WO2019100628A1 - 一种热反射隔热涂料及其制备方法和应用 - Google Patents

一种热反射隔热涂料及其制备方法和应用 Download PDF

Info

Publication number
WO2019100628A1
WO2019100628A1 PCT/CN2018/079863 CN2018079863W WO2019100628A1 WO 2019100628 A1 WO2019100628 A1 WO 2019100628A1 CN 2018079863 W CN2018079863 W CN 2018079863W WO 2019100628 A1 WO2019100628 A1 WO 2019100628A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
heat insulating
preparation
agent
reflective
Prior art date
Application number
PCT/CN2018/079863
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
宋荟荟
Original Assignee
深圳光启尖端技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启尖端技术有限责任公司 filed Critical 深圳光启尖端技术有限责任公司
Publication of WO2019100628A1 publication Critical patent/WO2019100628A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers

Definitions

  • the invention relates to the field of coating technology, and more particularly to a heat reflective thermal insulation coating and a preparation method and application thereof.
  • Insulation coating refers to a functional coating that has developed in the past few years and has a reflective hot light type, short construction period and quick effect. There are three main types of thermal insulation coatings from the principle of insulation: insulated conductive insulation coatings, reflective thermal insulation coatings and radiation-based thermal insulation coatings.
  • reflective heat-insulating coatings appearing on the market are mostly reflective heat-insulating coatings using acrylic acid as a film-forming substance.
  • the reflection heat insulation function can be realized to some extent, The weather resistance and hydrophobic properties are poor, and if the preparation method is improper, the obtained coating may not exert the excellent performance of each raw material, or even reduce the effect of the raw material itself, resulting in poor paint formation, poor adhesion, unstable reflection heat insulation effect. .
  • the present invention provides a heat reflective heat insulating coating and a preparation method and application thereof.
  • a method for preparing a heat reflective heat insulating coating comprises: weighing 40 to 70 parts of fluorocarbon resin and self-crosslinking elastic agent 4 to 7 by weight. a portion, 10 to 40 parts of the nano-SiO 2 powder, 8 to 15 parts of the hollow glass microbeads, and 1 to 5 parts of the auxiliary agent; mixing the fluorocarbon resin and the self-crosslinking elastic agent to obtain a fluorocarbon emulsion; Mixing the nano SiO 2 powder and the hollow glass microsphere to obtain a reflective heat insulating filler; and mixing the fluorocarbon emulsion, the reflective heat insulating filler and the auxiliary agent to obtain a heat reflective heat insulating coating .
  • the composition ratio of the fluorocarbon resin and the self-crosslinking elastic agent can affect the flexibility and the expansion ratio of the coating, thereby affecting the molding degree of the coating.
  • the self-crosslinking elastic agent is selected from a combination of one or more of an elastic acrylic resin, an ethylene propylene diene rubber or a polyene.
  • self-crosslinking elastomer such as elastic acrylic resin, EPDM rubber or polyene, the water resistance, stain resistance, back tack and elastic elongation of the coating surface can be improved, and the coating can be well adhered.
  • the nano SiO 2 powder has a particle diameter ranging from 10 nm to 80 nm.
  • the component nano-SiO 2 powder imparts self-cleaning and hydrophobic properties to the coating.
  • the nano SiO 2 powder component for example, the amount of nano SiO 2 powder added and its particle diameter
  • the reflective heat insulating filler affects the heat reflective heat insulating property of the coating.
  • the hollow glass microspheres have a particle diameter ranging from 10 ⁇ m to 25 ⁇ m.
  • the hollow glass microbead component for example, the amount of hollow glass microspheres added and its particle size
  • the reflective heat insulating filler affects the thermal insulation properties of the coating.
  • the auxiliary agent includes a dispersing agent and an antifoaming agent. Additives affect the uniformity and film formation of the coating.
  • the dispersing agent is selected from a combination of one or more of a fatty acid, a fatty amide, and an ester.
  • the dispersing agent is selected from a combination of one or more of ethylene bis stearamide, stearic acid monoglyceride, and glyceryl tristearate.
  • the antifoaming agent is a combination of one or more of polyoxyethylene polyoxypropylene alcohol ether, polyoxypropylene, polyoxypropylene glyceryl ether.
  • the main function of the defoamer is to reduce the surface tension during processing, inhibit foam generation or eliminate foaming.
  • the step of mixing the fluorocarbon resin and the self-crosslinking elastic agent to obtain a fluorocarbon emulsion further comprises: mixing the fluorocarbon resin with the self-crosslinking elastic agent, according to The mixture was stirred at 200 to 400 rpm for 20 to 40 minutes to obtain the fluorocarbon emulsion.
  • the step of mixing the nano SiO 2 powder and the hollow glass microsphere to obtain a reflective heat insulating filler further comprises: adding the nano SiO 2 powder and the hollow glass microbead to a rotation speed of The reflection heat insulating filler was obtained by stirring for 5 to 15 minutes in a high speed mixer of 3000 to 4000 rpm.
  • the step of mixing the fluorocarbon emulsion, the reflective heat insulating filler and the auxiliary agent to obtain a heat reflective heat insulating coating further comprises: preparing the prepared fluorocarbon emulsion, the The reflective heat insulating filler and the auxiliary agent are added to a high speed mixer at a rotational speed of 2,500 to 3,500 rpm, and stirred for 20 to 40 minutes to obtain the heat reflective heat insulating coating.
  • thermo barrier coating prepared by the above preparation method.
  • the use of the above heat reflective thermal barrier coating in the construction engineering, petrochemical industry, transportation storage industry, and defense military industry is also provided.
  • the difference of the reflective heat insulating filler has a direct influence on the heat insulating performance, and the heat reflecting heat insulation is provided by optimizing the mixing ratio of the fluorocarbon resin and the self-crosslinking elastic agent, and screening the reflective heat insulating filler. Excellent thermal insulation coating.
  • the preparation method provided by the invention has simple preparation process, and the heat reflective heat insulation coating prepared by the preparation method can be applied to the surface of the object, and has excellent reflection heat insulation performance, hydrophobicity, self-cleaning property and the like, and can effectively prevent Heat conduction overcomes and alleviates the problem of surface temperature rise of the object under long-term exposure to the sun, and the reflection heat insulation performance is stable.
  • the invention provides a self-cleaning hydrophobic heat-reflecting thermal insulation coating, which can be applied to the surface of a target object which is exposed to sunlight for a long time in a hot summer field in the fields of construction engineering, petrochemical industry, transportation and storage industry and national defense military industry.
  • the coating of the invention is applied to the surface of the target object, which can effectively prevent heat conduction, reduce the surface coating and the internal environment temperature, and bring great economic and social benefits.
  • FIG. 1 is a process flow of a method for preparing a heat reflective thermal barrier coating in accordance with some embodiments of the present invention.
  • the preparation method of the heat reflective heat insulating coating provided by the invention comprises the following steps:
  • step S101 shown in FIG. 1 40 to 70 parts of fluorocarbon resin, 4 to 7 parts of self-crosslinking elastic agent, 10 to 40 parts of nano-SiO 2 powder, and hollow glass are weighed by weight. 8 to 15 parts of microbeads and 1 to 5 parts of auxiliary agent, wherein the self-crosslinking elastic agent is selected from a combination of one or more of an elastic acrylic resin, an ethylene propylene diene rubber or a polyene; nano SiO 2 powder
  • the particle size ranges from 10 nm to 80 nm; the hollow glass microspheres have a particle diameter ranging from 10 ⁇ m to 25 ⁇ m; the auxiliary agent includes a dispersant and an antifoaming agent; and the dispersing agent is selected from the group consisting of fatty acids, fatty amides and esters.
  • the dispersing agent is selected from the group consisting of ethylene bis stearamide, stearic acid monoglyceride, glyceryl tristearate, or a combination thereof;
  • the foaming agent is a combination of one or more of polyoxyethylene polyoxypropylene alcohol ether, polyoxypropylene, polyoxypropylene glyceryl ether.
  • the fluorocarbon resin and the self-crosslinking elastic agent are mixed to obtain a fluorocarbon emulsion.
  • the fluorocarbon resin is mixed with the self-crosslinking elastic agent, and then stirred at 200 to 400 rpm for 20 to 40 minutes to obtain the fluorocarbon emulsion.
  • the nano SiO 2 powder and the hollow glass microspheres are mixed to obtain a reflective heat insulating filler.
  • the nano SiO 2 powder and the hollow glass microspheres are placed in a high speed mixer at a rotational speed of 3000 to 4000 rpm, and stirred for 5 to 15 minutes to obtain the reflective heat insulating filler.
  • the fluorocarbon emulsion, the reflective heat insulating filler and the auxiliary agent are mixed to obtain a heat reflective heat insulating coating.
  • the prepared fluorocarbon emulsion, the reflective heat insulating filler and the auxiliary agent are added to a high speed mixer at a rotational speed of 2500 to 3500 rpm, and stirred for 20 to 40 minutes to obtain the heat reflective heat insulating coating.
  • fluorocarbon emulsion 40 parts of fluorocarbon resin and 4 parts of elastic acrylic resin were stirred at 200 rpm for 30 minutes to obtain a fluorocarbon emulsion.
  • heat-reflecting heat-insulating coating The prepared fluorocarbon emulsion, reflective heat-insulating filler and 0.5 parts of the above-mentioned weighed stearic acid monoglyceride and 0.5 parts of polyoxyethylene polyoxypropylene alcohol ether are sequentially added to the rotation speed.
  • the self-cleaning hydrophobic heat-reflecting heat-insulating coating can be obtained by stirring for 30 minutes.
  • fluorocarbon emulsion 55 parts of fluorocarbon resin and 5 parts of EPDM rubber were stirred at 300 rpm for 30 minutes to obtain a fluorocarbon emulsion.
  • heat-reflecting heat-insulating coating sequentially preparing the prepared fluorocarbon emulsion, reflective heat-insulating filler and the above-mentioned weighed 3 parts of ethylene bis-stearamide and 2 parts of polyoxypropylene into a high-speed mixer rotating at 3,500 rpm. After stirring for 20 minutes, a self-cleaning hydrophobic heat-reflecting heat-insulating coating can be obtained.
  • fluorocarbon emulsion 70 parts of fluorocarbon resin and 7 parts of ethylene propylene diene rubber were stirred at 400 rpm for 20 minutes to obtain a fluorocarbon emulsion.
  • heat-reflecting heat-insulating coating sequentially preparing the prepared fluorocarbon emulsion, reflective heat-insulating filler and the above-mentioned 2 parts of ethylene bis-stearamide and 3 parts of polyoxypropylene glyceryl ether into a high speed of 3000 rpm In a blender, stirring for 30 minutes, a self-cleaning hydrophobic heat-reflecting heat-insulating coating can be obtained.
  • fluorocarbon emulsion 60 parts of fluorocarbon resin and 5 parts of elastic acrylic resin were stirred at 200 rpm for 40 minutes to obtain a fluorocarbon emulsion.
  • heat-reflecting heat-insulating coating the prepared fluorocarbon emulsion, reflective heat-insulating filler and 2 parts of the above-mentioned weighed glyceryl tristearate and 2 parts of polyoxyethylene polyoxypropanolamine are sequentially added to the rotation speed. In a 2500 rpm high-speed mixer, stirring for 40 minutes gives a self-cleaning hydrophobic heat-reflecting heat-insulating coating.
  • fluorocarbon emulsion 50 parts of fluorocarbon resin and 6 parts of ethylene propylene diene rubber were stirred at 250 rpm for 30 minutes to obtain a fluorocarbon emulsion.
  • Preparation of heat-reflecting heat-insulating coating sequentially preparing the prepared fluorocarbon emulsion, reflective heat-insulating filler and 1 part of the above-mentioned ethylene bis-stearamide and 2 parts of polyoxypropylene glyceryl ether into a high speed of 3200 rpm. In the mixer, stirring for 35 minutes, a self-cleaning hydrophobic heat-reflecting heat-insulating coating can be obtained.
  • fluorocarbon emulsion 55 parts of fluorocarbon resin and 6 parts of elastic acrylic resin were stirred at 200 rpm for 35 minutes to obtain a fluorocarbon emulsion.
  • heat-reflecting heat-insulating coating the prepared fluorocarbon emulsion, reflective heat-insulating filler and the above-mentioned 3 parts of stearic acid monoglyceride and 2 parts of polyoxyethylene polyoxypropanolamine are sequentially added to the rotation speed.
  • the self-cleaning hydrophobic heat-reflecting heat-insulating coating can be obtained by stirring for 30 minutes.
  • the thermal insulation temperature and total solar reflectance of the heat reflective thermal insulation coating prepared in Examples 1-6 were tested according to the method described in GB/T 25261-2010 "Building Reflective Thermal Insulation Coatings" standard; and by using the contact angle
  • the test instrument tests the surface water contact angle and rolling angle to characterize its hydrophobicity; a small amount of carbon powder, or dye powder and other contaminants are placed on the surface of the coating to drip water droplets onto the contaminants to observe the contaminants being dripped Take away the phenomenon, test the self-cleaning, the test results are as follows:
  • the heat-reflecting heat-insulating coating prepared by the preparation method provided by the embodiment of the present invention has good heat insulation effect, the heat insulation temperature difference can reach 11 ° C, and the heat insulation performance is stable, the hydrophobicity is strong, and the self-cleaning property is good. .
  • the preparation method provided by the embodiment of the invention has the advantages of simple process, low cost and high efficiency, and the prepared heat reflective thermal insulation coating can be applied in the fields of construction engineering, petrochemical industry, transportation and storage industry, and national defense military industry in hot summer. Applying the coating of the present invention to the surface of the target object for a long time on the surface of the target object illuminated by sunlight can effectively prevent heat conduction, reduce the surface coating and the internal environmental temperature, and bring great economic and social benefits.

Abstract

一种热反射隔热涂料的制备方法,包括:按重量份数计,称取氟碳树脂40~70份、自交联弹性剂4~7份、纳米SiO 2粉体10~40份、空心玻璃微珠8~15份、助剂1~5份(S101);将氟碳树脂和自交联弹性剂混匀,得到氟碳乳液(S103);将纳米SiO 2粉体和空心玻璃微珠混匀,得到反射隔热填料(S105);以及将氟碳乳液、反射隔热填料和助剂混匀,得到反射隔热涂料(S107)。

Description

一种热反射隔热涂料及其制备方法和应用 技术领域
本发明涉及涂料技术领域,更具体地,涉及一种热反射隔热涂料及其制备方法和应用。
背景技术
“隔热涂料”指近几年发展起来的一种反射热光型、工期短、见效快的功能性涂料。隔热涂料从特性原理分类主要有三种:隔绝传导型隔热涂料、反射型隔热涂料和辐射型隔热涂料。
国内外在反射隔热涂料领域开展了很多工作,目前,市场上出现的反射隔热涂料大都是以丙烯酸为成膜物质的反射隔热涂料,虽然能够一定程度上实现反射隔热的功能,但耐候性和疏水性能较差,而且如果制备方法不当,可能造成得到的涂料不能发挥各原料的优异性能,甚至降低原料本身的作用,导致涂料成性度差,附着性差,反射隔热效果不稳定。
发明内容
为了解决现有技术中的问题,本发明提供了一种热反射隔热涂料及其制备方法和应用。
根据本发明的一个方面,提供了一种热反射隔热涂料的制备方法,其特征在于,包括:按重量份数计,称取氟碳树脂40~70份、自交联弹性剂4~7份、纳米SiO 2粉体10~40份、空心玻璃微珠8~15份、助剂1~5份;将所述氟碳树脂和所述自交联弹性剂混匀,得到氟碳乳液;将所述纳米SiO 2粉体和空心玻璃微珠混匀,得到反射隔热填料;以及将所述氟碳乳液、所述反射隔热填料和所述助剂混匀,得到热反射隔热涂料。其中,氟碳树脂和自交联弹性剂的组分比例,可影响涂料的柔韧性和伸缩率,从而影响涂料的成型度。
在上述制备方法中,所述自交联弹性剂选自弹性丙烯酸树脂、三元乙丙胶或聚烯中的一种或多种的组合。通过使用弹性丙烯酸树脂、三元乙丙胶或聚烯等自交联弹性剂可以提高涂层表面的耐水性、抗沾污性、回粘性及弹性伸长率,并保证涂层良好的附着力。
在上述制备方法中,所述纳米SiO 2粉体的粒径在从10nm至80nm的范围内。组分纳米SiO 2粉体赋予了该涂料自洁和疏水性能。其中,在反射隔热填料中加入的纳米SiO 2粉体组分(例如,加入的纳米SiO 2粉体的量及其粒径)都会影响涂料的热反射隔热性能。
在上述制备方法中,所述空心玻璃微珠的粒径在从10μm至25μm的范围内。其中,在反射隔热填料中加入的空心玻璃微珠组分(例如,加入的空心玻璃微珠的量及其粒径)影响涂料的隔热性能。
在上述制备方法中,所述助剂包括分散剂和消泡剂。助剂影响涂料的均匀性和成膜性。
在上述制备方法中,所述分散剂选自脂肪酸类、脂肪酰胺类和酯类中的一种或多种的组合。通过加入分散剂可以防止填料粒子之间相互聚集,同时使得树脂和填料之间具有良好的相容性。
在上述制备方法中,所述分散剂选自乙撑基双硬脂酰胺、硬脂酸单甘油酯、三硬脂酸甘油酯中的一种或多种的组合。
在上述制备方法中,所述消泡剂为聚氧乙烯聚氧丙醇胺醚、聚氧丙烯、聚氧丙烯甘油醚中的一种或多种的组合。消泡剂的主要作用是在加工过程中降低表面张力,抑制泡沫产生或消除已产生泡沫。
在上述制备方法中,将所述氟碳树脂和所述自交联弹性剂混匀,得到氟碳乳液的步骤进一步包括:将所述氟碳树脂与所述自交联弹性剂混合后,按照200~400rpm转速搅拌20~40分钟,得到所述氟碳乳液。
在上述制备方法中,将所述纳米SiO 2粉体和空心玻璃微珠混匀,得到反射隔热填料的步骤进一步包括:将所述纳米SiO 2粉体、所述空心玻璃微珠加入转速为3000~4000rpm的高速搅拌机中,搅拌5~15分钟,得到所述反射隔热填料。
在上述制备方法中,将所述氟碳乳液、所述反射隔热填料和所述助剂 混匀,得到热反射隔热涂料的步骤进一步包括:将制备得到的所述氟碳乳液、所述反射隔热填料和所述助剂加入转速为2500~3500rpm的高速搅拌机中,搅拌20~40分钟,得到所述热反射隔热涂料。
根据本发明的另一方面,还提供了一种通过上述制备方法制备的热反射隔热涂料。
根据本发明的又一方面,还提供了上述热反射隔热涂料在建筑工程、石油化学工业、运输储存行业以及国防军事工业中的应用。
在本发明中,反射隔热填料的不同对隔热性能有直接影响,通过优化氟碳树脂和自交联弹性剂混合比例,和对反射隔热填料进行筛选,提供了一种热反射隔热性能优良的隔热涂料。
本发明提供的制备方法制备工艺简单,并且通过该制备方法制备得到的热反射隔热涂料可涂覆于物体表面,具有优异的反射隔热性能、疏水性、自清洁性等特点,可有效阻止热传导,克服和缓解太阳长时间照射条件下物体表面温度上升的问题,且反射隔热性能稳定。
本发明提供了一种自洁疏水热反射隔热涂料,可应用于建筑工程、石油化学工业、运输储存行业以及国防军事工业等领域中在炎热夏季长时间被日光照射的目标物体表面,将本发明所述涂料涂覆于目标物体表面,可有效阻止热传导,降低表面涂层和内部环境温度,带来巨大的经济效益与社会效益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的一些实施例的用于制备热反射隔热涂料的方法的工艺流程。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的热反射隔热涂料的制备方法,包括以下步骤:
如图1中所示的步骤S101所示,按重量份数计,称取氟碳树脂40~70份、自交联弹性剂4~7份、纳米SiO 2粉体10~40份、空心玻璃微珠8~15份、助剂1~5份,其中,自交联弹性剂选自弹性丙烯酸树脂、三元乙丙胶或聚烯中的一种或多种的组合;纳米SiO 2粉体的粒径在从10nm至80nm的范围内;空心玻璃微珠的粒径在从10μm至25μm的范围内;助剂包括分散剂和消泡剂;分散剂选自脂肪酸类、脂肪酰胺类和酯类中的一种或多种的组合,具体地,分散剂选自乙撑基双硬脂酰胺、硬脂酸单甘油酯、三硬脂酸甘油酯中的一种或多种的组合;消泡剂为聚氧乙烯聚氧丙醇胺醚、聚氧丙烯、聚氧丙烯甘油醚中的一种或多种的组合。
如图1中所示的步骤S103所示,将所述氟碳树脂和所述自交联弹性剂混匀,得到氟碳乳液。具体地,将所述氟碳树脂与所述自交联弹性剂混合后,按照200~400rpm转速搅拌20~40分钟,得到所述氟碳乳液。
如图1中所示的步骤S105所示,将所述纳米SiO 2粉体和所述空心玻璃微珠混匀,得到反射隔热填料。具体地,将所述纳米SiO 2粉体、所述空心玻璃微珠加入转速为3000~4000rpm的高速搅拌机中,搅拌5~15分钟,得到所述反射隔热填料。
如图1中所示的步骤S107所示,将所述氟碳乳液、所述反射隔热填料和所述助剂混匀,得到热反射隔热涂料。具体地,将制备得到的所述氟碳乳液、所述反射隔热填料和所述助剂加入转速为2500~3500rpm的高速搅拌机中,搅拌20~40分钟,得到所述热反射隔热涂料。
下面将结合具体实施例对本发明中的技术方案进行清楚、完整地描述。
实施例1
1、分别称取氟碳树脂40份、自交联弹性剂弹性丙烯酸树脂4份、粒 径范围为10~80nm的不同粒径的纳米SiO 2粉体40份、粒径范围为10-25μm的不同粒径的空心玻璃微珠15份、硬脂酸单甘油酯0.5份和聚氧乙烯聚氧丙醇胺醚0.5份。
2、氟碳乳液的制备:将氟碳树脂40份、弹性丙烯酸树脂4份按照200rpm转速搅拌30分钟,得到氟碳乳液。
3、反射隔热填料的制备:将纳米SiO 2粉体40份、空心玻璃微珠15份在高速搅拌机中按照3300rpm转速搅拌10分钟,得到反射隔热填料。
4、热反射隔热涂料制备:依次将制备得到的氟碳乳液、反射隔热填料和上述称取的硬脂酸单甘油酯0.5份和聚氧乙烯聚氧丙醇胺醚0.5份加入转速为3000rpm的高速搅拌机中,搅拌30分钟,即可得到自洁疏水热反射隔热涂料。
实施例2
1、分别称取氟碳树脂55份、自交联弹性剂三元乙丙胶5份、粒径范围为10~80nm的不同粒径的纳米SiO 2粉体25份、粒径范围为10-25μm的不同粒径的空心玻璃微珠10份、乙撑基双硬脂酰胺3份和聚氧丙烯2份。
2、氟碳乳液的制备:将氟碳树脂55份、三元乙丙胶5份按照300rpm转速搅拌30分钟,得到氟碳乳液。
3、反射隔热填料的制备:将纳米SiO 2粉体25份、空心玻璃微珠10份在高速搅拌机中按照4000rpm转速搅拌5分钟,得到反射隔热填料。
4、热反射隔热涂料制备:依次将制备得到的氟碳乳液、反射隔热填料和上述称取的乙撑基双硬脂酰胺3份和聚氧丙烯2份加入转速为3500rpm的高速搅拌机中,搅拌20分钟,即可得到自洁疏水热反射隔热涂料。
实施例3
1、分别称取氟碳树脂70份、自交联弹性剂三元乙丙胶7份、粒径范围为10~80nm的不同粒径的纳米SiO 2粉体10份、粒径范围为10-25μm的不同粒径的空心玻璃微珠8份、乙撑基双硬脂酰胺2份和聚氧丙烯甘油醚3份。
2、氟碳乳液的制备:将氟碳树脂70份、三元乙丙胶7份按照400rpm转速搅拌20分钟,得到氟碳乳液。
3、反射隔热填料的制备:将纳米SiO 2粉体10份、空心玻璃微珠8份在高速搅拌机中按照3000rpm转速搅拌15分钟,得到反射隔热填料。
4、热反射隔热涂料制备:依次将制备得到的氟碳乳液、反射隔热填料和上述称取的乙撑基双硬脂酰胺2份和聚氧丙烯甘油醚3份加入转速为3000rpm的高速搅拌机中,搅拌30分钟,即可得到自洁疏水热反射隔热涂料。
实施例4
1、分别称取氟碳树脂60份、自交联弹性剂弹性丙烯酸树脂5份、粒径范围为10~80nm的不同粒径的纳米SiO 2粉体25份、粒径范围为10-25μm的不同粒径的空心玻璃微珠10份、三硬脂酸甘油酯2份和聚氧乙烯聚氧丙醇胺醚2份。
2、氟碳乳液的制备:将氟碳树脂60份、弹性丙烯酸树脂5份按照200rpm转速搅拌40分钟,得到氟碳乳液。
3、反射隔热填料的制备:将纳米SiO 2粉体25份、空心玻璃微珠10份在高速搅拌机中按照3500rpm转速搅拌12分钟,得到反射隔热填料。
4、热反射隔热涂料制备:依次将制备得到的氟碳乳液、反射隔热填料和上述称取的三硬脂酸甘油酯2份和聚氧乙烯聚氧丙醇胺醚2份加入转速为2500rpm的高速搅拌机中,搅拌40分钟,即可得到自洁疏水热反射隔热涂料。
实施例5
1、分别称取氟碳树脂50份、自交联弹性剂三元乙丙胶6份、粒径范围为10~80nm的不同粒径的纳米SiO 2粉体30份、粒径范围为10-25μm的不同粒径的空心玻璃微珠12份、乙撑基双硬脂酰胺1份和聚氧丙烯甘油醚2份。
2、氟碳乳液的制备:将氟碳树脂50份、三元乙丙胶6份按照250rpm 转速搅拌30分钟,得到氟碳乳液。
3、反射隔热填料的制备:将纳米SiO 2粉体30份、空心玻璃微珠12份在高速搅拌机中按照3200rpm转速搅拌10分钟,得到反射隔热填料。
4、热反射隔热涂料制备:依次将制备得到的氟碳乳液、反射隔热填料和上述称取的乙撑基双硬脂酰胺1份和聚氧丙烯甘油醚2份加入转速为3200rpm的高速搅拌机中,搅拌35分钟,即可得到自洁疏水热反射隔热涂料。
实施例6
1、分别称取氟碳树脂55份、自交联弹性剂弹性丙烯酸树脂6份、粒径范围为10~80nm的不同粒径的纳米SiO 2粉体30份、粒径范围为10-25μm的不同粒径的空心玻璃微珠13份、硬脂酸单甘油酯3份和聚氧乙烯聚氧丙醇胺醚2份。
2、氟碳乳液的制备:将氟碳树脂55份、弹性丙烯酸树脂6份按照200rpm转速搅拌35分钟,得到氟碳乳液。
3、反射隔热填料的制备:将纳米SiO 2粉体30份、空心玻璃微珠13份在高速搅拌机中按照3500rpm转速搅拌10分钟,得到反射隔热填料。
4、热反射隔热涂料制备:依次将制备得到的氟碳乳液、反射隔热填料和上述称取的硬脂酸单甘油酯3份和聚氧乙烯聚氧丙醇胺醚2份加入转速为3500rpm的高速搅拌机中,搅拌30分钟,即可得到自洁疏水热反射隔热涂料。
按照GB/T25261-2010《建筑反射隔热涂料》标准中所述方法对实施例1-6中制备得到的热反射隔热涂料的隔热温、太阳总反射比进行测试;并且通过采用接触角测试仪器对其表面水接触角及滚动角进行测试,以表征其疏水性;取少量碳粉、或染料粉末等污染物放置于涂层表面,将水滴滴到污染物上,观察污染物被水滴带走的现象,对自洁性进行测试,测试结果如下:
表1
Figure PCTCN2018079863-appb-000001
以上测试结果表面,通过本发明实施例提供的制备方法制备得到的热反射隔热涂料的隔热效果好,隔热温差可达11℃,并且隔热性能稳定、疏水性强、自洁性好。
此外,本发明实施例提供的制备方法工艺简单、成本低、效率高,所制备的热反射隔热涂料可应用于建筑工程、石油化学工业、运输储存行业以及国防军事工业等领域中在炎热夏季长时间被日光照射的目标物体表面,将本发明所述涂料涂覆于目标物体表面,可有效阻止热传导,降低表面涂层和内部环境温度,带来巨大的经济效益与社会效益。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种热反射隔热涂料的制备方法,其特征在于,包括:
    按重量份数计,称取氟碳树脂40~70份、自交联弹性剂4~7份、纳米SiO 2粉体10~40份、空心玻璃微珠8~15份、助剂1~5份;
    将所述氟碳树脂和所述自交联弹性剂混匀,得到氟碳乳液;
    将所述纳米SiO 2粉体和所述空心玻璃微珠混匀,得到反射隔热填料;以及
    将所述氟碳乳液、所述反射隔热填料和所述助剂混匀,得到热反射隔热涂料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述自交联弹性剂选自弹性丙烯酸树脂、三元乙丙胶或聚烯中的一种或多种的组合。
  3. 根据权利要求1所述的制备方法,其特征在于,所述纳米SiO 2粉体的粒径在从10nm至80nm的范围内。
  4. 根据权利要求1所述的制备方法,其特征在于,所述空心玻璃微珠的粒径在从10μm至25μm的范围内。
  5. 根据权利要求1所述的制备方法,其特征在于,所述助剂包括分散剂和消泡剂。
  6. 根据权利要求5所述的制备方法,其特征在于,所述分散剂选自脂肪酸类、脂肪酰胺类和酯类中的一种或多种的组合。
  7. 根据权利要求5所述的制备方法,其特征在于,所述分散剂选自乙撑基双硬脂酰胺、硬脂酸单甘油酯、三硬脂酸甘油酯中的一种或多种的组合。
  8. 根据权利要求5所述的制备方法,其特征在于,所述消泡剂为聚氧乙烯聚氧丙醇胺醚、聚氧丙烯、聚氧丙烯甘油醚中的一种或多种的组合。
  9. 根据权利要求1所述的制备方法,其特征在于,将所述氟碳树脂和所述自交联弹性剂混匀,得到氟碳乳液的步骤进一步包括:
    将所述氟碳树脂与所述自交联弹性剂混合后,按照200~400rpm转速搅拌20~40分钟,得到所述氟碳乳液。
  10. 根据权利要求1所述的制备方法,其特征在于,将所述纳米SiO 2粉体和空心玻璃微珠混匀,得到反射隔热填料的步骤进一步包括:
    将所述纳米SiO 2粉体、所述空心玻璃微珠加入转速为3000~4000rpm的高速搅拌机中,搅拌5~15分钟,得到所述反射隔热填料。
  11. 根据权利要求1所述的制备方法,其特征在于,将所述氟碳乳液、所述反射隔热填料和所述助剂混匀,得到热反射隔热涂料的步骤进一步包括:
    将制备得到的所述氟碳乳液、所述反射隔热填料和所述助剂加入转速为2500~3500rpm的高速搅拌机中,搅拌20~40分钟,得到所述热反射隔热涂料。
  12. 一种根据权利要求1-11中任一项所述的制备方法制备的热反射隔热涂料。
  13. 一种根据权利要求12所述的热反射隔热涂料在建筑工程、石油化学工业、运输储存行业以及国防军事工业中的应用。
PCT/CN2018/079863 2017-11-23 2018-03-21 一种热反射隔热涂料及其制备方法和应用 WO2019100628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711181875.6 2017-11-23
CN201711181875.6A CN109825139A (zh) 2017-11-23 2017-11-23 一种热反射隔热涂料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019100628A1 true WO2019100628A1 (zh) 2019-05-31

Family

ID=66630872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079863 WO2019100628A1 (zh) 2017-11-23 2018-03-21 一种热反射隔热涂料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109825139A (zh)
WO (1) WO2019100628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248950A (zh) * 2021-06-09 2021-08-13 中国人民解放军海军工程大学 一种轻质超强气凝胶隔热涂料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662250B (zh) * 2020-12-18 2022-07-15 中国建筑西南设计研究院有限公司 单层微孔结构的白色辐射制冷涂料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531851A (zh) * 2009-04-14 2009-09-16 湖北中科博策新材料研究院 纳米水性隔热透明涂料及其制备方法
CN103773136A (zh) * 2012-10-22 2014-05-07 北京京能恒基新材料有限公司 一种水性太阳热反射隔热纳米涂料
CN104710885A (zh) * 2015-02-04 2015-06-17 江苏朝晖化工有限公司 新型环保光转换保温涂料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365366B2 (ja) * 1999-09-06 2003-01-08 ダイキン工業株式会社 架橋性含フッ素樹脂水性分散液組成物
CN103865343A (zh) * 2014-03-19 2014-06-18 王文贵 一种多功能优化生态节能型涂料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531851A (zh) * 2009-04-14 2009-09-16 湖北中科博策新材料研究院 纳米水性隔热透明涂料及其制备方法
CN103773136A (zh) * 2012-10-22 2014-05-07 北京京能恒基新材料有限公司 一种水性太阳热反射隔热纳米涂料
CN104710885A (zh) * 2015-02-04 2015-06-17 江苏朝晖化工有限公司 新型环保光转换保温涂料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248950A (zh) * 2021-06-09 2021-08-13 中国人民解放军海军工程大学 一种轻质超强气凝胶隔热涂料及其制备方法

Also Published As

Publication number Publication date
CN109825139A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN104109438B (zh) 热反射隔热烤漆涂料及其制备方法
CN109705692B (zh) 一种具有超耐沾污性能的复合弹性乳液及其制备方法
WO2019001104A1 (zh) 一种兼容雷达隐身的红外涂层及其制备方法
WO2019100628A1 (zh) 一种热反射隔热涂料及其制备方法和应用
CN106519838B (zh) 耐候型水性丙烯酸地坪漆涂料及其制备方法
WO2017028470A1 (zh) 一种建筑用全色系反射隔热涂料系统及其制备方法
CN105820690A (zh) 一种水性二氧化硅气凝胶反射隔热涂料的制备方法与应用
WO2019233161A1 (zh) 水性耐高温漆及其制备方法
KR101561567B1 (ko) 차열 도료 조성물 및 이를 사용한 도막의 형성방법
WO2018108031A1 (zh) 一种氧化石墨烯隔热玻璃双组份涂料及其制备方法
CN104046217A (zh) 一种具有较高强度的超疏水涂层的制备方法
CN109294382B (zh) 一种超耐候耐酸雨耐沾污水性无机纳米陶瓷涂料及其制备方法
CN103059664A (zh) 一种单组分水性氟涂料和太阳能电池背膜
CN106479252A (zh) 一种疏水铝箔的制备方法
CN111500133A (zh) 一种水包砂多彩涂料及其制备方法
WO2023045553A1 (zh) 一种高耐水环保防水密封膏及其制备方法和应用
CN104629619A (zh) 输油管道内壁阻垢减阻涂料及其制备方法
CN103207421A (zh) 一种扩散膜及制备方法
WO2019062083A1 (zh) 超疏水涂层及其制备方法和应用
WO2020172895A1 (zh) 一种改性二氧化硅-聚丙烯酸酯疏水薄膜的制备方法
CN109135451A (zh) 高耐候热反射钢板卷材金属涂料及其制备方法
WO2018059452A1 (zh) 疏水型防沉降吸波材料及其制备方法、厨电产品及其制备方法
JP5815233B2 (ja) 制振材用エマルション樹脂組成物及び制振材
CN106833335B (zh) 一种利用纳米石墨片和稀土氧化物复合改性的防腐涂料
CN113582639B (zh) 一种防水隔热材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881586

Country of ref document: EP

Kind code of ref document: A1