JP5291517B2 - Inner dimension measuring instrument - Google Patents

Inner dimension measuring instrument Download PDF

Info

Publication number
JP5291517B2
JP5291517B2 JP2009092896A JP2009092896A JP5291517B2 JP 5291517 B2 JP5291517 B2 JP 5291517B2 JP 2009092896 A JP2009092896 A JP 2009092896A JP 2009092896 A JP2009092896 A JP 2009092896A JP 5291517 B2 JP5291517 B2 JP 5291517B2
Authority
JP
Japan
Prior art keywords
contact
space
measuring instrument
displacement sensor
dimension measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009092896A
Other languages
Japanese (ja)
Other versions
JP2010243350A (en
Inventor
淳 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2009092896A priority Critical patent/JP5291517B2/en
Publication of JP2010243350A publication Critical patent/JP2010243350A/en
Application granted granted Critical
Publication of JP5291517B2 publication Critical patent/JP5291517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring an internal size which is applicable to a cylinder gage with a small diameter, has a simple structure, and enables accurate measurement of the internal size. <P>SOLUTION: The device for measuring the internal size includes: a plurality of contacts 110 in contact with an object to be measured; a bottomed cylindrical member 120 provided inside the plurality of contacts 110, having a space 136 inside itself and having the space 136 deforming by a change in distance between the plurality of contacts 110; and a displacement sensor 140 put on the opening 120A of the bottomed cylindrical member 120 to seal the space 136 and also for detecting an amount of flexure of itself caused by the deformation of the space 136. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、内側寸法測定器に係り、特に、小口径シリンダゲージプローブなどの狭い間隙部に組込み可能な高分解能な内側寸法測定器に関する。   The present invention relates to an inner dimension measuring instrument, and more particularly to a high-resolution inner dimension measuring instrument that can be incorporated in a narrow gap such as a small-diameter cylinder gauge probe.

被測定物の孔径や溝幅等を測定する内側寸法測定器として、シリンダゲージが知られている。従来の小口径シリンダゲージは、被測定物の内壁の直径方向の変位をメカ機構を用いて直交方向に変換し伝達する方法を用いている。例えば、特許文献1では、一対の接触子間の変位量をカムを介して、その一対の接触子が配置されている方向と直交する方向に配置されたロッドに変位量を伝達して、その変位量を表示器で表示している。   A cylinder gauge is known as an inner dimension measuring instrument for measuring the hole diameter, groove width, and the like of an object to be measured. The conventional small-diameter cylinder gauge uses a method in which the displacement in the diametrical direction of the inner wall of the object to be measured is converted into an orthogonal direction using a mechanical mechanism and transmitted. For example, in Patent Document 1, the amount of displacement between a pair of contacts is transmitted via a cam to a rod disposed in a direction orthogonal to the direction in which the pair of contacts are disposed. The amount of displacement is displayed on the display.

特開2003−28603号公報JP 2003-28603 A

しかし、特許文献1に示されるような内側寸法測定器は、その構造上複雑であり、例えば直径が数mm以下の小口径シリンダゲージに適用する場合には、接触子、カム、及びロッドそれぞれにおけるガタや摩擦の影響が相対的に大きくなり、精度の高い測定が困難となる。同時に、用いられる接触子には高い加工精度が必要とされ、且つその作製が困難で、コスト高になるといったことが問題として挙げられる。   However, the inner dimension measuring instrument as shown in Patent Document 1 is complicated in its structure. For example, when applied to a small-diameter cylinder gauge having a diameter of several millimeters or less, each of the contact, cam, and rod is used. The effects of backlash and friction become relatively large, making it difficult to measure with high accuracy. At the same time, the contactors used are required to have high processing accuracy, and it is difficult to produce them, resulting in high costs.

本発明は、前記従来の問題点を解決するべくなされたもので、構成が単純で小口径シリンダゲージにも適用可能で、且つ高精度な内側寸法測定を可能にすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to have a simple configuration, be applicable to a small-diameter cylinder gauge, and enable highly accurate inner dimension measurement.

本願の請求項1に係る発明は、被測定物に接触する複数の接触部と、該複数の接触部の内側に配置されると共に、該複数の接触部間の距離の変化で変形する空間を内部に有する有底筒状部材と、前記空間を密閉するように該有底筒状部材の開口部に取付けられると共に、該空間の変形で生じる自身の撓み量を検出する変位センサと、を備え、該有底筒状部材が、更に、外周に複数の弾性部を備え、該複数の弾性部が前記複数の接触部の内側に当接したことにより、前記課題を解決したものである。 The invention according to claim 1 of the present application includes a plurality of contact portions that are in contact with an object to be measured, and a space that is disposed inside the plurality of contact portions and that is deformed by a change in the distance between the plurality of contact portions. A bottomed tubular member provided inside, and a displacement sensor that is attached to the opening of the bottomed tubular member so as to seal the space, and detects an amount of bending of the space due to deformation of the space. The bottomed cylindrical member further includes a plurality of elastic portions on the outer periphery, and the plurality of elastic portions are in contact with the inside of the plurality of contact portions, thereby solving the problem.

本願の請求項2に係る発明は、前記複数の弾性部を凸形状とし、該複数の弾性部を前記複数の接触部それぞれの内側に点で当接させたものである。 In the invention according to claim 2 of the present application, the plurality of elastic portions are formed in a convex shape , and the plurality of elastic portions are brought into contact with the insides of the plurality of contact portions at points.

本願の請求項3に係る発明は、少なくとも前記変位センサをMEMSプロセスにより製作したものである。ここで、MEMS(Micro Electro Mechanical Systems)プロセスとは、主にシリコン基板に対して行うフォトリソグラフィ技術、薄膜成形技術、及びエッチング技術などの半導体微細加工技術により機械・電子・光・化学などの複合機能を一体化した微小構造体を製作するためのプロセスをいう。   According to a third aspect of the present invention, at least the displacement sensor is manufactured by a MEMS process. Here, the MEMS (Micro Electro Mechanical Systems) process is a composite of mechanical, electronic, optical, chemical, etc. by semiconductor microfabrication technology such as photolithography technology, thin film forming technology, and etching technology mainly performed on a silicon substrate. A process for manufacturing a microstructure with integrated functions.

又、本願の請求項4に係る発明は、前記変位センサを、SOI基板で形成すると共に、前記空間の変形で生じる自身の撓み量を静電容量の変化として検出するとしたものである。ここで、SOI(Silicon On Insulator)基板とは、基材層上の絶縁層の上に活性層である単結晶シリコンを備える基板をいう。   In the invention according to claim 4 of the present application, the displacement sensor is formed of an SOI substrate, and the amount of bending caused by the deformation of the space is detected as a change in capacitance. Here, the SOI (Silicon On Insulator) substrate refers to a substrate including single crystal silicon which is an active layer on an insulating layer on a base material layer.

又、本願の請求項5に係る発明は、前記有底筒状部材に温度センサを設けたものである。   According to a fifth aspect of the present invention, the bottomed cylindrical member is provided with a temperature sensor.

又、本願の請求項6に係る発明は、前記有底筒状部材の開口部を、前記複数の接触部が配置される方向と直交する方向に設けたものである。   Moreover, the invention which concerns on Claim 6 of this application provides the opening part of the said bottomed cylindrical member in the direction orthogonal to the direction where these contact parts are arrange | positioned.

本発明によれば、構成が単純で且つ高精度な内側寸法測定が可能となる。このため、高性能な内側寸法測定器を低コストで提供することが可能となる。そして、少なくとも変位センサがMEMSプロセスにより製作された場合には、特に小口径シリンダゲージ用として高精度な内側寸法測定が可能となる。   According to the present invention, it is possible to measure the inner dimension with a simple configuration and high accuracy. For this reason, it is possible to provide a high-performance inner dimension measuring instrument at a low cost. When at least the displacement sensor is manufactured by the MEMS process, it is possible to measure the inner dimension with high accuracy particularly for a small-diameter cylinder gauge.

本発明の第1実施形態に係る内側寸法測定器である内径測定器の概略斜視図1 is a schematic perspective view of an inner diameter measuring instrument that is an inner dimension measuring instrument according to a first embodiment of the present invention. 同じく内径測定器の縦断面模式図Similarly, a longitudinal cross-sectional schematic diagram of the inner diameter measuring instrument 同じく内径測定器の横断面模式図Similarly, a cross-sectional schematic diagram of the inner diameter measuring instrument 同じく内径測定器の接触部の模式図Schematic diagram of the contact part of the inner diameter measuring device 同じく内径測定器の筒部の分解模式図Similarly, an exploded view of the cylindrical part of the inner diameter measuring instrument

以下、図面を参照して、本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1実施形態に係る内側寸法測定器である内径測定器の概略斜視図、図2は同じく内径測定器の縦断面模式図、図3は同じく内径測定器の図2のIII−III線に沿う横断面模式図、図4は同じく内径測定器の接触部の模式図、図5は同じく内径測定器の筒部の分解模式図、である。なお、各図は、必ずしも構成要素の大きさを正確に表したものではない。   1 is a schematic perspective view of an inner diameter measuring instrument which is an inner dimension measuring instrument according to the first embodiment of the present invention, FIG. 2 is a schematic longitudinal sectional view of the inner diameter measuring instrument, and FIG. FIG. 4 is a schematic diagram of a contact portion of the inner diameter measuring device, and FIG. 5 is an exploded schematic diagram of a cylindrical portion of the inner diameter measuring device. In addition, each figure does not necessarily represent the magnitude | size of a component correctly.

最初に、本実施形態の構成について説明する。   First, the configuration of the present embodiment will be described.

内径測定器100は、主に図1〜図3に示す如く、被測定物(の内壁)に直接接触する接触部材(接触子)102と、接触部材102を介して伝えられた変位を電気信号に変えるセンサ部材111と、接触部材102とセンサ部材111とを一体的に固定するベース部材172と、を有する。更に、センサ部材111は、接触部材102の内側に配置される有底筒状部材120と、メンブレン構造部(膜状構造部)150を有する変位センサ140と、主に変位センサ140の出力を増幅する電装セル170と、を備える。内径測定器100の大きさは、本実施形態では、縦横幅方向でいずれの寸法も1mm以下である。しかし、本発明は、必ずしも各方向で1mm以下に制限されるものではない。   As shown mainly in FIGS. 1 to 3, the inner diameter measuring device 100 is a contact member (contact) 102 that is in direct contact with an object to be measured (its inner wall) and a displacement transmitted via the contact member 102 as an electrical signal. And a base member 172 that integrally fixes the contact member 102 and the sensor member 111 to each other. Furthermore, the sensor member 111 amplifies the output of the displacement sensor 140, which mainly includes a bottomed cylindrical member 120 disposed inside the contact member 102, a displacement sensor 140 having a membrane structure (film-like structure) 150, and the like. And an electrical component cell 170 to be provided. In the present embodiment, the size of the inner diameter measuring instrument 100 is 1 mm or less in both the vertical and horizontal width directions. However, the present invention is not necessarily limited to 1 mm or less in each direction.

接触部材102は、図4に示す如く、支持部104、ビーム部106、カバー部108、及び接触部110を有する。支持部104は、図2に示す如く、複数のビーム部106を介してそれぞれのカバー部108に設けられた接触部110を変位センサ140に固定している。図2に示す如く、本実施形態では、支持部104は、周方向で連続するリング形状を有して、カバー部108と共に、全てのビーム部106(本実施形態では2つ)と一体的に成形されている。即ち、接触部110を除き、接触部材102は円筒形状の部材から一体的に容易に成形することができる。支持部104は、ベース部材172の外周に固定されている。   As shown in FIG. 4, the contact member 102 includes a support portion 104, a beam portion 106, a cover portion 108, and a contact portion 110. As shown in FIG. 2, the support part 104 fixes the contact part 110 provided on each cover part 108 to the displacement sensor 140 via a plurality of beam parts 106. As shown in FIG. 2, in this embodiment, the support portion 104 has a ring shape that is continuous in the circumferential direction, and is integrated with all the beam portions 106 (two in this embodiment) together with the cover portion 108. Molded. That is, except for the contact portion 110, the contact member 102 can be easily molded integrally from a cylindrical member. The support portion 104 is fixed to the outer periphery of the base member 172.

ビーム部106は、図4に示す如く、周方向で幅が狭く(本実施形態ではカバー部108よりも狭い幅)成形されて、中心軸O方向で各カバー部108を支持している。このため、中心軸O方向への力Fv(図2)が加わっても、カバー部108の内側に力を伝えないように、カバー部108を支持することができる。同時に、中心軸Oに向かう方向(半径方向と称する)への力Fh(図2)に対しては高い感度で、カバー部108を変位させることができる。   As shown in FIG. 4, the beam portion 106 is formed to have a narrow width in the circumferential direction (in this embodiment, a narrower width than the cover portion 108), and supports each cover portion 108 in the central axis O direction. For this reason, even if the force Fv (FIG. 2) in the direction of the central axis O is applied, the cover portion 108 can be supported so as not to transmit the force to the inside of the cover portion 108. At the same time, the cover 108 can be displaced with high sensitivity to a force Fh (FIG. 2) in a direction toward the central axis O (referred to as a radial direction).

カバー部108は、図4に示す如く、それぞれビーム部106と一体に成形されて、周方向に等間隔で複数(本実施形態では2つ)並べられている。なお、必ずしもカバー部108の周方向の幅がビーム部106の周方向の幅よりも広い必要はない。カバー部108は、有底筒状部材120の弾性部126が変形した際にその接触する領域が点から面へと拡がっても、その面の領域をそのカバー部108の内側に確保でき、且つ接触部110を安定して支持できれば、ビーム部106と同等以下の幅であってもよい。   As shown in FIG. 4, each of the cover portions 108 is formed integrally with the beam portion 106, and a plurality (two in this embodiment) are arranged at equal intervals in the circumferential direction. Note that the circumferential width of the cover portion 108 does not necessarily need to be wider than the circumferential width of the beam portion 106. The cover part 108 can secure the area of the surface inside the cover part 108 even if the area where the elastic part 126 of the bottomed tubular member 120 deforms expands from a point to a surface when the elastic part 126 of the bottomed cylindrical member 120 is deformed, and As long as the contact portion 110 can be stably supported, the width may be equal to or smaller than that of the beam portion 106.

接触部110は、図4に示す如く、カバー部108に各々設けられている。そして、接触部110の外側表面は、被測定物の中空部表面(内壁)に接触する部分となる。接触部110の形は球形であり、その表面の一点で被測定物と接触するので、高い感度で正確に変位することができる。接触部110には、耐摩耗性に優れた超硬合金球(主成分はタングステンカーバイト)を用いるのが好ましい。   As shown in FIG. 4, the contact portions 110 are provided on the cover portions 108. And the outer surface of the contact part 110 becomes a part which contacts the hollow part surface (inner wall) of a to-be-measured object. Since the shape of the contact part 110 is a spherical shape and contacts the object to be measured at one point on the surface, it can be accurately displaced with high sensitivity. For the contact portion 110, it is preferable to use a cemented carbide sphere excellent in wear resistance (main component is tungsten carbide).

このような接触部材102の構成により、接触部110に中心軸O方向の力(図2で矢印Fv)が作用していても、その力Fvは支持部104で受けることとなり、接触部110の内側に配置された有底筒状部材120に伝わることを防止することができる。同時に、半径方向の変位のみ(図2で矢印Fh)を有底筒状部材120に正確に伝えることができる。即ち、接触部材102は、簡単な構造でありながら、接触部110の半径方向の位置変化を高い感度で正確に有底筒状部材120に伝えて、有底筒状部材120の破損や磨耗損を防止して、有底筒状部材120の長寿命化を図ることができる。   With such a configuration of the contact member 102, even if a force in the central axis O direction (arrow Fv in FIG. 2) is applied to the contact portion 110, the force Fv is received by the support portion 104, and the contact portion 110 Transmission to the bottomed cylindrical member 120 arranged on the inner side can be prevented. At the same time, only the radial displacement (arrow Fh in FIG. 2) can be accurately transmitted to the bottomed tubular member 120. That is, the contact member 102 has a simple structure, but accurately transmits the position change in the radial direction of the contact portion 110 to the bottomed tubular member 120 with high sensitivity, so that the bottomed tubular member 120 is damaged or worn. This can prevent the bottomed cylindrical member 120 from extending its life.

有底筒状部材120は、図1に示す如く、主に筒部122と弾性部126と底部128とから構成されている。筒部122は、外径600μm程度の円筒中空パイプであり、その側面には接触部110の位置に対応して、凸形状の弾性部126を外周に突出させるための弾性部用孔124(図2、図5)が複数(本実施形態では2つ)等間隔で設けられている。図5に示す如く、弾性部126は、シリコーンゴムなどの変形性に富む材料でできており、凸部126Aとその外周部126Bとを有する。凸部126Aの先端部分は、接触部110(厳密には接触部110を支持するカバー部108)の内側に点で接触する構成とされている。そして、凸部126Aの内側は、その外形に倣う形で凹形状に成形されている(必ずしも凹形状でなくてよい)。外周部126Bは弾性部用孔124よりも大きく、筒部122の内側から外周部126Bを接着固定することで、筒部122の内側の空間136の密封性が確保される。このため、接触部110の半径方向の変位が高い感度で正確に弾性部126へ伝わり、空間136の密封性を保持しつつ、弾性部126が変形する。   As shown in FIG. 1, the bottomed cylindrical member 120 mainly includes a cylindrical portion 122, an elastic portion 126, and a bottom portion 128. The cylindrical portion 122 is a cylindrical hollow pipe having an outer diameter of about 600 μm, and on its side surface, corresponding to the position of the contact portion 110, an elastic portion hole 124 for projecting the convex elastic portion 126 to the outer periphery (see FIG. 2 and FIG. 5) are provided at equal intervals (two in this embodiment). As shown in FIG. 5, the elastic portion 126 is made of a highly deformable material such as silicone rubber, and has a convex portion 126A and an outer peripheral portion 126B. The tip portion of the convex portion 126A is configured to contact with the inside of the contact portion 110 (strictly, the cover portion 108 that supports the contact portion 110) with a point. The inner side of the convex portion 126A is formed in a concave shape following the outer shape (not necessarily a concave shape). The outer peripheral portion 126B is larger than the elastic portion hole 124, and by sealing and fixing the outer peripheral portion 126B from the inside of the cylindrical portion 122, the sealing property of the space 136 inside the cylindrical portion 122 is ensured. For this reason, the displacement of the contact portion 110 in the radial direction is accurately transmitted to the elastic portion 126 with high sensitivity, and the elastic portion 126 is deformed while maintaining the sealing property of the space 136.

有底筒状部材120の底部128は、図2に示す如く、筒部122と共に変形せずに空間136の密封状態を維持する。このため、底部128は、筒部122と同質の剛性の高い材料から構成されて、筒部122の下部に接着されている。筒部122の外周には、薄膜状の温度センサ130(図1)が形成されている。このため、温度センサを別に用意することなく、内径測定器100として使用環境温度を測定することが可能となる。即ち、内径測定器100として、構成部材の各熱膨張率に対して補正を行うと共に、空間136内の温度変化も測定できるので、高精度な寸法測定が可能となる。なお、温度センサ130を筒部122の外周に直接形成してもよいし、別体で形成後の温度センサ130を後から筒部122に貼付けてもよい。   As shown in FIG. 2, the bottom portion 128 of the bottomed tubular member 120 maintains the sealed state of the space 136 without being deformed together with the tubular portion 122. For this reason, the bottom portion 128 is made of a material having the same rigidity as the cylindrical portion 122 and is bonded to the lower portion of the cylindrical portion 122. A thin film temperature sensor 130 (FIG. 1) is formed on the outer periphery of the cylindrical portion 122. For this reason, it becomes possible to measure use environment temperature as the internal diameter measuring device 100, without preparing a temperature sensor separately. In other words, the inner diameter measuring device 100 can correct each coefficient of thermal expansion of the constituent member and also measure the temperature change in the space 136, thereby enabling highly accurate dimension measurement. In addition, the temperature sensor 130 may be directly formed on the outer periphery of the cylinder part 122, or the temperature sensor 130 after being formed separately may be attached to the cylinder part 122 later.

図2に示す如く、有底筒状部材120の開口部120Aにシール部材134を介して変位センサ140が取付けられる。そして、有底筒状部材120の内部の空間136が密閉される。なお、空間136には、空気もしくは作動油(流体で、反応性が低くシール能力を長寿命化可能なものが好ましい)などが充填されて、リークがないように各部材は接着剤などで厳重にシーリングされる。   As shown in FIG. 2, the displacement sensor 140 is attached to the opening 120 </ b> A of the bottomed cylindrical member 120 via the seal member 134. And the space 136 inside the bottomed cylindrical member 120 is sealed. The space 136 is filled with air or hydraulic oil (preferably fluid and low in reactivity and capable of extending the sealing performance), and each member is severely bonded with an adhesive or the like so as not to leak. Sealed.

変位センサ140は、図2に示す如く、SOI(Silicon On Insulator)基板142とガラス基板160とを備えて、MEMSプロセスで製作される。MEMS(Micro Electro Mechanical Systems)プロセスとは、主にシリコン基板に対して行うフォトリソグラフィ技術、薄膜成形技術、及びエッチング技術などの半導体微細加工技術により機械・電子・光・化学などの複合機能を一体化した微小構造体を製作するためのプロセスである。SOI基板142は、シリコンの基材層144と、絶縁層146と、活性層148とからなる。   As shown in FIG. 2, the displacement sensor 140 includes an SOI (Silicon On Insulator) substrate 142 and a glass substrate 160 and is manufactured by a MEMS process. The MEMS (Micro Electro Mechanical Systems) process is a combination of mechanical, electronic, optical, and chemical functions such as photolithography technology, thin film forming technology, and semiconductor micromachining technology such as etching technology, which are mainly performed on silicon substrates. This is a process for manufacturing a structured microstructure. The SOI substrate 142 includes a silicon base layer 144, an insulating layer 146, and an active layer 148.

図2で示す変位センサ140の製作について以下に説明する。フォトリソグラフィ技術とエッチング技術を用いて、活性層148に凹部152を形成する。又、基材層144から絶縁層146までを、凹部152よりも若干狭い幅の範囲で除去してメンブレン構造部150を成形する。なお、凹部152の深さは、ガラス基板160を接合した際に、メンブレン構造部150の対向面(図2でメンブレン構造部150の上側面)と電極膜162との間隔Gが2〜3μmとなるように形成する。ガラス基板160の表面のうち凹部152に対峙した領域に、電極膜162が薄膜成形技術により成形される。そして、電極膜162をメンブレン構造部150に対向させた状態で、活性層148とガラス基板160とを陽極接合する。ここで、貫通孔164は電極膜162と、貫通孔166、168は活性層148と、にそれぞれ導通を取るために設けられている。即ち、変位センサ140は、貫通孔164〜168を介して中心軸O方向のメンブレン構造部150(変位センサ140)の撓み量を電気容量の変化という形で検出することが可能となる。   The production of the displacement sensor 140 shown in FIG. 2 will be described below. A recess 152 is formed in the active layer 148 by using a photolithography technique and an etching technique. In addition, the membrane structure 150 is formed by removing the base material layer 144 to the insulating layer 146 in a range slightly narrower than the recess 152. The depth of the recess 152 is such that when the glass substrate 160 is bonded, the gap G between the opposing surface of the membrane structure 150 (the upper surface of the membrane structure 150 in FIG. 2) and the electrode film 162 is 2 to 3 μm. It forms so that it may become. An electrode film 162 is formed on the surface of the glass substrate 160 in a region facing the recess 152 by a thin film forming technique. Then, the active layer 148 and the glass substrate 160 are anodically bonded while the electrode film 162 is opposed to the membrane structure 150. Here, the through hole 164 is provided for electrical connection with the electrode film 162, and the through holes 166 and 168 are provided for electrical connection with the active layer 148. That is, the displacement sensor 140 can detect the amount of deflection of the membrane structure 150 (displacement sensor 140) in the central axis O direction through the through holes 164 to 168 in the form of a change in electric capacity.

ガラス基板160のもう一方の面(図2で上面)に電装セル170が取付けられている。電装セル170は、外形が円筒形状であり、内側に変位センサ140の出力を増幅するプリアンプや、温度センサ130への配線などを収納している(図2では省略)。   The electrical cell 170 is attached to the other surface (the upper surface in FIG. 2) of the glass substrate 160. The electrical cell 170 has a cylindrical outer shape, and houses a preamplifier that amplifies the output of the displacement sensor 140, wiring to the temperature sensor 130, and the like (not shown in FIG. 2).

電装セル170は、接触部材102と共に、図2の上側でベース部材172に固定されている。ベース部材172には取付ピン174が設けられている。取付ピン174により、内径測定器100が取付けられる測定子への機械的固定がなされる。同時に、電装セル170との電気的接続がなされる。   The electrical cell 170 is fixed to the base member 172 on the upper side in FIG. A mounting pin 174 is provided on the base member 172. The mounting pin 174 is mechanically fixed to a measuring element to which the inner diameter measuring device 100 is mounted. At the same time, electrical connection with the electrical cell 170 is made.

次に、内径測定器100の動作について説明する。   Next, the operation of the inner diameter measuring device 100 will be described.

内径測定器100全体を、被測定物である、例えば元々内径測定器100の接触部110の外径よりも小さい内径の小口径ワークに挿入する。すると、小口径ワークの内壁で接触部110が押される。接触部110は内側に移動して、2つの接触部110間の距離が狭まる。このとき、接触部110は先端の一点で被測定物と接触するので、接触部110で得られる変位は、複数の点で被測定物と接触する場合に比べて、より正確且つ高感度となる。   The entire inner diameter measuring device 100 is inserted into a small workpiece having an inner diameter smaller than the outer diameter of the contact portion 110 of the inner diameter measuring device 100, which is the object to be measured. Then, the contact portion 110 is pushed by the inner wall of the small diameter workpiece. The contact part 110 moves inward, and the distance between the two contact parts 110 decreases. At this time, since the contact part 110 contacts the object to be measured at one point of the tip, the displacement obtained by the contact part 110 becomes more accurate and sensitive than the case of contacting the object to be measured at a plurality of points. .

接触部110の内側への変位によって、弾性部126が半径方向で中心軸O側に押されて、空間136が変形する。空間136は密閉されているので、空間136の変形で空間136内の圧力が変化する。この圧力変化で、2つの接触部110の配置される方向と直交する中心軸O方向に取付けられた変位センサ140のメンブレン構造部150が押されてメンブレン構造部150の中央部が撓む。なお、各弾性部126はカバー部108(接触部110)それぞれの内側に一点で当接するので、メンブレン構造部150の撓み量が、接触部110間の距離の変化を、複数の点で当接するよりも正確且つ高感度に反映する。   Due to the inward displacement of the contact part 110, the elastic part 126 is pushed toward the central axis O in the radial direction, and the space 136 is deformed. Since the space 136 is sealed, the pressure in the space 136 changes due to the deformation of the space 136. Due to this pressure change, the membrane structure 150 of the displacement sensor 140 attached in the direction of the central axis O perpendicular to the direction in which the two contact portions 110 are arranged is pushed, and the center of the membrane structure 150 is bent. In addition, since each elastic part 126 contact | abuts inside each cover part 108 (contact part 110) at one point, the bending amount of the membrane structure part 150 contact | abuts the change of the distance between the contact parts 110 in several points. More accurate and sensitive.

メンブレン構造部150の中央部の撓みにより、中心軸O方向においてメンブレン構造部150と電極膜162との距離の変化が生じるので、メンブレン構造部150と電極膜162との間の静電容量が変化することとなる。このときのメンブレン構造部150と電極膜162との距離の変化による静電容量の変化は微小であるが、変位センサ140に隣接する電装セル170において静電容量の変化が増幅される。このため、電装セル170では、ノイズの影響を最小限に増幅することができる。ここで、静電容量の変化量が接触部110の変化量にほぼ比例するので、取付ピン174からの出力である増幅された静電容量の変化量を調べることで、接触部110間の距離の変化をノイズの影響が少ない状態(誤差の少ない状態)で求めることができる(変位センサ140による自身の撓み量の検出)。   The distance between the membrane structure 150 and the electrode film 162 changes in the central axis O direction due to the deflection of the central part of the membrane structure 150, so that the capacitance between the membrane structure 150 and the electrode film 162 changes. Will be. At this time, the change in the capacitance due to the change in the distance between the membrane structure 150 and the electrode film 162 is minute, but the change in the capacitance is amplified in the electrical cell 170 adjacent to the displacement sensor 140. For this reason, in the electric equipment cell 170, the influence of noise can be amplified to the minimum. Here, since the change amount of the capacitance is substantially proportional to the change amount of the contact portion 110, the distance between the contact portions 110 can be determined by examining the change amount of the amplified capacitance that is the output from the mounting pin 174. Can be obtained in a state where the influence of noise is small (a state where there is little error) (detection of the amount of deflection by the displacement sensor 140).

このように、変位センサ140は、MEMSプロセスを用いて製造されるので、変位センサ140は小型で一括加工でき、低コストで特性ばらつきを少くすることが可能である。更に、SOI基板142を用いた静電容量型の変位センサ140なので、メンブレン構造部150を少ない工数で容易に形成でき、変位センサ140を歩留り高く製作でき、且つその特性をより安定させることができる。このため、変位センサ140を組み込んだ内径測定器100は小型化が容易であり、同時に高性能化を図ることができる。   As described above, since the displacement sensor 140 is manufactured by using the MEMS process, the displacement sensor 140 is small and can be collectively processed, and the characteristic variation can be reduced at low cost. Furthermore, since the capacitance type displacement sensor 140 using the SOI substrate 142 is used, the membrane structure 150 can be easily formed with less man-hours, the displacement sensor 140 can be manufactured with a high yield, and its characteristics can be further stabilized. . For this reason, the inner diameter measuring instrument 100 incorporating the displacement sensor 140 can be easily reduced in size, and at the same time, higher performance can be achieved.

又、変位センサ140は、接触部110が配置される方向と直交する方向(中心軸O方向)に設けられた有底筒状部材120の開口部120Aに取付けられているので、仮に変位センサ140の厚みが厚くても、接触部110間の距離には影響を与えずに小さくできて、1mm以下という極めて小さな隙間の内径であっても測定することを可能とする。   Further, since the displacement sensor 140 is attached to the opening 120A of the bottomed cylindrical member 120 provided in a direction (center axis O direction) orthogonal to the direction in which the contact portion 110 is arranged, the displacement sensor 140 is temporarily assumed. Even if the thickness of the electrode is thick, the distance between the contact portions 110 can be reduced without affecting the distance, and even an inner diameter of a very small gap of 1 mm or less can be measured.

又、環境温度が変化した場合であっても、温度センサ130からの出力により温度変化による静電容量の変動を補正することで、温度補正しない場合に比べて、より高精度な測定を行うことが可能となる。又、温度センサ130が一体化されているので、小型の寸法測定が可能である。   Even when the environmental temperature changes, more accurate measurement can be performed by correcting the variation in capacitance due to the temperature change by the output from the temperature sensor 130, compared to the case where the temperature is not corrected. Is possible. In addition, since the temperature sensor 130 is integrated, a small size measurement is possible.

従って、本発明によれば、内径測定器100の構成が単純でありながら且つ高精度・高分解能な内側寸法測定が可能となる。このため、内側寸法測定器として高性能な内径測定器100を低コストで提供することが可能となる。そして、変位センサ140がMEMSプロセスにより製作されているので、特に小口径シリンダゲージに適用して高精度な内側寸法測定が可能である。   Therefore, according to the present invention, it is possible to measure the inner dimension with high accuracy and high resolution while the configuration of the inner diameter measuring instrument 100 is simple. For this reason, it is possible to provide a high-performance inner diameter measuring instrument 100 as an inner dimension measuring instrument at a low cost. And since the displacement sensor 140 is manufactured by the MEMS process, it can be applied to a small-diameter cylinder gauge, and highly accurate inner dimension measurement is possible.

本発明について上記実施形態を挙げて説明したが、本発明は上記実施形態に限定されるものではない。即ち本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことは言うまでもない。   Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment. That is, it goes without saying that improvements and design changes can be made without departing from the scope of the present invention.

本実施形態においては、小口径シリンダゲージを対象としたが、本発明はこれに限定されずに、大きな口径に対して適用してもよい。   In the present embodiment, the small-diameter cylinder gauge is targeted, but the present invention is not limited to this, and may be applied to a large-diameter.

又、本実施形態においては、接触部110と弾性部126とはそれぞれ2つであったが、本発明はこれに限定されない。例えば、それぞれ3つ以上設けてもよい。その場合には、内径の測定を更に正確に行うことが可能となる。   In the present embodiment, there are two contact portions 110 and two elastic portions 126, but the present invention is not limited to this. For example, three or more of each may be provided. In that case, the inner diameter can be measured more accurately.

又、本実施形態においては、複数の弾性部126が複数の接触部110それぞれの内側に点で当接していたが、本発明はこれに限定されない。例えば、面で当接してもよいし、支持する部分を持たずに弾性部の表面に膜状の接触部を直接成形してもよい。この場合には、更に構成が簡素で低コストの内側寸法測定器を提供することができる。   Moreover, in this embodiment, although the some elastic part 126 contact | abutted inside each of the some contact part 110 with a point, this invention is not limited to this. For example, the contact portion may be abutted on the surface, or a film-like contact portion may be directly formed on the surface of the elastic portion without having a supporting portion. In this case, it is possible to provide a low-cost inner dimension measuring instrument having a simpler configuration.

又、本実施形態においては、変位センサ140がMEMSプロセスにより製作されていたが、本発明はこれに限定されない。例えば、内側寸法測定器の構成全てをMEMSプロセスで製作すれば、更に大量に均質な内側寸法測定器を提供できる。又、MEMSプロセスを全く用いなくても、構成が簡素であることからある程度の小型にすることもでき、従来よりも低コストで高精度な内側寸法測定器を提供することができる。   In the present embodiment, the displacement sensor 140 is manufactured by the MEMS process, but the present invention is not limited to this. For example, if the entire configuration of the inner dimension measuring device is manufactured by the MEMS process, a larger amount of the inner dimension measuring device can be provided in a larger amount. Further, even if no MEMS process is used, the configuration is simple and the size can be reduced to some extent. Thus, a highly accurate inner dimension measuring instrument can be provided at a lower cost than in the prior art.

又、本実施形態においては、変位センサ140が、SOI基板142に形成されると共に、空間136の変形で生じるメンブレン構造部150(変位センサ140)の撓み量を静電容量の変化として検出していたが、本発明はこれに限定されない。例えば、MEMSプロセスを用いても、SOI基板を用いない場合には、基板コストを低減できるので、低コストの変位センサを提供できる。又、変位センサは、静電容量の変化を用いなくても、例えば、撓みを抵抗変化で測定するということを利用する変位センサであってもよい。   In the present embodiment, the displacement sensor 140 is formed on the SOI substrate 142 and detects the amount of bending of the membrane structure 150 (displacement sensor 140) caused by the deformation of the space 136 as a change in capacitance. However, the present invention is not limited to this. For example, even when the MEMS process is used, when the SOI substrate is not used, the substrate cost can be reduced, so that a low-cost displacement sensor can be provided. Further, the displacement sensor may be a displacement sensor that utilizes the fact that the deflection is measured by a resistance change, for example, without using a change in capacitance.

又、本実施形態においては、有底筒状部材120に温度センサ130が設けられていたが、本発明はこれに限定されない。例えば、温度センサを設けない場合には、更に低コストとすることができ、内側寸法測定器とは別体に温度センサを配置して温度による補正を行うことも可能である。   Moreover, in this embodiment, although the temperature sensor 130 was provided in the bottomed cylindrical member 120, this invention is not limited to this. For example, when the temperature sensor is not provided, the cost can be further reduced, and the temperature sensor can be arranged separately from the inner dimension measuring device and the correction by the temperature can be performed.

又、本実施形態においては、変位センサ140は、接触部110が配置される方向と直交する方向(中心軸O方向)に設けられた有底筒状部材120の開口部120Aに取付けられていたが、本発明はこれに限定されない。例えば、開口部120Aの方向が、接触部の配置される方向であってよいし、又直交しないいずれの方向であってもよい。   In the present embodiment, the displacement sensor 140 is attached to the opening 120A of the bottomed cylindrical member 120 provided in a direction (center axis O direction) orthogonal to the direction in which the contact portion 110 is disposed. However, the present invention is not limited to this. For example, the direction of the opening 120A may be the direction in which the contact portion is disposed, or may be any direction that is not orthogonal.

又、本実施形態においては、接触部材102は円筒形状の部材から成形されたものであり、筒部122は円筒中空パイプであったが、本発明はこれに限定されない。例えば、これらが多角形の断面を有する中空部材であってよい。   In the present embodiment, the contact member 102 is formed from a cylindrical member and the cylindrical portion 122 is a cylindrical hollow pipe. However, the present invention is not limited to this. For example, these may be hollow members having a polygonal cross section.

又、本実施形態においては、図2に示す如く変位センサ140はほぼ円形であったが、本発明はこれに限定されない。例えば、多角形などであってもよい。その場合には、変位センサの成形が容易であり、SOI基板上のレイアウトの工夫で、SOI基板からの取り個数を増やすことができる。   In the present embodiment, the displacement sensor 140 is substantially circular as shown in FIG. 2, but the present invention is not limited to this. For example, it may be a polygon. In this case, the displacement sensor can be easily formed, and the number of pieces taken from the SOI substrate can be increased by devising the layout on the SOI substrate.

100…内径測定器
102…接触部材
104…支持部
106…ビーム部
108…カバー部
110…接触部
111…センサ部材
120…有底筒状部材
122…筒部
124…弾性部用孔
126…弾性部
128…底部
130…温度センサ
134…シール部材
136…空間
140…変位センサ
142…SOI基板
144…基材層
146…絶縁層
148…活性層
150…メンブレン構造部
152…凹部
160…ガラス基板
162…電極膜
164、166、168…貫通孔
170…電装セル
172…ベース部材
174…取付ピン
DESCRIPTION OF SYMBOLS 100 ... Inner diameter measuring device 102 ... Contact member 104 ... Support part
DESCRIPTION OF SYMBOLS 106 ... Beam part 108 ... Cover part 110 ... Contact part 111 ... Sensor member 120 ... Bottomed cylindrical member 122 ... Tube part 124 ... Elastic part hole 126 ... Elastic part 128 ... Bottom part 130 ... Temperature sensor 134 ... Seal member 136 ... Space 140 ... Displacement sensor 142 ... SOI substrate 144 ... Base material layer 146 ... Insulating layer 148 ... Active layer 150 ... Membrane structure part 152 ... Recessed part 160 ... Glass substrate 162 ... Electrode film 164, 166, 168 ... Through-hole 170 ... Electrical equipment cell 172 ... Base member 174 ... Mounting pin

Claims (6)

被測定物に接触する複数の接触部と、
該複数の接触部の内側に配置されると共に、該複数の接触部間の距離の変化で変形する空間を内部に有する有底筒状部材と、
前記空間を密閉するように該有底筒状部材の開口部に取付けられると共に、該空間の変形で生じる自身の撓み量を検出する変位センサと、
を備え
該有底筒状部材は、更に、外周に複数の弾性部を備え、該複数の弾性部が前記複数の接触部の内側に当接することを特徴とする内側寸法測定器。
A plurality of contact portions that contact the object to be measured;
A bottomed cylindrical member that is disposed inside the plurality of contact portions and has a space that is deformed by a change in the distance between the plurality of contact portions,
A displacement sensor that is attached to the opening of the bottomed tubular member so as to seal the space, and that detects a deflection amount of the space caused by deformation of the space;
Equipped with a,
Bottomed tubular member further comprises a plurality of resilient portions on the outer periphery, the inner sizer characterized that you contact resilient portions of said plurality of inside said plurality of contact portions.
前記複数の弾性部は凸形状とされ、該複数の弾性部が前記複数の接触部それぞれの内側に点で当接することを特徴とする請求項1に記載の内側寸法測定器。 The inner dimension measuring instrument according to claim 1, wherein the plurality of elastic portions are formed in a convex shape, and the plurality of elastic portions abut on the inner sides of the plurality of contact portions at points. 少なくとも前記変位センサがMEMSプロセスにより製作されることを特徴とする請求項1又は2に記載の内側寸法測定器。   The inner dimension measuring instrument according to claim 1, wherein at least the displacement sensor is manufactured by a MEMS process. 前記変位センサは、SOI基板に形成されると共に、前記空間の変形で生じる自身の撓み量を静電容量の変化として検出することを特徴とする請求項3に記載の内側寸法測定器。   4. The inner dimension measuring instrument according to claim 3, wherein the displacement sensor is formed on an SOI substrate and detects an amount of deflection caused by deformation of the space as a change in capacitance. 前記有底筒状部材に温度センサが設けられることを特徴とする請求項1乃至4のいずれかに記載の内側寸法測定器。   The inside dimension measuring instrument according to any one of claims 1 to 4, wherein a temperature sensor is provided in the bottomed cylindrical member. 前記有底筒状部材の開口部は、前記複数の接触部が配置される方向と直交する方向に設けられることを特徴とする請求項1乃至5のいずれかに記載の内側寸法測定器。   The inner dimension measuring instrument according to any one of claims 1 to 5, wherein the opening of the bottomed cylindrical member is provided in a direction orthogonal to a direction in which the plurality of contact portions are arranged.
JP2009092896A 2009-04-07 2009-04-07 Inner dimension measuring instrument Expired - Fee Related JP5291517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092896A JP5291517B2 (en) 2009-04-07 2009-04-07 Inner dimension measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092896A JP5291517B2 (en) 2009-04-07 2009-04-07 Inner dimension measuring instrument

Publications (2)

Publication Number Publication Date
JP2010243350A JP2010243350A (en) 2010-10-28
JP5291517B2 true JP5291517B2 (en) 2013-09-18

Family

ID=43096515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092896A Expired - Fee Related JP5291517B2 (en) 2009-04-07 2009-04-07 Inner dimension measuring instrument

Country Status (1)

Country Link
JP (1) JP5291517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446927B (en) * 2021-05-12 2023-05-23 潍柴动力股份有限公司 Device, method and system for measuring inner diameter of engine valve guide pipe
CN118149688B (en) * 2024-05-13 2024-07-19 荣成恒鑫动力科技股份有限公司 Device and method for detecting inner holes of motor punching sheet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965263U (en) * 1972-09-18 1974-06-07
JPS5236944U (en) * 1975-09-08 1977-03-16
JPS5425862A (en) * 1977-07-29 1979-02-27 Mitsubishi Heavy Ind Ltd Inside diameter measuring device
JPS5439066U (en) * 1977-08-23 1979-03-14
JPS6076637A (en) * 1983-10-03 1985-05-01 Hitachi Ltd Semiconductor pressure gage
JPH065189B2 (en) * 1985-12-16 1994-01-19 横河電機株式会社 Differential pressure converter
JPS6335905U (en) * 1986-08-27 1988-03-08
JPS63108231A (en) * 1986-10-25 1988-05-13 Kajirou Watanabe Volume measuring instrument for in-tank liquid storage body
JPS63298108A (en) * 1987-05-29 1988-12-05 Hiisu Eng:Kk Inner diameter measuring apparatus
EP0312761B1 (en) * 1987-10-09 1992-03-04 Marposs Societa' Per Azioni Device for checking linear dimensions of parts
JPH0380312U (en) * 1989-12-05 1991-08-16
FR2666408A1 (en) * 1990-09-05 1992-03-06 Framatome Sa Device for expanding a tubular member
US5063687A (en) * 1990-09-27 1991-11-12 Equipment Development Services Adjustable measuring parallels
JPH04313003A (en) * 1991-04-10 1992-11-05 Ando Electric Co Ltd Bore detector
JP2002340531A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Method for correcting approximate temperature in measurement of strain distribution due to optical fiber and strain change deciding method
JP2003028603A (en) * 2001-07-18 2003-01-29 Mitsutoyo Corp Dimension measuring device
JP4365264B2 (en) * 2004-04-28 2009-11-18 日本電信電話株式会社 Electronic component equipment
US7514285B2 (en) * 2006-01-17 2009-04-07 Honeywell International Inc. Isolation scheme for reducing film stress in a MEMS device
JP2008222235A (en) * 2007-03-08 2008-09-25 Tatsuno Corp Oil quantity measuring system
JP2008268104A (en) * 2007-04-24 2008-11-06 Alps Electric Co Ltd Liquid level sensor

Also Published As

Publication number Publication date
JP2010243350A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP6214072B1 (en) Force sensor
EP3076124B1 (en) Tactile probing system
WO2018029866A1 (en) Force sensor
US8333118B2 (en) Capacitive pressure sensor
KR101496774B1 (en) Capacitive pressure sensor with a groove for relieving diaphragm stresses
TWI568999B (en) Capacitive pressure sensor with improved electrode structure
US10704976B2 (en) Pressure sensor
US10359330B2 (en) Pressure sensor
KR101305775B1 (en) Flow rate measuring device and fluid pressure measuring device
KR20120004923A (en) Pressure gauge
US8561471B2 (en) Capacitive pressure sensor with improved electrode structure
JP5291517B2 (en) Inner dimension measuring instrument
JP6048947B2 (en) Tactile sensor
US9857258B2 (en) Pressure sensor to sense multi-directional movement
US10451507B2 (en) Pressure sensor
EP2990773B1 (en) Capacitive pressure sensor
US10890500B2 (en) Pressure sensor
WO2019098015A1 (en) Capacitance-type pressure sensor
Park et al. A capacitive absolute-pressure sensor with external pick-off electrodes
CN107735660B (en) Device for detecting mechanical decoupling pressure
JP6392863B2 (en) Pressure sensor
JP2007155359A (en) Pressure sensitive container
KR20120095109A (en) Calibration Sensor Target for Capacitive Displacement Sensor
JP2006090807A (en) Physical quantity sensor
JP2008020421A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees