例如,可以为方形或者梯形等形状。方形可以为边角没有缺口的完整的形状,例如2所示,也可以具有缺口和/或孔洞等。这里,缺口可以设置在方形的边处,例如形成凹部,也可以设置在角处,例如形成切角,孔洞可以设置在方形的内部,例如邻近工作面11的边沿设置且沿电机110的轴向延伸。例如,如图3所示,方形的工作面11的四个角处均设有缺口。这些结构的永磁体10具有端部磁通利用率高等优点。
根据本发明的一些实施例,永磁体10的工作面11的面积小于等于永磁体10的工作面11的最大长度L与最大宽度W的乘积。例如,如图2所示,当永磁体10的工作面11形成为没有缺口的方形时,永磁体10的工作面11的面积等于永磁体10的工作面11的最大长度L与最大宽度W的乘积;再例如,如图3所示,当永磁体10的工作面11为具有缺口的方形时,永磁体10的工作面11的面积则小于永磁体10的工作面11的最大长度L与最大宽度W的乘积。这里,永磁体10的工作面11通常垂直于电机110的轴向。方形可以理解为正方形和长方形的统称。
如图4和图5所示,根据发明实施例的转子组件111包括根据本发明实施例的永磁体10。由于根据本发明实施例的永磁体10具有上述有益的技术效果,因此根据本发明实施例的转子组件111的电磁性能较强且成本较低。
在一些实施例中,转子组件111可包括转子铁芯20、两个端板30、平衡块40,转子铁芯20上具有沿其轴向延伸且沿其周向间隔开设置的多个磁体槽101,也就是说,转子铁芯20上具有磁体槽101,磁体槽101包括沿转子铁芯20的周向间隔开设置的多个,每个磁体槽101沿转子铁芯20的轴向延伸。每个磁体槽101内设有永磁体10,两个端板30分别设在转子铁芯20的轴向两端,以起到限制永磁体10的轴向移动的作用。两个端板30的至少一个上设有平衡块40。也就是说,平衡块40可以有一个,并且可以设置在两个端板30的任意一个上;平衡块40也可以包括两个,每个端板30上均可以设置平衡块40,以提升转子旋转时的动平衡。
本发明对于转子铁芯20、端板30和平衡块40之间的连接方式不做特殊限制,可 以包括但不限于铆钉连接、螺栓连接、焊接、粘结等。
如图6所示,根据本发明实施例的电机110包括根据本发明实施例的转子组件111。由于根据本发明实施例的转子组件111具有上述有益的技术效果,因此根据本发明实施例的转子组件111的电磁性能较强且成本较低。可以理解的是,电机110还包括定子组件112,定子组件112包括定子铁芯1121和定子绕组1122,这些结构对于本领域技术人员来说是可知的,在此不再详述。
如图7所示,根据本发明实施例的压缩机100包括根据本发明实施例的电机110。由于根据本发明实施例的电机110具有上述有益的技术效果,因此根据本发明实施例的压缩机100也具有上述有益的技术效果。可以理解的是,压缩机100还包括气缸120、主轴承130、副轴承140、活塞150以及曲轴160等压缩部件,根据本发明实施例的压缩机100的其他构成以及操作对于本领域的普通技术人员来说是可知的,在此不再详细描述。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体示例”、或“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中在不干涉、不矛盾的情况下均可以以合适的方式相互结合。

Claims (11)

  1. 一种用于电机的永磁体,其特征在于,所述永磁体的主相为钕铁硼,且所述主相的晶粒粒径小于等于4微米,所述永磁体中的镝和/或铽元素的质量占比≤0.5%,所述永磁体在25℃下的内秉矫顽力Hcj满足:Hcj≥1500kA/m。
  2. 根据权利要求1所述的用于电机的永磁体,其特征在于,所述永磁体在25℃下的剩磁Br满足:Br≥1.2T。
  3. 根据权利要求1或2所述的用于电机的永磁体,其特征在于,所述永磁体在25℃下的最大磁能积(BH)max满足:(BH)max≥300kJ/m 3
  4. 根据权利要求1-3中任一项所述的用于电机的永磁体,其特征在于,所述永磁体中的钆和/或钬元素的质量占比≤0.5%。
  5. 根据权利要求1-4中任一项所述的用于电机的永磁体,其特征在于,所述永磁体的工作面的面积小于等于所述永磁体的工作面的最大长度与最大宽度的乘积。
  6. 根据权利要求5所述的用于电机的永磁体,其特征在于,所述永磁体的工作面为方形。
  7. 根据权利要求6所述的用于电机的永磁体,其特征在于,所述工作面具有缺口和孔洞中的至少一个。
  8. 一种转子组件,其特征在于,包括权利要求1-7中任一项所述的永磁体。
  9. 根据权利要求8所述的转子组件,其特征在于,包括:
    转子铁芯,所述转子铁芯上具有沿其轴向延伸且沿其周向间隔开设置的多个磁体槽,每个所述磁体槽内设有所述永磁体;
    两个端板,两个所述端板分别设在所述转子铁芯的轴向两端;
    至少一个平衡块,两个所述端板的至少一个上设有所述平衡块。
  10. 一种电机,其特征在于,包括根据权利要求8或9所述的转子组件。
  11. 一种压缩机,其特征在于,包括根据权利要求10所述的电机。
PCT/CN2018/086760 2017-11-24 2018-05-14 用于电机的永磁体和具有其的转子组件、电机及压缩机 WO2019100669A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020543665A JP2021501560A (ja) 2017-11-24 2018-05-14 モータ用の永久磁石、それを有するロータアセンブリ、モータ及び圧縮機
EP18881175.6A EP3713047A4 (en) 2017-11-24 2018-05-14 PERMANENT MAGNET FOR MOTOR, ROTOR ARRANGEMENT WITH IT, MOTOR AND COMPRESSOR
US15/930,685 US11600417B2 (en) 2017-11-24 2020-05-13 Permanent magnet for motor, rotor assembly having same, motor, and compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711188364.7 2017-11-24
CN201711188364.7A CN107707051A (zh) 2017-11-24 2017-11-24 用于电机的永磁体和具有其的转子组件、电机及压缩机
CN201721598838 2017-11-24
CN201721598838.0 2017-11-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/930,685 Continuation US11600417B2 (en) 2017-11-24 2020-05-13 Permanent magnet for motor, rotor assembly having same, motor, and compressor

Publications (1)

Publication Number Publication Date
WO2019100669A1 true WO2019100669A1 (zh) 2019-05-31

Family

ID=66630440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086760 WO2019100669A1 (zh) 2017-11-24 2018-05-14 用于电机的永磁体和具有其的转子组件、电机及压缩机

Country Status (4)

Country Link
US (1) US11600417B2 (zh)
EP (1) EP3713047A4 (zh)
JP (1) JP2021501560A (zh)
WO (1) WO2019100669A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102685A4 (en) * 2020-02-07 2023-03-22 Mitsubishi Electric Corporation ROTOR, ELECTRIC MOTOR, COMPRESSOR, REFRIGERATION CYCLE DEVICE AND AIR CONDITIONING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555479B (zh) * 2020-05-26 2021-08-31 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125516A (ja) * 1996-10-18 1998-05-15 Sumitomo Special Metals Co Ltd 微細結晶永久磁石の製造方法
CN103858185A (zh) * 2011-10-13 2014-06-11 Tdk株式会社 R-t-b系烧结磁体及其制造方法、以及旋转电机
CN106059141A (zh) * 2016-05-27 2016-10-26 广东美芝制冷设备有限公司 转子、具有转子的永磁电机和压缩机
CN107707051A (zh) * 2017-11-24 2018-02-16 安徽美芝精密制造有限公司 用于电机的永磁体和具有其的转子组件、电机及压缩机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641021B2 (ja) 1995-04-01 2005-04-20 株式会社Neomax 高保磁力鉄基永久磁石及びボンド磁石
JP3488354B2 (ja) 1996-09-06 2004-01-19 住友特殊金属株式会社 微細結晶永久磁石合金及び等方性永久磁石粉末の製造方法
JP3840893B2 (ja) 2000-11-08 2006-11-01 セイコーエプソン株式会社 ボンド磁石の製造方法およびボンド磁石
TWI302712B (en) * 2004-12-16 2008-11-01 Japan Science & Tech Agency Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same
JP4539781B1 (ja) 2009-03-31 2010-09-08 株式会社富士通ゼネラル 圧縮機用電動機の回転子
JP2014128101A (ja) 2012-12-26 2014-07-07 Toyota Industries Corp 電動圧縮機
CN103276284B (zh) 2013-06-05 2014-11-12 南京理工大学 一种低镝耐热烧结钕铁硼制备方法
CN105634229B (zh) * 2014-10-27 2019-01-08 通用电气公司 永磁电机
JP6133350B2 (ja) * 2015-03-31 2017-05-24 アイチエレック株式会社 永久磁石電動機および圧縮機
CN105185497B (zh) 2015-08-28 2017-06-16 包头天和磁材技术有限责任公司 一种永磁材料的制备方法
CN105185498B (zh) 2015-08-28 2017-09-01 包头天和磁材技术有限责任公司 稀土永磁材料及其制造方法
CN205647046U (zh) * 2016-04-14 2016-10-12 广东美芝制冷设备有限公司 电机的永磁体和具有其的电机、压缩机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125516A (ja) * 1996-10-18 1998-05-15 Sumitomo Special Metals Co Ltd 微細結晶永久磁石の製造方法
CN103858185A (zh) * 2011-10-13 2014-06-11 Tdk株式会社 R-t-b系烧结磁体及其制造方法、以及旋转电机
CN106059141A (zh) * 2016-05-27 2016-10-26 广东美芝制冷设备有限公司 转子、具有转子的永磁电机和压缩机
CN107707051A (zh) * 2017-11-24 2018-02-16 安徽美芝精密制造有限公司 用于电机的永磁体和具有其的转子组件、电机及压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3713047A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102685A4 (en) * 2020-02-07 2023-03-22 Mitsubishi Electric Corporation ROTOR, ELECTRIC MOTOR, COMPRESSOR, REFRIGERATION CYCLE DEVICE AND AIR CONDITIONING DEVICE

Also Published As

Publication number Publication date
EP3713047A1 (en) 2020-09-23
US20200273612A1 (en) 2020-08-27
JP2021501560A (ja) 2021-01-14
EP3713047A4 (en) 2021-01-13
US11600417B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
US8987965B2 (en) Rotor and permanent magnet rotating machine
US9800105B2 (en) Permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
CN108702075A (zh) 永久磁铁同步电动机、压缩机及空气调节机
CN107707051A (zh) 用于电机的永磁体和具有其的转子组件、电机及压缩机
CN103117609A (zh) 转子和永磁体式旋转机
CN203368276U (zh) 永久磁铁嵌入型电动机、压缩机和制冷空调装置
CN105846630B (zh) 永磁电机和具有永磁电机的压缩机
CN103441592A (zh) 新型磁通可调永磁同步电机
US20220109338A1 (en) Motor, compressor and refrigeration device
CN105553135B (zh) 压缩机用电机和具有其的压缩机
US11600417B2 (en) Permanent magnet for motor, rotor assembly having same, motor, and compressor
CN106787565A (zh) 反凸极永磁磁阻电机
KR20130051895A (ko) 모터 및 압축기
JP2015119617A (ja) 埋め込み型永久磁石同期モータ
CN111555481A (zh) 电机、压缩机和制冷设备
CN208299561U (zh) 转子、电机和压缩机
JP3871873B2 (ja) 永久磁石型回転子
WO2011030409A1 (ja) 永久磁石式回転機用回転子
CN208596977U (zh) 一种稀土永磁电机用耐高温抗退磁磁钢
WO2021237890A1 (zh) 电机、压缩机和制冷设备
CN209526572U (zh) 电机及其定子、转子和磁体
JP2014171387A (ja) 永久磁石式回転機用回転子
CN218514160U (zh) 一种双层切向磁极结构的稀土永磁电机及破碎系统
CN217063531U (zh) 一种双转子结构永磁辅助同步磁阻电机
WO2023241475A1 (zh) 转子组件和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881175

Country of ref document: EP

Effective date: 20200616