WO2019098015A1 - Capacitance-type pressure sensor - Google Patents

Capacitance-type pressure sensor Download PDF

Info

Publication number
WO2019098015A1
WO2019098015A1 PCT/JP2018/040368 JP2018040368W WO2019098015A1 WO 2019098015 A1 WO2019098015 A1 WO 2019098015A1 JP 2018040368 W JP2018040368 W JP 2018040368W WO 2019098015 A1 WO2019098015 A1 WO 2019098015A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
substrate
electrode
movable
fixed
Prior art date
Application number
PCT/JP2018/040368
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 山本
貴弘 増田
千紘 宮原
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019098015A1 publication Critical patent/WO2019098015A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a capacitive pressure sensor.
  • the pressure sensor mainly detects the pressure of gas or liquid, and is applied to various devices as an air pressure sensor, an altitude sensor, and a water pressure sensor. Also, in recent years, as an aspect of using this as an altitude sensor, its application range is applicable to a navigation device for obtaining position information, an application to a measuring instrument that precisely measures the user's exercise amount, etc. It is spreading.
  • a capacitive pressure sensor is known as a MEMS (Micro Electro Mechanical System) sensor chip.
  • a flexible pressure sensor has been proposed that includes a flexible substrate having flexibility and an active element having flexibility and mounted on the flexible substrate (see Patent Document 1).
  • an object of the present invention is to provide a capacitive pressure sensor with improved mountability.
  • the present invention adopts the following means in order to solve the above problems. That is, the present invention includes a flexible substrate including a flexible sheet substrate and a plurality of first electrodes provided on the sheet substrate, and a second electrode disposed to face the first electrode, And a plurality of rigid substrates disposed opposite to the flexible substrate via the hollow portion between the flexible substrate and the flexible substrate, and in the hollow portion, electrostatic caused by the first electrode bending with respect to the second electrode
  • a capacitive pressure sensor that measures a pressure applied to a surface of a first electrode facing a second electrode by detecting a change in capacitance, which is a longitudinal direction of a plurality of hard substrates
  • the plurality of rigid substrates are disposed on the sheet substrate so that the plurality of rigid substrates coincide with or are perpendicular to the longitudinal direction of the sheet substrate.
  • the mountability of the capacitive pressure sensor is improved.
  • the joints of the human body can be easily bent by matching the longitudinal directions of the plurality of fixed base portions with the axial direction of the joints of the human body, for example.
  • the pitch of the hard substrates is reduced, so that the measurement accuracy of the capacitive pressure sensor is improved.
  • the plurality of hard substrates is a rectangle having short sides and long sides, and the direction in which the long sides of the plurality of hard substrates extend extends in the same direction as the longitudinal direction of the sheet substrate.
  • the plurality of rigid substrates may be disposed on the sheet substrate, and the short sides of two adjacent rigid substrates of the plurality of rigid substrates may face each other.
  • the plurality of hard substrates is a rectangle having short sides and long sides, and a direction in which the short sides of the plurality of hard substrates extend is coincident with a longitudinal direction of the sheet substrate.
  • the plurality of hard substrates may be disposed on the sheet substrate, and the long sides of two adjacent hard substrates of the plurality of hard substrates may face each other.
  • FIG. 1 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 2 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 3 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 4 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 5 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of a capacitance measurement circuit.
  • FIG. 7 is a diagram showing an example of a state before pressure is applied to the pressure sensor.
  • FIG. 8 is a diagram showing an example of a state when pressure is applied to the pressure sensor.
  • FIG. 9 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 10 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 11 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 12 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 13 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 14 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 15 is a view showing an example of a pressure sensor according to the embodiment.
  • FIG. 16A is a first view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16B is a second view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16A is a first view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16B is a second view showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16C is a third diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16D is a fourth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16E is a fifth diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16F is a sixth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16G is a seventh drawing showing the example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16H is an eighth diagram showing the example of the manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 16I is a ninth diagram showing an example of a manufacturing process of the pressure sensor according to the embodiment.
  • FIG. 1 is a view showing an example of a pressure sensor 100 according to the embodiment.
  • FIG. 1 is an example of a cross-sectional view of a pressure sensor 100.
  • the pressure sensor 100 is an example of a capacitive pressure sensor.
  • the pressure sensor 100 includes a sheet substrate 11 and a plurality of movable electrodes 12 provided on the sheet substrate 11, and includes a flexible movable portion 10.
  • the pressure sensor 100 includes a substrate portion 21, a fixed electrode 22, and a fixed substrate side plated portion 24, and includes a fixed substrate portion 20 disposed opposite to the movable portion 10 via the hollow portion 13 between the movable portion 10.
  • the fixed electrode 22 is disposed to face the movable electrode 12.
  • the movable portion 10 is an example of a flexible substrate.
  • the movable electrode 12 is an example of a first electrode.
  • the fixed substrate unit 20 is an example of a hard substrate.
  • the fixed electrode 22 is an example of a second electrode.
  • the pressure sensor 100 includes a fixed substrate side plated portion 24 provided so as to surround the hollow portion 13 between the movable portion 10 and the fixed substrate portion 20.
  • the fixed substrate side plated portion 24 joins the movable portion 10 and the fixed substrate portion 20.
  • the pressure sensor 100 is directed toward the surface of the movable electrode 12 facing the fixed electrode 22 by detecting a change in electrostatic capacitance caused by the movable electrode 12 bending relative to the fixed electrode 22 in the hollow portion 13. Measure the applied pressure.
  • the pressure sensor 100 includes a plurality of sensor elements 101, and the plurality of sensor elements 101 share the sheet substrate 11. Each sensor element 101 has a movable electrode 12 and a fixed substrate portion 20.
  • FIG. 2 and 3 are diagrams showing an example of the pressure sensor 100 according to the embodiment. 2 and 3 are examples of plan views of the pressure sensor 100.
  • FIG. 2 the plurality of fixed substrate portions 20 are disposed on the sheet substrate 11 such that the longitudinal direction of the plurality of fixed substrate portions 20 coincides with the longitudinal direction of the sheet substrate 11.
  • the plurality of fixed substrate units 20 are disposed on the sheet substrate 11 such that the longitudinal direction of the plurality of fixed substrate units 20 is orthogonal to the longitudinal direction of the sheet substrate 11.
  • the short direction of the fixed substrate portion 20 is orthogonal to the longitudinal direction of the movable electrode 12.
  • the fixed substrate portion 20 has a shape having a long side and a short side, and is, for example, a rectangle or an oval.
  • FIG. 4 and 5 are diagrams showing an example of the pressure sensor 100 according to the embodiment.
  • FIG. 4 is an example of a plan view of the pressure sensor 100
  • FIG. 5 is an example of a cross-sectional view taken along the line AA of FIG.
  • the fixed-substrate-side plated portion 24, the first hollow portion 18, the second hollow portion 19, the fixed electrode 22, and the substrate portion 21 which are not visible in plan view are shown by dotted lines.
  • three pressure sensors 100 (100a, 100b, 100c) are illustrated, and a connector 200 and a capacitance measuring circuit 300 are also illustrated.
  • the three pressure sensors 100 a, 100 b and 100 c share the sheet substrate 11.
  • FIG. 4 is an example of a plan view of the pressure sensor 100
  • FIG. 5 is an example of a cross-sectional view taken along the line AA of FIG.
  • the pressure sensor 100 includes the movable portion 10 having the movable electrode 12 and the fixed substrate portion 20 including the flexible electrode 22.
  • the pressure sensor 100 is formed by bonding the movable portion 10 and the fixed substrate portion 20 so that the movable electrode 12 of the movable portion 10 and the fixed electrode 22 of the fixed substrate portion 20 face each other.
  • the movable electrode 12 includes a first movable electrode 121 and a second movable electrode 122 provided separately from the first movable electrode 121.
  • a first hollow portion 18 is formed between the first movable electrode 121 and the fixed electrode 22. By forming the first hollow portion 18, the movable portion 10 can be deformed toward the fixed substrate portion 20 when pressure is applied to a region on the sheet substrate 11 corresponding to the first movable electrode 121.
  • a second hollow portion 19 is formed between the second movable electrode 122 and the fixed electrode 22.
  • the cross-sectional shapes of the first hollow portion 18 and the second hollow portion 19 are substantially circular, but the cross-sectional shapes of the first hollow portion 18 and the second hollow portion 19 are limited to substantially circular. is not.
  • the cross-sectional shapes of the first hollow portion 18 and the second hollow portion 19 may be formed into a substantially polygonal shape, and may be, for example, a substantially square, a substantially hexagonal, a substantially octagonal, or the like.
  • the direction from the second hollow portion 19 to the first hollow portion 18 in FIG. 4 is referred to as the right, and the opposite direction is referred to as the left.
  • the direction from the pressure sensor 100 a toward the pressure sensor 100 c is rear, and the opposite direction is front.
  • the direction from the movable portion 10 to the fixed substrate portion 20 in FIG. 5 is downward, and the opposite direction is upward.
  • the movable portion 10 includes a sheet substrate 11, a movable electrode 12, and a movable portion side plated portion 14.
  • the sheet substrate 11 is formed of a flexible member (for example, polyimide).
  • the thickness of the sheet substrate 11 is, for example, 25 ⁇ m.
  • the thickness of the sheet substrate 11 is the length of the sheet substrate 11 in the vertical direction.
  • the lower surface of the sheet substrate 11 is provided with a movable electrode 12 formed of a conductive member (for example, copper).
  • the movable electrode 12 includes the first movable electrode 121 and the second movable electrode 122 provided to be separated from the first movable electrode 121 as described above.
  • the thickness of the movable electrode 12 is, for example, 10 ⁇ m.
  • the length of the first movable electrode 121 in the left-right direction is, for example, 2.0 mm.
  • the length of the second movable electrode 122 in the left-right direction is, for example, 0.5 mm.
  • the lengths of the first movable electrode 121 and the second movable electrode 122 in the front-rear direction are, for example, 1 mm to 2 mm.
  • the distance between the first movable electrode 121 and the second movable electrode 122 is, for example, 0.1 mm.
  • the movable portion side plated portion 14 is provided on the lower surface of the movable electrode 12.
  • the movable portion-side plated portion 14 includes a first plated portion 141 provided on the lower surface of the first movable electrode 121 and a second plated portion 142 provided on the lower surface of the second movable electrode 122.
  • the movable portion-side plated portion 14 is formed, for example, by gold plating.
  • the fixed substrate portion 20 includes a substrate portion 21, a fixed electrode 22, an insulating portion 23 and a fixed substrate side plated portion 24.
  • the substrate unit 21 is formed of a member (for example, glass) which is not easily deformed.
  • the thickness of the substrate portion 21 is, for example, 300 ⁇ m to 600 ⁇ m. Since the substrate portion 21 is formed of a member that is not easily deformed, deformation of the fixed substrate portion 20 is suppressed even if the movable portion 10 is bent by the application of pressure to the sheet substrate 11.
  • a fixed electrode 22 formed of a conductive member (for example, chromium) is disposed on the upper surface of the substrate unit 21.
  • an insulating portion 23 is provided which surrounds the periphery of the fixed electrode 22 and covers a part of the upper side of the fixed electrode 22.
  • the insulating portion 23 is formed of an insulator (for example, tetraethoxysilane (TEOS) or silicon dioxide).
  • TEOS tetraethoxysilane
  • the thickness of the insulating portion 23 is, for example, 0.5 ⁇ m.
  • a portion for forming a part of the first hollow portion 18 described above is provided in a part of a region where the first movable electrode 121 and the fixed electrode 22 overlap in a plan view.
  • a part for forming the above-described second hollow portion 19 is provided in a part of a region where the second movable electrode 122 and the fixed electrode 22 overlap in plan view.
  • a portion for forming a part of the first hollow portion 18 and the second hollow portion 19 is formed as a through hole extending from the surface on the movable portion 10 side of the insulating portion 23 to the surface on the fixed electrode 22 side. Be done.
  • the diameter of the first hollow portion 18 in plan view is, for example, 0.6 mm to 1.2 mm. When the pressure sensor 100 is viewed in plan, the area of the second hollow portion 19 is smaller than the area of the first hollow portion 18.
  • the diameter of the second hollow portion 19 in plan view is smaller than the diameter of the first hollow portion 18 in plan view.
  • the distance d between the first movable electrode 121 of the first hollow portion 18 and the fixed electrode 22 when no pressure is applied is, for example, 1 ⁇ m.
  • a fixed substrate plating portion 24 is provided on the inner side surface and the bottom of the second hollow portion 19 in addition to a part of the upper surface of the insulating portion 23.
  • the fixed substrate plating portion 24 includes a third plating portion 241 and a fourth plating portion 242.
  • the third plated portion 241 is provided in a region near the edge of the through hole that forms a part of the first hollow portion 18 on the upper surface of the insulating portion 23 so as to surround the region.
  • a space formed by the portion surrounded by the third plated portion 241 and the through hole provided in the insulating portion 23 in this manner is a first hollow portion.
  • the fourth plated portion 242 is provided in a region near the edge of the through hole for forming the second hollow portion 19 on the upper surface of the insulating portion 23 so as to surround the region, and the inner side surface of the through hole And the upper surface of the fixed electrode 22 corresponding to the bottom of the through hole. That is, the fourth plated portion 242 is formed of a portion which is formed to project from the upper surface of the insulating portion 23 toward the second movable electrode 122 and a portion which covers the inside of the through hole, and is surrounded by these The space is the second hollow portion 19.
  • the fixed substrate plating portion 24 is formed, for example, by gold plating. By bonding the movable portion-side plated portion 14 and the fixed substrate-side plated portion 24, the movable portion 10 and the fixed substrate portion 20 are integrated to form the pressure sensor 100. In addition, the second movable portion 122 and the fixed electrode 22 are electrically connected by joining the second plated portion 142 and the fourth plated portion 242.
  • the second movable electrode 122 and the connector 200 are connected by a signal line 15 extending from the second movable electrode 122.
  • the ground (GND) line 16a extending from the first movable electrode 121 is connected between the first movable electrodes 121 of the pressure sensors 100a and 100b and between the first movable electrodes 121 of the pressure sensors 100b and 100c.
  • the distance between adjacent pressure sensors 100 is, for example, 0.1 mm to 0.3 mm. That is, the length of the GND line 16a is 0.1 mm to 0.3 mm.
  • the first movable electrode 121 of the pressure sensor 100 c is connected to the connector 200 by the GND line 16 b extending from the first movable electrode 121.
  • GND is shared by the pressure sensors 100a, 100b, and 100c.
  • both the signal line 15 and the GND line 16 are formed on the lower surface of the sheet substrate 11. That is, in the pressure sensor 100, the wiring extending from the first movable electrode 121 and the wiring extending from the fixed electrode 22 are formed in the same layer.
  • the pressure sensor 100 can realize a simple wiring structure by adopting such a configuration.
  • the pressure sensor 100 having the above-described configuration includes an area overlapping the fixed electrode 22 of the first movable electrode 121 and an area overlapping the first movable electrode 121 of the fixed electrode 22 which are arranged at a distance d (see FIG. 5). It works as a plate capacitor.
  • the capacitance C of the capacitor is calculated, for example, by the following equation 1 using the distance d described above and the area S of the area where the first movable electrode 121 and the fixed electrode 22 overlap (see FIG. 5). .
  • ⁇ 0 is the dielectric constant of vacuum
  • ⁇ r is the dielectric constant of the atmosphere. That is, according to (Expression 1), the electrostatic capacitance C fluctuates according to the fluctuation of the distance d between the first movable electrode 121 and the fixed electrode 22 which is caused by the force applied to the movable portion 10. I understand.
  • the pressure P is calculated by the following (Formula 2), for example using the area S mentioned above.
  • F is the magnitude of the force applied to the pressure sensor 100.
  • the substrate unit 21 is formed of a member that is not easily deformed, even if a force is applied to the pressure sensor 100, the fluctuation of the area S serving as a reference of pressure calculation is suppressed. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than a pressure sensor formed of a member that the substrate portion 21 is easily deformed.
  • FIG. 6 is a diagram showing an example of the configuration of the capacitance measuring circuit 300. As shown in FIG. In FIG. 6, the pressure sensors 100a, 100b, and 100c are also illustrated. Further, in FIG. 6, the illustration of the connector 200 is omitted.
  • the capacitance measurement circuit 300 includes two multiplexers 301 and 301 (denoted as MUX in the drawing) and a converter 302. Signals associated with fluctuations in capacitance of the pressure sensors 100 a, 100 b, 100 c are input to the multiplexers 301, 301 via the signal line 15. Each of the multiplexers 301 and 301 outputs a selected one of the signals input from the pressure sensors 100a, 100b and 100c.
  • MUX multiplexers
  • the illustration of selection signals used for selecting the signals output from the multiplexers 301 and 301 is omitted.
  • the signal output from each of the multiplexers 301 and 301 is input to the converter 302.
  • the converter 302 stores, for example, the correspondence between signal values input from the multiplexers 301 and 301 and pressure.
  • the correspondence relationship managed by the converter 302 may be, for example, a table indicating the correspondence between the input signal value and the pressure, or may be a mathematical expression for calculating the pressure from the input signal value.
  • the converter 302 converts, for example, the signal value input from the multiplexers 301 and 301 into a signal value indicating pressure according to the correspondence relationship, and outputs a signal value indicating pressure.
  • FIG. 7 shows an example of a state before pressure is applied to the pressure sensor 100
  • FIG. 8 shows an example of a state when pressure is applied to the pressure sensor 100.
  • the pressure sensor 100 when a pressure is applied from above the first hollow portion 18, as illustrated in FIG. 8, the pressure is applied according to the force to which the movable portion 10 including the sheet substrate 11 and the first movable electrode 121 is applied. And bend toward the fixed substrate portion 20. Also, when no force is applied to the pressure sensor 100, the pressure sensor 100 returns from the state of FIG. 8 to the state of FIG. That is, in the pressure sensor 100, the distance d between the first movable electrode 121 and the fixed electrode 22 fluctuates according to the applied force.
  • the capacitance of the pressure sensor 100 changes according to (Expression 1).
  • the pressure applied to the pressure sensor 100 is detected by measuring the fluctuation of the capacitance of the pressure sensor 100 by the capacitance measuring circuit 300 illustrated in FIG. 4.
  • the pressure sensor 100 has a second hollow portion 19 in addition to the first hollow portion 18.
  • the cylindrical fourth plating portion 242 which reaches from the fixed electrode 22 to the second movable electrode 122 is formed. If the fixed electrode 22 and the second movable electrode 122 are only electrically connected, it is sufficient to connect only one wire instead of forming the fourth plated portion 242 in a cylindrical shape.
  • both of the first movable electrode 121 and the second movable electrode 122 provided apart from each other are provided on the sheet substrate 11.
  • the first movable electrode 121 when a force is applied from above the first movable electrode 121, the first movable electrode 121 is bent to the fixed electrode 22 side, and the second movable electrode 122 is also distorted to the fixed electrode 22 side.
  • the first movable electrode 121 bends with respect to the fixed electrode 22 without deviation in the front-rear direction and the left-right direction.
  • the second movable electrode 122 is distorted to the fixed electrode 22 side, the first movable electrode 121 is affected by the deflection, and it becomes difficult to deflect the fixed electrode 22 uniformly.
  • the cross-sectional shape when planarly viewing the 4th plated part 242 is formed in substantially circle shape or substantially polygon shape.
  • distortion in the second movable electrode 122 portion when pressure is applied is suppressed as compared with the configuration in which the fixed electrode 22 and the second movable electrode 122 are connected by one wire.
  • the fourth plated portion 242 having a substantially circular or polygonal cross-sectional shape can support the second movable electrode 122 more stably than in the case where the second movable electrode 122 is supported by one wire. .
  • FIG. 9 to 13 show an example of the pressure sensor 100 according to the embodiment.
  • 9 to 13 show an example of a state in which the pressure sensor 100 is attached to the arm 31.
  • FIG. FIG. 13 shows a part of a cross section taken along the line BB in FIG. 10 to 11 show a cross section taken along the line CC of FIG. Since the sheet substrate 11 has flexibility, the pressure sensor 100 can be easily wound around the arm 31 or the wrist, and the discomfort when the pressure sensor 100 is wound around the arm 31 or the wrist can be reduced.
  • the pressure sensor 100 may be wound around the arm 31 or the wrist by forming the sheet substrate 11 in a band shape.
  • the pressure sensor 100 may be attached to the arm 31 or the wrist by attaching a double-sided adhesive sheet to the sheet substrate 11.
  • the pressure sensor 100 is not limited to the arm 31 or the wrist, and may be wound or attached to another part of the human body.
  • the plurality of fixed substrate units 20 are disposed on the sheet substrate 11 in a state in which the longitudinal direction of the plurality of fixed substrate units 20 matches the longitudinal direction of the sheet substrate 11.
  • the pressure sensor 100 is attached to the arm 31 in a state where the longitudinal direction of the sheet substrate 11 is orthogonal to the longitudinal direction of the arm 31. Therefore, the short side direction of each fixed substrate portion 20 coincides with the longitudinal direction of the arm 31.
  • the short direction of the fixed substrate portion 20 is orthogonal to the longitudinal direction of the fixed substrate portion 20.
  • the pitch of the fixed substrate unit 20 is increased. The pitch of the fixed substrate portions 20 in the arrangement example of the fixed substrate portions 20 shown in FIG.
  • FIG. 9 is a total value of the distance between two adjacent fixed substrate portions 20 and the width in the longitudinal direction of the fixed substrate portions 20. According to the arrangement example of the fixed substrate portion 20 shown in FIG. 9, since the longitudinal direction of each fixed substrate portion 20 coincides with the short direction of the arm 31, the wrist is easily bent.
  • FIG. 10 shows the state in which the wrist is bent inward
  • FIG. 11 shows the state in which the wrist is bent outward.
  • the plurality of fixed substrate units 20 are disposed on the sheet substrate 11 in a state in which the longitudinal direction of the plurality of fixed substrate units 20 is orthogonal to the longitudinal direction of the sheet substrate 11.
  • the pressure sensor 100 is attached to the arm 31 in a state where the longitudinal direction of the sheet substrate 11 is orthogonal to the longitudinal direction of the arm 31. Therefore, the longitudinal direction of each fixed substrate portion 20 coincides with the longitudinal direction of the arm 31.
  • the pitch of the fixed substrate unit 20 is reduced.
  • the pitch of the fixed substrate portions 20 in the arrangement example of the fixed substrate portions 20 shown in FIG. 12 is a total value of the distance between the two adjacent fixed substrate portions 20 and the width in the short direction of the fixed substrate portions 20.
  • the pitch of the fixed substrate unit 20 is reduced, so that the pressure applied in a narrow range with respect to the pressure sensor 100 can be measured.
  • the blood vessel 33 between the tendon 32 of the arm 31 and the tendon 32 is several mm.
  • the pitch of the fixed substrate portion 20 is small, it is easy to arrange the movable electrode 12 in the vicinity of the blood vessel 33, and the mounting property of the pressure sensor 100 is improved.
  • Ribs 34 exist below the tendon 32 and the blood vessel 33.
  • FIG. 14 and 15 are diagrams showing an example of the pressure sensor 100 according to the embodiment.
  • 14 and 15 are examples of plan views of the fixed substrate portion 20.
  • FIG. The fixed substrate portion 20 is a rectangle having a long side 41 and a short side 42.
  • the plurality of fixed substrate portions 20 are disposed on the sheet substrate 11 such that the direction in which the long sides 41 of the plurality of fixed substrate portions 20 extend and the longitudinal direction of the sheet substrate 11 coincide.
  • Short sides 42 of two adjacent fixed substrate portions 20 among the plurality of fixed substrate portions 20 face each other.
  • the width in the short direction of the sheet substrate 11 is narrowed, so that the pressure sensor 100 can be wound or attached to a portion where the width is narrow. .
  • the short direction of the sheet substrate 11 is orthogonal to the longitudinal direction of the sheet substrate 11.
  • the plurality of fixed substrate units 20 are arranged in a line, but the plurality of fixed substrate units 20 may be arranged in two or more lines. That is, the plurality of fixed substrate units 20 may be arranged in an array (a lattice).
  • the plurality of fixed substrate portions 20 are disposed on the sheet substrate 11 such that the direction in which the short sides 42 of the plurality of fixed substrate portions 20 extend and the longitudinal direction of the sheet substrate 11 coincide.
  • the long sides 41 of two adjacent fixed substrate portions 20 of the plurality of fixed substrate portions 20 face each other.
  • the plurality of fixed substrate units 20 are arranged in a line, but the plurality of fixed substrate units 20 may be arranged in two or more lines. That is, the plurality of fixed substrate units 20 may be arranged in an array (a lattice).
  • the plurality of sensor elements 101 by sharing the sheet substrate 11. That is, by providing the plurality of movable electrodes 12 on the single sheet substrate 11, the plurality of movable electrodes 12 and the plurality of fixed substrate portions 20 are arranged in a row or array (lattice) on the single sheet substrate 11. It is possible. In this case, the plurality of movable electrodes 12 are separated, and the plurality of fixed substrate portions 20 are separated. Therefore, when pressure is applied to the pressure sensor 100, one of the plurality of adjacent movable portions 10 does not inhibit the deformation of the other of the plurality of adjacent movable portions 10. Therefore, the deformation of the movable portion 10 when the pressure is applied to the pressure sensor 100 is not inhibited, and the pressure applied to the pressure sensor 100 can be measured with high accuracy.
  • 16A to 16I illustrate an example of a manufacturing process of the pressure sensor 100.
  • FIG. Hereinafter, an example of a manufacturing process of the pressure sensor 100 will be described with reference to FIGS. 16A to 16I.
  • FIG. 16A to 16E show an example of the manufacturing process of the fixed substrate portion 20.
  • FIG. 16A the fixed electrode 22 is formed on the surface of the substrate 21 facing the movable portion 10.
  • FIG. 16B the insulating film 231 is formed so as to cover the fixed electrode 22.
  • a resist film 51 is formed on the surface of the insulating film 231 facing the movable portion 10.
  • FIG. 16C a resist film 51 having a predetermined pattern is formed on the insulating film 231 by performing photoresist on the resist film 51 using a photomask in which a desired pattern is formed.
  • FIG. 16C a resist film 51 having a predetermined pattern is formed on the insulating film 231 by performing photoresist on the resist film 51 using a photomask in which a desired pattern is formed.
  • the etching process is performed, and the resist film 51 is further removed, whereby the insulating portion 23 is formed.
  • the fixed substrate side plated portion 24 is formed on the surface of the insulating portion 23 facing the movable portion 10.
  • the plating resist is performed on the area where the fixed substrate side plated portion 24 is not formed, and then the plating process is performed to form the fixed substrate side plated portion 24 in a desired area.
  • the fixed substrate side plated portion 24 may be formed by sputtering. That is, after a plating layer is formed on the surface of the insulating portion 23 facing the movable portion 10 by a sputtering apparatus, a resist is applied and etched to form a pattern of the fixed substrate plating portion 24. May be
  • FIG. 16F and 16G show an example of the manufacturing process of the movable part 10.
  • the movable electrode 12 is formed on the surface of the flexible sheet substrate 11 facing the fixed substrate portion 20.
  • the plating process is performed on the surface of the movable electrode 12 facing the fixed substrate portion 20, whereby the movable portion-side plated portion 14 is formed.
  • FIG. 16G etching is performed on the area corresponding to the first movable electrode 121 and the second movable electrode 122 on the surface facing the fixed substrate portion 20 of the movable portion-side plated portion 14 and then the etching is performed.
  • the first movable electrode 121 and the second movable electrode 122 are formed.
  • Step of bonding movable portion 10 and fixed substrate portion 20 16H and 16I show an example of the process of joining the fixed substrate part 20 and the movable part 10. As shown in FIG. In FIG. 16H, the movable portion 10 and the fixed substrate portion 20 are joined. There is no limitation in particular in the joining method. The movable portion 10 and the fixed substrate portion 20 may be joined by, for example, normal temperature bonding.
  • the surface of the movable portion side plated portion 14 of the movable portion 10 facing the fixed substrate portion 20 and the surface of the fixed substrate portion 20 facing the movable portion 10 of the fixed substrate side plated portion 24 are A process of smoothing the surface and a process of removing impurities from the surface to clean the surface are performed.
  • the movable-part-side plated part 14 subjected to these treatments comes into contact with the fixed-substrate-side plated part 24, the intermolecular force acting between the movable-part-side plated part 14 and the fixed-substrate-side plated part 24 causes the movable part to move. 10 and the fixed substrate portion 20 are joined.
  • FIG. 16I illustrates a state in which three pressure sensors 100 manufactured by the steps of FIGS. 16A to 16H are arranged side by side so as to share the sheet substrate 11. As illustrated in FIG. 16I, the pressure sensor 100 can widen the area to be subjected to pressure detection by sharing the sheet substrate 11 and arranging the plurality of sensor elements 101.
  • manufacturing of the movable portion 10 and the fixed substrate portion 20 is performed without performing a process of flattening the surfaces of the movable portion side plated portion 14 and the fixed substrate side plated portion 24.
  • the flatness of the surface may be ensured in the process.
  • metal for example, copper
  • CMP Chemical Mechanical Polishing
  • Second hollow portion 20 Fixed substrate portion 21: Substrate portion 22: Fixed electrode 23: Insulation portion 24: Fixed substrate side plated portion 241: Third plating Part 242: Fourth plated part 51: Resist film 200: Connector 231: Insulating film 300: Capacitance measurement circuit 301: Multiplexer 302: Converter

Abstract

Provided is a capacitance-type pressure sensor in which mountability is improved. This capacitance-type pressure sensor is provided with: a flexible substrate including a flexible sheet substrate and a plurality of first electrodes provided on the sheet substrate; and a plurality of hard substrates including second electrodes disposed so as to face the first electrodes, the hard substrates being disposed facing the flexible substrate across a hollow part formed between the hard substrates and the flexible substrate. In the hollow part, the plurality of hard substrates are disposed on the sheet substrate such that pressure applied toward a surface of the first electrodes facing the second electrodes is measured by detecting a change in capacitance produced due to flexing of the first electrodes relative to the second electrodes, and such that the longitudinal direction of the plurality of hard substrates coincides with or intersects the longitudinal direction of the sheet substrate.

Description

静電容量式圧力センサCapacitive pressure sensor
 本発明は、静電容量式圧力センサに関する。 The present invention relates to a capacitive pressure sensor.
 圧力センサは、主として気体や液体の圧力を検出するものであり、気圧センサや高度センサ、水圧センサとして各種の装置に適用されている。また、近年においては、これを高度センサとして利用する場合の一態様として、位置情報を得るためのナビゲーション装置への応用やユーザの運動量を精緻に計測する計測器への応用等、その適用範囲が広がりつつある。 The pressure sensor mainly detects the pressure of gas or liquid, and is applied to various devices as an air pressure sensor, an altitude sensor, and a water pressure sensor. Also, in recent years, as an aspect of using this as an altitude sensor, its application range is applicable to a navigation device for obtaining position information, an application to a measuring instrument that precisely measures the user's exercise amount, etc. It is spreading.
 MEMS(Micro Electro Mechanical System)センサチップとしての静電容量式圧力センサが知られている。柔軟性を有する柔軟基板と、柔軟性を有し、柔軟基板上に取り付けられる能動素子と、を含む柔軟圧力センサが提案されている(特許文献1参照)。 A capacitive pressure sensor is known as a MEMS (Micro Electro Mechanical System) sensor chip. A flexible pressure sensor has been proposed that includes a flexible substrate having flexibility and an active element having flexibility and mounted on the flexible substrate (see Patent Document 1).
特開2006-108657号公報JP, 2006-108657, A
 例えば、圧力センサを人体に装着する場合、圧力センサの装着の仕方によっては、圧力センサの測定精度が良くなかったり、圧力センサ自体が硬くて人体に装着しづらかったりするという課題がある。このような状況に鑑み、本発明は、装着性を向上した静電容量式圧力センサを提供することを目的とする。 For example, when the pressure sensor is attached to the human body, there are problems that the measurement accuracy of the pressure sensor is not good or the pressure sensor itself is hard to attach to the human body depending on the method of attaching the pressure sensor. In view of such a situation, an object of the present invention is to provide a capacitive pressure sensor with improved mountability.
 本発明では、上記課題を解決するために、以下の手段を採用した。すなわち、本発明は、可撓性を有するシート基板およびシート基板に設けられた複数の第1の電極を含むフレキシブル基板と、第1の電極に対向して配置される第2の電極を含み、フレキシブル基板との間に中空部を介してフレキシブル基板に対向配置された複数の硬質基板と、を備え、中空部において、第1の電極が第2の電極に対して撓むことで生じる静電容量の変化を検出することにより、第1の電極における第2の電極との対向面に向けて印加される圧力を測定する、静電容量式圧力センサであって、複数の硬質基板の長手方向が、シート基板の長手方向と一致又は直交するように、複数の硬質基板がシート基板に配置されている。 The present invention adopts the following means in order to solve the above problems. That is, the present invention includes a flexible substrate including a flexible sheet substrate and a plurality of first electrodes provided on the sheet substrate, and a second electrode disposed to face the first electrode, And a plurality of rigid substrates disposed opposite to the flexible substrate via the hollow portion between the flexible substrate and the flexible substrate, and in the hollow portion, electrostatic caused by the first electrode bending with respect to the second electrode A capacitive pressure sensor that measures a pressure applied to a surface of a first electrode facing a second electrode by detecting a change in capacitance, which is a longitudinal direction of a plurality of hard substrates The plurality of rigid substrates are disposed on the sheet substrate so that the plurality of rigid substrates coincide with or are perpendicular to the longitudinal direction of the sheet substrate.
 複数の硬質基板の長手方向が、シート基板の長手方向と一致又は直交するように、複数の硬質基板がシート基板に配置されることにより、静電容量式圧力センサの装着性が向上する。複数の固定基板部の長手方向が、例えば、人体の関節の軸方向と一致することで、人体の関節が曲げやすくなる。複数の硬質基板の長手方向が、シート基板の長手方向と直交する場合、硬質基板のピッチが小さくなるため、静電容量式圧力センサの測定精度が向上する。 By arranging the plurality of hard substrates on the sheet substrate such that the longitudinal directions of the plurality of hard substrates coincide with or are perpendicular to the longitudinal direction of the sheet substrate, the mountability of the capacitive pressure sensor is improved. The joints of the human body can be easily bent by matching the longitudinal directions of the plurality of fixed base portions with the axial direction of the joints of the human body, for example. When the longitudinal directions of the plurality of hard substrates are orthogonal to the longitudinal direction of the sheet substrate, the pitch of the hard substrates is reduced, so that the measurement accuracy of the capacitive pressure sensor is improved.
 上記静電容量式圧力センサにおいて、複数の硬質基板が、短辺と長辺とを有する長方形であり、複数の硬質基板の長辺が伸びる方向と、シート基板の長手方向とが一致するように、複数の硬質基板がシート基板に配置され、複数の硬質基板のうち隣り合う2つの硬質基板の短辺同士が向かい合っていてもよい。 In the above-mentioned capacitance type pressure sensor, the plurality of hard substrates is a rectangle having short sides and long sides, and the direction in which the long sides of the plurality of hard substrates extend extends in the same direction as the longitudinal direction of the sheet substrate. The plurality of rigid substrates may be disposed on the sheet substrate, and the short sides of two adjacent rigid substrates of the plurality of rigid substrates may face each other.
 上記静電容量式圧力センサにおいて、複数の硬質基板が、短辺と長辺とを有する長方形であり、複数の硬質基板の短辺が伸びる方向と、シート基板の長手方向とが一致するように、複数の硬質基板がシート基板に配置され、複数の硬質基板のうち隣り合う2つの硬質基板の長辺同士が向かい合っていてもよい。 In the capacitive pressure sensor, the plurality of hard substrates is a rectangle having short sides and long sides, and a direction in which the short sides of the plurality of hard substrates extend is coincident with a longitudinal direction of the sheet substrate. The plurality of hard substrates may be disposed on the sheet substrate, and the long sides of two adjacent hard substrates of the plurality of hard substrates may face each other.
 本発明によれば、装着性を向上した静電容量式圧力センサを提供することができる。 According to the present invention, it is possible to provide a capacitive pressure sensor with improved mountability.
図1は、実施形態に係る圧力センサの一例を示す図である。FIG. 1 is a view showing an example of a pressure sensor according to the embodiment. 図2は、実施形態に係る圧力センサの一例を示す図である。FIG. 2 is a view showing an example of a pressure sensor according to the embodiment. 図3は、実施形態に係る圧力センサの一例を示す図である。FIG. 3 is a view showing an example of a pressure sensor according to the embodiment. 図4は、実施形態に係る圧力センサの一例を示す図である。FIG. 4 is a view showing an example of a pressure sensor according to the embodiment. 図5は、実施形態に係る圧力センサの一例を示す図である。FIG. 5 is a view showing an example of a pressure sensor according to the embodiment. 図6は、静電容量測定回路の構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of a capacitance measurement circuit. 図7は、圧力センサに圧力が印加される前の状態の一例を示す図である。FIG. 7 is a diagram showing an example of a state before pressure is applied to the pressure sensor. 図8は、圧力センサに圧力が印加されたときの状態の一例を示す図である。FIG. 8 is a diagram showing an example of a state when pressure is applied to the pressure sensor. 図9は、実施形態に係る圧力センサの一例を示す図である。FIG. 9 is a view showing an example of a pressure sensor according to the embodiment. 図10は、実施形態に係る圧力センサの一例を示す図である。FIG. 10 is a view showing an example of a pressure sensor according to the embodiment. 図11は、実施形態に係る圧力センサの一例を示す図である。FIG. 11 is a view showing an example of a pressure sensor according to the embodiment. 図12は、実施形態に係る圧力センサの一例を示す図である。FIG. 12 is a view showing an example of a pressure sensor according to the embodiment. 図13は、実施形態に係る圧力センサの一例を示す図である。FIG. 13 is a view showing an example of a pressure sensor according to the embodiment. 図14は、実施形態に係る圧力センサの一例を示す図である。FIG. 14 is a view showing an example of a pressure sensor according to the embodiment. 図15は、実施形態に係る圧力センサの一例を示す図である。FIG. 15 is a view showing an example of a pressure sensor according to the embodiment. 図16Aは、実施形態に係る圧力センサの製造工程の一例を示す第1の図である。FIG. 16A is a first view showing an example of a manufacturing process of the pressure sensor according to the embodiment. 図16Bは、実施形態に係る圧力センサの製造工程の一例を示す第2の図である。FIG. 16B is a second view showing an example of a manufacturing process of the pressure sensor according to the embodiment. 図16Cは、実施形態に係る圧力センサの製造工程の一例を示す第3の図である。FIG. 16C is a third diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment. 図16Dは、実施形態に係る圧力センサの製造工程の一例を示す第4の図である。FIG. 16D is a fourth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment. 図16Eは、実施形態に係る圧力センサの製造工程の一例を示す第5の図である。FIG. 16E is a fifth diagram illustrating an example of a manufacturing process of the pressure sensor according to the embodiment. 図16Fは、実施形態に係る圧力センサの製造工程の一例を示す第6の図である。FIG. 16F is a sixth drawing showing an example of the manufacturing process of the pressure sensor according to the embodiment. 図16Gは、実施形態に係る圧力センサの製造工程の一例を示す第7の図である。FIG. 16G is a seventh drawing showing the example of the manufacturing process of the pressure sensor according to the embodiment. 図16Hは、実施形態に係る圧力センサの製造工程の一例を示す第8の図である。FIG. 16H is an eighth diagram showing the example of the manufacturing process of the pressure sensor according to the embodiment. 図16Iは、実施形態に係る圧力センサの製造工程の一例を示す第9の図である。FIG. 16I is a ninth diagram showing an example of a manufacturing process of the pressure sensor according to the embodiment.
 以下、実施形態について図を参照しながら説明する。以下に示す実施形態は、本願の一態様であり、本願の技術的範囲を限定するものではない。 Hereinafter, embodiments will be described with reference to the drawings. The embodiment described below is an aspect of the present application, and does not limit the technical scope of the present application.
 <適用例>
 図1は実施形態に係る圧力センサ100の一例を示す図である。図1は圧力センサ100の断面図の一例である。圧力センサ100は、静電容量式圧力センサの一例である。圧力センサ100は、シート基板11およびシート基板11に設けられた複数の可動電極12を含み、可撓性を有する可動部10を備える。圧力センサ100は、基板部21、固定電極22および固定基板側メッキ部24を含み、可動部10との間に中空部13を介して可動部10に対向配置された固定基板部20を備える。固定電極22は、可動電極12に対向して配置されている。可動部10は、フレキシブル基板の一例である。可動電極12は、第1の電極の一例である。固定基板部20は、硬質基板の一例である。固定電極22は、第2の電極の一例である。また、圧力センサ100は、可動部10と固定基板部20との間であって、中空部13を囲むように設けられた固定基板側メッキ部24を備える。固定基板側メッキ部24は、可動部10と固定基板部20とを接合する。圧力センサ100は、中空部13において、可動電極12が固定電極22に対して撓むことで生じる静電容量の変化を検出することにより、可動電極12における固定電極22との対向面に向けて印加される圧力を測定する。図1に示すように、圧力センサ100は、複数のセンサ素子101を備え、複数のセンサ素子101がシート基板11を共有している。各センサ素子101は、可動電極12および固定基板部20を有する。
<Example of application>
FIG. 1 is a view showing an example of a pressure sensor 100 according to the embodiment. FIG. 1 is an example of a cross-sectional view of a pressure sensor 100. The pressure sensor 100 is an example of a capacitive pressure sensor. The pressure sensor 100 includes a sheet substrate 11 and a plurality of movable electrodes 12 provided on the sheet substrate 11, and includes a flexible movable portion 10. The pressure sensor 100 includes a substrate portion 21, a fixed electrode 22, and a fixed substrate side plated portion 24, and includes a fixed substrate portion 20 disposed opposite to the movable portion 10 via the hollow portion 13 between the movable portion 10. The fixed electrode 22 is disposed to face the movable electrode 12. The movable portion 10 is an example of a flexible substrate. The movable electrode 12 is an example of a first electrode. The fixed substrate unit 20 is an example of a hard substrate. The fixed electrode 22 is an example of a second electrode. Further, the pressure sensor 100 includes a fixed substrate side plated portion 24 provided so as to surround the hollow portion 13 between the movable portion 10 and the fixed substrate portion 20. The fixed substrate side plated portion 24 joins the movable portion 10 and the fixed substrate portion 20. The pressure sensor 100 is directed toward the surface of the movable electrode 12 facing the fixed electrode 22 by detecting a change in electrostatic capacitance caused by the movable electrode 12 bending relative to the fixed electrode 22 in the hollow portion 13. Measure the applied pressure. As shown in FIG. 1, the pressure sensor 100 includes a plurality of sensor elements 101, and the plurality of sensor elements 101 share the sheet substrate 11. Each sensor element 101 has a movable electrode 12 and a fixed substrate portion 20.
 図2および図3は実施形態に係る圧力センサ100の一例を示す図である。図2および図3は圧力センサ100の平面図の一例である。図2では、複数の固定基板部20の長手方向が、シート基板11の長手方向と一致するように、複数の固定基板部20がシート基板11に配置されている。図3では、複数の固定基板部20の長手方向が、シート基板11の長手方向と直交するように、複数の固定基板部20がシート基板11に配置されている。固定基板部20の短手方向が、可動電極12の長手方向と直交している。固定基板部20は、長手および短手を有する形状であり、例えば、長方形、楕円形である。 2 and 3 are diagrams showing an example of the pressure sensor 100 according to the embodiment. 2 and 3 are examples of plan views of the pressure sensor 100. FIG. In FIG. 2, the plurality of fixed substrate portions 20 are disposed on the sheet substrate 11 such that the longitudinal direction of the plurality of fixed substrate portions 20 coincides with the longitudinal direction of the sheet substrate 11. In FIG. 3, the plurality of fixed substrate units 20 are disposed on the sheet substrate 11 such that the longitudinal direction of the plurality of fixed substrate units 20 is orthogonal to the longitudinal direction of the sheet substrate 11. The short direction of the fixed substrate portion 20 is orthogonal to the longitudinal direction of the movable electrode 12. The fixed substrate portion 20 has a shape having a long side and a short side, and is, for example, a rectangle or an oval.
 <実施例>
 図4および図5は実施形態に係る圧力センサ100の一例を示す図である。図4は圧力センサ100を平面視した図の一例であり、図5は図4のA-A線における断面図の一例である。図4では、平面視においては目視できない固定基板側メッキ部24、第1中空部18、第2中空部19、固定電極22および基板部21が点線で示されている。図4では、3つの圧力センサ100(100a、100b、100c)が例示されるとともに、コネクタ200および静電容量測定回路300も例示される。3つの圧力センサ100a、100b、100cは、シート基板11を共有する。図5を参照すると理解できるように、圧力センサ100は、可動電極12を含み可撓性を有する可動部10と固定電極22を含む固定基板部20とを備える。圧力センサ100は、可動部10の可動電極12と固定基板部20の固定電極22とが対向するように、可動部10と固定基板部20とを接合して形成される。可動電極12は、第1可動電極121および第1可動電極121と離間して設けられる第2可動電極122を含む。第1可動電極121と固定電極22との間には、第1中空部18が形成される。第1中空部18が形成されることで、シート基板11上の第1可動電極121に相当する領域に圧力が印加されたときに、可動部10は固定基板部20に向けて変形可能となる。また、第2可動電極122と固定電極22との間には、第2中空部19が形成される。図4では、第1中空部18および第2中空部19の断面形状は略円形に形成されているが、第1中空部18および第2中空部19の断面形状が略円形に限定されるわけではない。第1中空部18および第2中空部19の断面形状は、略多角形に形成されていてもよく、例えば、略四角形、略六角形、略八角形等であってもよい。以下、本明細書において、図4における第2中空部19から第1中空部18に向かう方向を右、その逆方向を左とする。また、図4において、圧力センサ100aから圧力センサ100cに向かう方向を後ろ、その逆方向を前とする。さらに、図5における可動部10から固定基板部20に向かう方向を下、その逆方向を上とする。
<Example>
4 and 5 are diagrams showing an example of the pressure sensor 100 according to the embodiment. FIG. 4 is an example of a plan view of the pressure sensor 100, and FIG. 5 is an example of a cross-sectional view taken along the line AA of FIG. In FIG. 4, the fixed-substrate-side plated portion 24, the first hollow portion 18, the second hollow portion 19, the fixed electrode 22, and the substrate portion 21 which are not visible in plan view are shown by dotted lines. In FIG. 4, three pressure sensors 100 (100a, 100b, 100c) are illustrated, and a connector 200 and a capacitance measuring circuit 300 are also illustrated. The three pressure sensors 100 a, 100 b and 100 c share the sheet substrate 11. As can be understood with reference to FIG. 5, the pressure sensor 100 includes the movable portion 10 having the movable electrode 12 and the fixed substrate portion 20 including the flexible electrode 22. The pressure sensor 100 is formed by bonding the movable portion 10 and the fixed substrate portion 20 so that the movable electrode 12 of the movable portion 10 and the fixed electrode 22 of the fixed substrate portion 20 face each other. The movable electrode 12 includes a first movable electrode 121 and a second movable electrode 122 provided separately from the first movable electrode 121. A first hollow portion 18 is formed between the first movable electrode 121 and the fixed electrode 22. By forming the first hollow portion 18, the movable portion 10 can be deformed toward the fixed substrate portion 20 when pressure is applied to a region on the sheet substrate 11 corresponding to the first movable electrode 121. . In addition, a second hollow portion 19 is formed between the second movable electrode 122 and the fixed electrode 22. In FIG. 4, the cross-sectional shapes of the first hollow portion 18 and the second hollow portion 19 are substantially circular, but the cross-sectional shapes of the first hollow portion 18 and the second hollow portion 19 are limited to substantially circular. is not. The cross-sectional shapes of the first hollow portion 18 and the second hollow portion 19 may be formed into a substantially polygonal shape, and may be, for example, a substantially square, a substantially hexagonal, a substantially octagonal, or the like. Hereinafter, in the present specification, the direction from the second hollow portion 19 to the first hollow portion 18 in FIG. 4 is referred to as the right, and the opposite direction is referred to as the left. Further, in FIG. 4, the direction from the pressure sensor 100 a toward the pressure sensor 100 c is rear, and the opposite direction is front. Furthermore, the direction from the movable portion 10 to the fixed substrate portion 20 in FIG. 5 is downward, and the opposite direction is upward.
 可動部10は、シート基板11、可動電極12、可動部側メッキ部14を含む。シート基板11は、可撓性を有する部材(例えば、ポリイミド)で形成される。シート基板11の厚さは、例えば、25μmである。ここで、シート基板11の厚さは、シート基板11の上下方向の長さである。シート基板11の下方向の面には導電性を有する部材(例えば銅)によって形成される可動電極12が設けられる。可動電極12は、上述のように、第1可動電極121および第1可動電極121と離間して設けられる第2可動電極122を含む。可動電極12の厚さは、例えば、10μmである。第1可動電極121の左右方向の長さは、例えば、2.0mmである。第2可動電極122の左右方向の長さは、例えば、0.5mmである。第1可動電極121および第2可動電極122の前後方向の長さは、例えば、1mmから2mmである。第1可動電極121と第2可動電極122との間の距離は、例えば、0.1mmである。可動電極12の下方向の面には、可動部側メッキ部14が設けられる。可動部側メッキ部14は、第1可動電極121の下方向の面に設けられる第1メッキ部141と第2可動電極122の下方向の面に設けられる第2メッキ部142を含む。可動部側メッキ部14は、例えば、金メッキによって形成される。 The movable portion 10 includes a sheet substrate 11, a movable electrode 12, and a movable portion side plated portion 14. The sheet substrate 11 is formed of a flexible member (for example, polyimide). The thickness of the sheet substrate 11 is, for example, 25 μm. Here, the thickness of the sheet substrate 11 is the length of the sheet substrate 11 in the vertical direction. The lower surface of the sheet substrate 11 is provided with a movable electrode 12 formed of a conductive member (for example, copper). The movable electrode 12 includes the first movable electrode 121 and the second movable electrode 122 provided to be separated from the first movable electrode 121 as described above. The thickness of the movable electrode 12 is, for example, 10 μm. The length of the first movable electrode 121 in the left-right direction is, for example, 2.0 mm. The length of the second movable electrode 122 in the left-right direction is, for example, 0.5 mm. The lengths of the first movable electrode 121 and the second movable electrode 122 in the front-rear direction are, for example, 1 mm to 2 mm. The distance between the first movable electrode 121 and the second movable electrode 122 is, for example, 0.1 mm. The movable portion side plated portion 14 is provided on the lower surface of the movable electrode 12. The movable portion-side plated portion 14 includes a first plated portion 141 provided on the lower surface of the first movable electrode 121 and a second plated portion 142 provided on the lower surface of the second movable electrode 122. The movable portion-side plated portion 14 is formed, for example, by gold plating.
 固定基板部20は、基板部21、固定電極22、絶縁部23および固定基板側メッキ部24を含む。基板部21は、容易には変形しない部材(例えば、ガラス)で形成される。基板部21の厚さは、例えば、300μmから600μmである。基板部21は容易には変形しない部材で形成されるため、シート基板11への圧力の印加により可動部10が撓んでも、固定基板部20の変形は抑制される。基板部21の上側の面上には導電性を有する部材(例えばクロム)によって形成された固定電極22が配置される。さらに、固定電極22の周囲を囲むとともに、固定電極22の上方の一部を覆う絶縁部23が設けられる。絶縁部23は絶縁体(例えば、テトラエトキシシラン(TEOS)や二酸化ケイ素)によって形成される。絶縁部23の厚さは、例えば、0.5μmである。絶縁部23には、平面視において第1可動電極121と固定電極22とが重なる領域の一部には上述した第1中空部18の一部を形成する箇所が設けられる。また、平面視において第2可動電極122と固定電極22とが重なる領域の一部には上述した第2中空部19を形成するための箇所が設けられる。絶縁部23において、第1中空部18の一部および第2中空部19を形成するための箇所は、絶縁部23の可動部10側の面から固定電極22側の面まで達する貫通孔として形成される。第1中空部18を平面視したときの直径は、例えば、0.6mmから1.2mmである。圧力センサ100を平面視した場合において、第2中空部19の面積は、第1中空部18の面積よりも小さい。すなわち、第2中空部19を平面視したときの直径は、第1中空部18を平面視したときの直径よりも小さい。圧力が印加されていないときにおける第1中空部18の第1可動電極121と固定電極22との間の距離dは、例えば、1μmである。絶縁部23の上側の面の一部の他、第2中空部19の内側面および底部には、固定基板側メッキ部24が設けられる。固定基板側メッキ部24は、第3メッキ部241と第4メッキ部242を含む。第3メッキ部241は、絶縁部23の上側の面において、第1中空部18の一部を形成する貫通孔の縁近傍の領域に当該領域を囲むようにして設けられる。このようにして第3メッキ部241に囲まれた部分と絶縁部23に設けられた貫通孔によって形成される空間が第1中空部である。第4メッキ部242は、絶縁部23の上側の面において、第2中空部19を形成するための貫通孔の縁近傍の領域に、当該領域を囲むようにして設けられるとともに、該貫通孔の内側面、及び該貫通孔の底部に該当する固定電極22の上面にも設けられる。即ち、第4メッキ部242は、絶縁部23の上側の面から第2可動電極122に向けて突出して形成される部分と、貫通孔の内部を覆う部分とから形成され、これらに囲まれた空間が第2中空部19となる。なお、固定基板側メッキ部24は、例えば、金メッキによって形成される。可動部側メッキ部14と固定基板側メッキ部24とが接合されることで可動部10と固定基板部20とが一体となり、圧力センサ100が形成される。また、第2メッキ部142と第4メッキ部242とが接合されることで、第2可動電極122と固定電極22とが電気的に接続される。 The fixed substrate portion 20 includes a substrate portion 21, a fixed electrode 22, an insulating portion 23 and a fixed substrate side plated portion 24. The substrate unit 21 is formed of a member (for example, glass) which is not easily deformed. The thickness of the substrate portion 21 is, for example, 300 μm to 600 μm. Since the substrate portion 21 is formed of a member that is not easily deformed, deformation of the fixed substrate portion 20 is suppressed even if the movable portion 10 is bent by the application of pressure to the sheet substrate 11. A fixed electrode 22 formed of a conductive member (for example, chromium) is disposed on the upper surface of the substrate unit 21. Furthermore, an insulating portion 23 is provided which surrounds the periphery of the fixed electrode 22 and covers a part of the upper side of the fixed electrode 22. The insulating portion 23 is formed of an insulator (for example, tetraethoxysilane (TEOS) or silicon dioxide). The thickness of the insulating portion 23 is, for example, 0.5 μm. In the insulating portion 23, a portion for forming a part of the first hollow portion 18 described above is provided in a part of a region where the first movable electrode 121 and the fixed electrode 22 overlap in a plan view. Further, a part for forming the above-described second hollow portion 19 is provided in a part of a region where the second movable electrode 122 and the fixed electrode 22 overlap in plan view. In the insulating portion 23, a portion for forming a part of the first hollow portion 18 and the second hollow portion 19 is formed as a through hole extending from the surface on the movable portion 10 side of the insulating portion 23 to the surface on the fixed electrode 22 side. Be done. The diameter of the first hollow portion 18 in plan view is, for example, 0.6 mm to 1.2 mm. When the pressure sensor 100 is viewed in plan, the area of the second hollow portion 19 is smaller than the area of the first hollow portion 18. That is, the diameter of the second hollow portion 19 in plan view is smaller than the diameter of the first hollow portion 18 in plan view. The distance d between the first movable electrode 121 of the first hollow portion 18 and the fixed electrode 22 when no pressure is applied is, for example, 1 μm. A fixed substrate plating portion 24 is provided on the inner side surface and the bottom of the second hollow portion 19 in addition to a part of the upper surface of the insulating portion 23. The fixed substrate plating portion 24 includes a third plating portion 241 and a fourth plating portion 242. The third plated portion 241 is provided in a region near the edge of the through hole that forms a part of the first hollow portion 18 on the upper surface of the insulating portion 23 so as to surround the region. A space formed by the portion surrounded by the third plated portion 241 and the through hole provided in the insulating portion 23 in this manner is a first hollow portion. The fourth plated portion 242 is provided in a region near the edge of the through hole for forming the second hollow portion 19 on the upper surface of the insulating portion 23 so as to surround the region, and the inner side surface of the through hole And the upper surface of the fixed electrode 22 corresponding to the bottom of the through hole. That is, the fourth plated portion 242 is formed of a portion which is formed to project from the upper surface of the insulating portion 23 toward the second movable electrode 122 and a portion which covers the inside of the through hole, and is surrounded by these The space is the second hollow portion 19. The fixed substrate plating portion 24 is formed, for example, by gold plating. By bonding the movable portion-side plated portion 14 and the fixed substrate-side plated portion 24, the movable portion 10 and the fixed substrate portion 20 are integrated to form the pressure sensor 100. In addition, the second movable portion 122 and the fixed electrode 22 are electrically connected by joining the second plated portion 142 and the fourth plated portion 242.
 第2可動電極122とコネクタ200とは第2可動電極122から延びる信号線15によって接続される。また、圧力センサ100a、100bの第1可動電極121の間および圧力センサ100b、100cの第1可動電極121の間は、第1可動電極121から延びるグランド(GND)線16aによって接続される。図4において、隣り合った圧力センサ100の間の距離は、例えば、0.1mmから0.3mmである。すなわち、GND線16aの長さは、0.1mmから0.3mmである。さらに、圧力センサ100cの第1可動電極121は、第1可動電極121から延びるGND線16bによってコネクタ200と接続される。すなわち、圧力センサ100a、100b、100cでは、GNDが共有される。図4および図5を参照すると理解できるように、圧力センサ100では、信号線15とGND線16のいずれもがシート基板11の下側の面に形成される。すなわち、圧力センサ100では、第1可動電極121から延びる配線と固定電極22から延びる配線とが同一の層に形成される。圧力センサ100は、このような構成を採用することで、簡易な配線構造が実現される。 The second movable electrode 122 and the connector 200 are connected by a signal line 15 extending from the second movable electrode 122. The ground (GND) line 16a extending from the first movable electrode 121 is connected between the first movable electrodes 121 of the pressure sensors 100a and 100b and between the first movable electrodes 121 of the pressure sensors 100b and 100c. In FIG. 4, the distance between adjacent pressure sensors 100 is, for example, 0.1 mm to 0.3 mm. That is, the length of the GND line 16a is 0.1 mm to 0.3 mm. Furthermore, the first movable electrode 121 of the pressure sensor 100 c is connected to the connector 200 by the GND line 16 b extending from the first movable electrode 121. That is, GND is shared by the pressure sensors 100a, 100b, and 100c. As can be understood with reference to FIGS. 4 and 5, in the pressure sensor 100, both the signal line 15 and the GND line 16 are formed on the lower surface of the sheet substrate 11. That is, in the pressure sensor 100, the wiring extending from the first movable electrode 121 and the wiring extending from the fixed electrode 22 are formed in the same layer. The pressure sensor 100 can realize a simple wiring structure by adopting such a configuration.
 上述した構成を有する圧力センサ100は、距離d(図5参照)離れて配置された第1可動電極121の固定電極22と重なり合う領域と固定電極22の第1可動電極121と重なり合う領域とを電極板とするコンデンサとして動作する。コンデンサの静電容量Cは、例えば、上述した距離dおよび第1可動電極121と固定電極22とが重なり合う領域の面積S(図5参照)を用いて、以下の(式1)によって算出される。 The pressure sensor 100 having the above-described configuration includes an area overlapping the fixed electrode 22 of the first movable electrode 121 and an area overlapping the first movable electrode 121 of the fixed electrode 22 which are arranged at a distance d (see FIG. 5). It works as a plate capacitor. The capacitance C of the capacitor is calculated, for example, by the following equation 1 using the distance d described above and the area S of the area where the first movable electrode 121 and the fixed electrode 22 overlap (see FIG. 5). .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記(式1)において、ε0は真空の誘電率であり、εrは大気の比誘電率である。すなわち、(式1)によれば、可動部10に力が加えられることによって生じる第1可動電極121と固定電極22との間の距離dの変動に応じて、静電容量Cが変動することがわかる。 In the above (formula 1), ε 0 is the dielectric constant of vacuum, and ε r is the dielectric constant of the atmosphere. That is, according to (Expression 1), the electrostatic capacitance C fluctuates according to the fluctuation of the distance d between the first movable electrode 121 and the fixed electrode 22 which is caused by the force applied to the movable portion 10. I understand.
 また、圧力Pは、例えば、上述した面積Sを用いて以下の(式2)によって算出される。 Moreover, the pressure P is calculated by the following (Formula 2), for example using the area S mentioned above.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記(式2)において、Fは圧力センサ100に印加される力の大きさである。上述の通り、基板部21は容易には変形しない部材によって形成されるため、圧力センサ100に力が印加されても圧力算出の基準となる面積Sの変動が抑制される。そのため、圧力センサ100は、基板部21が容易に変形する部材で形成された圧力センサよりも高い精度で圧力を検出できる。 In the above (Formula 2), F is the magnitude of the force applied to the pressure sensor 100. As described above, since the substrate unit 21 is formed of a member that is not easily deformed, even if a force is applied to the pressure sensor 100, the fluctuation of the area S serving as a reference of pressure calculation is suppressed. Therefore, the pressure sensor 100 can detect the pressure with higher accuracy than a pressure sensor formed of a member that the substrate portion 21 is easily deformed.
 図6は、静電容量測定回路300の構成の一例を示す図である。図6では、圧力センサ100a、100b、100cも例示されている。また、図6では、コネクタ200の図示は省略している。静電容量測定回路300は、2つのマルチプレクサ301、301(図中では、MUXと記載)とコンバータ302を備える。マルチプレクサ301、301の各々には、圧力センサ100a、100b、100cの静電容量の変動に伴う信号が信号線15を介して入力される。マルチプレクサ301、301の各々は、圧力センサ100a、100b、100cから入力された信号のうち選択されたひとつを出力する。図6において、マルチプレクサ301、301が出力する信号の選択に用いられる選択信号の図示は省略されている。コンバータ302は、マルチプレクサ301、301の各々から出力された信号はコンバータ302に入力される。コンバータ302は、例えば、マルチプレクサ301、301から入力される信号値と圧力との対応関係を記憶している。コンバータ302が管理する対応関係は、例えば、入力される信号値と圧力との対応を示すテーブルであってもよいし、入力される信号値から圧力を算出する数式であってもよい。コンバータ302は、例えば、当該対応関係にしたがって、マルチプレクサ301、301から入力された信号値を圧力を示す信号値に変換し、圧力を示す信号値を出力する。 FIG. 6 is a diagram showing an example of the configuration of the capacitance measuring circuit 300. As shown in FIG. In FIG. 6, the pressure sensors 100a, 100b, and 100c are also illustrated. Further, in FIG. 6, the illustration of the connector 200 is omitted. The capacitance measurement circuit 300 includes two multiplexers 301 and 301 (denoted as MUX in the drawing) and a converter 302. Signals associated with fluctuations in capacitance of the pressure sensors 100 a, 100 b, 100 c are input to the multiplexers 301, 301 via the signal line 15. Each of the multiplexers 301 and 301 outputs a selected one of the signals input from the pressure sensors 100a, 100b and 100c. In FIG. 6, the illustration of selection signals used for selecting the signals output from the multiplexers 301 and 301 is omitted. In the converter 302, the signal output from each of the multiplexers 301 and 301 is input to the converter 302. The converter 302 stores, for example, the correspondence between signal values input from the multiplexers 301 and 301 and pressure. The correspondence relationship managed by the converter 302 may be, for example, a table indicating the correspondence between the input signal value and the pressure, or may be a mathematical expression for calculating the pressure from the input signal value. The converter 302 converts, for example, the signal value input from the multiplexers 301 and 301 into a signal value indicating pressure according to the correspondence relationship, and outputs a signal value indicating pressure.
 図7は、圧力センサ100に圧力が印加される前の状態の一例を示し、図8は、圧力センサ100に圧力が印加されたときの状態の一例を示す。圧力センサ100では、第1中空部18の上方から圧力が印加されると、図8に例示されるように、シート基板11および第1可動電極121を含む可動部10が印加された力に応じて固定基板部20の方向に向けて撓む。また、圧力センサ100に力が印加されなくなると、圧力センサ100は図8の状態から図7の状態に戻る。すなわち、圧力センサ100では、印加された力に応じて、第1可動電極121と固定電極22との間の距離dが変動する。距離dが変動すると、(式1)により、圧力センサ100の静電容量が変動する。例えば、図4に例示される静電容量測定回路300によって圧力センサ100の静電容量の変動が測定されることで、圧力センサ100に印加された圧力が検出される。 FIG. 7 shows an example of a state before pressure is applied to the pressure sensor 100, and FIG. 8 shows an example of a state when pressure is applied to the pressure sensor 100. As shown in FIG. In the pressure sensor 100, when a pressure is applied from above the first hollow portion 18, as illustrated in FIG. 8, the pressure is applied according to the force to which the movable portion 10 including the sheet substrate 11 and the first movable electrode 121 is applied. And bend toward the fixed substrate portion 20. Also, when no force is applied to the pressure sensor 100, the pressure sensor 100 returns from the state of FIG. 8 to the state of FIG. That is, in the pressure sensor 100, the distance d between the first movable electrode 121 and the fixed electrode 22 fluctuates according to the applied force. When the distance d changes, the capacitance of the pressure sensor 100 changes according to (Expression 1). For example, the pressure applied to the pressure sensor 100 is detected by measuring the fluctuation of the capacitance of the pressure sensor 100 by the capacitance measuring circuit 300 illustrated in FIG. 4.
 ところで、圧力センサ100は、第1中空部18の他に第2中空部19を有する。第2中空部19の内側面には、上述の通り、固定電極22から第2可動電極122に達する円筒形状の第4メッキ部242が形成される。固定電極22と第2可動電極122とを電気的に接続するだけであれば、第4メッキ部242を円筒形状に形成せずに、一本の配線で接続するだけでも足りる。しかしながら、実施形態に係る圧力センサ100は、離間して設けられる第1可動電極121と第2可動電極122とのいずれもがシート基板11に設けられている。そのため、第1可動電極121の上方から力が印加されると、第1可動電極121が固定電極22側に撓むとともに、第2可動電極122も固定電極22側に歪む。圧力の高精度な検出のためには、第1可動電極121は、前後方向および左右方向において偏りなく固定電極22に対して撓むことが好ましい。しかしながら、第2可動電極122が固定電極22側に歪んでしまうと、第1可動電極121は当該撓みの影響を受け、固定電極22に対して偏りなく撓むことが困難となる。そこで、実施形態に係る圧力センサ100では、第4メッキ部242を平面視したときの断面形状を略円形または略多角形に形成している。このことにより、固定電極22と第2可動電極122とを一本の配線で接続する構成に比べて、圧力が印加された際の第2可動電極122部分における歪みが抑制される。これによって、第1可動電極121が固定電極22に対して撓む際に、前後方向および左右方向に偏りが生じることが抑制される。さらに、一本の配線で第2可動電極122を支える場合よりも、断面形状が略円形または略多角形に形成された第4メッキ部242は安定して第2可動電極122を支えることができる。 The pressure sensor 100 has a second hollow portion 19 in addition to the first hollow portion 18. On the inner side surface of the second hollow portion 19, as described above, the cylindrical fourth plating portion 242 which reaches from the fixed electrode 22 to the second movable electrode 122 is formed. If the fixed electrode 22 and the second movable electrode 122 are only electrically connected, it is sufficient to connect only one wire instead of forming the fourth plated portion 242 in a cylindrical shape. However, in the pressure sensor 100 according to the embodiment, both of the first movable electrode 121 and the second movable electrode 122 provided apart from each other are provided on the sheet substrate 11. Therefore, when a force is applied from above the first movable electrode 121, the first movable electrode 121 is bent to the fixed electrode 22 side, and the second movable electrode 122 is also distorted to the fixed electrode 22 side. In order to detect the pressure with high accuracy, it is preferable that the first movable electrode 121 bends with respect to the fixed electrode 22 without deviation in the front-rear direction and the left-right direction. However, when the second movable electrode 122 is distorted to the fixed electrode 22 side, the first movable electrode 121 is affected by the deflection, and it becomes difficult to deflect the fixed electrode 22 uniformly. So, in the pressure sensor 100 which concerns on embodiment, the cross-sectional shape when planarly viewing the 4th plated part 242 is formed in substantially circle shape or substantially polygon shape. Thereby, distortion in the second movable electrode 122 portion when pressure is applied is suppressed as compared with the configuration in which the fixed electrode 22 and the second movable electrode 122 are connected by one wire. As a result, when the first movable electrode 121 bends with respect to the fixed electrode 22, the occurrence of the deviation in the front-rear direction and the left-right direction is suppressed. Furthermore, the fourth plated portion 242 having a substantially circular or polygonal cross-sectional shape can support the second movable electrode 122 more stably than in the case where the second movable electrode 122 is supported by one wire. .
 図9~図13は、実施形態に係る圧力センサ100の一例を示す図である。図9~図13は、圧力センサ100を腕31に装着した状態の一例を示す。図13は図12のB-B線に沿った断面の一部を示す。図10~図11は図9のC-C線に沿った断面を示す。シート基板11は可撓性を有するため、圧力センサ100を腕31や手首に巻き易く、圧力センサ100を腕31や手首に巻いた際の違和感が低減される。シート基板11をバンド状にすることにより、圧力センサ100を腕31や手首に巻き付けてもよい。シート基板11に両面粘着シートを貼付することにより、圧力センサ100を腕31や手首に貼付してもよい。圧力センサ100は、腕31や手首に限らず、人体の他の部位に巻き付けたり、貼付したりしてもよい。 9 to 13 show an example of the pressure sensor 100 according to the embodiment. 9 to 13 show an example of a state in which the pressure sensor 100 is attached to the arm 31. FIG. FIG. 13 shows a part of a cross section taken along the line BB in FIG. 10 to 11 show a cross section taken along the line CC of FIG. Since the sheet substrate 11 has flexibility, the pressure sensor 100 can be easily wound around the arm 31 or the wrist, and the discomfort when the pressure sensor 100 is wound around the arm 31 or the wrist can be reduced. The pressure sensor 100 may be wound around the arm 31 or the wrist by forming the sheet substrate 11 in a band shape. The pressure sensor 100 may be attached to the arm 31 or the wrist by attaching a double-sided adhesive sheet to the sheet substrate 11. The pressure sensor 100 is not limited to the arm 31 or the wrist, and may be wound or attached to another part of the human body.
 図9では、複数の固定基板部20の長手方向が、シート基板11の長手方向と一致した状態で、複数の固定基板部20がシート基板11に配置されている。図9では、シート基板11の長手方向が、腕31の長手方向と直交した状態で、圧力センサ100が腕31に装着されている。したがって、各固定基板部20の短手方向が、腕31の長手方向と一致している。固定基板部20の短手方向は、固定基板部20の長手方向と直交している。図9に示す固定基板部20の配置例では、固定基板部20のピッチが大きくなる。図9に示す固定基板部20の配置例における固定基板部20のピッチは、隣接する2つの固定基板部20の間の距離と固定基板部20の長手方向の幅との合計値である。図9に示す固定基板部20の配置例によれば、各固定基板部20の長手方向が腕31の短手方向と一致するため、手首を曲げやすい。図10は、手首を内側に曲げた状態を示しており、図11は、手首を外側に曲げた状態を示している。 In FIG. 9, the plurality of fixed substrate units 20 are disposed on the sheet substrate 11 in a state in which the longitudinal direction of the plurality of fixed substrate units 20 matches the longitudinal direction of the sheet substrate 11. In FIG. 9, the pressure sensor 100 is attached to the arm 31 in a state where the longitudinal direction of the sheet substrate 11 is orthogonal to the longitudinal direction of the arm 31. Therefore, the short side direction of each fixed substrate portion 20 coincides with the longitudinal direction of the arm 31. The short direction of the fixed substrate portion 20 is orthogonal to the longitudinal direction of the fixed substrate portion 20. In the arrangement example of the fixed substrate unit 20 shown in FIG. 9, the pitch of the fixed substrate unit 20 is increased. The pitch of the fixed substrate portions 20 in the arrangement example of the fixed substrate portions 20 shown in FIG. 9 is a total value of the distance between two adjacent fixed substrate portions 20 and the width in the longitudinal direction of the fixed substrate portions 20. According to the arrangement example of the fixed substrate portion 20 shown in FIG. 9, since the longitudinal direction of each fixed substrate portion 20 coincides with the short direction of the arm 31, the wrist is easily bent. FIG. 10 shows the state in which the wrist is bent inward, and FIG. 11 shows the state in which the wrist is bent outward.
 図12では、複数の固定基板部20の長手方向が、シート基板11の長手方向と直交した状態で、複数の固定基板部20がシート基板11に配置されている。図12では、シート基板11の長手方向が、腕31の長手方向と直交した状態で、圧力センサ100が腕31に装着されている。したがって、各固定基板部20の長手方向が、腕31の長手方向と一致している。図12に示す固定基板部20の配置例では、固定基板部20のピッチが小さくなる。図12に示す固定基板部20の配置例における固定基板部20のピッチは、隣接する2つの固定基板部20の間の距離と固定基板部20の短手方向の幅との合計値である。図12に示す固定基板部20の配置例によれば、固定基板部20のピッチが小さくなるため、圧力センサ100に対して狭い範囲で印加された圧力を測定することができる。例えば、図13に示すように、腕31の腱32と腱32との間における血管33は数mmである。固定基板部20のピッチが小さい場合、血管33の近傍に可動電極12を配置することが容易であり、圧力センサ100の装着性が向上する。また、血管33の近傍に可動電極12を配置することで、脈拍を測定する際の圧力センサ100の測定精度が向上する。なお、腱32及び血管33の下部には橈骨34が存在している。 In FIG. 12, the plurality of fixed substrate units 20 are disposed on the sheet substrate 11 in a state in which the longitudinal direction of the plurality of fixed substrate units 20 is orthogonal to the longitudinal direction of the sheet substrate 11. In FIG. 12, the pressure sensor 100 is attached to the arm 31 in a state where the longitudinal direction of the sheet substrate 11 is orthogonal to the longitudinal direction of the arm 31. Therefore, the longitudinal direction of each fixed substrate portion 20 coincides with the longitudinal direction of the arm 31. In the arrangement example of the fixed substrate unit 20 shown in FIG. 12, the pitch of the fixed substrate unit 20 is reduced. The pitch of the fixed substrate portions 20 in the arrangement example of the fixed substrate portions 20 shown in FIG. 12 is a total value of the distance between the two adjacent fixed substrate portions 20 and the width in the short direction of the fixed substrate portions 20. According to the arrangement example of the fixed substrate unit 20 shown in FIG. 12, the pitch of the fixed substrate unit 20 is reduced, so that the pressure applied in a narrow range with respect to the pressure sensor 100 can be measured. For example, as shown in FIG. 13, the blood vessel 33 between the tendon 32 of the arm 31 and the tendon 32 is several mm. When the pitch of the fixed substrate portion 20 is small, it is easy to arrange the movable electrode 12 in the vicinity of the blood vessel 33, and the mounting property of the pressure sensor 100 is improved. Further, by disposing the movable electrode 12 in the vicinity of the blood vessel 33, the measurement accuracy of the pressure sensor 100 when measuring the pulse is improved. Ribs 34 exist below the tendon 32 and the blood vessel 33.
 図14および図15は実施形態に係る圧力センサ100の一例を示す図である。図14および図15は固定基板部20の平面図の一例である。固定基板部20は、長辺41および短辺42を有する長方形である。図14では、複数の固定基板部20の長辺41が伸びる方向と、シート基板11の長手方向とが一致するように、複数の固定基板部20がシート基板11に配置されている。複数の固定基板部20のうち隣り合う2つの固定基板部20の短辺42同士が向かい合っている。図14に示す固定基板部20の配置例によれば、シート基板11の短手方向の幅が細くなるため、幅が細い部位に対して圧力センサ100を巻き付けたり、貼付したりすることができる。シート基板11の短手方向は、シート基板11の長手方向と直交している。図14に示す例では、複数の固定基板部20を一列に並べているが、複数の固定基板部20を二列以上に並べてもよい。すなわち、複数の固定基板部20をアレイ状(格子状)に並べてもよい。 14 and 15 are diagrams showing an example of the pressure sensor 100 according to the embodiment. 14 and 15 are examples of plan views of the fixed substrate portion 20. FIG. The fixed substrate portion 20 is a rectangle having a long side 41 and a short side 42. In FIG. 14, the plurality of fixed substrate portions 20 are disposed on the sheet substrate 11 such that the direction in which the long sides 41 of the plurality of fixed substrate portions 20 extend and the longitudinal direction of the sheet substrate 11 coincide. Short sides 42 of two adjacent fixed substrate portions 20 among the plurality of fixed substrate portions 20 face each other. According to the arrangement example of the fixed substrate portion 20 shown in FIG. 14, the width in the short direction of the sheet substrate 11 is narrowed, so that the pressure sensor 100 can be wound or attached to a portion where the width is narrow. . The short direction of the sheet substrate 11 is orthogonal to the longitudinal direction of the sheet substrate 11. In the example shown in FIG. 14, the plurality of fixed substrate units 20 are arranged in a line, but the plurality of fixed substrate units 20 may be arranged in two or more lines. That is, the plurality of fixed substrate units 20 may be arranged in an array (a lattice).
 図15では、複数の固定基板部20の短辺42が伸びる方向と、シート基板11の長手方向とが一致するように、複数の固定基板部20がシート基板11に配置されている。複数の固定基板部20のうち隣り合う2つの固定基板部20の長辺41同士が向かい合っている。図15に示す固定基板部20の配置例によれば、固定基板部20のピッチが小さくなるため、圧力センサ100に対して狭い範囲で印加された圧力を測定することができ、圧力センサ100の測定精度が向上する。図15に示す例では、複数の固定基板部20を一列に並べているが、複数の固定基板部20を二列以上に並べてもよい。すなわち、複数の固定基板部20をアレイ状(格子状)に並べてもよい。 In FIG. 15, the plurality of fixed substrate portions 20 are disposed on the sheet substrate 11 such that the direction in which the short sides 42 of the plurality of fixed substrate portions 20 extend and the longitudinal direction of the sheet substrate 11 coincide. The long sides 41 of two adjacent fixed substrate portions 20 of the plurality of fixed substrate portions 20 face each other. According to the arrangement example of the fixed substrate portion 20 shown in FIG. 15, since the pitch of the fixed substrate portion 20 is reduced, the pressure applied in a narrow range with respect to the pressure sensor 100 can be measured. Measurement accuracy is improved. In the example shown in FIG. 15, the plurality of fixed substrate units 20 are arranged in a line, but the plurality of fixed substrate units 20 may be arranged in two or more lines. That is, the plurality of fixed substrate units 20 may be arranged in an array (a lattice).
 シート基板11を共有して複数のセンサ素子101を並べることが可能である。すなわち、単一のシート基板11に複数の可動電極12を設けることにより、単一のシート基板11に複数の可動電極12および複数の固定基板部20を列状またはアレイ状(格子状)に配置することが可能である。この場合、複数の可動電極12同士が離間し、複数の固定基板部20同士が離間している。そのため、圧力センサ100に圧力が印加された際、隣接する複数の可動部10の一方が、隣接する複数の可動部10の他方の変形を阻害しない。したがって、圧力センサ100に圧力が印加された際における可動部10の変形が阻害されず、圧力センサ100に印加された圧力を高い精度で測定することができる。 It is possible to arrange the plurality of sensor elements 101 by sharing the sheet substrate 11. That is, by providing the plurality of movable electrodes 12 on the single sheet substrate 11, the plurality of movable electrodes 12 and the plurality of fixed substrate portions 20 are arranged in a row or array (lattice) on the single sheet substrate 11. It is possible. In this case, the plurality of movable electrodes 12 are separated, and the plurality of fixed substrate portions 20 are separated. Therefore, when pressure is applied to the pressure sensor 100, one of the plurality of adjacent movable portions 10 does not inhibit the deformation of the other of the plurality of adjacent movable portions 10. Therefore, the deformation of the movable portion 10 when the pressure is applied to the pressure sensor 100 is not inhibited, and the pressure applied to the pressure sensor 100 can be measured with high accuracy.
 <圧力センサ100の製造工程>
 図16Aから図16Iは、圧力センサ100の製造工程の一例を示す図である。以下、図16Aから図16Iを参照して、圧力センサ100の製造工程の一例について説明する。
<Manufacturing process of pressure sensor 100>
16A to 16I illustrate an example of a manufacturing process of the pressure sensor 100. FIG. Hereinafter, an example of a manufacturing process of the pressure sensor 100 will be described with reference to FIGS. 16A to 16I.
 (固定基板部20の製造工程)
 図16Aから図16Eは固定基板部20の製造工程の一例を示す。図16Aでは、基板部21の可動部10に対向する面上に固定電極22が形成される。続いて、図16Bでは、固定電極22を覆うように絶縁膜231が形成される。さらに、図16Bでは、絶縁膜231の可動部10に対向する面上にレジスト膜51が形成される。図16Cでは、レジスト膜51に対して所望のパターンが形成されたフォトマスクを用いてフォトレジストを行うことで、絶縁膜231上に所定パターンのレジスト膜51が形成される。図16Dでは、エッチング処理が行われ、さらにレジスト膜51が除去されることで、絶縁部23が形成される。図16Eでは、絶縁部23の可動部10に対向する面上に固定基板側メッキ部24が形成される。図16Eに例示される工程では、固定基板側メッキ部24を形成しない領域にメッキレジストが行われた上でメッキ処理を行うことで、所望の領域に固定基板側メッキ部24が形成される。なお、固定基板側メッキ部24の形成はスパッタリングにより形成してもよい。即ち、スパッタ装置にて絶縁部23の可動部10に対向する面上にメッキ層を成膜した後で、レジストを塗布してエッチングすることによって固定基板側メッキ部24のパターンを形成するのであってもよい。
(Manufacturing process of fixed substrate portion 20)
16A to 16E show an example of the manufacturing process of the fixed substrate portion 20. FIG. In FIG. 16A, the fixed electrode 22 is formed on the surface of the substrate 21 facing the movable portion 10. Subsequently, in FIG. 16B, the insulating film 231 is formed so as to cover the fixed electrode 22. Furthermore, in FIG. 16B, a resist film 51 is formed on the surface of the insulating film 231 facing the movable portion 10. In FIG. 16C, a resist film 51 having a predetermined pattern is formed on the insulating film 231 by performing photoresist on the resist film 51 using a photomask in which a desired pattern is formed. In FIG. 16D, the etching process is performed, and the resist film 51 is further removed, whereby the insulating portion 23 is formed. In FIG. 16E, the fixed substrate side plated portion 24 is formed on the surface of the insulating portion 23 facing the movable portion 10. In the process illustrated in FIG. 16E, the plating resist is performed on the area where the fixed substrate side plated portion 24 is not formed, and then the plating process is performed to form the fixed substrate side plated portion 24 in a desired area. The fixed substrate side plated portion 24 may be formed by sputtering. That is, after a plating layer is formed on the surface of the insulating portion 23 facing the movable portion 10 by a sputtering apparatus, a resist is applied and etched to form a pattern of the fixed substrate plating portion 24. May be
 (可動部10の製造工程)
 図16Fおよび図16Gは可動部10の製造工程の一例を示す。図16Fでは、可撓性を有するシート基板11の固定基板部20に対向する面上に可動電極12が形成される。さらに、可動電極12の固定基板部20に対向する面に対してメッキ処理が行われることで、可動部側メッキ部14が形成される。図16Gでは、可動部側メッキ部14の固定基板部20に対向する面上において、第1可動電極121および第2可動電極122に相当する領域に対してエッチングレジストが行われた上でエッチングが行われることで、第1可動電極121および第2可動電極122が形成される。
(Manufacturing process of movable part 10)
16F and 16G show an example of the manufacturing process of the movable part 10. In FIG. 16F, the movable electrode 12 is formed on the surface of the flexible sheet substrate 11 facing the fixed substrate portion 20. Furthermore, the plating process is performed on the surface of the movable electrode 12 facing the fixed substrate portion 20, whereby the movable portion-side plated portion 14 is formed. In FIG. 16G, etching is performed on the area corresponding to the first movable electrode 121 and the second movable electrode 122 on the surface facing the fixed substrate portion 20 of the movable portion-side plated portion 14 and then the etching is performed. By being performed, the first movable electrode 121 and the second movable electrode 122 are formed.
 (可動部10と固定基板部20の接合工程)
 図16Hおよび図16Iは、固定基板部20と可動部10とを接合する工程の一例を示す。図16Hでは、可動部10と固定基板部20とが接合される。接合方法には特に限定は無い。可動部10と固定基板部20とは、例えば、常温接合によって接合されてもよい。常温接合では、例えば、可動部10の可動部側メッキ部14の固定基板部20に対向する面と固定基板部20の固定基板側メッキ部24の可動部10に対向する面に対して、当該面を平滑にする処理と、当該面から不純物を除去して清浄にする処理が行われる。これらの処理が施された可動部側メッキ部14と固定基板側メッキ部24とが接触すると、可動部側メッキ部14と固定基板側メッキ部24との間で働く分子間力によって、可動部10と固定基板部20とが接合される。図16Iでは、図16Aから図16Hまでの工程によって製造された圧力センサ100をシート基板11を共有する形で3つ並べた様子を例示する。圧力センサ100は、図16Iに例示するように、シート基板11を共有して複数のセンサ素子101を並べることで、圧力検出の対象とする面積を広げることが可能である。
(Step of bonding movable portion 10 and fixed substrate portion 20)
16H and 16I show an example of the process of joining the fixed substrate part 20 and the movable part 10. As shown in FIG. In FIG. 16H, the movable portion 10 and the fixed substrate portion 20 are joined. There is no limitation in particular in the joining method. The movable portion 10 and the fixed substrate portion 20 may be joined by, for example, normal temperature bonding. In the normal temperature bonding, for example, the surface of the movable portion side plated portion 14 of the movable portion 10 facing the fixed substrate portion 20 and the surface of the fixed substrate portion 20 facing the movable portion 10 of the fixed substrate side plated portion 24 are A process of smoothing the surface and a process of removing impurities from the surface to clean the surface are performed. When the movable-part-side plated part 14 subjected to these treatments comes into contact with the fixed-substrate-side plated part 24, the intermolecular force acting between the movable-part-side plated part 14 and the fixed-substrate-side plated part 24 causes the movable part to move. 10 and the fixed substrate portion 20 are joined. FIG. 16I illustrates a state in which three pressure sensors 100 manufactured by the steps of FIGS. 16A to 16H are arranged side by side so as to share the sheet substrate 11. As illustrated in FIG. 16I, the pressure sensor 100 can widen the area to be subjected to pressure detection by sharing the sheet substrate 11 and arranging the plurality of sensor elements 101.
 また、可動部10と固定基板部20の接合工程において可動部側メッキ部14及び固定基板側メッキ部24の表面を平坦化する処理を行わずに、可動部10、固定基板部20それぞれの製造工程で、表面の平坦性を担保するようにしてもよい。例えば、可動部10の製造工程において、シート基板11に対して可動電極12となる金属(例えば銅)をCMP(Chemical Mechanical Polishing)処理して平坦にし、その上にスパッタ装置で可動部側メッキ部14を成膜するのであってもよい。 In addition, in the bonding step of the movable portion 10 and the fixed substrate portion 20, manufacturing of the movable portion 10 and the fixed substrate portion 20 is performed without performing a process of flattening the surfaces of the movable portion side plated portion 14 and the fixed substrate side plated portion 24. The flatness of the surface may be ensured in the process. For example, in the manufacturing process of the movable portion 10, metal (for example, copper) to be the movable electrode 12 is planarized by CMP (Chemical Mechanical Polishing) processing to the sheet substrate 11 and planarized, and the movable portion side plated portion 14 may be formed into a film.
 以上で開示した実施形態や変形例はそれぞれ組み合わせる事ができる。 The embodiments and modifications disclosed above can be combined with each other.
 100、100a、100b、100c・・・圧力センサ
 10・・・可動部
 11・・・シート基板
 12・・・可動電極
 13・・・中空部
 121・・・第1可動電極
 122・・・第2可動電極
 14・・・可動部側メッキ部
 141・・・第1メッキ部
 142・・・第2メッキ部
 15・・・信号線
 16、16a、16b・・・GND線
 18・・・第1中空部
 19・・・第2中空部
 20・・・固定基板部
 21・・・基板部
 22・・・固定電極
 23・・・絶縁部
 24・・・固定基板側メッキ部
 241・・・第3メッキ部
 242・・・第4メッキ部
 51・・・レジスト膜
 200・・・コネクタ
 231・・・絶縁膜
 300・・・静電容量測定回路
 301・・・マルチプレクサ
 302・・・コンバータ
100, 100a, 100b, 100c ... pressure sensor 10 ... movable portion 11 ... sheet substrate 12 ... movable electrode 13 ... hollow portion 121 ... first movable electrode 122 ... second Movable electrode 14 Movable part side plated part 141 First plated part 142 Second plated part 15 Signal line 16, 16a, 16b GND line 18 First hollow Section 19: Second hollow portion 20: Fixed substrate portion 21: Substrate portion 22: Fixed electrode 23: Insulation portion 24: Fixed substrate side plated portion 241: Third plating Part 242: Fourth plated part 51: Resist film 200: Connector 231: Insulating film 300: Capacitance measurement circuit 301: Multiplexer 302: Converter

Claims (3)

  1.  可撓性を有するシート基板および前記シート基板に設けられた複数の第1の電極を含むフレキシブル基板と、
     前記第1の電極に対向して配置される第2の電極を含み、前記フレキシブル基板との間に中空部を介して前記フレキシブル基板に対向配置された複数の硬質基板と、
     を備え、
     前記中空部において、前記第1の電極が前記第2の電極に対して撓むことで生じる静電容量の変化を検出することにより、前記第1の電極における前記第2の電極との対向面に向けて印加される圧力を測定する、静電容量式圧力センサであって、
     複数の前記硬質基板の長手方向が、前記シート基板の長手方向と一致又は直交するように、複数の前記硬質基板が前記シート基板に配置されている、
     静電容量式圧力センサ。
    A flexible substrate including a flexible sheet substrate and a plurality of first electrodes provided on the sheet substrate;
    A plurality of hard substrates including a second electrode disposed to face the first electrode, and disposed to face the flexible substrate via the hollow portion between the second electrode and the flexible substrate;
    Equipped with
    In the hollow portion, a surface of the first electrode facing the second electrode is detected by detecting a change in capacitance caused by the first electrode bending with respect to the second electrode. A capacitive pressure sensor that measures the pressure applied towards the
    The plurality of hard substrates are disposed on the sheet substrate such that the longitudinal direction of the plurality of hard substrates coincides with or is orthogonal to the longitudinal direction of the sheet substrate.
    Capacitive pressure sensor.
  2.  複数の前記硬質基板が、短辺と長辺とを有する長方形であり、
     複数の前記硬質基板の前記長辺が伸びる方向と、前記シート基板の長手方向とが一致するように、複数の前記硬質基板が前記シート基板に配置され、
     複数の前記硬質基板のうち隣り合う2つの前記硬質基板の前記短辺同士が向かい合っている、
     請求項1に記載の静電容量式圧力センサ。
    The plurality of hard substrates are rectangles having short sides and long sides,
    The plurality of hard substrates are disposed on the sheet substrate such that the direction in which the long sides of the plurality of hard substrates extend and the longitudinal direction of the sheet substrate coincide with each other.
    The short sides of two adjacent ones of the rigid substrates of the plurality of rigid substrates face each other,
    The capacitive pressure sensor according to claim 1.
  3.  複数の前記硬質基板が、短辺と長辺とを有する長方形であり、
     複数の前記硬質基板の前記短辺が伸びる方向と、前記シート基板の長手方向とが一致するように、複数の前記硬質基板が前記シート基板に配置され、
     複数の前記硬質基板のうち隣り合う2つの前記硬質基板の前記長辺同士が向かい合っている、
     請求項1に記載の静電容量式圧力センサ。
    The plurality of hard substrates are rectangles having short sides and long sides,
    The plurality of hard substrates are arranged on the sheet substrate such that the direction in which the short sides of the plurality of hard substrates extend and the longitudinal direction of the sheet substrate coincide with each other.
    The long sides of two adjacent ones of the plurality of rigid substrates adjacent to each other face each other,
    The capacitive pressure sensor according to claim 1.
PCT/JP2018/040368 2017-11-15 2018-10-30 Capacitance-type pressure sensor WO2019098015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220487A JP6773007B2 (en) 2017-11-15 2017-11-15 Capacitive pressure sensor
JP2017-220487 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098015A1 true WO2019098015A1 (en) 2019-05-23

Family

ID=66540196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040368 WO2019098015A1 (en) 2017-11-15 2018-10-30 Capacitance-type pressure sensor

Country Status (3)

Country Link
JP (1) JP6773007B2 (en)
TW (1) TW201923367A (en)
WO (1) WO2019098015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162384A (en) * 2020-03-31 2021-10-11 豊田合成株式会社 Sensor unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026499A (en) * 2021-10-25 2023-04-28 鹏鼎控股(深圳)股份有限公司 Pressure sensing device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584625A (en) * 1984-09-11 1986-04-22 Kellogg Nelson R Capacitive tactile sensor
US5961080A (en) * 1996-11-15 1999-10-05 The University Of Mississippi System for efficient control of flow separation using a driven flexible wall
JP2014016168A (en) * 2012-07-05 2014-01-30 Terumo Corp Load distribution measurement system and load distribution measurement device
JP2015521303A (en) * 2012-03-30 2015-07-27 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシ An electronic device that can be attached to the surface and can be attached to an accessory

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523083U (en) * 1991-09-10 1993-03-26 石川島播磨重工業株式会社 Fluid pressure detector on the surface of an object
JP2005207993A (en) * 2004-01-26 2005-08-04 Alps Electric Co Ltd Bearing pressure distribution sensor, and manufacturing method for bearing pressure distribution sensor
KR100643756B1 (en) * 2004-09-10 2006-11-10 삼성전자주식회사 Flexible device, flexible pressure sensor, and fabrication method thereof
JP5983845B2 (en) * 2015-01-15 2016-09-06 大日本印刷株式会社 Pressure sensor and connecting member manufacturing method
JP2017044590A (en) * 2015-08-27 2017-03-02 アルプス電気株式会社 Pressing force detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584625A (en) * 1984-09-11 1986-04-22 Kellogg Nelson R Capacitive tactile sensor
US5961080A (en) * 1996-11-15 1999-10-05 The University Of Mississippi System for efficient control of flow separation using a driven flexible wall
JP2015521303A (en) * 2012-03-30 2015-07-27 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシ An electronic device that can be attached to the surface and can be attached to an accessory
JP2014016168A (en) * 2012-07-05 2014-01-30 Terumo Corp Load distribution measurement system and load distribution measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162384A (en) * 2020-03-31 2021-10-11 豊田合成株式会社 Sensor unit
JP7200967B2 (en) 2020-03-31 2023-01-10 豊田合成株式会社 sensor unit

Also Published As

Publication number Publication date
JP6773007B2 (en) 2020-10-21
TW201923367A (en) 2019-06-16
JP2019090732A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
KR100908124B1 (en) Pressure sensor for measuring blood pressure and manufacturing method thereof
US9257632B2 (en) Physical quantity sensor and process for production thereof
US7481113B2 (en) Semiconductor sensor with projection for preventing proof mass from sticking to cover plate
WO2019098015A1 (en) Capacitance-type pressure sensor
TWI671510B (en) Capacitive pressure sensor
WO2019098014A1 (en) Capacitance-type pressure sensor
JP6773008B2 (en) Capacitive pressure sensor
US20150353345A1 (en) Vertical Hybrid Integrated MEMS ASIC Component Having A Stress Decoupling Structure
JP6834919B2 (en) Capacitive pressure sensor
JP6696494B2 (en) Capacitive pressure sensor
JP6353162B2 (en) Deformable apparatus and method
JP6922797B2 (en) Capacitive pressure sensor
JP6922798B2 (en) Capacitive pressure sensor
JP6923945B2 (en) Force sensor and manufacturing method of force sensor
US20180160918A1 (en) Pulse wave measurement device
JP7370819B2 (en) sensor chip
US20220070590A1 (en) Piezoresistive microphone with arc-shaped springs
JP5291517B2 (en) Inner dimension measuring instrument
JP2008157740A (en) Pressure sensor
CN112197891A (en) Sensor, temperature and pressure detection method and sensing device
JP2016206062A (en) Sensor
JP2010197270A (en) Method of manufacturing acceleration sensor element and acceleration sensor element
JP2011047663A (en) Capacitance sensor and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878946

Country of ref document: EP

Kind code of ref document: A1