JP2007155359A - Pressure sensitive container - Google Patents

Pressure sensitive container Download PDF

Info

Publication number
JP2007155359A
JP2007155359A JP2005347089A JP2005347089A JP2007155359A JP 2007155359 A JP2007155359 A JP 2007155359A JP 2005347089 A JP2005347089 A JP 2005347089A JP 2005347089 A JP2005347089 A JP 2005347089A JP 2007155359 A JP2007155359 A JP 2007155359A
Authority
JP
Japan
Prior art keywords
support
pressure
substrate
external force
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347089A
Other languages
Japanese (ja)
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005347089A priority Critical patent/JP2007155359A/en
Publication of JP2007155359A publication Critical patent/JP2007155359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To configure a pressure sensor in consideration of the structure of the pressure sensor, which simplifies the structure of a sensor system and makes the system compact. <P>SOLUTION: In order to solve problems, a structure is provided wherein a plurality of (two or more) support members with height are anchored so as to keep their distances to the principal plane of one side of a plate-like substrate which deforms in its thickness direction in response to an external pressure so that its fixed section becomes the supporting point, and a sensing member is fixed to the head of the support member. When the support substrate is applied with an external force along a direction parallel to its thickness direction and is deformed, the head of the support member is deformed in a direction perpendicular to the external force, i. e. , distances between heads of the support members are varied. As a result, an expansion or contraction force (stress) is applied to the sensing member. A change in the stress is sensed by measuring a frequency, a resistance, reflection of light or the like, thereby enabling an exact detection using a simple structure to be carried out at a low cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧力センサの構造において、センサシステムの構造の簡略化とシステムの小型化を実現する圧力センサ容器に関する。   The present invention relates to a pressure sensor container that achieves simplification of the structure of a sensor system and miniaturization of the system in the structure of a pressure sensor.

近年、ITS構想の実現化に伴い自動車の安全に対する関心が高まっている。その様な中で、特に高速道路上でのタイヤのバーストなど、空気圧トラブルによる事故は周辺車両までも巻き込んで大事故に発展する可能性が大きく、走行中のタイヤの空気圧モニタリングは欠かせない状況に成りつつあり、本圧力センサはこの様な社会的背景、必要性から開発されたものである。   In recent years, with the realization of the ITS concept, interest in automobile safety has increased. Amid such circumstances, accidents caused by air pressure problems such as tire bursts on expressways, etc., are likely to involve surrounding vehicles and develop into major accidents, and it is essential to monitor tire pressure while driving. This pressure sensor was developed from such a social background and necessity.

近年、市場では、製造法の簡便さからシリコンMEMSを利用した半導体圧力センサが多く使用されている。これらのセンサ構造の多くはMEMS加工技術を用いてシリコンウェハを薄壁化(ダイヤフラム)して凹部構造を形成し、パッケージ底部に固定してチャンバを構成する。この空間に導入する被測定空気の圧力変化による薄壁の変動を薄壁背面に構築したピエゾ抵抗を介して抵抗値変化として検知するものである。
特開2005−017050号公報 なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を本出願までに発見するに至らなかった。
In recent years, many semiconductor pressure sensors using silicon MEMS are used in the market because of the simplicity of the manufacturing method. In many of these sensor structures, a silicon wafer is thinned (diaphragm) using a MEMS processing technique to form a concave structure, and is fixed to the bottom of the package to constitute a chamber. The fluctuation of the thin wall due to the pressure change of the air to be measured introduced into this space is detected as a change in resistance value through a piezoresistor built on the back of the thin wall.
In addition, the applicant has not found any prior art documents related to the present invention by the present application other than the prior art documents specified by the prior art document information described above.

一般に使用される流体の圧力を測る圧力センサの例として、図4に機械的な動作で圧力を検知するものを示す。図4では加圧により変形する二重式ダイヤフラムに連動する棒がついており、その棒の動作変化量を読み取ることで加圧量を検知する構造である。
棒の直進動作(変動量)はラック&ピニオン機構を用いて回転機構に変換され、回転機構に付随する指針により変化量が表示される。
As an example of a pressure sensor that measures the pressure of a fluid that is generally used, FIG. 4 shows a sensor that detects a pressure by a mechanical operation. In FIG. 4, there is a bar linked to a double diaphragm that is deformed by pressurization, and the pressurization amount is detected by reading the operation change amount of the bar.
The straight movement (variation amount) of the rod is converted into a rotation mechanism using a rack and pinion mechanism, and the amount of change is displayed by a pointer attached to the rotation mechanism.

この様なシステムでは、全体の装置が大掛かりで、更に、機構が複雑となり、全体のシステム価格も高価なものになる可能性が高い。   In such a system, there is a high possibility that the entire apparatus is large, the mechanism is complicated, and the entire system price is expensive.

また、シリコンMEMSを使用した圧力センサでは、導入される被測定空気(環境中空気)が感知部となる薄壁に直接接触するため非測定空気が汚染されている場合、チャンバ内への汚染物付着・蓄積によりる感度劣化問題や、温度特性を悪化させる原因となる。また、システムを構成するダイヤフラムの薄壁厚みや、ピエゾ抵抗の造り込みなどの加工精度が直接製品の特性のバラツキに反映するため、これを使用してシステム構成する生産工程に於いてセンサ出力値を個々に調整する必要があり、この様な工賃上でもコストを押し上げる要因となる課題がある。   In addition, in the pressure sensor using silicon MEMS, if the non-measurement air is contaminated because the air to be measured (air in the environment) is in direct contact with the thin wall that serves as the sensing unit, the contamination in the chamber This may cause a problem of sensitivity deterioration due to adhesion / accumulation and deterioration of temperature characteristics. In addition, since the processing accuracy such as the thin wall thickness of the diaphragm and the built-in piezoresistor directly reflects the variation in product characteristics, the sensor output value is used in the production process that configures the system. However, there is a problem that increases the cost even in such wages.

上述する現状の課題を改善するため本発明は、固定部を支点として外圧に応じて厚み方向に変形する板状基板の片側の主面に、高さを持った支持体を複数(2点以上)、その距離を保って固着し、その支持体の先端部にセンシング用部材を固定する構造を有し、支持基板が板厚と平行方向の外力を受けて変形したとき、支持体先端は外力と直交する方向の変形、すなわち、支持体先端間距離が変動することになり、その結果センシング用部材に伸縮力(応力)が加わることになる。この応力の変化を、周波数、抵抗値、光の反射などを用いてセンシングすることで、簡単な構造で、しかも安価で正確に検知することができる。   In order to improve the above-described current problems, the present invention provides a plurality of (two or more) support bodies having a height on one principal surface of a plate-like substrate that deforms in the thickness direction according to external pressure with a fixed portion as a fulcrum. ), Which has a structure in which the distance is fixed and the sensing member is fixed to the tip of the support, and when the support substrate is deformed by an external force parallel to the plate thickness, the tip of the support is external force Deformation in the direction orthogonal to the angle, that is, the distance between the tips of the support bodies fluctuates, and as a result, stretching force (stress) is applied to the sensing member. By sensing this change in stress using frequency, resistance value, light reflection, etc., it is possible to accurately detect the change with a simple structure and at a low cost.

本発明の一例として、支持基板の外周囲全体(固定部)と凹部構造ベースのフチ部を接合し、密閉容器構造とした円筒形の圧力センサ用容器とした場合、例えば、形状が円板状の支持基板、これには外圧(圧力)感応に応じて凹凸や波型構造を構築しておき、その主面片側に、高さを有する支持体2個を、円の中心から適当な距離を離して固着する。なお、この支持体は、センシング用部材の性質に応じて、例えば電気的導通が必要であれば基板など周囲との絶縁処理を施しながら外部まで導通部を確保するなどの処置をした構造物となる。   As an example of the present invention, when a cylindrical pressure sensor container having a sealed container structure is formed by joining the entire outer periphery (fixed part) of the support substrate and the edge part of the concave structure base, the shape is, for example, a disk shape. Concavities and convexities and corrugated structures are constructed according to the external pressure (pressure) sensitivity, and two support bodies having a height are placed on one side of the main surface at an appropriate distance from the center of the circle. Separate and stick. In addition, this support body is a structure that has been treated according to the nature of the sensing member, such as securing a conductive portion to the outside while performing insulation treatment with the surroundings such as a substrate if electrical conduction is required. Become.

そして、センシング部材として伸縮力に応じて抵抗値が変化する弾性抵抗体を選別すれば、弾性抵抗体の両端をこの支持体先端部に固着後、凹形状ベースの周囲(フチ)と、支持基板外周囲とを接合し密閉する。また、周波数変化で圧力変化を知るならば、水晶のATカットなどの圧電振動子をセンシング部材として用い、支持固着した2点間の応力変化により発生する周波数変化を見ることで可能となる。
なお、密封容器内は外圧に応じて一定圧の不活性ガスを封入することが望ましく、センサ素子が容器内に有る場合は経時変化を最小限に留める処置ともなる。この様に密閉容器内にセンサ素子を閉じ込めた構造は、流体の種類が液体などセンサ素子に触れて問題となる様な場合に有効である。
Then, if an elastic resistor whose resistance value changes according to the stretching force is selected as a sensing member, after fixing both ends of the elastic resistor to the tip of the support, the periphery of the concave base (edge) and the support substrate Join and seal the outside. In addition, if the pressure change is known by the frequency change, it is possible to use a piezoelectric vibrator such as an AT cut of a quartz crystal as a sensing member and observe the frequency change caused by the stress change between the two fixed points.
In addition, it is desirable to seal an inert gas having a constant pressure in accordance with the external pressure in the sealed container, and when the sensor element is in the container, this is a measure for minimizing changes with time. In this way, the structure in which the sensor element is confined in the hermetic container is effective when the type of fluid is in contact with the sensor element such as a liquid.

一方、今まで、支持体(センサ素子)を容器内側に構築する方法について述べて来たが、容器外側に配置して測定する例として、清浄な気体や、低真空などの流体圧力を測定する場合、支持基板が変形したとき基板主表面に傾きが発生する部位に支持体を固着し、その先端部にカガミのような反射体を固着する。この場合の支持体は1個でも良く、外部から反射体にレーザ光などの光束を照射しその反射光の変動を検出することで圧力変化を検知することが可能となる。   On the other hand, the method of constructing the support (sensor element) on the inside of the container has been described so far, but as an example of measuring by placing it on the outside of the container, a fluid pressure such as clean gas or low vacuum is measured. In this case, when the support substrate is deformed, the support is fixed to a portion where the main surface of the substrate is inclined, and a reflector such as Kagami is fixed to the tip. In this case, only one support may be used, and a pressure change can be detected by irradiating the reflector with a light beam such as laser light from the outside and detecting a change in the reflected light.

以上のように本発明の流体圧力センサ用容器は、構造が簡単であることから製作コストを低減することが出来ると共に、圧力伝達の構造が簡単であり、センサ部に直接伝達されるので誤動作の無い圧力センサを実現することが出来る。また、外圧としては、気体、液体などの流体の他、直接、支持基板に外力が加わった場合に正確に外圧量を検知することができる。この場合は撓みを発生する被計測物表面上に、撓みの方向を考慮して支持体を介してセンサ素子を搭載した支持基板面を直接固定すれば、被計測物表面の撓みが直接基板に伝達され、基板が変形し支持体間の間隔が変動することからセンサ素子の支持部に伸縮力が発生するため、凹形状ベースを付加しなくても外力変化を検知可能で、基板それだけで外力圧センサとして使用することも可能となる。   As described above, the fluid pressure sensor container according to the present invention has a simple structure, so that the manufacturing cost can be reduced, and the pressure transmission structure is simple and is directly transmitted to the sensor unit. No pressure sensor can be realized. As the external pressure, the external pressure amount can be accurately detected when an external force is directly applied to the support substrate in addition to a fluid such as gas or liquid. In this case, if the support substrate surface on which the sensor element is mounted is directly fixed on the surface of the object to be measured that causes the bending, the bending of the surface of the object to be measured is directly applied to the substrate. Since the board is deformed and the distance between the supports changes, the expansion and contraction force is generated at the support part of the sensor element. Therefore, external force changes can be detected without adding a concave base. It can also be used as a pressure sensor.

以下に本発明の実施の形態について図を参照しながら説明する。なお、支持体(2)間に搭載するセンサ素子としては、シリコン(ピエゾ抵抗値変化を利用)、単結晶圧電振動子(周波数や、共振抵抗の変化を利用)、弾性抵抗体(弾力性を持つ有機物中に抵抗粉体を分散して、圧力が加わると外力に応じてその2点間の抵抗値が変化)、容量(対向する支持体電極間の容量変化)などのセンサ素子形態が利用できる。また、図には記載しないが前述したように1個の支持体上に反射体を固定して光束の反射角度変化を利用することも可能である。   Embodiments of the present invention will be described below with reference to the drawings. Sensor elements mounted between the supports (2) include silicon (using changes in piezoresistance), single crystal piezoelectric vibrators (using changes in frequency and resonance resistance), and elastic resistors (using elasticity). Sensor element forms such as dispersion of resistance powder in organic material and the resistance value changes between the two points according to external force when pressure is applied) and capacitance (capacitance change between opposing support electrodes) it can. Although not shown in the figure, it is also possible to use a change in the reflection angle of the light beam by fixing the reflector on one support as described above.

図1は本発明の流体圧力センサとして複数の支持体を利用する場合について、その概要を説明する断面図である。金属材料、セラミック材料、ガラス材料など弾性体薄板材を利用し支持基板1を作製、その主面片側に一定の高さを持った2個の支持体2を固着し、それぞれの頂点位置にセンサ素子を固定保持をしている。そして、上述の様に、センサ素子の多くは外力の変化を電気的に検出する手法であるため、2支持体からは電気的短絡が無いよう独立して外部に電極が取り出せる構造としている。   FIG. 1 is a cross-sectional view illustrating an outline of a case where a plurality of supports are used as the fluid pressure sensor of the present invention. A support substrate 1 is manufactured using an elastic thin plate material such as a metal material, a ceramic material, or a glass material, and two support bodies 2 having a certain height are fixed to one side of the main surface, and sensors are arranged at respective vertex positions. The element is fixedly held. As described above, since most of the sensor elements are methods for electrically detecting a change in external force, the structure is such that an electrode can be taken out of the two supports independently so as not to cause an electrical short circuit.

そして、流体圧力変化を受けて支持基板の変形を作り出す目的で、弾性材料を用い凹加工して成る凹形状ベース4構造体を作製し、この外周部と支持基板外周部を接合してこの部分を支点とする密閉された構造体(チャンバ)を形成する。なお、支持基板主面に構築する凹凸・波型形状は、圧力の大きさに対応して最大の感度を引き出す手段であり、その寸法やピッチなどは感知する圧力に応じて設計される。   Then, for the purpose of generating deformation of the support substrate in response to the fluid pressure change, a concave base 4 structure formed by recessing using an elastic material is manufactured, and this outer peripheral portion and the support substrate outer peripheral portion are joined to each other. A sealed structure (chamber) is formed with fulcrum as a fulcrum. The unevenness and corrugated shape constructed on the main surface of the support substrate is a means for drawing out the maximum sensitivity corresponding to the magnitude of the pressure, and its dimensions and pitch are designed according to the pressure to be sensed.

圧力容器の支持基板形状は、板面に圧力が加わり均等に変形するように円形にする事が望ましく、支持体の構築位置も円の中心から点対称の距離に構築する事が望ましいが、設計時にシミュレーション解析を充分行うことにより形状の自由度を広げることが出来る。   The support vessel shape of the pressure vessel is preferably circular so that pressure is applied to the plate surface and deformed evenly, and the construction position of the support is preferably constructed at a point-symmetrical distance from the center of the circle. At times, sufficient simulation analysis can be used to increase the degree of freedom of shape.

この様なチャンバを形成して流体中に設置したとき、流体圧力が変動することにより支持基板が外周部を支点として中心部が板厚方向に変動するので支持基板に高さを持って固定されている支持体の頂点部は、基板の主面と平行方向の変位を持つことになり、接合部材を介して伸縮力としてセンサ素子に伝達作用し、センサ素子の種類に応じて周波数変化、抵抗値変化などにより検知する事が可能となる。   When such a chamber is formed and installed in a fluid, the support substrate is fixed with a height to the support substrate because the center of the support substrate fluctuates in the thickness direction with the outer periphery as a fulcrum due to fluctuations in fluid pressure. The apex of the supporting body has a displacement in a direction parallel to the main surface of the substrate, and is transmitted to the sensor element as an expansion / contraction force via the joining member, and changes in frequency and resistance depending on the type of the sensor element. It can be detected by a change in value.

図2は、図1に基づき本発明の圧力検出手法の概念を示した模式図である。なお、模式による説明のため支持基板1主面上に構築した支持体2の動作に着目して描画しており、支持基板1に加わる外力により、2個の支持体2頂点間の距離が変化する状態を図2(a)から図2(c)に連続して示したものである。   FIG. 2 is a schematic diagram showing the concept of the pressure detection method of the present invention based on FIG. Note that, for the sake of explanation by the model, the drawing is performed by paying attention to the operation of the support 2 constructed on the main surface of the support substrate 1, and the distance between the vertices of the two supports 2 changes due to the external force applied to the support substrate 1. FIG. 2 (a) to FIG. 2 (c) show the state to be performed.

即ち、チャンバ内圧力に対し外圧が大きいとき、大きさに応じて図2(b)に示すように外周部に当たる両端部を支点として支持基板1中央部が凹む様に変形して、2個の支持体2間の間隔が拡がり、逆に、チャンバ内圧力に対し外圧が小さいときは、同様に大きさに応じて図2(c)に示すように外周部に当たる両端部を支点として支持基板1中央部が膨らむ様に変形し、2個の支持体2間の間隔が縮むように変形することから、接合部材により支持体先端に実装されるセンサ素子両端には外圧変化に応じた伸縮力が働くことを示している。   That is, when the external pressure is larger than the internal pressure of the chamber, the central portion of the support substrate 1 is deformed so that the central portion of the support substrate 1 is recessed with both ends corresponding to the outer peripheral portion as fulcrums as shown in FIG. When the space between the supports 2 is widened and, conversely, when the external pressure is small relative to the internal pressure of the chamber, the support substrate 1 similarly has both ends corresponding to the outer periphery as fulcrums as shown in FIG. Since the central portion is deformed so as to swell and the distance between the two supports 2 is reduced, the expansion and contraction force according to a change in external pressure acts on both ends of the sensor element mounted on the tip of the support by the joining member. It is shown that.

従って、状況に応じて任意に選択されたセンサ素子が伸縮力を受けその大きさに応じて、周波数値、抵抗値、容量値などを変化させることで圧力の状態を検知する事が出来る。
なお、外力が直接加わる支持基板は、その感度を最大限に引き出す目的で図3(a)の平板のみでは無く、図3(b)、図3(c)に示すように、変形が最大に成る中央部を中心に同心円状に板厚を変更して凹凸にしたり、波型に加工して、感知する圧力に応じて有効な変形が発生できるように加工処理をすることも必要となる。
Therefore, the sensor element arbitrarily selected according to the situation receives the expansion / contraction force, and the pressure state can be detected by changing the frequency value, resistance value, capacitance value, etc. according to the magnitude.
In addition, the support substrate to which an external force is directly applied is not limited to the flat plate of FIG. 3A for the purpose of maximizing the sensitivity, but the deformation is maximized as shown in FIGS. 3B and 3C. It is also necessary to change the plate thickness concentrically around the central portion to make it uneven, or to process it so as to generate effective deformation according to the sensed pressure by processing it into a corrugated shape.

以上の様に、本発明は支持基板主面上に構築された支持体にセンサ素子を取り付けた構造を基本としており、このままの形状で非測定物に支持基板背面を固定すれば、非測定物に外力が加わり変形すれば、その度合いを検出する「撓みセンサ」として使用することも出来れば、更に、支持基板の外周部を凹形状ベースの外周部とを接合して気密チャンバを構成し流体環境に挿入すれば、その流体圧力を検知できる「圧力センサ」として使用することが出来る構造を持つ「圧力センサ容器」を提案するものである。なお、この場合支持体2で挟まれる格好で支持するセンサ素子との位置関係は、センサ素子の側面を保持する形態が望ましい。   As described above, the present invention is based on the structure in which the sensor element is attached to the support constructed on the main surface of the support substrate. If the back surface of the support substrate is fixed to the non-measurement object as it is, the non-measurement object If an external force is applied to the tube and it is deformed, it can be used as a “deflection sensor” that detects the degree of the deformation. Furthermore, the outer periphery of the support substrate is joined to the outer periphery of the concave base to form an airtight chamber. We propose a “pressure sensor container” having a structure that can be used as a “pressure sensor” that can detect the fluid pressure when inserted into the environment. In this case, it is desirable that the positional relationship with the sensor element to be supported by the support 2 is a form in which the side surface of the sensor element is held.

本発明の密閉型圧力容器の概念図を示す。The conceptual diagram of the airtight type pressure vessel of this invention is shown. 本発明による外力伝達・検知の動作を示す模式図を示す。The schematic diagram which shows the operation | movement of external force transmission and detection by this invention is shown. 本発明の支持基板形態の断面形状例を示す。The example of a cross-sectional shape of the support substrate form of this invention is shown. 従来の機械式圧力検出方式の一例を示す概念図。The conceptual diagram which shows an example of the conventional mechanical pressure detection system.

符号の説明Explanation of symbols

1 支持基板
2 支持体
3 圧力容器
4 凹形状ベース
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Support body 3 Pressure vessel 4 Concave base

Claims (4)

板状基板の一方向の主面上に、その高さが調節可能な支持体を複数個距離を持って固定し、該板状基板の外周の一部、又は、外周全体部分を固定する構造として、基板の厚み方向に外力が加わったとき、固定部分を支点(固定端)として外力に応じて厚み方向に反る様に変形する構造を持ち、前記支持体の頂点部が外力方向と直交する方向に変動し前記支持体の頂点位置が変化する支持基板を持つことを特徴とする圧力感応容器。 A structure in which a plurality of support bodies whose heights can be adjusted are fixed on a principal surface in one direction of a plate substrate at a distance, and a part of the outer periphery of the plate substrate or the entire outer periphery is fixed. When an external force is applied in the thickness direction of the substrate, it has a structure that deforms so as to warp in the thickness direction according to the external force with the fixed portion as a fulcrum (fixed end), and the apex of the support is orthogonal to the external force direction A pressure-sensitive container having a support substrate that changes in the direction of movement and changes the apex position of the support. 請求項1記載の板状基板において、外力による変位が最大の主面上部位を中心として同心円状に板厚を厚い部分と薄い部分を交互に構築した支持基板を持つことを特徴とする圧力感応容器。 2. The plate-like substrate according to claim 1, further comprising: a support substrate in which thick portions and thin portions are alternately constructed concentrically around a portion on the main surface where displacement due to an external force is maximum. container. 請求項1記載の板状基板において、外力による変位が最大の主面上部位を中心として同心円状に波型(蛇腹状)加工を施した支持基板を持つことを特徴とする圧力感応容器。 2. The pressure-sensitive container according to claim 1, further comprising a support substrate that has been subjected to corrugated processing in a concentric manner around a portion on the main surface where displacement due to an external force is maximum. 請求項1ないし請求項3記載の支持基板において、基板外周を固定部として、固定部と凹形状ベースのフチ部を接合・固定して気密構造としたことを特徴とする圧力感応容器。
4. The pressure sensitive container according to claim 1, wherein the outer periphery of the substrate is a fixed part, and the fixed part and the edge of the concave base are joined and fixed to form an airtight structure.
JP2005347089A 2005-11-30 2005-11-30 Pressure sensitive container Pending JP2007155359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347089A JP2007155359A (en) 2005-11-30 2005-11-30 Pressure sensitive container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347089A JP2007155359A (en) 2005-11-30 2005-11-30 Pressure sensitive container

Publications (1)

Publication Number Publication Date
JP2007155359A true JP2007155359A (en) 2007-06-21

Family

ID=38239948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347089A Pending JP2007155359A (en) 2005-11-30 2005-11-30 Pressure sensitive container

Country Status (1)

Country Link
JP (1) JP2007155359A (en)

Similar Documents

Publication Publication Date Title
US6668622B2 (en) Rheometer for rapidly measuring small quantity samples
JP5743026B2 (en) Double-sided surface stress sensor
TWI289204B (en) Minute structure inspection device, minute structure inspection method, and minute structure inspection program
JP4913032B2 (en) Electrostatic measurement of chemical reactions based on stress
JP3102320B2 (en) Sensor device
US20120031189A1 (en) Pressure sensor
JP2006284363A (en) Probe microscope and physical property measuring method
US20230057869A1 (en) Resonant frequency-based magnetic sensor at veering zone and method
US20150089693A1 (en) Multi-resonant detection system for atomic force microscopy
US20150143911A1 (en) Physical/chemical sensor and method for measuring specific substance
JP5712674B2 (en) Force detector housing case, force measuring device
JP2007155359A (en) Pressure sensitive container
CN109738093B (en) On-chip resonant beam structure for detecting stress of micro-electromechanical device and detection method
JP2007171123A (en) Pressure sensor and pressure-sensitive element
JP5291517B2 (en) Inner dimension measuring instrument
JP2009097951A (en) Temperature sensor
JP2005090989A (en) Heat sensor
CN210221371U (en) Micro-pressure measuring device based on Michelson interference principle
KR100763022B1 (en) No power/wireless sensor using magnetic disturbance detection by ultrasonic space vibration and system using the sensor
JP2007205822A (en) Pressure detection element
RU2484483C1 (en) Manufacturing method of nano-electromechanical converter, and nano-electromechanical converter with autoelectronic emission
CN107735660B (en) Device for detecting mechanical decoupling pressure
US20120055267A1 (en) Pressure sensor
JP2007205823A (en) Pressure detection element
RU121593U1 (en) NANOELECTROMECHANICAL CONVERTER WITH AUTOELECTRONIC EMISSION