WO2019100548A1 - 光源系统及使用该光源系统的汽车照明装置 - Google Patents

光源系统及使用该光源系统的汽车照明装置 Download PDF

Info

Publication number
WO2019100548A1
WO2019100548A1 PCT/CN2018/071446 CN2018071446W WO2019100548A1 WO 2019100548 A1 WO2019100548 A1 WO 2019100548A1 CN 2018071446 W CN2018071446 W CN 2018071446W WO 2019100548 A1 WO2019100548 A1 WO 2019100548A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
wavelength conversion
heat
conversion device
source system
Prior art date
Application number
PCT/CN2018/071446
Other languages
English (en)
French (fr)
Inventor
胡飞
徐梦梦
郭祖强
周萌
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019100548A1 publication Critical patent/WO2019100548A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical technology, and in particular to a light source system and an automotive lighting device using the same.
  • LED lamps, xenon lamps and halogen lamps are the most widely used light sources.
  • these kinds of light sources have disadvantages such as insufficient brightness, long service life, and large beam divergence angle, resulting in insufficient illumination distance.
  • laser headlights have appeared on a few models. This kind of illumination has high brightness and long service life, and because of the small divergence angle of the laser beam, the emitted light beam can be concentrated and emitted in one direction, so that the distance of illumination is greatly increased.
  • the existing laser headlights usually use a monochromatic blue laser to excite the yellow fluorescent material to obtain a white light source whose color coordinates conform to the automotive lighting standard.
  • the fluorescent material generates a large amount of heat during the process of absorbing blue laser light into white light. Since the thermal conductivity of the fluorescent material itself is low, the heat is accumulated in the fluorescent material, which seriously affects the luminescent property and lifetime of the fluorescent material.
  • the commonly used fluorescent material YAG:Ce has a high refractive index, and the total reflection effect on the surface of the fluorescent material makes the white light extraction efficiency low.
  • the invention provides a light source system and an automobile illumination device using the same, which can facilitate heat dissipation of the wavelength conversion device, improve the luminescence performance attenuation and reliability caused by heat accumulation in the wavelength conversion device, and can effectively avoid wavelength conversion.
  • the problem of low light extraction efficiency caused by total reflection of the surface of the element improves the light extraction efficiency of white light.
  • a technical solution adopted by the present invention is to provide a light source system including an excitation light source, a wavelength conversion device, a heat dissipation module and a lens module, and the excitation light emitted by the excitation light source is concentrated to the wavelength a light spot is formed on the conversion device,
  • the heat dissipation module includes a heat dissipation device disposed at or spaced apart from the wavelength conversion device, and a heat conduction device respectively contacting the heat dissipation device and the wavelength conversion device, the heat conduction device being at least Partially covering the spot, the heat conducting device transfers heat generated by the spot to the heat sink for heat dissipation.
  • the heat generated by the spot can be ensured to be transmitted from the heat conducting device to the heat dissipating device in time and dissipated in time, thereby avoiding heat accumulation inside the wavelength converting device and affecting the reliability of the product.
  • the wavelength conversion device is a transmissive wavelength conversion device.
  • the material for preparing the heat conducting device has a thermal conductivity greater than 5 W/m•K, and the light transmittance is 60% or more in the visible light region.
  • the heat conducting device is made of a sapphire material. This material has good thermal conductivity and can enhance heat transfer.
  • the heat conducting device comprises at least one curved surface and at least one contact surface
  • the wavelength conversion device is attached to the contact surface
  • the heat conducting device is prepared from a material having a refractive index close to the wavelength conversion device. to make. In this way, the influence of the heat conducting device on the incident light and the outgoing light path of the wavelength converting device can be avoided.
  • the heat conducting device is a hemispherical structure including a bottom surface as a contact surface and a top portion of a curved surface, the wavelength conversion device is disposed on the bottom surface, and the excitation light source is located on a spherical side of the hemispherical structure .
  • the area of the wavelength conversion device is 1/6-1/2 of the area of the bottom surface of the heat conduction device. This structure ensures optical performance while maximizing heat dissipation.
  • the wavelength conversion device is bonded to the bottom surface of the heat conducting device by a high thermal conductivity, visible light transparent bonding material.
  • the wavelength conversion device is bonded to the bottom surface of the heat conducting device by a thermal conductive adhesive.
  • the bottom surface of the heat conducting device is provided with a recess that is recessed away from the excitation light source, and the wavelength conversion device is disposed in the groove.
  • the heat dissipating device is provided with a fixing groove for fixing the heat conducting device, and a bottom surface of the heat conducting device is fixed in the fixing groove. In this way, the fixed reliability of the heat conducting device can be ensured.
  • the heat dissipating device is provided with a through hole penetrating vertically, the inner wall of the through hole is disposed around the wavelength conversion device, and the center of the bottom surface of the wavelength conversion device and the heat conducting device are located at the center of the through hole. In this way, the influence on the optical path can be minimized and the heat dissipation is uniform.
  • the heat conducting device comprises a first curved surface and a second curved surface respectively contacting the heat dissipating device, and a top surface and a bottom surface connecting the first curved surface and the second curved surface, the top surface being away from the top surface
  • the excitation light source is disposed, and the wavelength conversion device is disposed on the bottom surface.
  • the first curved surface and the second curved surface are respectively disposed tangentially to an edge of the heat dissipation device. This structure allows the heat transfer device to collimate the emitted white light in addition to improving heat dissipation and improving light extraction efficiency.
  • the lens module includes a first collecting lens for concentrating excitation light between the excitation light source and the wavelength conversion device, and a side of the wavelength conversion device remote from the excitation light source for convergence A second collection lens that emits light.
  • another technical solution adopted by the present invention is to provide an automotive lighting device comprising the light source system of any of the foregoing.
  • the invention has the beneficial effects that the present invention provides a light source system, which comprises a heat dissipating device spaced apart from the wavelength conversion device and the heat dissipating device and the wavelength, different from the prior art.
  • the heat transfer device is in contact with the conversion device, and the contact portion of the heat transfer device and the wavelength conversion device covers the spot.
  • Such a structure can facilitate heat dissipation of the wavelength conversion device, and improve problems such as attenuation of light emission performance and reliability caused by heat accumulation in the wavelength conversion device.
  • FIG. 1 is a schematic structural view of a light source system of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a light source system of the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of a light source system of the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment of the light source system of the present invention.
  • the invention provides a light source system and an automobile illumination device using the same, which is beneficial to the heat dissipation of the wavelength conversion device, the improvement of the luminescence performance attenuation and reliability caused by the heat accumulation in the wavelength conversion device, and the wavelength conversion component can be effectively avoided.
  • the problem of low light extraction efficiency caused by total surface reflection improves the light extraction efficiency of white light.
  • the light source system of the present embodiment includes an excitation light source 11 , a wavelength conversion device 13 , a heat dissipation module, and a lens module.
  • the excitation light source 11 may be any one of a solid excitation light source, a gas excitation light source, and a semiconductor excitation light source for emitting excitation light.
  • the excitation light emitted from the excitation light source 11 is concentrated on the wavelength conversion device 13 to form a light spot, and the wavelength conversion device 13 is excited to form a laser beam and form a light exiting through the lens module.
  • the wavelength conversion device 13 is a phosphor, for example, prepared using a YAG:Ce fluorescent ceramic.
  • the excitation light source 11 generates blue excitation light and excites the wavelength conversion device to generate white light.
  • the lens module is used for integration of the optical path, and specifically includes a first collecting lens 12 for concentrating the excitation light between the excitation light source 11 and the wavelength conversion device 13 and a side of the wavelength conversion device 13 remote from the excitation light source 11 for convergence A second collection lens 15 that emits light.
  • the heat dissipation module includes a heat sink 16 disposed at or spaced apart from the wavelength conversion device 13 and a heat conduction device 14 in contact with the heat sink 16 and the wavelength conversion device 13, respectively.
  • the heat sink 16 is a heat sink, and a through hole penetrating therethrough is disposed thereon, and an inner wall of the through hole is disposed around the wavelength conversion device 13 .
  • the heat conducting device 14 is attached to the through hole, and the wavelength converting device 13 is attached to the bottom surface of the heat conducting device 14. When the light spot on the wavelength converting device 13 dissipates heat, it is transmitted to the heat sink device 16 through the heat conducting device 14 for divergence. .
  • the wavelength conversion device 13 is directly coated on the heat conduction device 14 or the wavelength conversion device 13 is bonded as a separate component to the heat conduction device 14 by a thermal conductive adhesive or other high thermal conductivity transparent visible adhesive material, so that the wavelength conversion device 13 Located at a central position of the lower surface of the heat transfer device 14.
  • the heat conducting device 14 has a hemispherical structure including a planar bottom surface and a curved top portion, and the wavelength conversion device 13 is disposed on the bottom surface, and the excitation light source 11 is located on the spherical center side of the hemispherical structure.
  • the centers of the wavelength conversion device 13 and the bottom surface of the heat transfer device 14 are located at the center of the through hole. It should be noted that the above is only a preferred embodiment. In other optional embodiments, the bottom surface of the contact surface of the wavelength conversion device may be a non-planar surface or other structure.
  • the heat conducting device 14 is made of a material that can transmit light, and specifically, the heat conducting device 14 is prepared using a material having a light transmittance in a range of 60% or more of a light transmittance in the visible light region, such that the excitation light is in the wavelength conversion device 13 After the laser is excited, it can pass through the heat conducting device 14 and enter the second collecting lens 15 to diverge without affecting the overall optical path of the light source system.
  • the heat conducting device 14 is also made of a high thermal conductivity material. Specifically, the thermal conductivity is preferably greater than 5 W/m•K, and more preferably, the thermal conductivity is greater than or equal to 10 W/m•K, specifically in the embodiment. Made of sapphire.
  • the refractive index of the sapphire is 1.77, which is close to the refractive index of the wavelength conversion device 13, so that the total reflection of the white light on the upper surface of the wavelength conversion device 13 can be effectively avoided, so that a large angle of white light can also enter the heat conduction device 14, and the heat conduction device 14
  • the hemispherical surface ensures that white light does not undergo total reflection when the heat conducting device 14 exits, thereby improving the light extraction efficiency of white light.
  • the white light converted by the wavelength conversion element is emitted from the surface of the heat conducting device 14 and collected by the second collecting lens 15 to obtain a white light source.
  • the second collecting lens 15 is a TIR lens.
  • the area of the wavelength conversion device 13 is 1/6-1/2 of the area of the bottom surface of the heat transfer device 14. It has been verified by experiments that it has the best heat dissipation effect and the highest light conversion efficiency in this range.
  • the wavelength conversion device 13 is attached to the heat conduction device 14, that is, the area of the wavelength conversion device 13 is smaller than the heat conduction device 14.
  • heat dissipation may be adopted.
  • a part of the device 14 is attached to the wavelength conversion device 13, and it is also possible to ensure that the contact portion of the heat transfer device 14 with the wavelength conversion device 13 covers the spot on the wavelength conversion device 13, and this can also be implemented.
  • FIG. 2 it is another embodiment which is improved on the basis of the above.
  • This embodiment is substantially the same as the above, and includes an excitation light source 21, a wavelength conversion device 23, a heat dissipation module, and a lens module.
  • the lens module includes a first collection lens 22 and a second collection lens 25.
  • the heat dissipation module includes a heat sink 26 and a heat transfer device 24.
  • the bottom surface of the heat transfer device 24 is provided with a recess that is recessed away from the excitation light source 21, and the wavelength conversion device 23 is disposed in the groove.
  • the contact area between the heat transfer device 24 and the wavelength conversion device 23 can be increased to provide heat dissipation efficiency.
  • FIG. 3 it is another embodiment which is improved on the basis of the above.
  • This embodiment is substantially the same as the above, and includes an excitation light source 31, a wavelength conversion device 33, a heat dissipation module, and a lens module.
  • the lens module includes a first collection lens 32 and a second collection lens 35.
  • the heat dissipation module includes a heat sink 36 and a heat transfer device 34.
  • the heat sink 36 is provided with a fixing groove for fixing the heat conducting device 34, and the bottom surface of the heat conducting device 34 is fixed in the fixing groove. In this way, the fixing stability between the heat sink 36 and the heat conducting device 24 can be provided, and at the same time, the contact area can be increased to provide heat transfer efficiency.
  • the embodiment may be modified in any of the foregoing manners, that is, the wavelength replacing device 33 may be directly attached to the bottom surface of the heat conducting device 34, or may be fixed in the groove by providing a groove. All can be implemented.
  • FIG. 4 there is shown a schematic structural view of a fourth embodiment of the present invention.
  • the present embodiment is an improvement based on the third embodiment, and is substantially the same as the third embodiment, and includes an excitation light source 41, a wavelength conversion device 43, a heat dissipation module, and a lens module.
  • the lens module includes a first collection lens 42 and a second collection lens 45.
  • the heat dissipation module includes a heat sink 46 and a heat transfer device 44. The difference is the structure of the heat transfer device 44 in the present embodiment.
  • the heat conducting device 44 is preferably a CPC structure.
  • the heat conducting device 44 includes a first curved surface and a second curved surface respectively contacting the heat sink 46 and connecting the first curved surface and the second curved surface.
  • the top surface and the bottom surface are disposed away from the excitation light source 41, and the wavelength conversion device 43 is disposed on the bottom surface.
  • the first curved surface and the second curved surface are respectively disposed tangentially to the edge of the heat dissipating device 46.
  • the heat dissipating device 46 is disposed tangential to the first curved surface and the second curved surface.
  • the cut surface, the heat conducting device 44 is attached to the cut surface.
  • the heat conducting device 44 adopts a CPC structure, so that the heat conducting device 44 can collimate the emitted white light in addition to improving heat dissipation and improving light extraction efficiency.
  • the invention has the beneficial effects that the present invention provides a light source system, which comprises a heat dissipating device spaced apart from the wavelength conversion device and the heat dissipating device and the wavelength, different from the prior art.
  • the heat transfer device is in contact with the conversion device, and the contact portion of the heat transfer device and the wavelength conversion device covers the spot.
  • Such a structure can facilitate heat dissipation of the wavelength conversion device, improve the attenuation of the luminescence performance caused by heat accumulation in the wavelength conversion device, and reliability, and can effectively avoid the problem of low light extraction efficiency caused by total reflection of the surface of the wavelength conversion element. Improve the light extraction efficiency of white light.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种光源系统及使用该光源系统的汽车照明装置,光源系统的散热模组包括与波长转换装置(13)间隔设置或接触设置的散热装置(16)和与散热装置(16)和波长转换装置(13)分别相接触的导热装置(14),导热装置(14)与波长转换装置(13)的接触部分覆盖光斑。这样的结构能够有利于波长转换装置(13)的散热,改善波长转换装置(13)内热量聚集引起的发光性能衰减和可靠性等问题,同时可以有效避免波长转换装置(13)表面全反射引起的光提取效率较低的问题,提高白光的光提取效率。

Description

光源系统及使用该光源系统的汽车照明装置 技术领域
本发明涉及光学技术领域,特别是涉及一种光源系统及使用该光源系统的汽车照明装置。
背景技术
目前,投影显示应用到生活当中的各个方面,在汽车照明和投影方面,光源系统起到至关重要的作用。在现有的汽车照明技术中,LED灯、氙气灯和卤素灯是应用最为广泛的光源。然而,这几种光源分别有亮度不够大、使用寿命不够长、光束发散角较大导致照明距离不够远等缺点。作为新兴的照明技术,激光大灯已经出现在了少数车型上。这种照明方式的亮度高,使用寿命长,而且由于激光光束准直发散角小的特点,发出的光束可以比较集中的朝一个方向发射,使得照明的距离大大增长。
技术问题
现有的激光大灯通常采用单色蓝激光激发黄色荧光材料来得到色坐标符合汽车照明标准的白光光源。荧光材料在吸收蓝色激光转换为白光的过程中会产生大量的热,由于荧光材料本身热导率较低,这些热量会聚集在荧光材料中,严重影响荧光材料的发光性能和寿命。另外常用的荧光材料YAG:Ce具有高的折射率,荧光材料表面的全反射效应会使得白光提取效率较低。
因此,使用必要提供一种新的光源系统及使用该光源系统的汽车照明装置以解决上述问题。
 
技术解决方案
本发明提供一种光源系统及使用该光源系统的汽车照明装置,能够有利于波长转换装置的散热,改善波长转换装置内热量聚集引起的发光性能衰减和可靠性等问题,同时可以有效避免波长转换元件表面全反射引起的光提取效率较低的问题,提高白光的光提取效率。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光源系统,包括激发光源,波长转换装置,散热模组和透镜模组,所述激发光源发出的激发光会聚到所述波长转换装置上形成光斑,所述散热模组包括与所述波长转换装置间隔设置或接触设置的散热装置和与所述散热装置和所述波长转换装置分别相接触的导热装置,所述导热装置至少部分覆盖所述光斑,所述导热装置将所述光斑产生的热量传递给所述散热装置进行散热。
这样,可以保证光斑产生的热量及时由导热装置传递到散热装置并及时散热,避免波长转换装置内部的热量聚集而影响产品的可靠性能。
优选的,所述波长转换装置为透射式波长转换装置。
优选的,制备所述导热装置的材料的导热率大于5W/m•K,透光率为在可见光区的透光率大于等于60%。优选的,所述导热装置采用蓝宝石材料制成。此种材料的导热性能好,可以增强热量的传递。
优选的,所述导热装置包括至少一个弧面和至少一个接触面,所述波长转换装置贴设在所述接触面上,所述导热装置与所述波长转换装置采用折射率相近的材料制备而成。这样,可以避免导热装置对波长转换装置入射光和出射光光路的影响。
优选的,所述导热装置为半球形结构,包括作为接触面的底面和弧面的顶部,所述波长转换装置设置在所述底面上,所述激发光源位于所述半球结构的球心一侧。优选的,所述波长转换装置的面积为导热装置的底面面积的1/6-1/2。此种结构可以保证光学性能的同时最大程度地提高散热性能。
优选的,所述波长转换装置通过高热导率的对可见光透明的粘结材料粘接在所述导热装置的底面。优选的,所述波长转换装置通过导热胶粘接在所述导热装置的底面。优选的,所述导热装置的底面上设置有向远离所述激发光源方向凹陷的凹槽,所述波长转换装置设置在所述凹槽内。优选的,所述散热装置上设置有用于固定所述导热装置的固定槽,所述导热装置的底面固定在所述固定槽内。这样,可以保证导热装置的固定可靠性。
优选的,所述散热装置上设置有上下贯穿的通孔,所述通孔的内壁环绕波长转换装置设置,所述波长转换装置和所述导热装置底面的圆心均位于所述通孔的中央。这样,可以保证对光路的影响最小,且散热均匀。
优选的,所述导热装置包括分别与所述散热装置相接触的第一弧面和第二弧面以及连接所述第一弧面和第二弧面的顶面和底面,所述顶面远离所述激发光源设置,所述波长转换装置设置在所述底面上。优选的,所述第一弧面和所述第二弧面分别与所述散热装置的边缘相切设置。这种结构使得导热装置除了改善散热和提高光提取效率外,还可以对出射白光进行准直。
优选的,所述透镜模组包括位于所述激发光源与所述波长转换装置之间的用于会聚激发光第一收集透镜和位于所述波长转换装置远离所述激发光源的一侧用于会聚出射光的第二收集透镜。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种汽车照明装置,该汽车照明装置包括前文所述的任一项的光源系统。
有益效果
本发明的有益效果是:区别于现有技术的情况,本发明提供一种光源系统,所述散热模组包括与所述波长转换装置间隔设置的散热装置和与所述散热装置和所述波长转换装置分别相接触的导热装置,所述导热装置与所述波长转换装置的接触部分覆盖所述光斑。这样的结构能够有利于波长转换装置的散热,改善波长转换装置内热量聚集引起的发光性能衰减和可靠性等问题。
附图说明
图1是本发明光源系统的结构示意图;
图2是本发明光源系统的第二种实施方式的结构示意图;
图3是本发明光源系统的第三种实施方式的结构示意图;
图4是本发明光源系统的第四种实施方式的结构示意图。
 
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明提供一种光源系统及使用该光源系统的汽车照明装置,有利于波长转换装置的散热,改善波长转换装置内热量聚集引起的发光性能衰减和可靠性等问题,同时可以有效避免波长转换元件表面全反射引起的光提取效率较低的问题,提高白光的光提取效率。
请参阅图1所示,本实施方式的光源系统包括激发光源11、波长转换装置13、散热模组和透镜模组。
激发光源11可以是固体激发光源,气体激发光源,半导体激发光源中的任意一种,用于发出激发光。激发光源11发出的激发光会聚到波长转换装置13上形成光斑,并激发波长转换装置13形成受激光并经过透镜模组形成出射光。优选的,波长转换装置13为荧光粉,例如采用YAG:Ce荧光陶瓷制备。具体在本实施方式中,激发光源11产生蓝色激发光,并激发波长转换装置产生白光。
透镜模组用于光路的整合,具体包括位于激发光源11与波长转换装置13之间的用于会聚激发光第一收集透镜12和位于波长转换装置13远离激发光源11的一侧用于会聚出射光的第二收集透镜15。
散热模组包括与波长转换装置13间隔设置或接触设置的散热装置16和与散热装置16和波长转换装置13分别相接触的导热装置14。
其中散热装置16为热沉,其上设置有上下贯穿的通孔,该通孔的内壁环绕波长转换装置13设置。导热装置14盖接在该通孔上,波长转换装置13贴设在导热装置14的底面,当波长转换装置13上的光斑散发出热量后,会经过导热装置14传递到散热装置16上进行发散。
波长转换装置13直接涂敷在导热装置14上或者波长转换装置13作为独立的元件通过导热胶或其他高热导率的对可见光透明的粘结材料粘结在导热装置14上,使得波长转换装置13位于导热装置14的下表面的中心位置。具体在本实施方式中,导热装置14为半球形结构,包括平面的底面和弧面的顶部,波长转换装置13设置在底面上,激发光源11位于所述半球结构的球心一侧。波长转换装置13和导热装置14底面的中心均位于所述通孔的中央。需要说明的是,以上仅为一种较优的实施方式,在可选择的其他实施方式中,作为波长转换装置的接触面的底面,也可以为曲面或其他结构的非平面。
导热装置14为可透光的材料制成,具体的,采用透光率为在可见光区的透光率大于等于60%的范围内的材料制备导热装置14,这样使得激发光在波长转换装置13上激发出受激光后可以穿过导热装置14进入第二收集透镜15发散,而不影响光源系统的整体光路。此外,导热装置14还为高热导率材料制成,具体的,热导率优选为大于5W/m•K,更优选的热导率大于等于10 W/m•K,具体在本实施方式中,采用蓝宝石材质。蓝宝石的折射率为1.77,与波长转换装置13的折射率相近,因而可有效避免白光在波长转换装置13上表面的全反射,使得大角度的白光也可以进入导热装置14,而导热装置14的半球形表面可确保白光在导热装置14出射时不会发生全反射,从而提高白光的光提取效率。经波长转换元件转换得到的白光由导热装置14表面出射,经第二收集透镜15收集后得到白光光源,其中,第二收集透镜15为TIR透镜。
优选的,波长转换装置13的面积为导热装置14的底面面积的1/6-1/2。经实验验证,在此范围内,具有最好的散热效果和最高的光转换效率。
需要说明的是,在本实施方式中,为将波长转换装置13贴设在导热装置14上,即波长转换装置13的面积小于导热装置14,在可选择的其他实施方式中,也可以为散热装置14上的一部分贴设在波长转换装置13上,此时需要保证导热装置14与波长转换装置13的接触部分覆盖波长转换装置13上的光斑,也是可以实施的。
 
 
实施例二
参照图2所示,是在上述基础上改进得到的另一种实施方式。本实施方式与上述内容大体相同,包括激发光源21、波长转换装置23、散热模组和透镜模组。透镜模组包括第一收集透镜22和第二收集透镜25。散热模组包括散热装置26和导热装置24。区别仅在于,在本实施方式中,导热装置24的底面上设置有向远离激发光源21方向凹陷的凹槽,波长转换装置23设置在该凹槽内。这样,相较前述实施方式,可以增加导热装置24与波长转换装置23之间的接触面积,提供散热效率。
 
实施例三
参照图3所示,是在上述基础上改进得到的另一种实施方式。本实施方式与上述内容大体相同,包括激发光源31、波长转换装置33、散热模组和透镜模组。透镜模组包括第一收集透镜32和第二收集透镜35。散热模组包括散热装置36和导热装置34。与前述两种实施方式相比,区别仅在于,在本实施方式中,散热装置36上设置有用于固定导热装置34的固定槽,导热装置34的底面固定在固定槽内。这样,可以提供散热装置36和导热装置24之间的固定稳定性,同时也可以增加接触面积,提供热传导效率。
需要说明的是,本实施方式可以在前述任意一种方式上进行改进,即波长装换装置33可以为直接贴设在导热装置34的底面,也可以通过设置凹槽,固定在凹槽内,均是可以实施的。
 
实施例四
参照图4所示,是本发明第四种实施例的结构示意图。本实施方式是在实施例三的基础上进行的改进,与第三种实施方式大体相同,包括激发光源41、波长转换装置43、散热模组和透镜模组。透镜模组包括第一收集透镜42和第二收集透镜45。散热模组包括散热装置46和导热装置44。区别在于,本实施方式中的导热装置44的结构。在本实施方式中,导热装置44优选的为CPC结构,具体的,导热装置44包括分别与散热装置46相接触的第一弧面和第二弧面以及连接第一弧面和第二弧面的顶面和底面,顶面远离所述激发光源41设置,波长转换装置43设置在所述底面上。优选的,第一弧面和所述第二弧面分别与散热装置46的边缘相切设置,具体在本实施方式中,散热装置46上设置有与第一弧面和第二弧面相切的切面,导热装置44贴设在该切面上。导热装置44采用CPC结构,使得导热装置44除了改善散热和提高光提取效率外,还可以对出射白光进行准直。
本发明的有益效果是:区别于现有技术的情况,本发明提供一种光源系统,所述散热模组包括与所述波长转换装置间隔设置的散热装置和与所述散热装置和所述波长转换装置分别相接触的导热装置,所述导热装置与所述波长转换装置的接触部分覆盖所述光斑。这样的结构能够有利于波长转换装置的散热,改善波长转换装置内热量聚集引起的发光性能衰减和可靠性等问题,同时可以有效避免波长转换元件表面全反射引起的光提取效率较低的问题,提高白光的光提取效率。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
 

Claims (16)

  1. 一种光源系统,包括激发光源,波长转换装置,散热模组和透镜模组,其特征在于,所述激发光源发出的激发光会聚到所述波长转换装置上形成光斑,所述散热模组包括与所述波长转换装置间隔设置或接触设置的散热装置和与所述散热装置和所述波长转换装置分别相接触的导热装置,所述导热装置至少部分覆盖所述光斑,所述导热装置将所述光斑产生的热量传递给所述散热装置进行散热。
  2. 根据权利要求1所述的光源系统,其特征在于,所述波长转换装置为透射式波长转换装置。
  3. 根据权利要求1所述的光源系统,其特征在于,制备所述导热装置的材料的导热率大于5W/m•K,透光率为在可见光区的透光率大于等于60%。
  4. 根据权利要求3所述的光源系统,其特征在于,所述导热装置采用蓝宝石材料制成。
  5. 根据权利要求3所述的光源系统,其特征在于,所述导热装置包括至少一个弧面和至少一个接触面,所述波长转换装置贴设在所述接触面上,所述导热装置与所述波长转换装置采用折射率相近的材料制备而成。
  6. 根据权利要求5所述的光源系统,其特征在于,所述导热装置为半球形结构,包括作为接触面的底面和弧面的顶面,所述波长转换装置设置在所述底面上,所述激发光源位于所述半球结构的球心一侧。
  7. 根据权利要求6所述的光源系统,其特征在于,所述波长转换装置的面积为导热装置的底面面积的1/6-1/2。
  8. 根据权利要求7所述的光源系统,其特征在于,所述波长转换装置通过高热导率的对可见光透明的粘结材料粘接在所述导热装置的底面。
  9. 根据权利要求8所述的光源系统,其特征在于,所述波长转换装置通过导热胶粘接在所述导热装置的底面。
  10. 根据权利要求9所述的光源系统,其特征在于,所述导热装置的底面上设置有向远离所述激发光源方向凹陷的凹槽,所述波长转换装置设置在所述凹槽内。
  11. 根据权利要求8所述的光源系统,其特征在于,所述散热装置上设置有用于固定所述导热装置的固定槽,所述导热装置的底面固定在所述固定槽内。
  12. 根据权利要求11所述的光源系统,其特征在于,所述散热装置上设置有上下贯穿的通孔,所述通孔的内壁环绕波长转换装置设置,所述波长转换装置和所述导热装置底面的圆心均位于所述通孔的中央。
  13. 根据权利要求5所述的光源系统,其特征在于,所述导热装置包括分别与所述散热装置相接触的第一弧面和第二弧面以及连接所述第一弧面和第二弧面的顶面和底面,所述顶面远离所述激发光源设置,所述波长转换装置设置在所述底面上。
  14. 根据权利要求13所述的光源系统,其特征在于,所述第一弧面和所述第二弧面分别与所述散热装置的边缘相切设置。
  15. 根据权利要求1所述的光源系统,其特征在于,所述透镜模组包括位于所述激发光源与所述波长转换装置之间的用于会聚激发光第一收集透镜和位于所述波长转换装置远离所述激发光源的一侧用于会聚出射光的第二收集透镜。
  16. 一种汽车照明装置,其特征在于,包括如权利要求1到15任意一项所述的光源系统。
     
     
PCT/CN2018/071446 2017-11-27 2018-01-04 光源系统及使用该光源系统的汽车照明装置 WO2019100548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711207848.1A CN109838751A (zh) 2017-11-27 2017-11-27 光源系统及使用该光源系统的汽车照明装置
CN201711207848.1 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019100548A1 true WO2019100548A1 (zh) 2019-05-31

Family

ID=66631791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071446 WO2019100548A1 (zh) 2017-11-27 2018-01-04 光源系统及使用该光源系统的汽车照明装置

Country Status (2)

Country Link
CN (1) CN109838751A (zh)
WO (1) WO2019100548A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865381A (zh) * 2009-04-01 2010-10-20 斯坦雷电气株式会社 使用包括半导体发光装置的光源模块的照明装置
CN103615671A (zh) * 2013-10-28 2014-03-05 吴震 光源
CN103969934A (zh) * 2013-02-05 2014-08-06 深圳市光峰光电技术有限公司 一种结构紧凑的光源系统
US20140369065A1 (en) * 2011-07-25 2014-12-18 Sharp Kabushiki Kaisha Illumination device and vehicle headlight
CN204114882U (zh) * 2014-09-29 2015-01-21 深圳市绎立锐光科技开发有限公司 积分棒及使用其的发光装置与投影装置
CN204143149U (zh) * 2014-10-15 2015-02-04 郭振扬 光源组件和光源装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840067A (zh) * 2013-12-31 2014-06-04 吴震 波长转换装置和发光装置
JP2016009761A (ja) * 2014-06-24 2016-01-18 株式会社小糸製作所 発光モジュール
ES2770709T3 (es) * 2015-04-01 2020-07-02 Signify Holding Bv Aparato emisor de luz de alto brillo
CN106939983A (zh) * 2016-12-14 2017-07-11 江西科技师范大学 一种新型激光路灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865381A (zh) * 2009-04-01 2010-10-20 斯坦雷电气株式会社 使用包括半导体发光装置的光源模块的照明装置
US20140369065A1 (en) * 2011-07-25 2014-12-18 Sharp Kabushiki Kaisha Illumination device and vehicle headlight
CN103969934A (zh) * 2013-02-05 2014-08-06 深圳市光峰光电技术有限公司 一种结构紧凑的光源系统
CN103615671A (zh) * 2013-10-28 2014-03-05 吴震 光源
CN204114882U (zh) * 2014-09-29 2015-01-21 深圳市绎立锐光科技开发有限公司 积分棒及使用其的发光装置与投影装置
CN204143149U (zh) * 2014-10-15 2015-02-04 郭振扬 光源组件和光源装置

Also Published As

Publication number Publication date
CN109838751A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
JP6302762B2 (ja) 発光装置および照明装置
JP5226077B2 (ja) 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP5380052B2 (ja) Led照明装置
US8267552B2 (en) Light-transmissive shell capable of intensifying illuminant and wide-angle light transmission
JP2012099362A (ja) 発光装置
JP6457099B2 (ja) 波長変換部材および発光装置
JP2012248553A (ja) 発光装置及びそれを用いた照明装置
US20190257488A1 (en) Laser-based light source with heat conducting outcoupling dome
JP2007265964A (ja) 照明装置
JP2007324547A (ja) 発光ダイオード光源装置、照明装置、表示装置及び交通信号機
US8502250B2 (en) Light emitting diode package and light emitting diode module
TW201405074A (zh) 光源裝置及照明裝置
US9605814B2 (en) Lighting module
WO2021068408A1 (zh) 一种远近光一体的照明灯
US10125950B2 (en) Optical module
TWI565102B (zh) 發光二極體模組及使用該發光二極體模組的燈具
WO2013145049A1 (ja) ランプ
CN110748805B (zh) 一种照明光源系统
TW201425823A (zh) 照明裝置
CN109282246A (zh) 一种波长转换装置、光源模组及照明灯
WO2019100548A1 (zh) 光源系统及使用该光源系统的汽车照明装置
JP5742629B2 (ja) 発光装置及びこれを備えた照明器具
TW201411892A (zh) 發光二極體
TWM423203U (en) High-brightness LED lamp structure
JP2012004090A (ja) 発光ダイオード照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881271

Country of ref document: EP

Kind code of ref document: A1