WO2019098076A1 - Capacitance-type pressure sensor - Google Patents

Capacitance-type pressure sensor Download PDF

Info

Publication number
WO2019098076A1
WO2019098076A1 PCT/JP2018/041030 JP2018041030W WO2019098076A1 WO 2019098076 A1 WO2019098076 A1 WO 2019098076A1 JP 2018041030 W JP2018041030 W JP 2018041030W WO 2019098076 A1 WO2019098076 A1 WO 2019098076A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pressure sensor
movable
substrate
fixed
Prior art date
Application number
PCT/JP2018/041030
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 山本
貴弘 増田
千紘 宮原
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019098076A1 publication Critical patent/WO2019098076A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a capacitive pressure sensor.
  • a capacitive pressure sensor As an example of an element that detects pressure, a capacitive pressure sensor can be mentioned.
  • the capacitive pressure sensor includes a pair of substrates provided with electrodes on opposite surfaces, and the pressure applied changes the distance between the electrodes, and the fluctuation between the electrodes causes the capacitance between the pair of electrodes to increase. fluctuate.
  • the capacitive pressure sensor detects pressure based on the fluctuation of capacitance.
  • a wire is drawn out from each of the electrodes provided on each of the pair of substrates and connected to another device exemplified in the device for measuring the capacitance (for example, Patent Document 1).
  • the wiring structure for connecting the capacitive pressure sensor and another device tends to be complicated. Further, even in the case where a plurality of layers for wiring different electrodes are provided on the same substrate, wiring is performed in different layers for each electrode, so the wiring structure tends to be complicated.
  • one aspect of the disclosed technology is to provide a capacitive pressure sensor that can realize a simpler wiring structure.
  • a capacitive pressure sensor as follows.
  • This capacitance type pressure sensor is flexible, and a first electrode and a lead electrode separated from the first electrode face a flexible substrate provided on one surface, and the first surface. And a hollow portion between the first electrode and the second electrode while supporting between the first substrate and the second electrode. And an insulating wall erected to provide the first electrode and the second electrode in the hollow portion to detect a change in capacitance caused by bending of the first electrode with respect to the second electrode.
  • a capacitive pressure sensor that measures the pressure applied to the facing surface of the first electrode and the second electrode, thereby making it possible to measure the pressure between the extraction electrode and the second electrode.
  • an electrically conductive conductive material set up to support between the takeout electrode and the second electrode. And further comprising a connection part.
  • the flexible flexible substrate is formed of, for example, polyimide.
  • the first electrode, the extraction electrode, and the second electrode may be formed of a conductive member.
  • the first electrode and the extraction electrode may be formed of copper and the second electrode may be formed of chromium.
  • the wall is formed so as not to electrically connect the first electrode and the second electrode.
  • the wall portion may be formed so as not to electrically connect the first electrode and the second electrode, even if the entire wall portion is not formed of an insulator.
  • at least one of the portion in contact with the first electrode and the portion in contact with the second electrode may be formed by an insulator.
  • the wall portion may be formed by gold plating in a portion in contact with the first electrode, and may be formed by an insulator in a portion in contact with the second electrode.
  • the capacitive pressure sensor can operate as a capacitor having the first electrode and the second electrode as electrode plates.
  • the wall portion so as to provide the hollow portion between the first substrate and the second substrate, the flexible substrate to which pressure is applied can be bent toward the hard substrate.
  • the lead-out electrode and the second electrode are further supported by a conductive connection. By being connected by the conductive connection portion, the extraction electrode and the second electrode are electrically connected.
  • the wiring from the second electrode can be drawn out from the lead-out electrode. Therefore, the wiring from the first electrode and the wiring from the second electrode can be drawn from the same layer on the flexible substrate. Therefore, according to this capacitance type pressure sensor, a simpler wiring structure can be realized. Furthermore, the layer structure for electrode formation can be simplified.
  • connection portion is formed in an annular shape in a plan view. Since the second electrode is supported by the ring-shaped connection portion, distortion is suppressed in the flexible substrate when pressure is applied to the flexible substrate and the flexible substrate bends toward the hard substrate. Ru.
  • the ring shape is not limited to a circular shape, and it may be a shape in which the wall portion is not interrupted halfway. Examples of the ring shape include, for example, a substantially circular shape, a substantially elliptical shape, a substantially triangular shape, a substantially square shape, a substantially pentagonal shape, a substantially hexagonal shape, a substantially octagonal shape, and the like.
  • the wall portion is formed in an annular shape in a plan view, and in a plan view, the area of a region surrounded by the connection portion is smaller than the area of a region surrounded by the wall portion.
  • the hard substrate is formed of a rigid member.
  • the rigid member is, for example, glass.
  • the flexible substrate includes a plurality of the first electrodes, and includes a plurality of the rigid substrates corresponding to the plurality of first electrodes.
  • the disclosed technology may have the following features.
  • the first electrodes are arranged in a grid on the flexible substrate at predetermined intervals. In the capacitive pressure sensor having such features, the plurality of first electrodes are separated, and the plurality of hard substrates are separated. Therefore, when pressure is applied to the capacitance type pressure sensor, one of the plurality of flexible substrates which are in contact with each other does not disturb the other of the plurality of adjacent flexible substrates. Therefore, when the pressure is applied to the capacitive pressure sensor, the bending of the flexible substrate is not inhibited, and the pressure applied to the capacitive pressure sensor can be measured with high accuracy.
  • the capacitive pressure sensor can realize a simpler wiring structure.
  • FIG. 1 is a first diagram showing a schematic configuration of a pressure sensor according to the embodiment.
  • FIG. 2 is a second view showing a schematic configuration of a pressure sensor according to the embodiment.
  • FIG. 3 is a first view showing an example of a pressure sensor according to the embodiment.
  • FIG. 4 is a second view showing an example of the pressure sensor according to the embodiment.
  • FIG. 5 is a diagram showing an example of the configuration of a capacitance measurement circuit.
  • FIG. 6 is a diagram showing an example of a state before pressure is applied to the pressure sensor.
  • FIG. 7 is a diagram showing an example of a state when pressure is applied to the pressure sensor.
  • FIG. 8A is a first view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8A is a first view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8B is a second view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8C is a third diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8D is a fourth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8E is a fifth diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8F is a sixth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8G is a seventh drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8H is an eighth diagram showing the example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 8I is a ninth view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 9 is a view showing an example of a cross-sectional view of a pressure sensor according to a modification.
  • FIGS. 1 and 2 are diagrams showing a schematic configuration of a pressure sensor 100 according to an application example.
  • FIG. 1 is an example of a schematic view of the pressure sensor 100 in plan view
  • FIG. 2 is an example of a cross-sectional view taken along the line AA of FIG.
  • the fixed-substrate-side plated portion 24, the first hollow portion 18, the fixed electrode 22, and the substrate portion 21 which are not visible in a plan view are shown by dotted lines.
  • the pressure sensor 100 includes a movable portion 10 and a fixed substrate portion 20.
  • the movable portion 10 has flexibility, and the first movable electrode 121 and the first movable electrode 121 and the second movable electrode 122 separated from the first movable electrode 121 are provided on one surface of the movable portion 10.
  • the fixed electrode 22 is provided on the surface of the fixed substrate portion 20 facing the one surface. When pressure is applied to the movable portion 10, the movable portion 10 bends toward the fixed substrate portion 20, and the distance between the first movable electrode 121 and the fixed electrode 22 fluctuates.
  • the pressure sensor 100 is a capacitance type pressure sensor that detects a pressure by a change in capacitance accompanying a change in distance between the first movable electrode 121 and the fixed electrode 22.
  • the substrate portion 21 on which the fixed electrode 22 is provided is formed of a rigid member.
  • the rigid member is, for example, glass.
  • the pressure is calculated as a force applied per unit area.
  • the rigidity of the substrate portion 21 suppresses the fluctuation of the area serving as the reference of the pressure calculation, and the pressure detection accuracy by the pressure sensor 100 is enhanced.
  • the first movable electrode 121, the second movable electrode 122, and the fixed electrode 22 may be formed of a conductive material.
  • the first movable electrode 121 and the second movable electrode 122 are formed of copper
  • the fixed electrode 22 is formed of chromium.
  • the plating process for protecting the first movable electrode 121 is performed on the surface of the first movable electrode 121 and the second movable electrode 122 on the side facing the fixed electrode 22.
  • the plating process is, for example, a process by gold plating.
  • the fixed substrate portion 20 is further provided with an insulating portion 23 surrounding the periphery of the fixed electrode 22 and covering a part of the upper side of the fixed electrode 22.
  • the insulating portion 23 may be formed of an insulator, and the insulator is, for example, tetraethoxysilane (TEOS) or silicon dioxide.
  • the space 23b is provided in a part of the region where the first movable electrode 121 and the fixed electrode 22 overlap in plan view, and the planar view is from the region near the edge of the space 23b toward the movable portion 10
  • the third plated portion 241 is formed so as to surround the space 23 b in FIG.
  • the inner side surface 23 a of the space 23 b and the third plated portion 241 form a wall portion of the first hollow portion 18.
  • the insulating portion 23 is interposed between the third plated portion 241 and the fixed electrode 22, and the third plated portion 241 and the fixed electrode 22 are not in contact with each other.
  • the first movable electrode 121 and the fixed electrode 22 are not electrically connected by the wall portion of the first hollow portion 18.
  • the first hollow portion 18 allows the movable portion 10 to bend toward the fixed substrate portion 20 when pressure is applied to the movable portion 10.
  • the pressure sensor 100 further includes a fourth plated portion 242 electrically connecting the second movable electrode 122 and the fixed electrode 22 between the second movable electrode 122 and the fixed electrode 22.
  • the shape of the fourth plated portion 242 is not limited, when the shape of the fourth plated portion 242 in a plan view is formed in an annular shape as illustrated in FIGS. When the movable portion 10 bends toward the fixed substrate portion 20 by applying a voltage V.sub.2, distortion generated in the movable portion 10 is suppressed.
  • the movable portion 10 is an example of a “flexible substrate”.
  • the first movable electrode 121 is an example of the “first electrode”.
  • the second movable electrode 122 is an example of the “extraction electrode”.
  • the fixed electrode 22 is an example of the “second electrode”.
  • the fixed substrate unit 20 is an example of a “hard substrate”.
  • the inner side surface 23 a of the space 23 b and the third plated portion 241 are examples of the “wall”.
  • the fourth plated portion 242 is an example of the “connection portion”.
  • the fourth plated portion 242 may be formed in an annular shape in plan view.
  • the fourth plated portion 242 is formed in an annular shape in plan view, so that bending of the movable portion 10 generated when the movable portion 10 is pressed is more uniformly generated in the entire movable portion 10. become. That is, in the pressure sensor 100 provided with the fourth plating portion 242 formed in an annular shape in plan view, the first movable electrode 121 is parallel to the fixed electrode 22 when pressure is applied to the movable portion 10 The movable portion 10 can be bent toward the fixed substrate portion 20 while maintaining the state. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than the pressure sensor in which the fourth plated portion 242 is not formed in an annular shape in plan view.
  • the fourth plated portion 242 is formed in an annular shape, in the pressure sensor 100, the space between the movable portion 10 and the fixed substrate portion 20 is supported by the third plated portion 241 which is a wall portion of the first hollow portion 18. In addition, it is also supported by the fourth plated portion 242. Therefore, the durability of the pressure sensor 100 is improved.
  • the substrate portion 21 is formed of a rigid member. Therefore, even if a pressure is applied to the pressure sensor 100, the fluctuation of the area serving as the reference of the pressure calculation is suppressed. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than a pressure sensor formed of a member that the substrate portion 21 is easily deformed.
  • Embodiment 3 and 4 are diagrams showing an example of a pressure sensor according to the embodiment.
  • FIGS. 3 and 4 are diagrams showing the configuration of the pressure sensor 100 described in FIGS. 1 and 2 in more detail.
  • FIG. 3 is an example of a plan view of the pressure sensor 100
  • FIG. 4 is an example of a cross-sectional view taken along the line AA of FIG.
  • the fixed-substrate-side plated portion 24, the first hollow portion 18, the second hollow portion 19, the fixed electrode 22, and the substrate portion 21 which are not visible in plan view are shown by dotted lines.
  • three pressure sensors 100 100 (100a, 100b, 100c) are illustrated, and a connector 200 and a capacitance measuring circuit 300 are also illustrated.
  • the three pressure sensors 100 a, 100 b and 100 c share the sheet substrate 11.
  • the movable portion 10 has the movable electrode 12 including the second movable electrode 122 in addition to the first movable electrode 121.
  • the direction from the second hollow portion 19 to the first hollow portion 18 in FIG. 3 is referred to as the right, and the opposite direction is referred to as the left.
  • the direction from the pressure sensor 100 a to the pressure sensor 100 c is back, and the opposite direction is front.
  • the direction from the movable portion 10 to the fixed substrate portion 20 in FIG. 4 is downward, and the opposite direction is upward.
  • the movable portion 10 includes a sheet substrate 11, a movable electrode 12, and a movable portion side plated portion 14.
  • the sheet substrate 11 is formed of a flexible member (for example, polyimide).
  • the thickness of the sheet substrate 11 is, for example, 25 ⁇ m.
  • the thickness of the sheet substrate 11 is the length of the sheet substrate 11 in the vertical direction.
  • the lower surface of the sheet substrate 11 is provided with a movable electrode 12 formed of a conductive member (for example, copper).
  • the movable electrode 12 includes the first movable electrode 121 and the second movable electrode 122 provided to be separated from the first movable electrode 121 as described above.
  • the thickness of the movable electrode 12 is, for example, 10 ⁇ m.
  • the length of the first movable electrode 121 in the left-right direction is, for example, 2.0 mm.
  • the length of the second movable electrode 122 in the left-right direction is, for example, 0.5 mm.
  • the lengths of the first movable electrode 121 and the second movable electrode 122 in the front-rear direction are, for example, 1 mm to 2 mm.
  • the distance between the first movable electrode 121 and the second movable electrode 122 is, for example, 0.1 mm.
  • the movable portion side plated portion 14 is provided on the lower surface of the movable electrode 12.
  • the movable portion-side plated portion 14 includes a first plated portion 141 provided on the lower surface of the first movable electrode 121 and a second plated portion 142 provided on the lower surface of the second movable electrode 122.
  • the movable portion-side plated portion 14 is formed, for example, by gold plating.
  • the fixed substrate portion 20 includes a substrate portion 21, a fixed electrode 22, an insulating portion 23 and a fixed substrate side plated portion 24.
  • the substrate unit 21 is formed of a member (for example, glass) which is not easily deformed.
  • the thickness of the substrate portion 21 is, for example, 300 ⁇ m to 600 ⁇ m. Since the substrate portion 21 is formed of a member that is not easily deformed, deformation of the fixed substrate portion 20 is suppressed even if the movable portion 10 is bent by application of pressure to the sheet substrate 11.
  • a fixed electrode 22 formed of a conductive member (for example, chromium) is disposed on the upper surface of the substrate unit 21.
  • an insulating portion 23 is provided which surrounds the periphery of the fixed electrode 22 and covers a part of the upper side of the fixed electrode 22.
  • the insulating portion 23 is formed of an insulator (for example, tetraethoxysilane (TEOS) or silicon dioxide).
  • TEOS tetraethoxysilane
  • the thickness of the insulating portion 23 is, for example, 0.5 ⁇ m.
  • the first hollow portion 18 described above is provided in a part of a region where the first movable electrode 121 and the fixed electrode 22 overlap in plan view, and the second movable electrode 122 and the fixed electrode 22 in plan view
  • the above-mentioned second hollow portion 19 is provided in a part of the overlapping region.
  • the first hollow portion 18 and the second hollow portion 19 are formed as through holes extending from the surface of the insulating portion 23 on the movable portion 10 side to the surface on the fixed electrode 22 side.
  • the diameter of the first hollow portion 18 in plan view is, for example, 0.6 mm to 1.2 mm.
  • the area of the second hollow portion 19 is smaller than the area of the first hollow portion 18. That is, the diameter of the second hollow portion 19 in plan view is smaller than the diameter of the first hollow portion 18 in plan view.
  • the distance d between the first movable electrode 121 of the first hollow portion 18 and the fixed electrode 22 when no pressure is applied is, for example, 1 ⁇ m.
  • a fixed substrate plating portion 24 is provided on the inner side surface and the bottom of the second hollow portion 19 in addition to a part of the upper surface of the insulating portion 23.
  • the fixed substrate plating portion 24 includes a third plating portion 241 and a fourth plating portion 242.
  • the third plated portion 241 is provided in a region near the edge of the first hollow portion 18 on the upper surface of the insulating portion 23.
  • the fourth plated portion 242 is provided on a region near the edge of the second hollow portion 19 and on an inner side surface and a bottom portion of the second hollow portion 19 on the upper surface of the insulating portion 23.
  • the fourth plated portion 242 is formed to reach the fixed electrode 22 through the second hollow portion 19 and to project from above the second hollow portion 19 toward the second movable electrode 122.
  • the fourth plated portion 242 is formed in an annular shape in a plan view.
  • the fixed substrate side plated portion 24 is formed, for example, by gold plating.
  • the movable portion 10 and the fixed substrate portion 20 are integrated to form the pressure sensor 100.
  • the second movable portion 122 and the fixed electrode 22 are electrically connected by joining the second plated portion 142 and the fourth plated portion 242.
  • the second movable electrode 122 and the connector 200 are connected by a signal line 15 extending from the second movable electrode 122.
  • the ground (GND) line 16a extending from the first movable electrode 121 is connected between the first movable electrodes 121 of the pressure sensors 100a and 100b and between the first movable electrodes 121 of the pressure sensors 100b and 100c.
  • the distance between adjacent pressure sensors 100 is, for example, 0.1 mm to 0.3 mm. That is, the length of the GND line 16a is 0.1 mm to 0.3 mm.
  • the first movable electrode 121 of the pressure sensor 100 c is connected to the connector 200 by the GND line 16 b extending from the first movable electrode 121.
  • GND is shared by the pressure sensors 100a, 100b, and 100c.
  • both the signal line 15 and the GND line 16 are formed on the lower surface of the sheet substrate 11. That is, in the pressure sensor 100, the wiring extending from the first movable electrode 121 and the wiring extending from the fixed electrode 22 are formed in the same layer.
  • the pressure sensor 100 can realize a simple wiring structure by adopting such a configuration.
  • the pressure sensor 100 having the above-described configuration has an area overlapping the fixed electrode 22 of the first movable electrode 121 and an area overlapping the first movable electrode 121 of the fixed electrode 22 which are arranged at a distance d (see FIG. 4). It works as a plate capacitor.
  • the capacitance C of the capacitor is calculated, for example, by the following equation 1 using the distance d described above and the area S of the area where the first movable electrode 121 and the fixed electrode 22 overlap (see FIG. 4). .
  • ⁇ 0 is the dielectric constant of vacuum
  • ⁇ r is the dielectric constant of the atmosphere. That is, according to (Expression 1), the electrostatic capacitance C fluctuates according to the fluctuation of the distance d between the first movable electrode 121 and the fixed electrode 22 which is caused by the force applied to the movable portion 10. I understand.
  • the pressure P is calculated by the following (Formula 2), for example using the area S mentioned above.
  • F is the magnitude of the force applied to the pressure sensor 100.
  • the substrate portion 21 is formed of a member that is not easily deformed, even if pressure is applied to the pressure sensor 100, the fluctuation of the area S serving as the reference of pressure calculation is suppressed. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than a pressure sensor formed of a member that the substrate portion 21 is easily deformed.
  • FIG. 5 is a diagram showing an example of the configuration of the capacitance measuring circuit 300.
  • the pressure sensors 100a, 100b, and 100c are also illustrated in FIG. Moreover, in FIG. 5, the illustration of the connector 200 is omitted.
  • the capacitance measurement circuit 300 includes two multiplexers 301 and 301 (denoted as MUX in the drawing) and a converter 302. Signals associated with fluctuations in capacitance of the pressure sensors 100 a, 100 b, 100 c are input to the multiplexers 301, 301 via the signal line 15. Each of the multiplexers 301 and 301 outputs a selected one of the signals input from the pressure sensors 100a, 100b and 100c.
  • MUX multiplexers
  • the illustration of selection signals used for selecting the signals output from the multiplexers 301 and 301 is omitted.
  • the signal output from each of the multiplexers 301 and 301 is input to the converter 302.
  • the converter 302 stores, for example, the correspondence between signal values input from the multiplexers 301 and 301 and pressure.
  • the correspondence relationship managed by the converter 302 may be, for example, a table indicating the correspondence between the input signal value and the pressure, or may be a mathematical expression for calculating the pressure from the input signal value.
  • the converter 302 converts, for example, the signal value input from the multiplexers 301 and 301 into a signal value indicating pressure according to the correspondence relationship, and outputs a signal value indicating pressure.
  • the plurality of pressure sensors 100 by sharing the sheet substrate 11. That is, by providing the plurality of movable electrodes 12 on a single sheet substrate 11, the plurality of movable electrodes 12 and the plurality of fixed substrate portions 20 are arranged in a row, lattice or array on the single sheet substrate 11. It is possible. In this case, the plurality of movable electrodes 12 are separated, and the plurality of fixed substrate portions 20 are separated. Therefore, when pressure is applied to the pressure sensor 100, one of the plurality of moving parts 10 that are in contact with each other does not inhibit the other bending of the plurality of adjacent moving parts 10. Therefore, the deflection of the movable portion 10 when the pressure is applied to the pressure sensor 100 is not inhibited, and the pressure applied to the pressure sensor 100 can be measured with high accuracy.
  • FIG. 6 shows an example of a state before pressure is applied to the pressure sensor 100
  • FIG. 7 shows an example of a state when pressure is applied to the pressure sensor 100.
  • the pressure sensor 100 when pressure is applied from the upper side of the first hollow portion 18, as illustrated in FIG. 7, the pressure is applied according to the force applied to the movable portion 10 including the sheet substrate 11 and the first movable electrode 121. And bend toward the fixed substrate portion 20. Further, when pressure is not applied to the pressure sensor 100, the pressure sensor 100 returns from the state of FIG. 7 to the state of FIG. That is, in the pressure sensor 100, the distance d between the first movable electrode 121 and the fixed electrode 22 fluctuates according to the applied force.
  • the capacitance of the pressure sensor 100 changes according to (Expression 1).
  • the pressure applied to the pressure sensor 100 is detected by measuring the fluctuation of the capacitance of the pressure sensor 100 by the capacitance measuring circuit 300 illustrated in FIG. 3.
  • the pressure sensor 100 has a second hollow portion 19 in addition to the first hollow portion 18.
  • the fourth plated portion 242 which is formed in a cylindrical shape in a plan view and reaches the second movable electrode 122 from the fixed electrode 22 is formed on the inner side surface of the second hollow portion 19.
  • the fixed electrode 22 and the second movable electrode 122 are only electrically connected, it is sufficient to connect only one wire instead of forming the fourth plated portion 242 in a cylindrical shape in plan view.
  • both of the first movable electrode 121 and the second movable electrode 122 provided apart from each other are provided on the sheet substrate 11.
  • the first movable electrode 121 when a force is applied from above the first movable electrode 121, the first movable electrode 121 is bent to the fixed electrode 22 side, and the second movable electrode 122 is also distorted to the fixed electrode 22 side.
  • the first movable electrode 121 bends with respect to the fixed electrode 22 without deviation in the front-rear direction and the left-right direction.
  • the second movable electrode 122 is distorted to the fixed electrode 22 side, the first movable electrode 121 is affected by the distortion, and it becomes difficult to deflect the first movable electrode 121 with no bias.
  • the cross-sectional shape of the fourth plated portion 242 in plan view is formed in an annular shape.
  • distortion in the second movable electrode 122 portion when pressure is applied is suppressed, as compared with the configuration in which the fixed electrode 22 and the second movable electrode 122 are connected by one wire.
  • the fourth plated portion 242 having an annular cross-sectional shape can support the second movable electrode 122 more stably than when the second movable electrode 122 is supported by one wire.
  • FIG. 8A to 8I illustrate an example of a manufacturing process of the pressure sensor 100.
  • FIG. Hereinafter, an example of a manufacturing process of the pressure sensor 100 will be described with reference to FIGS. 8A to 8I.
  • FIG. 8A to 8E show an example of the manufacturing process of the fixed substrate portion 20.
  • FIG. 8A the fixed electrode 22 is formed on the surface of the substrate 21 facing the movable portion 10.
  • FIG. 8B the insulating film 231 is formed to cover the fixed electrode 22.
  • a resist film 51 is formed on the surface of the insulating film 231 facing the movable portion 10.
  • FIG. 8C a resist film 51 having a predetermined pattern is formed on the insulating film 231 by performing a photoresist using a photomask in which a desired pattern is formed on the resist film 51.
  • FIG. 8C a resist film 51 having a predetermined pattern is formed on the insulating film 231 by performing a photoresist using a photomask in which a desired pattern is formed on the resist film 51.
  • the etching process is performed, and the resist film 51 is further removed, whereby the insulating portion 23 is formed.
  • the fixed substrate side plated portion 24 is formed on the surface of the insulating portion 23 facing the movable portion 10.
  • the plating resist is performed on the area where the fixed substrate side plated portion 24 is not formed, and then the plating process is performed to form the fixed substrate side plated portion 24 in a desired area.
  • FIG. 8F and 8G show an example of the manufacturing process of the movable part 10.
  • the movable electrode 12 is formed on the surface of the flexible sheet substrate 11 facing the fixed substrate portion 20.
  • the plating process is performed on the surface of the movable electrode 12 facing the fixed substrate portion 20, whereby the movable portion-side plated portion 14 is formed.
  • the etching resist is performed on the area corresponding to the first movable electrode 121 and the second movable electrode 122 on the surface facing the fixed substrate portion 20 of the movable portion side plated portion 14 and then the etching is performed.
  • the first movable electrode 121 and the second movable electrode 122 are formed.
  • the fixed substrate side plated portion 24 may be formed by sputtering. That is, after a plating layer is formed on the surface of the insulating portion 23 facing the movable portion 10 by a sputtering apparatus, a resist is applied and etched to form a pattern of the fixed substrate plating portion 24. May be
  • Step of bonding movable portion 10 and fixed substrate portion 20 8H and 8I show an example of the process of bonding the fixed substrate portion 20 and the movable portion 10.
  • the movable portion 10 and the fixed substrate portion 20 are joined.
  • the movable portion 10 and the fixed substrate portion 20 may be joined by, for example, normal temperature bonding.
  • the normal temperature bonding for example, the surface of the movable portion side plated portion 14 of the movable portion 10 facing the fixed substrate portion 20 and the surface of the fixed substrate portion 20 facing the movable portion 10 of the fixed substrate side plated portion 24 are A process of smoothing the surface and a process of removing impurities from the surface to clean the surface are performed.
  • FIG. 8I illustrates a state in which three pressure sensors 100 manufactured by the steps of FIGS. 8A to 8H are arranged in a manner sharing the sheet substrate 11. As illustrated in FIG. 8I, the pressure sensor 100 can widen the area targeted for pressure detection by sharing the sheet substrate 11 and arranging the plurality of pressure sensors 100.
  • manufacturing of the movable portion 10 and the fixed substrate portion 20 is performed without performing a process of flattening the surfaces of the movable portion side plated portion 14 and the fixed substrate side plated portion 24.
  • the flatness of the surface may be ensured in the process.
  • metal for example, copper
  • CMP Chemical Mechanical Polishing
  • FIG. 9 is a view showing an example of a cross-sectional view of a pressure sensor 100a according to a first modification.
  • the pressure sensor 100a is different from the pressure sensor 100 in that a pillar portion 23c is provided in the insulating portion 23 instead of the second hollow portion 19.
  • the column portion 23 c is erected in a substantially cylindrical shape between the second movable electrode 122 and the fixed electrode 22.
  • a fourth plated portion 242a is provided on the side surface of the column portion 23c.
  • the space between the second movable electrode 122 and the fixed electrode 22 is supported by the fourth plated portion 242 a. Distortion of the second movable electrode 122 when pressure is applied to the first movable electrode 121 is also suppressed by such a fourth plated portion 242 a. Also, the second movable electrode 122 and the fixed electrode 22 can be electrically connected also by such a fourth plated portion 242 a.
  • the column portion 23c has a substantially cylindrical shape, but the shape is not limited to a substantially cylindrical shape, and a substantially elliptic cylinder shape, a substantially triangular prism shape, a substantially square prism shape, a substantially pentagonal prism shape, a substantially hexagonal prism shape
  • the shape may be a substantially octagonal prism shape or the like.

Abstract

A capacitance-type pressure sensor provided with: a flexible substrate having a first electrode and a drawing electrode set apart from the first electrode provided to one surface, the flexible substrate being flexible; a hard substrate having a second electrode provided to a surface facing the one surface; and an electrically insulated wall part provided upright so as to support between the first electrode and the second electrode and to provide a hollow space between the first electrode and the second electrode; the capacitance-type pressure sensor being such that, in the hollow part, a voltage applied toward a surface facing the first electrode and the second electrode is measured by detecting a change in capacitance produced due to flexing of the first electrode relative to the second electrode; wherein the capacitance-type pressure sensor is provided with an electrically conductive connection part provided between the drawing electrode and the second electrode, the connection part being provided upright so as to support between the drawing electrode and the second electrode.

Description

静電容量式圧力センサCapacitive pressure sensor
 本発明は、静電容量式圧力センサに関する。 The present invention relates to a capacitive pressure sensor.
 圧力を検出する素子の一例として、静電容量式圧力センサが挙げられる。静電容量式圧力センサは互いに対向する面に電極を備えた一対の基板を備え、圧力が加えられることで電極間の距離が変動し、電極間の変動によって一対の電極間の静電容量が変動する。静電容量式圧力センサは、静電容量の変動に基づいて、圧力を検出する。 As an example of an element that detects pressure, a capacitive pressure sensor can be mentioned. The capacitive pressure sensor includes a pair of substrates provided with electrodes on opposite surfaces, and the pressure applied changes the distance between the electrodes, and the fluctuation between the electrodes causes the capacitance between the pair of electrodes to increase. fluctuate. The capacitive pressure sensor detects pressure based on the fluctuation of capacitance.
 静電容量式圧力センサでは、例えば、一対の基板の各々に設けられた電極各々から配線が外部に引き出され、静電容量を測定する装置に例示される他の装置と接続される(例えば、特許文献1参照)。 In the capacitive pressure sensor, for example, a wire is drawn out from each of the electrodes provided on each of the pair of substrates and connected to another device exemplified in the device for measuring the capacitance (for example, Patent Document 1).
特開2009-002740号公報JP, 2009-002740, A
 静電容量式圧力センサにおいて、一対の基板の各々に設けられた電極各々から配線が引き出されると、静電容量式圧力センサと他の装置とを接続する配線構造が複雑になりやすい。また、同一の基板に各々異なる電極の配線を行うための複数の層を設ける場合においても、電極毎に異なる層に配線を行うことになるため配線構造が複雑になりやすい。 In the capacitive pressure sensor, when the wiring is drawn out from each of the electrodes provided on each of the pair of substrates, the wiring structure for connecting the capacitive pressure sensor and another device tends to be complicated. Further, even in the case where a plurality of layers for wiring different electrodes are provided on the same substrate, wiring is performed in different layers for each electrode, so the wiring structure tends to be complicated.
 そこで、開示の技術の1つの側面は、より簡易な配線構造を実現できる静電容量式圧力センサを提供することを課題とする。 Therefore, one aspect of the disclosed technology is to provide a capacitive pressure sensor that can realize a simpler wiring structure.
 開示の技術の1つの側面は、次のような静電容量式圧力センサによって例示される。本静電容量式圧力センサは、可撓性を有し、第1の電極と前記第1の電極と離間した取り出し電極とが一方の面に設けられたフレキシブル基板と、前記一方の面に対向する面に第2の電極が設けられた硬質基板と、前記第1の電極と前記第2の電極との間を支持するとともに前記第1の電極と前記第2の電極との間に中空部を設けるように立設された絶縁性の壁部と、を備え、前記中空部において、前記第1の電極が前記第2の電極に対して撓むことで生じる静電容量の変化を検出することにより、前記第1の電極と前記第2の電極との対向面に向けて印加される圧力を測定する、静電容量式圧力センサであって、前記取り出し電極と前記第2の電極との間に、前記取り出し電極と前記第2の電極との間を支持するように立設された導電性の接続部を更に備えることを特徴とする。 One aspect of the disclosed technology is exemplified by a capacitive pressure sensor as follows. This capacitance type pressure sensor is flexible, and a first electrode and a lead electrode separated from the first electrode face a flexible substrate provided on one surface, and the first surface. And a hollow portion between the first electrode and the second electrode while supporting between the first substrate and the second electrode. And an insulating wall erected to provide the first electrode and the second electrode in the hollow portion to detect a change in capacitance caused by bending of the first electrode with respect to the second electrode. A capacitive pressure sensor that measures the pressure applied to the facing surface of the first electrode and the second electrode, thereby making it possible to measure the pressure between the extraction electrode and the second electrode. And an electrically conductive conductive material set up to support between the takeout electrode and the second electrode. And further comprising a connection part.
 このような静電容量式圧力センサにおいて、可撓性を有するフレキシブル基板は、例えば、ポリイミドによって形成される。第1の電極、取り出し電極および第2の電極は導電性を有する部材で形成されていればよい。例えば、第1の電極および取り出し電極は銅で形成され、第2の電極はクロムで形成されてもよい。壁部は、第1の電極と第2の電極との間を電気的に接続しないように形成される。壁部は、壁部全体が絶縁体で形成されていなくとも、第1の電極と第2の電極との間を電気的に接続しないように形成されていればよい。壁部は、例えば、第1の電極と接触する部分および第2の電極と接触する部分の少なくとも一方が絶縁体によって形成されてもよい。壁部は、例えば、第1の電極と接触する部分が金メッキによって形成され、第2の電極に接触する部分が絶縁体によって形成されてもよい。第1の電極と第2の電極とが電気的に接続されないことで、静電容量式圧力センサは、第1の電極と第2の電極とを電極板とするコンデンサとして動作可能となる。第1の基板と第2の基板との間に中空部を設けるように壁部が形成されることで、圧力が印加されたフレキシブル基板が硬質基板へ向けて撓むことが可能となる。静電容量式圧力センサは、さらに、取り出し電極と第2の電極とが導電性の接続部によって支持される。導電性の接続部によって接続されることで、取り出し電極と第2の電極とが電気的に接続される。取り出し電極と第2の電極とが電気的に接続されることで、第2の電極からの配線を取り出し電極から引き出すことが可能となる。そのため、第1の電極からの配線と第2の電極からの配線とをフレキシブル基板上の同じ層から引き出すことができる。そのため、本静電容量式圧力センサによれば、より簡易な配線構造を実現できる。さらに、電極形成のための層構造を簡略化することが可能となる。 In such a capacitive pressure sensor, the flexible flexible substrate is formed of, for example, polyimide. The first electrode, the extraction electrode, and the second electrode may be formed of a conductive member. For example, the first electrode and the extraction electrode may be formed of copper and the second electrode may be formed of chromium. The wall is formed so as not to electrically connect the first electrode and the second electrode. The wall portion may be formed so as not to electrically connect the first electrode and the second electrode, even if the entire wall portion is not formed of an insulator. For example, at least one of the portion in contact with the first electrode and the portion in contact with the second electrode may be formed by an insulator. For example, the wall portion may be formed by gold plating in a portion in contact with the first electrode, and may be formed by an insulator in a portion in contact with the second electrode. By electrically connecting the first electrode and the second electrode, the capacitive pressure sensor can operate as a capacitor having the first electrode and the second electrode as electrode plates. By forming the wall portion so as to provide the hollow portion between the first substrate and the second substrate, the flexible substrate to which pressure is applied can be bent toward the hard substrate. In the capacitive pressure sensor, the lead-out electrode and the second electrode are further supported by a conductive connection. By being connected by the conductive connection portion, the extraction electrode and the second electrode are electrically connected. By electrically connecting the lead-out electrode and the second electrode, the wiring from the second electrode can be drawn out from the lead-out electrode. Therefore, the wiring from the first electrode and the wiring from the second electrode can be drawn from the same layer on the flexible substrate. Therefore, according to this capacitance type pressure sensor, a simpler wiring structure can be realized. Furthermore, the layer structure for electrode formation can be simplified.
 さらに、開示の技術は次の特徴を有してもよい。前記接続部は、平面視において環形状に形成される。環形状に形成された接続部によって第2電極が支持されることで、フレキシブル基板に対して圧力が印加されてフレキシブル基板が硬質基板に向けて撓む際に、フレキシブル基板において生ずる歪みが抑制される。なお、環形状は円形に限定されるわけではなく、壁部が途中で途切れない形状であればよい。環形状の例としては、例えば、略円形、略楕円形、略三角形、略四角形、略五角形、略六角形、略八角形等が挙げられる。 Furthermore, the disclosed technology may have the following features. The connection portion is formed in an annular shape in a plan view. Since the second electrode is supported by the ring-shaped connection portion, distortion is suppressed in the flexible substrate when pressure is applied to the flexible substrate and the flexible substrate bends toward the hard substrate. Ru. The ring shape is not limited to a circular shape, and it may be a shape in which the wall portion is not interrupted halfway. Examples of the ring shape include, for example, a substantially circular shape, a substantially elliptical shape, a substantially triangular shape, a substantially square shape, a substantially pentagonal shape, a substantially hexagonal shape, a substantially octagonal shape, and the like.
 さらに、開示の技術は次の特徴を有してもよい。前記壁部は平面視において環形状に形成され、平面視において、前記接続部によって囲まれる領域の面積は、前記壁部によって囲まれる領域の面積よりも小さい。このような特徴を有することで、接続部を備えた静電容量式圧力センサの大きさを抑制できる。すなわち、接続部を備えた静電容量式圧力センサを小型化できる。 Furthermore, the disclosed technology may have the following features. The wall portion is formed in an annular shape in a plan view, and in a plan view, the area of a region surrounded by the connection portion is smaller than the area of a region surrounded by the wall portion. By having such a feature, the size of the capacitive pressure sensor provided with the connection portion can be suppressed. That is, the capacitance type pressure sensor provided with the connection portion can be miniaturized.
 さらに、開示の技術は次の特徴を有してもよい。前記硬質基板は、剛性を有する部材で形成される。剛性を有する部材は、例えば、ガラスである。このような特徴を有することで、静電容量式圧力センサに圧力が印加されても圧力算出の基準となる面積の変動が抑制される。そのため、このような特徴を有することで、静電容量式圧力センサは、硬質基板が容易に変形する部材で形成された圧力センサよりも高い精度で圧力を検出できる。 Furthermore, the disclosed technology may have the following features. The hard substrate is formed of a rigid member. The rigid member is, for example, glass. By having such a feature, even if a pressure is applied to the capacitance type pressure sensor, the fluctuation of the area serving as the reference of the pressure calculation is suppressed. Therefore, by having such a feature, the capacitance type pressure sensor can detect pressure with higher accuracy than a pressure sensor formed of a member in which a hard substrate is easily deformed.
 さらに、開示の技術は次の特徴を有してもよい。前記フレキシブル基板は前記第1の電極を複数備えており、該複数の第1の電極に対応する複数の前記硬質基板を有する。また、開示の技術は次の特徴を有してもよい。前記第1の電極は前記フレキシブル基板上に所定間隔を置いて格子状に配置される。このような特徴を有する静電容量式圧力センサでは、複数の第1の電極が離間し、複数の硬質基板が離間している。そのため、静電容量式圧力センサに圧力が印加された際、離接する複数のフレキシブル基板の一方が、隣接する複数のフレキシブル基板の他方の撓みを阻害しない。したがって、静電容量式圧力センサに圧力が印加された際におけるフレキシブル基板の撓みが阻害されず、静電容量式圧力センサに印加された圧力を高い精度で測定することができる。 Furthermore, the disclosed technology may have the following features. The flexible substrate includes a plurality of the first electrodes, and includes a plurality of the rigid substrates corresponding to the plurality of first electrodes. Also, the disclosed technology may have the following features. The first electrodes are arranged in a grid on the flexible substrate at predetermined intervals. In the capacitive pressure sensor having such features, the plurality of first electrodes are separated, and the plurality of hard substrates are separated. Therefore, when pressure is applied to the capacitance type pressure sensor, one of the plurality of flexible substrates which are in contact with each other does not disturb the other of the plurality of adjacent flexible substrates. Therefore, when the pressure is applied to the capacitive pressure sensor, the bending of the flexible substrate is not inhibited, and the pressure applied to the capacitive pressure sensor can be measured with high accuracy.
 本静電容量式圧力センサは、より簡易な配線構造を実現できる。 The capacitive pressure sensor can realize a simpler wiring structure.
図1は、実施形態に係る圧力センサの概略構成を示す第1の図である。FIG. 1 is a first diagram showing a schematic configuration of a pressure sensor according to the embodiment. 図2は、実施形態に係る圧力センサの概略構成を示す第2の図である。FIG. 2 is a second view showing a schematic configuration of a pressure sensor according to the embodiment. 図3は、実施形態に係る圧力センサの一例を示す第1の図である。FIG. 3 is a first view showing an example of a pressure sensor according to the embodiment. 図4は、実施形態に係る圧力センサの一例を示す第2の図である。FIG. 4 is a second view showing an example of the pressure sensor according to the embodiment. 図5は、静電容量測定回路の構成の一例を示す図である。FIG. 5 is a diagram showing an example of the configuration of a capacitance measurement circuit. 図6は、圧力センサに圧力が印可される前の状態の一例を示す図である。FIG. 6 is a diagram showing an example of a state before pressure is applied to the pressure sensor. 図7は、圧力センサに圧力が印可されたときの状態の一例を示す図である。FIG. 7 is a diagram showing an example of a state when pressure is applied to the pressure sensor. 図8Aは、実施形態に係る圧力センサの製造工程の一例を示す第1の図である。FIG. 8A is a first view showing an example of a manufacturing process of the pressure sensor according to the embodiment. 図8Bは、実施形態に係る圧力センサの製造工程の一例を示す第2の図である。FIG. 8B is a second view showing an example of a manufacturing process of the pressure sensor according to the embodiment. 図8Cは、実施形態に係る圧力センサの製造工程の一例を示す第3の図である。FIG. 8C is a third diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment. 図8Dは、実施形態に係る圧力センサの製造工程の一例を示す第4の図である。FIG. 8D is a fourth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment. 図8Eは、実施形態に係る圧力センサの製造工程の一例を示す第5の図である。FIG. 8E is a fifth diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment. 図8Fは、実施形態に係る圧力センサの製造工程の一例を示す第6の図である。FIG. 8F is a sixth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment. 図8Gは、実施形態に係る圧力センサの製造工程の一例を示す第7の図である。FIG. 8G is a seventh drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment. 図8Hは、実施形態に係る圧力センサの製造工程の一例を示す第8の図である。FIG. 8H is an eighth diagram showing the example of the manufacturing process of the pressure sensor according to the embodiment. 図8Iは、実施形態に係る圧力センサの製造工程の一例を示す第9の図である。FIG. 8I is a ninth view showing an example of a manufacturing process of the pressure sensor according to the embodiment. 図9は、変形例に係る圧力センサの断面図の一例を示す図である。FIG. 9 is a view showing an example of a cross-sectional view of a pressure sensor according to a modification.
 以下、図面を参照して、本発明の実施形態の一例について説明する。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
 <適用例>
 図1および図2は、適用例に係る圧力センサ100の概略構成を示す図である。図1は、圧力センサ100を平面視した概略図の一例であり、図2は、図1のA-A線における断面図の一例である。図1では、平面視においては目視できない固定基板側メッキ部24、第1中空部18、固定電極22および基板部21が点線で示されている。図1および図2を参照すると理解できるように、圧力センサ100は、可動部10と固定基板部20とを備える。可動部10は可撓性を有し、その一方の面には第1可動電極121と第1可動電極121と離間した第2可動電極122とが設けられる。固定基板部20の当該一方の面に対向する面には固定電極22が設けられる。可動部10に圧力が印加されると、可動部10が固定基板部20側に撓み、第1可動電極121と固定電極22との間の距離が変動する。圧力センサ100は、第1可動電極121と固定電極22との間の距離の変動に伴う静電容量の変動によって圧力を検出する静電容量式圧力センサである。
<Example of application>
1 and 2 are diagrams showing a schematic configuration of a pressure sensor 100 according to an application example. FIG. 1 is an example of a schematic view of the pressure sensor 100 in plan view, and FIG. 2 is an example of a cross-sectional view taken along the line AA of FIG. In FIG. 1, the fixed-substrate-side plated portion 24, the first hollow portion 18, the fixed electrode 22, and the substrate portion 21 which are not visible in a plan view are shown by dotted lines. As can be understood with reference to FIGS. 1 and 2, the pressure sensor 100 includes a movable portion 10 and a fixed substrate portion 20. The movable portion 10 has flexibility, and the first movable electrode 121 and the first movable electrode 121 and the second movable electrode 122 separated from the first movable electrode 121 are provided on one surface of the movable portion 10. The fixed electrode 22 is provided on the surface of the fixed substrate portion 20 facing the one surface. When pressure is applied to the movable portion 10, the movable portion 10 bends toward the fixed substrate portion 20, and the distance between the first movable electrode 121 and the fixed electrode 22 fluctuates. The pressure sensor 100 is a capacitance type pressure sensor that detects a pressure by a change in capacitance accompanying a change in distance between the first movable electrode 121 and the fixed electrode 22.
 固定基板部20において、固定電極22が設けられる基板部21は、剛性を有する部材によって形成される。剛性を有する部材は、例えば、ガラスである。圧力は単位面積当たりに印加される力として算出されるが、基板部21が剛性を有することで、圧力算出の基準となる面積の変動が抑制され、圧力センサ100による圧力の検出精度が高まる。第1可動電極121、第2可動電極122および固定電極22は、導電性を有する部材で形成されればよい。例えば、第1可動電極121および第2可動電極122は銅によって形成され、固定電極22はクロムによって形成される。第1可動電極121および第2可動電極122の固定電極22に対向する側の面には、第1可動電極121を保護するメッキ処理が行われる。メッキ処理は、例えば、金メッキによる処理である。固定基板部20には、さらに、固定電極の22の周囲を囲むとともに、固定電極22の上方の一部を覆う絶縁部23が設けられる。絶縁部23は絶縁体によって形成されていればよく、絶縁体は、例えば、テトラエトキシシラン(TEOS)や二酸化ケイ素である。絶縁部23は、平面視において第1可動電極121と固定電極22とが重なる領域の一部に空間23bが設けられており、空間23bの縁近傍の領域から可動部10側に向けて平面視において空間23bを囲むように第3メッキ部241が形成される。空間23bの内側面23aと第3メッキ部241は、第1中空部18の壁部となる。図2に示されるように、第3メッキ部241と固定電極22との間には絶縁部23が介在し、第3メッキ部241と固定電極22とは接触しない。そのため、第1可動電極121と固定電極22とが第1中空部18の壁部によって電気的に接続されることはない。第1中空部18は、可動部10に圧力が印加されたときに、可動部10が固定基板部20に向けて撓むことが可能となる。圧力センサ100は、さらに、第2可動電極122と固定電極22との間に、第2可動電極122と固定電極22とを電気的に接続する第4メッキ部242が設けられる。第4メッキ部242の形状に限定はないが、第4メッキ部242の平面視における形状が図3および図4に例示されるように環形状に形成されると、可動部10に対して圧力が印加されて可動部10が固定基板部20に向けて撓む際に、可動部10において生ずる歪みが抑制される。第4メッキ部242が平面視において環形状に形成される場合、平面視において第4メッキ部242に囲まれる領域の面積は、第1中空部18の平面視における面積よりも小さくなるように形成される。可動部10は、「フレキシブル基板」の一例である。第1可動電極121は、「第1の電極」の一例である。第2可動電極122は、「取り出し電極」の一例である。固定電極22は、「第2の電極」の一例である。固定基板部20は、「硬質基板」の一例である。空間23bの内側面23aと第3メッキ部241は、「壁部」の一例である。第4メッキ部242は、「接続部」の一例である。 In the fixed substrate portion 20, the substrate portion 21 on which the fixed electrode 22 is provided is formed of a rigid member. The rigid member is, for example, glass. The pressure is calculated as a force applied per unit area. However, the rigidity of the substrate portion 21 suppresses the fluctuation of the area serving as the reference of the pressure calculation, and the pressure detection accuracy by the pressure sensor 100 is enhanced. The first movable electrode 121, the second movable electrode 122, and the fixed electrode 22 may be formed of a conductive material. For example, the first movable electrode 121 and the second movable electrode 122 are formed of copper, and the fixed electrode 22 is formed of chromium. The plating process for protecting the first movable electrode 121 is performed on the surface of the first movable electrode 121 and the second movable electrode 122 on the side facing the fixed electrode 22. The plating process is, for example, a process by gold plating. The fixed substrate portion 20 is further provided with an insulating portion 23 surrounding the periphery of the fixed electrode 22 and covering a part of the upper side of the fixed electrode 22. The insulating portion 23 may be formed of an insulator, and the insulator is, for example, tetraethoxysilane (TEOS) or silicon dioxide. In the insulating portion 23, the space 23b is provided in a part of the region where the first movable electrode 121 and the fixed electrode 22 overlap in plan view, and the planar view is from the region near the edge of the space 23b toward the movable portion 10 The third plated portion 241 is formed so as to surround the space 23 b in FIG. The inner side surface 23 a of the space 23 b and the third plated portion 241 form a wall portion of the first hollow portion 18. As shown in FIG. 2, the insulating portion 23 is interposed between the third plated portion 241 and the fixed electrode 22, and the third plated portion 241 and the fixed electrode 22 are not in contact with each other. Therefore, the first movable electrode 121 and the fixed electrode 22 are not electrically connected by the wall portion of the first hollow portion 18. The first hollow portion 18 allows the movable portion 10 to bend toward the fixed substrate portion 20 when pressure is applied to the movable portion 10. The pressure sensor 100 further includes a fourth plated portion 242 electrically connecting the second movable electrode 122 and the fixed electrode 22 between the second movable electrode 122 and the fixed electrode 22. Although the shape of the fourth plated portion 242 is not limited, when the shape of the fourth plated portion 242 in a plan view is formed in an annular shape as illustrated in FIGS. When the movable portion 10 bends toward the fixed substrate portion 20 by applying a voltage V.sub.2, distortion generated in the movable portion 10 is suppressed. When the fourth plated portion 242 is formed in an annular shape in plan view, the area of the region surrounded by the fourth plated portion 242 in plan view is smaller than the area of the first hollow portion 18 in plan view Be done. The movable portion 10 is an example of a “flexible substrate”. The first movable electrode 121 is an example of the “first electrode”. The second movable electrode 122 is an example of the “extraction electrode”. The fixed electrode 22 is an example of the “second electrode”. The fixed substrate unit 20 is an example of a “hard substrate”. The inner side surface 23 a of the space 23 b and the third plated portion 241 are examples of the “wall”. The fourth plated portion 242 is an example of the “connection portion”.
 上述の通り、第4メッキ部242は平面視において環形状に形成されてもよい。圧力センサ100では、第4メッキ部242は平面視において環形状に形成されることで、可動部10が押圧された際に生じる可動部10の撓みが、可動部10全体においてより均一に生じるようになる。すなわち、平面視において環形状に形成された第4メッキ部242が設けられた圧力センサ100では、可動部10に圧力が印加されたときに、第1可動電極121が固定電極22に対して平行な状態を保ちつつ、可動部10が固定基板部20に向けて撓むことができる。そのため、圧力センサ100は、第4メッキ部242が平面視において環形状に形成されていない圧力センサよりも高い精度で圧力を検出できる。 As described above, the fourth plated portion 242 may be formed in an annular shape in plan view. In the pressure sensor 100, the fourth plated portion 242 is formed in an annular shape in plan view, so that bending of the movable portion 10 generated when the movable portion 10 is pressed is more uniformly generated in the entire movable portion 10. become. That is, in the pressure sensor 100 provided with the fourth plating portion 242 formed in an annular shape in plan view, the first movable electrode 121 is parallel to the fixed electrode 22 when pressure is applied to the movable portion 10 The movable portion 10 can be bent toward the fixed substrate portion 20 while maintaining the state. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than the pressure sensor in which the fourth plated portion 242 is not formed in an annular shape in plan view.
 第4メッキ部242が環形状に形成されると、圧力センサ100では、可動部10と固定基板部20との間は、第1中空部18の壁部となる第3メッキ部241による支持に加えて、第4メッキ部242によっても支持される。そのため、圧力センサ100の耐久性が向上する。 When the fourth plated portion 242 is formed in an annular shape, in the pressure sensor 100, the space between the movable portion 10 and the fixed substrate portion 20 is supported by the third plated portion 241 which is a wall portion of the first hollow portion 18. In addition, it is also supported by the fourth plated portion 242. Therefore, the durability of the pressure sensor 100 is improved.
 圧力センサ100では、基板部21は剛性を有する部材で形成された。そのため、圧力センサ100に圧力が印加されても圧力算出の基準となる面積の変動が抑制される。そのため、圧力センサ100は、基板部21が容易に変形する部材で形成された圧力センサよりも高い精度で圧力を検出できる。 In the pressure sensor 100, the substrate portion 21 is formed of a rigid member. Therefore, even if a pressure is applied to the pressure sensor 100, the fluctuation of the area serving as the reference of the pressure calculation is suppressed. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than a pressure sensor formed of a member that the substrate portion 21 is easily deformed.
 <実施形態>
 図3および図4は実施形態に係る圧力センサの一例を示す図である。図3および図4は、図1および図2で説明した圧力センサ100の構成をより詳細に示す図である。図3は圧力センサ100を平面視した図の一例であり、図4は図3のA-A線における断面図の一例である。図3では、平面視においては目視できない固定基板側メッキ部24、第1中空部18、第2中空部19、固定電極22および基板部21が点線で示されている。図3では、3つの圧力センサ100(100a、100b、100c)が例示されるとともに、コネクタ200および静電容量測定回路300も例示される。3つの圧力センサ100a、100b、100cは、シート基板11を共有する。図4を参照すると理解できるように、実施形態では、可動部10は第1可動電極121に加えて第2可動電極122を含む可動電極12を有する。以下、本明細書において、図3における第2中空部19から第1中空部18に向かう方向を右、その逆方向を左とする。また、図3において、圧力センサ100aから圧力センサ100cに向かう方向を後ろ、その逆方向を前とする。さらに、図4における可動部10から固定基板部20に向かう方向を下、その逆方向を上とする。
Embodiment
3 and 4 are diagrams showing an example of a pressure sensor according to the embodiment. FIGS. 3 and 4 are diagrams showing the configuration of the pressure sensor 100 described in FIGS. 1 and 2 in more detail. FIG. 3 is an example of a plan view of the pressure sensor 100, and FIG. 4 is an example of a cross-sectional view taken along the line AA of FIG. In FIG. 3, the fixed-substrate-side plated portion 24, the first hollow portion 18, the second hollow portion 19, the fixed electrode 22, and the substrate portion 21 which are not visible in plan view are shown by dotted lines. In FIG. 3, three pressure sensors 100 (100a, 100b, 100c) are illustrated, and a connector 200 and a capacitance measuring circuit 300 are also illustrated. The three pressure sensors 100 a, 100 b and 100 c share the sheet substrate 11. As can be understood with reference to FIG. 4, in the embodiment, the movable portion 10 has the movable electrode 12 including the second movable electrode 122 in addition to the first movable electrode 121. Hereinafter, in this specification, the direction from the second hollow portion 19 to the first hollow portion 18 in FIG. 3 is referred to as the right, and the opposite direction is referred to as the left. Further, in FIG. 3, the direction from the pressure sensor 100 a to the pressure sensor 100 c is back, and the opposite direction is front. Furthermore, the direction from the movable portion 10 to the fixed substrate portion 20 in FIG. 4 is downward, and the opposite direction is upward.
 可動部10は、シート基板11、可動電極12、可動部側メッキ部14を含む。シート基板11は、可撓性を有する部材(例えば、ポリイミド)で形成される。シート基板11の厚さは、例えば、25μmである。ここで、シート基板11の厚さは、シート基板11の上下方向の長さである。シート基板11の下方向の面には導電性を有する部材(例えば銅)によって形成される可動電極12が設けられる。可動電極12は、上述のように、第1可動電極121および第1可動電極121と離間して設けられる第2可動電極122を含む。可動電極12の厚さは、例えば、10μmである。第1可動電極121の左右方向の長さは、例えば、2.0mmである。第2可動電極122の左右方向の長さは、例えば、0.5mmである。第1可動電極121および第2可動電極122の前後方向の長さは、例えば、1mmから2mmである。第1可動電極121と第2可動電極122との間の距離は、例えば、0.1mmである。可動電極12の下方向の面には、可動部側メッキ部14が設けられる。可動部側メッキ部14は、第1可動電極121の下方向の面に設けられる第1メッキ部141と第2可動電極122の下方向の面に設けられる第2メッキ部142を含む。可動部側メッキ部14は、例えば、金メッキによって形成される。 The movable portion 10 includes a sheet substrate 11, a movable electrode 12, and a movable portion side plated portion 14. The sheet substrate 11 is formed of a flexible member (for example, polyimide). The thickness of the sheet substrate 11 is, for example, 25 μm. Here, the thickness of the sheet substrate 11 is the length of the sheet substrate 11 in the vertical direction. The lower surface of the sheet substrate 11 is provided with a movable electrode 12 formed of a conductive member (for example, copper). The movable electrode 12 includes the first movable electrode 121 and the second movable electrode 122 provided to be separated from the first movable electrode 121 as described above. The thickness of the movable electrode 12 is, for example, 10 μm. The length of the first movable electrode 121 in the left-right direction is, for example, 2.0 mm. The length of the second movable electrode 122 in the left-right direction is, for example, 0.5 mm. The lengths of the first movable electrode 121 and the second movable electrode 122 in the front-rear direction are, for example, 1 mm to 2 mm. The distance between the first movable electrode 121 and the second movable electrode 122 is, for example, 0.1 mm. The movable portion side plated portion 14 is provided on the lower surface of the movable electrode 12. The movable portion-side plated portion 14 includes a first plated portion 141 provided on the lower surface of the first movable electrode 121 and a second plated portion 142 provided on the lower surface of the second movable electrode 122. The movable portion-side plated portion 14 is formed, for example, by gold plating.
 固定基板部20は、基板部21、固定電極22、絶縁部23および固定基板側メッキ部24を含む。基板部21は、容易には変形しない部材(例えば、ガラス)で形成される。基板部21の厚さは、例えば、300μmから600μmである。基板部21が容易には変形しない部材で形成されるため、シート基板11への圧力の印加により可動部10が撓んでも、固定基板部20の変形は抑制される。基板部21の上側の面上には導電性を有する部材(例えばクロム)によって形成された固定電極22が配置される。さらに、固定電極の22の周囲を囲むとともに、固定電極22の上方の一部を覆う絶縁部23が設けられる。絶縁部23は絶縁体(例えば、テトラエトキシシラン(TEOS)や二酸化ケイ素)によって形成される。絶縁部23の厚さは、例えば、0.5μmである。絶縁部23には、平面視において第1可動電極121と固定電極22とが重なる領域の一部には上述した第1中空部18が設けられ、平面視において第2可動電極122と固定電極22とが重なる領域の一部には上述した第2中空部19が設けられる。第1中空部18および第2中空部19は、絶縁部23の可動部10側の面から固定電極22側の面まで達する貫通孔として形成される。第1中空部18を平面視したときの直径は、例えば、0.6mmから1.2mmである。圧力センサ100を平面視した場合において、第2中空部19の面積は、第1中空部18の面積よりも小さい。すなわち、第2中空部19を平面視したときの直径は、第1中空部18を平面視したときの直径よりも小さい。圧力が印加されていないときにおける第1中空部18の第1可動電極121と固定電極22との間の距離dは、例えば、1μmである。絶縁部23の上側の面の一部の他、第2中空部19の内側面および底部には、固定基板側メッキ部24が設けられる。固定基板側メッキ部24は、第3メッキ部241と第4メッキ部242を含む。第3メッキ部241は、絶縁部23の上側の面において、第1中空部18の縁近傍の領域に設けられる。第4メッキ部242は、絶縁部23の上側の面において、第2中空部19の縁近傍の領域、第2中空部19の内側面および底部に設けられる。第4メッキ部242は、第2中空部19を介して固定電極22に達するとともに、第2中空部19の上方から第2可動電極122に向けて突出して形成される。実施形態では、第4メッキ部242は、平面視において環形状に形成されるものとする。固定基板側メッキ部24は、例えば、金メッキによって形成される。可動部側メッキ部14と固定基板側メッキ部24とが接合されることで可動部10と固定基板部20とが一体となり、圧力センサ100が形成される。また、第2メッキ部142と第4メッキ部242とが接合されることで、第2可動電極122と固定電極22とが電気的に接続される。 The fixed substrate portion 20 includes a substrate portion 21, a fixed electrode 22, an insulating portion 23 and a fixed substrate side plated portion 24. The substrate unit 21 is formed of a member (for example, glass) which is not easily deformed. The thickness of the substrate portion 21 is, for example, 300 μm to 600 μm. Since the substrate portion 21 is formed of a member that is not easily deformed, deformation of the fixed substrate portion 20 is suppressed even if the movable portion 10 is bent by application of pressure to the sheet substrate 11. A fixed electrode 22 formed of a conductive member (for example, chromium) is disposed on the upper surface of the substrate unit 21. Furthermore, an insulating portion 23 is provided which surrounds the periphery of the fixed electrode 22 and covers a part of the upper side of the fixed electrode 22. The insulating portion 23 is formed of an insulator (for example, tetraethoxysilane (TEOS) or silicon dioxide). The thickness of the insulating portion 23 is, for example, 0.5 μm. In the insulating portion 23, the first hollow portion 18 described above is provided in a part of a region where the first movable electrode 121 and the fixed electrode 22 overlap in plan view, and the second movable electrode 122 and the fixed electrode 22 in plan view The above-mentioned second hollow portion 19 is provided in a part of the overlapping region. The first hollow portion 18 and the second hollow portion 19 are formed as through holes extending from the surface of the insulating portion 23 on the movable portion 10 side to the surface on the fixed electrode 22 side. The diameter of the first hollow portion 18 in plan view is, for example, 0.6 mm to 1.2 mm. When the pressure sensor 100 is viewed in plan, the area of the second hollow portion 19 is smaller than the area of the first hollow portion 18. That is, the diameter of the second hollow portion 19 in plan view is smaller than the diameter of the first hollow portion 18 in plan view. The distance d between the first movable electrode 121 of the first hollow portion 18 and the fixed electrode 22 when no pressure is applied is, for example, 1 μm. A fixed substrate plating portion 24 is provided on the inner side surface and the bottom of the second hollow portion 19 in addition to a part of the upper surface of the insulating portion 23. The fixed substrate plating portion 24 includes a third plating portion 241 and a fourth plating portion 242. The third plated portion 241 is provided in a region near the edge of the first hollow portion 18 on the upper surface of the insulating portion 23. The fourth plated portion 242 is provided on a region near the edge of the second hollow portion 19 and on an inner side surface and a bottom portion of the second hollow portion 19 on the upper surface of the insulating portion 23. The fourth plated portion 242 is formed to reach the fixed electrode 22 through the second hollow portion 19 and to project from above the second hollow portion 19 toward the second movable electrode 122. In the embodiment, the fourth plated portion 242 is formed in an annular shape in a plan view. The fixed substrate side plated portion 24 is formed, for example, by gold plating. By bonding the movable portion-side plated portion 14 and the fixed substrate-side plated portion 24, the movable portion 10 and the fixed substrate portion 20 are integrated to form the pressure sensor 100. In addition, the second movable portion 122 and the fixed electrode 22 are electrically connected by joining the second plated portion 142 and the fourth plated portion 242.
 第2可動電極122とコネクタ200とは第2可動電極122から延びる信号線15によって接続される。また、圧力センサ100a、100bの第1可動電極121の間および圧力センサ100b、100cの第1可動電極121の間は、第1可動電極121から延びるグランド(GND)線16aによって接続される。図3において、隣り合った圧力センサ100の間の距離は、例えば、0.1mmから0.3mmである。すなわち、GND線16aの長さは、0.1mmから0.3mmである。さらに、圧力センサ100cの第1可動電極121は、第1可動電極121から延びるGND線16bによってコネクタ200と接続される。すなわち、圧力センサ100a、100b、100cでは、GNDが共有される。図3および図4を参照すると理解できるように、圧力センサ100では、信号線15とGND線16のいずれもがシート基板11の下側の面に形成される。すなわち、圧力センサ100では、第1可動電極121から延びる配線と固定電極22から延びる配線とが同一の層に形成される。圧力センサ100は、このような構成を採用することで、簡易な配線構造が実現される。 The second movable electrode 122 and the connector 200 are connected by a signal line 15 extending from the second movable electrode 122. The ground (GND) line 16a extending from the first movable electrode 121 is connected between the first movable electrodes 121 of the pressure sensors 100a and 100b and between the first movable electrodes 121 of the pressure sensors 100b and 100c. In FIG. 3, the distance between adjacent pressure sensors 100 is, for example, 0.1 mm to 0.3 mm. That is, the length of the GND line 16a is 0.1 mm to 0.3 mm. Furthermore, the first movable electrode 121 of the pressure sensor 100 c is connected to the connector 200 by the GND line 16 b extending from the first movable electrode 121. That is, GND is shared by the pressure sensors 100a, 100b, and 100c. As can be understood with reference to FIGS. 3 and 4, in the pressure sensor 100, both the signal line 15 and the GND line 16 are formed on the lower surface of the sheet substrate 11. That is, in the pressure sensor 100, the wiring extending from the first movable electrode 121 and the wiring extending from the fixed electrode 22 are formed in the same layer. The pressure sensor 100 can realize a simple wiring structure by adopting such a configuration.
 上述した構成を有する圧力センサ100は、距離d(図4参照)離れて配置された第1可動電極121の固定電極22と重なり合う領域と固定電極22の第1可動電極121と重なり合う領域とを電極板とするコンデンサとして動作する。コンデンサの静電容量Cは、例えば、上述した距離dおよび第1可動電極121と固定電極22とが重なり合う領域の面積S(図4参照)を用いて、以下の(式1)によって算出される。 The pressure sensor 100 having the above-described configuration has an area overlapping the fixed electrode 22 of the first movable electrode 121 and an area overlapping the first movable electrode 121 of the fixed electrode 22 which are arranged at a distance d (see FIG. 4). It works as a plate capacitor. The capacitance C of the capacitor is calculated, for example, by the following equation 1 using the distance d described above and the area S of the area where the first movable electrode 121 and the fixed electrode 22 overlap (see FIG. 4). .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記(式1)において、ε0は真空の誘電率であり、εrは大気の比誘電率である。すなわち、(式1)によれば、可動部10に力が加えられることによって生じる第1可動電極121と固定電極22との間の距離dの変動に応じて、静電容量Cが変動することがわかる。 In the above (formula 1), ε 0 is the dielectric constant of vacuum, and ε r is the dielectric constant of the atmosphere. That is, according to (Expression 1), the electrostatic capacitance C fluctuates according to the fluctuation of the distance d between the first movable electrode 121 and the fixed electrode 22 which is caused by the force applied to the movable portion 10. I understand.
 また、圧力Pは、例えば、上述した面積Sを用いて以下の(式2)によって算出される。 Moreover, the pressure P is calculated by the following (Formula 2), for example using the area S mentioned above.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記(式2)において、Fは圧力センサ100に印加される力の大きさである。上述の通り、基板部21は容易には変形しない部材によって形成されるため、圧力センサ100に圧力が印加されても圧力算出の基準となる面積Sの変動が抑制される。そのため、圧力センサ100は、基板部21が容易に変形する部材で形成された圧力センサよりも高い精度で圧力を検出できる。 In the above (Formula 2), F is the magnitude of the force applied to the pressure sensor 100. As described above, since the substrate portion 21 is formed of a member that is not easily deformed, even if pressure is applied to the pressure sensor 100, the fluctuation of the area S serving as the reference of pressure calculation is suppressed. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than a pressure sensor formed of a member that the substrate portion 21 is easily deformed.
 図5は、静電容量測定回路300の構成の一例を示す図である。図5では、圧力センサ100a、100b、100cも例示されている。また、図5では、コネクタ200の図示は省略している。静電容量測定回路300は、2つのマルチプレクサ301、301(図中では、MUXと記載)とコンバータ302を備える。マルチプレクサ301、301の各々には、圧力センサ100a、100b、100cの静電容量の変動に伴う信号が信号線15を介して入力される。マルチプレクサ301、301の各々は、圧力センサ100a、100b、100cから入力された信号のうち選択されたひとつを出力する。図5において、マルチプレクサ301、301が出力する信号の選択に用いられる選択信号の図示は省略されている。コンバータ302は、マルチプレクサ301、301の各々から出力された信号はコンバータ302に入力される。コンバータ302は、例えば、マルチプレクサ301、301から入力される信号値と圧力との対応関係を記憶している。コンバータ302が管理する対応関係は、例えば、入力される信号値と圧力との対応を示すテーブルであってもよいし、入力される信号値から圧力を算出する数式であってもよい。コンバータ302は、例えば、当該対応関係にしたがって、マルチプレクサ301、301から入力された信号値を圧力を示す信号値に変換し、圧力を示す信号値を出力する。 FIG. 5 is a diagram showing an example of the configuration of the capacitance measuring circuit 300. As shown in FIG. The pressure sensors 100a, 100b, and 100c are also illustrated in FIG. Moreover, in FIG. 5, the illustration of the connector 200 is omitted. The capacitance measurement circuit 300 includes two multiplexers 301 and 301 (denoted as MUX in the drawing) and a converter 302. Signals associated with fluctuations in capacitance of the pressure sensors 100 a, 100 b, 100 c are input to the multiplexers 301, 301 via the signal line 15. Each of the multiplexers 301 and 301 outputs a selected one of the signals input from the pressure sensors 100a, 100b and 100c. In FIG. 5, the illustration of selection signals used for selecting the signals output from the multiplexers 301 and 301 is omitted. In the converter 302, the signal output from each of the multiplexers 301 and 301 is input to the converter 302. The converter 302 stores, for example, the correspondence between signal values input from the multiplexers 301 and 301 and pressure. The correspondence relationship managed by the converter 302 may be, for example, a table indicating the correspondence between the input signal value and the pressure, or may be a mathematical expression for calculating the pressure from the input signal value. The converter 302 converts, for example, the signal value input from the multiplexers 301 and 301 into a signal value indicating pressure according to the correspondence relationship, and outputs a signal value indicating pressure.
 図3に例示されるように、シート基板11を共有して複数の圧力センサ100を並べることが可能である。すなわち、単一のシート基板11に複数の可動電極12を設けることにより、単一のシート基板11に複数の可動電極12および複数の固定基板部20を列状、格子状またはアレイ状に配置することが可能である。この場合、複数の可動電極12同士が離間し、複数の固定基板部20同士が離間している。そのため、圧力センサ100に圧力が印加された際、離接する複数の可動部10の一方が、隣接する複数の可動部10の他方の撓みを阻害しない。したがって、圧力センサ100に圧力が印加された際における可動部10の撓みが阻害されず、圧力センサ100に印加された圧力を高い精度で測定することができる。 As illustrated in FIG. 3, it is possible to arrange the plurality of pressure sensors 100 by sharing the sheet substrate 11. That is, by providing the plurality of movable electrodes 12 on a single sheet substrate 11, the plurality of movable electrodes 12 and the plurality of fixed substrate portions 20 are arranged in a row, lattice or array on the single sheet substrate 11. It is possible. In this case, the plurality of movable electrodes 12 are separated, and the plurality of fixed substrate portions 20 are separated. Therefore, when pressure is applied to the pressure sensor 100, one of the plurality of moving parts 10 that are in contact with each other does not inhibit the other bending of the plurality of adjacent moving parts 10. Therefore, the deflection of the movable portion 10 when the pressure is applied to the pressure sensor 100 is not inhibited, and the pressure applied to the pressure sensor 100 can be measured with high accuracy.
 図6は、圧力センサ100に圧力が印加される前の状態の一例を示し、図7は、圧力センサ100に圧力が印加されたときの状態の一例を示す。圧力センサ100では、第1中空部18の上方から圧力が印加されると、図7に例示されるように、シート基板11および第1可動電極121を含む可動部10が印加された力に応じて固定基板部20の方向に向けて撓む。また、圧力センサ100に圧力が印加されなくなると、圧力センサ100は図7の状態から図6の状態に戻る。すなわち、圧力センサ100では、印加された力に応じて、第1可動電極121と固定電極22との間の距離dが変動する。距離dが変動すると、(式1)により、圧力センサ100の静電容量が変動する。例えば、図3に例示される静電容量測定回路300によって圧力センサ100の静電容量の変動が測定されることで、圧力センサ100に印加された圧力が検出される。 FIG. 6 shows an example of a state before pressure is applied to the pressure sensor 100, and FIG. 7 shows an example of a state when pressure is applied to the pressure sensor 100. As shown in FIG. In the pressure sensor 100, when pressure is applied from the upper side of the first hollow portion 18, as illustrated in FIG. 7, the pressure is applied according to the force applied to the movable portion 10 including the sheet substrate 11 and the first movable electrode 121. And bend toward the fixed substrate portion 20. Further, when pressure is not applied to the pressure sensor 100, the pressure sensor 100 returns from the state of FIG. 7 to the state of FIG. That is, in the pressure sensor 100, the distance d between the first movable electrode 121 and the fixed electrode 22 fluctuates according to the applied force. When the distance d changes, the capacitance of the pressure sensor 100 changes according to (Expression 1). For example, the pressure applied to the pressure sensor 100 is detected by measuring the fluctuation of the capacitance of the pressure sensor 100 by the capacitance measuring circuit 300 illustrated in FIG. 3.
 ところで、圧力センサ100は、第1中空部18の他に第2中空部19を有する。第2中空部19の内側面には、上述の通り、平面視において円筒形状に形成され、固定電極22から第2可動電極122に達する第4メッキ部242が形成される。固定電極22と第2可動電極122とを電気的に接続するだけであれば、第4メッキ部242を平面視において円筒形状に形成せずに、一本の配線で接続するだけでも足りる。しかしながら、実施形態に係る圧力センサ100は、離間して設けられる第1可動電極121と第2可動電極122とのいずれもがシート基板11に設けられている。そのため、第1可動電極121の上方から力が印加されると、第1可動電極121が固定電極22側に撓むとともに、第2可動電極122も固定電極22側に歪む。圧力の高精度な検出のためには、第1可動電極121は、前後方向および左右方向において偏りなく固定電極22に対して撓むことが好ましい。しかしながら、第2可動電極122が固定電極22側に歪んでしまうと、第1可動電極121は当該歪みの影響を受け、固定電極22に対して偏りなく撓むことが困難となる。そこで、実施形態に係る圧力センサ100では、第4メッキ部242を平面視したときの断面形状を環形状に形成している。このことより、固定電極22と第2可動電極122とを一本の配線で接続する構成に比べて、圧力が印加された際の第2可動電極122部分における歪みが抑制される。これによって、第1可動電極121が固定電極22に対して撓む際に、前後方向および左右方向に偏りが生じることが抑制される。さらに、一本の配線で第2可動電極122を支える場合よりも、断面形状が環形状に形成された第4メッキ部242は安定して第2可動電極122を支えることができる。 The pressure sensor 100 has a second hollow portion 19 in addition to the first hollow portion 18. As described above, the fourth plated portion 242 which is formed in a cylindrical shape in a plan view and reaches the second movable electrode 122 from the fixed electrode 22 is formed on the inner side surface of the second hollow portion 19. As long as the fixed electrode 22 and the second movable electrode 122 are only electrically connected, it is sufficient to connect only one wire instead of forming the fourth plated portion 242 in a cylindrical shape in plan view. However, in the pressure sensor 100 according to the embodiment, both of the first movable electrode 121 and the second movable electrode 122 provided apart from each other are provided on the sheet substrate 11. Therefore, when a force is applied from above the first movable electrode 121, the first movable electrode 121 is bent to the fixed electrode 22 side, and the second movable electrode 122 is also distorted to the fixed electrode 22 side. In order to detect the pressure with high accuracy, it is preferable that the first movable electrode 121 bends with respect to the fixed electrode 22 without deviation in the front-rear direction and the left-right direction. However, when the second movable electrode 122 is distorted to the fixed electrode 22 side, the first movable electrode 121 is affected by the distortion, and it becomes difficult to deflect the first movable electrode 121 with no bias. Therefore, in the pressure sensor 100 according to the embodiment, the cross-sectional shape of the fourth plated portion 242 in plan view is formed in an annular shape. Thereby, distortion in the second movable electrode 122 portion when pressure is applied is suppressed, as compared with the configuration in which the fixed electrode 22 and the second movable electrode 122 are connected by one wire. As a result, when the first movable electrode 121 bends with respect to the fixed electrode 22, the occurrence of the deviation in the front-rear direction and the left-right direction is suppressed. Furthermore, the fourth plated portion 242 having an annular cross-sectional shape can support the second movable electrode 122 more stably than when the second movable electrode 122 is supported by one wire.
 <圧力センサ100の製造工程>
 図8Aから図8Iは、圧力センサ100の製造工程の一例を示す図である。以下、図8Aから図8Iを参照して、圧力センサ100の製造工程の一例について説明する。
<Manufacturing process of pressure sensor 100>
8A to 8I illustrate an example of a manufacturing process of the pressure sensor 100. FIG. Hereinafter, an example of a manufacturing process of the pressure sensor 100 will be described with reference to FIGS. 8A to 8I.
 (固定基板部20の製造工程)
 図8Aから図8Eは固定基板部20の製造工程の一例を示す。図8Aでは、基板部21の可動部10に対向する面上に固定電極22が形成される。続いて、図8Bでは、固定電極22を覆うように絶縁膜231が形成される。さらに、図8Bでは、絶縁膜231の可動部10に対向する面上にレジスト膜51が形成される。図8Cでは、レジスト膜51に対して所望のパターンが形成されたフォトマスクを用いてフォトレジストを行うことで、絶縁膜231上に所定パターンのレジスト膜51が形成される。図8Dでは、エッチング処理が行われ、さらにレジスト膜51が除去されることで、絶縁部23が形成される。図8Eでは、絶縁部23の可動部10に対向する面上に固定基板側メッキ部24が形成される。図8Eに例示される工程では、固定基板側メッキ部24を形成しない領域にメッキレジストが行われた上でメッキ処理を行うことで、所望の領域に固定基板側メッキ部24が形成される。
(Manufacturing process of fixed substrate portion 20)
8A to 8E show an example of the manufacturing process of the fixed substrate portion 20. FIG. In FIG. 8A, the fixed electrode 22 is formed on the surface of the substrate 21 facing the movable portion 10. Subsequently, in FIG. 8B, the insulating film 231 is formed to cover the fixed electrode 22. Further, in FIG. 8B, a resist film 51 is formed on the surface of the insulating film 231 facing the movable portion 10. In FIG. 8C, a resist film 51 having a predetermined pattern is formed on the insulating film 231 by performing a photoresist using a photomask in which a desired pattern is formed on the resist film 51. In FIG. 8D, the etching process is performed, and the resist film 51 is further removed, whereby the insulating portion 23 is formed. In FIG. 8E, the fixed substrate side plated portion 24 is formed on the surface of the insulating portion 23 facing the movable portion 10. In the process illustrated in FIG. 8E, the plating resist is performed on the area where the fixed substrate side plated portion 24 is not formed, and then the plating process is performed to form the fixed substrate side plated portion 24 in a desired area.
 (可動部10の製造工程)
 図8Fおよび図8Gは可動部10の製造工程の一例を示す。図8Fでは、可撓性を有するシート基板11の固定基板部20に対向する面上に可動電極12が形成される。さらに、可動電極12の固定基板部20に対向する面に対してメッキ処理が行われることで、可動部側メッキ部14が形成される。図8Gでは、可動部側メッキ部14の固定基板部20に対向する面上において、第1可動電極121および第2可動電極122に相当する領域に対してエッチングレジストが行われた上でエッチングが行われることで、第1可動電極121および第2可動電極122が形成される。なお、固定基板側メッキ部24の形成はスパッタリングにより形成してもよい。即ち、スパッタ装置にて絶縁部23の可動部10に対向する面上にメッキ層を成膜した後で、レジストを塗布してエッチングすることによって固定基板側メッキ部24のパターンを形成するのであってもよい。
(Manufacturing process of movable part 10)
8F and 8G show an example of the manufacturing process of the movable part 10. In FIG. 8F, the movable electrode 12 is formed on the surface of the flexible sheet substrate 11 facing the fixed substrate portion 20. Furthermore, the plating process is performed on the surface of the movable electrode 12 facing the fixed substrate portion 20, whereby the movable portion-side plated portion 14 is formed. In FIG. 8G, the etching resist is performed on the area corresponding to the first movable electrode 121 and the second movable electrode 122 on the surface facing the fixed substrate portion 20 of the movable portion side plated portion 14 and then the etching is performed. By being performed, the first movable electrode 121 and the second movable electrode 122 are formed. The fixed substrate side plated portion 24 may be formed by sputtering. That is, after a plating layer is formed on the surface of the insulating portion 23 facing the movable portion 10 by a sputtering apparatus, a resist is applied and etched to form a pattern of the fixed substrate plating portion 24. May be
 (可動部10と固定基板部20の接合工程)
 図8Hおよび図8Iは、固定基板部20と可動部10とを接合する工程の一例を示す。図8Hでは、可動部10と固定基板部20とが接合される。接合方法には特に限定は無い。可動部10と固定基板部20とは、例えば、常温接合によって接合されてもよい。常温接合では、例えば、可動部10の可動部側メッキ部14の固定基板部20に対向する面と固定基板部20の固定基板側メッキ部24の可動部10に対向する面に対して、当該面を平滑にする処理と、当該面から不純物を除去して清浄にする処理が行われる。これらの処理が施された可動部側メッキ部14と固定基板側メッキ部24とが接触すると、可動部側メッキ部14と固定基板側メッキ部24との間で働く分子間力によって、可動部10と固定基板部20とが接合される。図8Iでは、図8Aから図8Hまでの工程によって製造された圧力センサ100をシート基板11を共有する形で3つ並べた様子を例示する。圧力センサ100は、図8Iに例示するように、シート基板11を共有して複数の圧力センサ100を並べることで、圧力検出の対象とする面積を広げることが可能である。
(Step of bonding movable portion 10 and fixed substrate portion 20)
8H and 8I show an example of the process of bonding the fixed substrate portion 20 and the movable portion 10. In FIG. 8H, the movable portion 10 and the fixed substrate portion 20 are joined. There is no limitation in particular in the joining method. The movable portion 10 and the fixed substrate portion 20 may be joined by, for example, normal temperature bonding. In the normal temperature bonding, for example, the surface of the movable portion side plated portion 14 of the movable portion 10 facing the fixed substrate portion 20 and the surface of the fixed substrate portion 20 facing the movable portion 10 of the fixed substrate side plated portion 24 are A process of smoothing the surface and a process of removing impurities from the surface to clean the surface are performed. When the movable-part-side plated part 14 subjected to these treatments comes into contact with the fixed-substrate-side plated part 24, the intermolecular force acting between the movable-part-side plated part 14 and the fixed-substrate-side plated part 24 causes the movable part to move. 10 and the fixed substrate portion 20 are joined. FIG. 8I illustrates a state in which three pressure sensors 100 manufactured by the steps of FIGS. 8A to 8H are arranged in a manner sharing the sheet substrate 11. As illustrated in FIG. 8I, the pressure sensor 100 can widen the area targeted for pressure detection by sharing the sheet substrate 11 and arranging the plurality of pressure sensors 100.
 また、可動部10と固定基板部20の接合工程において可動部側メッキ部14及び固定基板側メッキ部24の表面を平坦化する処理を行わずに、可動部10、固定基板部20それぞれの製造工程で、表面の平坦性を担保するようにしてもよい。例えば、可動部10の製造工程において、シート基板11に対して可動電極12となる金属(例えば銅)をCMP(Chemical Mechanical Polishing)処理して平坦にし、その上にスパッタ装置で可動部側メッキ部14を成膜するのであってもよい。 In addition, in the bonding step of the movable portion 10 and the fixed substrate portion 20, manufacturing of the movable portion 10 and the fixed substrate portion 20 is performed without performing a process of flattening the surfaces of the movable portion side plated portion 14 and the fixed substrate side plated portion 24. The flatness of the surface may be ensured in the process. For example, in the manufacturing process of the movable portion 10, metal (for example, copper) to be the movable electrode 12 is planarized by CMP (Chemical Mechanical Polishing) processing to the sheet substrate 11 and planarized, and the movable portion side plated portion 14 may be formed into a film.
 <変形例>
 実施形態では、第2可動電極122と固定電極22との間は、第2中空部19の壁部として形成された第4メッキ部242によって支持された。しかしながら、第2可動電極122と固定電極22との間を接合するのは、第2中空部19の壁部として形成された第4メッキ部242に限定されるわけではない。図9は、第1変形例に係る圧力センサ100aの断面図の一例を示す図である。圧力センサ100aは、絶縁部23に第2中空部19に代えて柱部23cが設けられる点で係る圧力センサ100とは異なる。柱部23cは、第2可動電極122と固定電極22との間に略円柱形状に立設される。柱部23cの側面には第4メッキ部242aが設けられる。第1変形例の場合、第4メッキ部242aによって、第2可動電極122と固定電極22との間が支持される。このような第4メッキ部242aによっても、第1可動電極121に圧力が印加された際の第2可動電極122における歪みが抑制される。また、このような第4メッキ部242aによっても、第2可動電極122と固定電極22とを電気的に接続することが可能である。なお、変形例では柱部23cは略円柱形状としたが、その形状は略円柱形状に限定されず、略楕円柱形状、略三角柱形状、略四角柱形状、略五角柱形状、略六角柱形状、略八角柱形状等であってもよい。
<Modification>
In the embodiment, the space between the second movable electrode 122 and the fixed electrode 22 is supported by the fourth plated portion 242 formed as a wall portion of the second hollow portion 19. However, joining between the second movable electrode 122 and the fixed electrode 22 is not limited to the fourth plated portion 242 formed as a wall portion of the second hollow portion 19. FIG. 9 is a view showing an example of a cross-sectional view of a pressure sensor 100a according to a first modification. The pressure sensor 100a is different from the pressure sensor 100 in that a pillar portion 23c is provided in the insulating portion 23 instead of the second hollow portion 19. The column portion 23 c is erected in a substantially cylindrical shape between the second movable electrode 122 and the fixed electrode 22. A fourth plated portion 242a is provided on the side surface of the column portion 23c. In the case of the first modification, the space between the second movable electrode 122 and the fixed electrode 22 is supported by the fourth plated portion 242 a. Distortion of the second movable electrode 122 when pressure is applied to the first movable electrode 121 is also suppressed by such a fourth plated portion 242 a. Also, the second movable electrode 122 and the fixed electrode 22 can be electrically connected also by such a fourth plated portion 242 a. In the modification, the column portion 23c has a substantially cylindrical shape, but the shape is not limited to a substantially cylindrical shape, and a substantially elliptic cylinder shape, a substantially triangular prism shape, a substantially square prism shape, a substantially pentagonal prism shape, a substantially hexagonal prism shape The shape may be a substantially octagonal prism shape or the like.
 以上で開示した実施形態や変形例はそれぞれ組み合わせる事ができる。 The embodiments and modifications disclosed above can be combined with each other.
 100、100a、100b、100c・・・圧力センサ
 10・・・可動部
 11・・・シート基板
 12・・・可動電極
 121・・・第1可動電極
 122・・・第2可動電極
 14・・・可動部側メッキ部
 141・・・第1メッキ部
 142・・・第2メッキ部
 15・・・信号線
 16、16a、16b・・・GND線
 18・・・第1中空部
 19・・・第2中空部
 20・・・固定基板部
 21・・・基板部
 22・・・固定電極
 23・・・絶縁部
 23a・・・内側面
 24・・・固定基板側メッキ部
 241・・・第3メッキ部
 242・・・第4メッキ部
 51・・・レジスト膜
 200・・・コネクタ
 231・・・絶縁膜
 300・・・静電容量測定回路
 301・・・マルチプレクサ
 302・・・コンバータ
100, 100a, 100b, 100c ... pressure sensor 10 ... movable portion 11 ... sheet substrate 12 ... movable electrode 121 ... first movable electrode 122 ... second movable electrode 14 ... Movable part side plated part 141: first plated part 142: second plated part 15: signal line 16, 16a, 16b: GND line 18: first hollow part 19: first 2 hollow portion 20 ... fixed substrate portion 21 ... substrate portion 22 ... fixed electrode 23 ... insulating portion 23 a ... inner side surface 24 ... fixed substrate side plated portion 241 ... third plating Part 242: Fourth plated part 51: Resist film 200: Connector 231: Insulating film 300: Capacitance measurement circuit 301: Multiplexer 302: Converter

Claims (6)

  1.  可撓性を有し、第1の電極と前記第1の電極と離間した取り出し電極とが一方の面に設けられたフレキシブル基板と、
     前記一方の面に対向する面に第2の電極が設けられた硬質基板と、
     前記第1の電極と前記第2の電極との間を支持するとともに前記第1の電極と前記第2の電極との間に中空部を設けるように立設された絶縁性の壁部と、を備え、前記中空部において、前記第1の電極が前記第2の電極に対して撓むことで生じる静電容量の変化を検出することにより、前記第1の電極と前記第2の電極との対向面に向けて印加される圧力を測定する、静電容量式圧力センサであって、
     前記取り出し電極と前記第2の電極との間に、前記取り出し電極と前記第2の電極との間を支持するように立設された導電性の接続部を更に備えることを特徴とする、
     静電容量式圧力センサ。
    A flexible substrate having a first electrode and a lead-out electrode spaced apart from the first electrode, provided on one surface of the substrate;
    A hard substrate provided with a second electrode on a surface opposite to the one surface;
    An insulating wall which is supported so as to support between the first electrode and the second electrode and to provide a hollow portion between the first electrode and the second electrode; The first electrode and the second electrode by detecting a change in capacitance caused by the first electrode bending with respect to the second electrode in the hollow portion. A capacitive pressure sensor that measures the pressure applied to the opposite surface of the
    The electroconductive connection portion is provided between the extraction electrode and the second electrode, the conductive connection portion being erected so as to support the extraction electrode and the second electrode,
    Capacitive pressure sensor.
  2.  前記接続部は、平面視において環形状に形成されることを特徴とする、
     請求項1に記載の静電容量式圧力センサ。
    The connection portion is formed in an annular shape in a plan view.
    The capacitive pressure sensor according to claim 1.
  3.  前記壁部は平面視において環形状に形成され、
     平面視において、前記接続部によって囲まれる領域の面積は、前記壁部によって囲まれる領域の面積よりも小さいことを特徴とする、
     請求項2に記載の静電容量式圧力センサ。
    The wall portion is formed in an annular shape in plan view,
    The area of the region surrounded by the connection portion is smaller than the area of the region surrounded by the wall portion in a plan view.
    A capacitive pressure sensor according to claim 2.
  4.  前記硬質基板は、剛性を有する部材で形成されることを特徴とする、
     請求項1から3のいずれか一項に記載の静電容量式圧力センサ。
    The hard substrate is formed of a rigid member.
    The capacitance type pressure sensor according to any one of claims 1 to 3.
  5.  前記フレキシブル基板は前記第1の電極を複数備えており、該複数の第1の電極に対応する複数の前記硬質基板を有する、ことを特徴とする、
     請求項1から4のいずれか一項に記載の静電容量式圧力センサ。
    The flexible substrate includes a plurality of the first electrodes, and the plurality of rigid substrates corresponding to the plurality of first electrodes.
    The electrostatic capacitance type pressure sensor as described in any one of Claims 1-4.
  6.  前記第1の電極は前記フレキシブル基板上に所定間隔を置いて格子状に配置されることを特徴とする、
     請求項5に記載の静電容量式圧力センサ。
    The first electrodes are arranged in a grid on the flexible substrate at predetermined intervals,
    A capacitive pressure sensor according to claim 5.
PCT/JP2018/041030 2017-11-15 2018-11-05 Capacitance-type pressure sensor WO2019098076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-220489 2017-11-15
JP2017220489A JP6696494B2 (en) 2017-11-15 2017-11-15 Capacitive pressure sensor

Publications (1)

Publication Number Publication Date
WO2019098076A1 true WO2019098076A1 (en) 2019-05-23

Family

ID=66540198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041030 WO2019098076A1 (en) 2017-11-15 2018-11-05 Capacitance-type pressure sensor

Country Status (3)

Country Link
JP (1) JP6696494B2 (en)
TW (1) TW201923324A (en)
WO (1) WO2019098076A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022258A1 (en) * 2015-07-31 2017-02-09 住友理工株式会社 Capacitive sensor, sensor sheet and method for manufacturing capacitive sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704803B2 (en) * 2009-08-25 2015-04-22 コニカミノルタ株式会社 Pressure sensor
KR101353013B1 (en) * 2009-10-14 2014-01-22 도요타 지도샤(주) Sheet-like tactile sensor system
WO2011045835A1 (en) * 2009-10-14 2011-04-21 国立大学法人東北大学 Touch sensor system
JP2014142193A (en) * 2013-01-22 2014-08-07 Oga Inc Load distribution detector
JP2018136241A (en) * 2017-02-23 2018-08-30 住友理工株式会社 Sensor sheet, capacitance-type sensor, and method for manufacturing sensor sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022258A1 (en) * 2015-07-31 2017-02-09 住友理工株式会社 Capacitive sensor, sensor sheet and method for manufacturing capacitive sensor

Also Published As

Publication number Publication date
JP6696494B2 (en) 2020-05-20
JP2019090734A (en) 2019-06-13
TW201923324A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
US10158949B2 (en) MEMS microphone and method of manufacturing the same
US20070222006A1 (en) Micromechanical component and corresponding manufacturing method
KR20020093491A (en) A capacitive differential pressure sensor and method for manufacturing thereof
WO2016192360A1 (en) Differential capacitive mems pressure sensor and manufacturing method thereof
CN104834398A (en) Touch panels and methods of manufacturing touch panels
TW201643393A (en) Sensing device
TWI671510B (en) Capacitive pressure sensor
WO2019098015A1 (en) Capacitance-type pressure sensor
JP5789737B2 (en) Acceleration sensor
WO2019098096A1 (en) Capacitance-type pressure sensor
US9668064B2 (en) Microelectromechanical system microphone
WO2019098076A1 (en) Capacitance-type pressure sensor
WO2019098014A1 (en) Capacitance-type pressure sensor
WO2019098000A1 (en) Capacitance-type pressure sensor
JP6353162B2 (en) Deformable apparatus and method
JP2014115099A (en) Pressure sensor
JP6922797B2 (en) Capacitive pressure sensor
JP6922798B2 (en) Capacitive pressure sensor
US20220070590A1 (en) Piezoresistive microphone with arc-shaped springs
CN112197891B (en) Sensor, temperature and pressure detection method and sensing device
JP2011047664A (en) Capacitive sensor
KR20180112445A (en) A pressure measuring capacitor And fabricating method of the same
JP2011047663A (en) Capacitance sensor and method of manufacturing the same
JP2010197270A (en) Method of manufacturing acceleration sensor element and acceleration sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879267

Country of ref document: EP

Kind code of ref document: A1