WO2019097933A1 - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
WO2019097933A1
WO2019097933A1 PCT/JP2018/038494 JP2018038494W WO2019097933A1 WO 2019097933 A1 WO2019097933 A1 WO 2019097933A1 JP 2018038494 W JP2018038494 W JP 2018038494W WO 2019097933 A1 WO2019097933 A1 WO 2019097933A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
damper
viscous fluid
fluid container
vibration
Prior art date
Application number
PCT/JP2018/038494
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 和彦
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to KR1020197034959A priority Critical patent/KR102602629B1/en
Publication of WO2019097933A1 publication Critical patent/WO2019097933A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the present invention relates to a vibration control device provided in a structure including a lower beam and an upper beam.
  • a vibration control device that damps horizontal vibration is installed.
  • a vibration control device is provided between the horizontally extending lower beam and the upper beam.
  • a vibration control device As such a vibration control device, a viscous damper that damps horizontal vibration using a viscous fluid with viscosity, and a hysteresis type that damps horizontal vibration using a lead-plug isolation rubber that has restoring force
  • a composite vibration control device provided with a damper See, for example, Patent Document 1.
  • the vibration control device of Patent Document 1 includes a viscous damper and a hysteresis type damper.
  • the viscous damper includes a viscous fluid container provided on the lower beam, a viscous fluid stored in the viscous fluid container, and a lower part suspended from the upper beam to be immersed in the viscous fluid and horizontal to the viscous fluid container. And a moving resistance plate.
  • the hysteresis type damper is provided with a lead plug-filled base isolation rubber whose one end surface is fixed to the resistance plate, and a fixing plate which fixes the other end face of the lead plug-containing base isolation rubber and the outer surface of the viscous fluid container.
  • the viscous fluid container vibrates horizontally with respect to the resistance plate.
  • a viscous damper the viscous fluid between the inner surface of the viscous fluid container and the resistance plate damps horizontal vibrations of the viscous fluid container relative to the resistance plate.
  • a lead-plug isolation rubber interposed between the outer surface of the viscous fluid container and the resistance plate via the fixed plate damps horizontal vibration of the viscous fluid container relative to the resistance plate.
  • the viscous damper and the hysteresis damper are provided.
  • hysteresis-type dampers are harder (large loads even with small displacements) compared to viscous dampers, and therefore exhibit damping functions when vibration displacement is large (large loads), but with micro-vibrations (small loads) It can not damp the vibration without deformation. Therefore, when the viscous damper and the hysteresis damper are provided in parallel, the damping performance is degraded when the displacement of the vibration is small.
  • An object of the present invention is, in view of the problems of the prior art, to provide a vibration control apparatus in which the vibration damping function is effective both when the displacement of the vibration is large and when the displacement is small.
  • a vibration control system according to a first aspect of the present invention, A vibration control device provided in a structure including a lower beam portion and an upper beam portion, A viscous damper that damps horizontal vibration of the lower beam portion and the upper beam portion with viscosity, and a frictional force that is connected to the viscous damper and causes horizontal vibration of the lower beam portion and the upper beam portion A friction damper for damping, and a switching mechanism for switching between vibration damping by the viscosity damper alone and vibration damping by the combination of the viscosity damper and the friction damper;
  • the viscous damper is suspended in a viscous fluid container fixed on the lower beam, a viscous fluid stored in the viscous fluid container, and fixed to the upper beam and dipped in the viscous fluid.
  • the friction damper includes a friction transmission plate provided so as to be horizontally movable with respect to the resistance plate, and a friction force generator provided between the friction transmission plate and the resistance plate of the viscous damper
  • the switching mechanism includes a first member provided to the viscous fluid container, and a second member provided to the friction transmission plate opposite to the horizontal movement direction of the first member, and the switching mechanism is directed to the friction transmission plate
  • the vibration control device of the configuration horizontal vibration of the lower beam portion and the upper beam portion can be damped by the viscous damper and the friction damper. Specifically, on the viscosity damper side, when the resistance plate suspended in a state fixed to the upper beam portion moves horizontally to the viscous fluid container fixed on the lower beam portion, the viscous fluid container The viscous fluid stored therein damps horizontal vibrations of the resistance plate relative to the viscous fluid container.
  • the switching mechanism is configured such that the horizontal displacement of the viscous fluid container with respect to the friction transfer plate exceeds a first predetermined distance between the horizontal end of the first member and the end of the second member facing the end.
  • the first member provided in the viscous fluid container abuts on the second member provided in the friction transfer plate, and the friction transfer plate moves horizontally with the viscous fluid container.
  • the first member does not abut the second member and the friction transmission plate is in the horizontal direction. Since it does not move, the friction damper does not work, and only the viscous damper works effectively.
  • the first member abuts on the second member and the friction transmission plate is in the horizontal direction. As it moves, the friction damper also works, and as a result, both the friction damper and the viscosity damper work effectively.
  • the friction transfer plate is disposed above the viscous fluid container,
  • the first member is a first convex portion protruding toward the friction transmission plate from an upper portion of the viscous fluid container,
  • the second member is a second convex portion that protrudes toward the viscous fluid container from the lower portion of the friction transfer plate, It is preferable that a plurality of the first convex portions and the second convex portions are alternately arranged at predetermined intervals in the horizontal movement direction of the first convex portions.
  • the first member is a first convex portion that protrudes from the upper portion of the viscous fluid container toward the friction transmission plate disposed above, and the second member is the lower portion of the friction transmission plate And the first convex portion and the second convex portion are alternately arranged at predetermined intervals, so that the first convex portion is in the horizontal direction.
  • it is possible to switch from damping of seismic intensity only by the viscous damper to damping of vibration including the friction damper by contacting the second convex portion at a plurality of locations.
  • the switching mechanism includes a buffer mechanism that reduces a collision between the first convex portion and the second convex portion at a portion where the first convex portion and the second convex portion abut.
  • contact with a 1st convex part and a 2nd convex part can be performed smoothly by a buffer mechanism.
  • the vibration control system of the second aspect of the present invention is A vibration control device provided in a structure including a lower beam portion and an upper beam portion, A viscous damper that damps horizontal vibration of the lower beam portion and the upper beam portion with viscosity, and a frictional force that is connected to the viscous damper and causes horizontal vibration of the lower beam portion and the upper beam portion A friction damper for damping, and a switching mechanism for switching between vibration damping by the viscous damper alone and vibration damping by the friction damper alone;
  • the viscous damper includes a viscous fluid container fixed on the lower beam portion, a viscous fluid stored in the viscous fluid container, and a friction transfer plate suspended in a state fixed to the upper beam portion.
  • the friction damper includes the friction transmission plate, the resistance plate provided so as to be horizontally movable with respect to the friction transmission plate, and a friction force generating portion provided between the resistance plate and the friction transmission plate. Equipped
  • the switching mechanism is provided in the viscous fluid container through the through hole formed to penetrate the resistance plate and the through hole, and the horizontal displacement of the viscous fluid container with respect to the resistance plate is (1)
  • the vibration control device of the configuration horizontal vibration of the lower beam portion and the upper beam portion can be damped by the viscous damper and the friction damper. Specifically, on the viscosity damper side, when the resistance plate suspended from the upper beam via the friction damper moves horizontally with respect to the viscous fluid container fixed on the lower beam, the viscous fluid container The viscous fluid stored therein damps horizontal vibrations of the resistance plate relative to the viscous fluid container.
  • the friction force generating portion provided between the friction transfer plate and the resistance plate causes the horizontal direction of the resistance plate to the friction transfer plate
  • the earthquake's vibration is attenuated.
  • the switching mechanism is the edge of the through hole provided in the resistance plate with the passage member provided in the viscous fluid container. The resistance plate moves horizontally with the viscous fluid container.
  • the passing member does not abut the edge of the through hole and the resistance plate is the viscous fluid container
  • the friction damper does not work, and only the viscous damper works effectively.
  • the vibration velocity and displacement increase and the horizontal displacement of the viscous fluid container with respect to the resistance plate exceeds the first predetermined distance, the passing member abuts against the edge of the through hole and the resistance plate becomes viscous fluid. Since it moves horizontally with the container, only the friction damper is effective without the viscous damper being effective.
  • the vibration damping function can be effectively used both when the velocity and displacement of the vibration are large and small.
  • the passage member is a bulge preventing bolt that prevents the viscous fluid container from swelling. It is preferable that the through hole is a relief elongated hole of the bulge preventing bolt.
  • the switching mechanism uses the expansion prevention bolt for preventing expansion of the viscous fluid container and the escape long hole of the expansion prevention bolt, so that the structure can be simplified. .
  • the switching mechanism includes a buffer mechanism that reduces the collision between the passing member and the edge of the through hole at a portion where the passing member abuts the edge of the through hole.
  • the front view which shows notionally the vibration control apparatus which concerns on 1st Embodiment of this invention. It is a figure which shows the damping device of FIG. 1 typically.
  • the action view in the state without the displacement by the vibration in the vibration control apparatus of FIG. The action view in the state where displacement by vibration is small in the vibration control device of FIG.
  • the action view in the state where displacement by vibration is large in the vibration control device of FIG. The figure which shows the relationship between the damping force of a state with a small displacement by vibration in the damping device of FIG. 1, and displacement.
  • the vibration control device 10 according to the first embodiment of the present invention is provided, for example, in a structure 1 such as a building.
  • the structure 1 is horizontally supported by the lower beam 2 extending in the horizontal direction, a pillar (not shown) extending upward from the lower beam 2, and the pillar supported above the lower beam 2 in the horizontal direction.
  • the upper beam portion 3 are included.
  • the vibration control device 10 includes a viscous damper 11 that damps relative horizontal vibration between the lower beam 2 and the upper beam 3 with a viscous force, and the lower beam 2 connected to the viscous damper 11 and the upper beam.
  • the friction damper 30 damps the horizontal vibration of the beam 3 by friction, and the switching mechanism 40 switches the vibration damping by the viscosity damper 11 alone and the vibration damping by the combined use of the viscosity damper 11 and the friction damper 30 ing. Switching between the viscous damper alone and in combination is performed.
  • the horizontal direction (horizontal direction) in which the lower beam 2 extends in the horizontal plane is taken as the X direction
  • the vertical direction (front and back direction in the drawing) in the horizontal plane is taken as the Y direction.
  • the Z direction In the Z direction.
  • the viscous damper 11 has a bottomed rectangular cylindrical viscous fluid container 12 fixed so that the bottom surface abuts on the upper surface of the lower beam portion 2, a viscous fluid 13 stored in the viscous fluid container 12, and an upper beam A resistance plate 14 which is suspended in a state of being fixed to the portion 3 and is immersed in the viscous fluid 13 and horizontally moves relative to the viscous fluid container 12 is provided.
  • the viscous fluid container 12 is in the form of a box whose dimensions in the Y direction are set smaller than the dimensions in the X direction and the Z direction and whose upper side is open, and has a bottom 15 and an upright wall 16 rising from the bottom 15
  • a lower gusset 18 is provided at the lower end of the upstanding wall 16 so as to extend a bottom 15 in the Y direction and is fastened to the lower beam 2 via a fastening member 17.
  • the viscous fluid container 12 is provided with a bulge preventing bolt 19 which penetrates the front and rear upright wall portions 16 to prevent the viscous fluid container 12 from swelling in the Y direction.
  • the bottom portion 15 and the lower gusset 18 may be integrally formed.
  • the viscous fluid 13 is, for example, a high viscosity polymer material such as silicone oil or hydrocarbon compound, has flame retardancy, weather resistance, durability, and has repeated viscosity due to displacement of the resistance plate 14 with respect to the viscous fluid container 12. It is made of a material which does not cause a decrease in viscosity even when the fluid 13 is sheared.
  • the resistance plate 14 is a plate formed in a substantially rectangular shape in a front view, and is fastened by the fastening member 21 over the entire area in the X direction of the upper end portion, and an upper gusset 22 extending in the X direction with an L-shaped cross section in the YZ plane And a through hole 23 formed longitudinally in the central portion and the lower portion.
  • the through hole 23 is passed through a bulge preventing bolt 19.
  • the upper gusset 22 is fastened to the upper beam 3 via a fastening member 24. (Configuration of friction damper 30)
  • the friction damper 30 is held between the friction transmission plate 31 provided so as to be movable horizontally in the ⁇ X direction with respect to the resistance plate 14 of the viscous damper 11, and the Y direction of the friction transmission plate 31 and the resistance plate 14 And a frictional force generator 32 provided on the
  • the friction transfer plate 31 is a plate member formed in a substantially rectangular shape long in the horizontal direction in a front view, and is disposed above the viscous fluid container 12 and disposed on both sides of the resistance plate 14.
  • the frictional force generating portion 32 is formed of a friction material (not shown) provided on the friction transmission plate 31 and having a predetermined coefficient of friction, and stainless steel (not shown) as a mating material provided on the resistance plate 14.
  • the friction transmission plate 31 is formed with a through hole (not shown) for inserting the fastening member 34.
  • a horizontally extending through hole 33 is formed in the upper portion of the resistance plate 14, and the friction transmitting plate is formed by the fastening member 34 inserted in the Y direction into the through hole of the friction transmission plate 31 and the through hole 33 of the resistance plate 14. 31 is fastened to the resistance plate 14.
  • the fastening member 34 is composed of a PC steel rod, a bolt, etc. and a nut. Between the nut and the friction transfer plate 31, a bearing plate (not shown) having a washer function and having a rectangular shape in a front view is disposed.
  • the friction transmission plate 31 was arrange
  • a friction force generating portion 32 is provided between the friction transmission plate 31 and the resistance plate 14, and if the friction force is applied to the friction force generation portion 32 by the axial force of the fastening member 34, the friction transmission plate 31 and the resistance plate 14 are The number may differ.
  • the friction force generating portion 32 is provided as a separate member between the friction transmission plate 31 and the resistance plate 14, the present invention is not limited to this, and the friction transmission plate 31 and the resistance plate 14 are directly slid The sliding portions may be used as the frictional force generator 32 respectively.
  • the resistance plate 14 is formed of a single plate, the invention is not limited thereto. If the resistance plate 14 is suspended while being fixed to the upper beam portion 3 and moves integrally, the resistance plate 14 is rubbed. The upper and lower portions of the generation portion 32 may be separated into two sheets and connected by a fastening member or the like, and the resistance plate 14 may be constituted of two sheets, three sheets or more as a whole.
  • the switching mechanism 40 is provided on the friction transmission plate 31 so as to face the plurality of first members 41 provided on the viscous fluid container 12 and in the ⁇ X direction (horizontal direction) of the first member 41. And a plurality of second members 42 arranged to abut the first member 41 when the displacement of the viscous fluid container 12 in the ⁇ X direction (horizontal direction) exceeds the first predetermined distance L1.
  • the first predetermined distance L1 is the distance between the horizontal end of the first member 41 and the end of the second member 42 facing the end.
  • the friction transfer plate 31 is disposed above the viscous fluid container 12.
  • the plurality of first members 41 are first convex portions that project toward the friction transmission plate 31 from the upper portion of the viscous fluid container 12 (or in the + Z direction).
  • the second member 42 is a second convex portion that protrudes from the lower portion of the friction transfer plate 31 toward the viscous fluid container 12 (or in the ⁇ Z direction).
  • the plurality of first convex portions 41 are disposed apart from each other in the X direction.
  • the plurality of second convex portions 42 are spaced apart from each other in the X direction.
  • One second convex portion 42 is arranged between the pair of adjacent first convex portions 41 at the same first predetermined interval L1 as the pair of first members 41 in the X direction.
  • the plurality of first convex portions 41 and the second convex portions 42 are alternately arranged at a first predetermined interval L1 in the horizontal direction.
  • the plurality of first convex portions 41 and the second convex portions 42 are all arranged at equal intervals at a first predetermined interval L1. Further, the upper end of the first convex portion 41 is at a position higher in the + Z direction than the lower end of the second convex portion 42.
  • the second predetermined interval L2 is a range until the swelling prevention bolt 19 abuts on the through hole 23, and
  • the second predetermined interval L2 is larger than the first predetermined interval L1.
  • the second predetermined distance L2 is a distance from the left end portion of the screw portion of the expansion prevention bolt 19 in the X direction to the left edge of the through hole 23 in a state where the resistance plate 14 is not displaced with respect to the viscous fluid container 12
  • the distance from the right end of the threaded portion of the anti-inflation bolt 19 in the direction to the right edge of the through hole 23 is also a second predetermined interval L2.
  • the switching mechanism 40 is provided with a buffer mechanism 43 at a portion where the first member 41 and the second member 42 abut against each other, for relieving the collision of the first member 41 and the second member 42.
  • the buffer mechanism 43 is formed of, for example, an elastic member.
  • the friction damper 30 is a damping device that utilizes the frictional resistance of the frictional force generation unit 32, and transmits the axial force or the clamping force of the clamping member 34 to the friction material of the frictional force generation unit 32 by clamping the clamping member 34. Do. By moving the resistance plate 14 and the friction transmission plate 31 relative to each other in the horizontal direction, a dynamic friction force is generated on the friction surface to obtain a frictional resistance, thereby damping the vibration of the resistance plate 14 with respect to the friction transmission plate 31 by the friction force It is.
  • the switching mechanism 40 damps the vibration due to the viscosity damper 11 alone according to the magnitude of the displacement of the viscous fluid container 12 with respect to the friction transmission plate 31 due to the vibration of the upper beam 3 with respect to the lower beam 2. 11 and switching of damping of vibration by the combined use of the friction damper 30.
  • the first member 41 does not abut against the second member or the second member together with the first member 41 Since it does not displace, only the viscous damper 11 works.
  • the damping device 10 is disposed between the lower beam 2 and the upper beam 3.
  • the viscous damper 11 and the friction damper 30 are connected in parallel, and the switching mechanism 40 is further connected.
  • the switching mechanism 40 When the relative displacement (vibration) of the upper beam portion 3 with respect to the lower beam portion 2 is small (within the range of the first predetermined interval L1 of the switching mechanism 40), the switching mechanism 40 generates a rattle (first predetermined interval L1). Since no change is made, vibration is damped only by the viscous damper 11.
  • the upper beam 3 is displaced relative to the lower beam 2 as shown by arrow (1)
  • the friction transfer plate 31 is displaced together with the resistance plate 14 as shown by the arrow (2), and the vibration is damped only by the viscous damper 11.
  • the upper beam 3 is further added to the lower beam 2 as shown by the arrow (3).
  • the second protrusion 42 abuts on the first protrusion 41 to switch the switching mechanism 40.
  • the resistance plate 14 is further displaced as shown by the arrow (4), but the switching mechanism 40 prevents the friction transmission plate 31 from being displaced thereafter. Therefore, the frictional resistance plate 31 is displaced relative to the resistance plate 14 as indicated by the arrow (5).
  • the friction damper 30 also acts to damp the vibration with both the viscosity damper 11 and the friction damper 30.
  • the third predetermined distance L3 from the right end of the resistance plate 14 in the X direction to the inner wall of the viscous fluid container 12 in the X direction is larger than the second predetermined distance L2 in FIG. 3A.
  • the X-direction end of the resistance plate 14 does not abut the inner wall of the viscous fluid container 12.
  • the displacement of the switching mechanism 40 exceeds the first predetermined interval L1 (becomes larger than the rattling), and the viscosity by the viscosity damper 11 is used as a damping force. Force and friction due to the friction damper 30 are generated. Immediately after the occurrence of a vibration, the damping force becomes large in a state where the displacement is in a medium state so as to form a two-step curve as shown by the arrow (13). The damping force due to the viscous force of the viscous damper 11 and the frictional force of the friction damper 30 is larger than the damping force due to only the viscous force of the viscous damper 11 shown in FIG. 4A.
  • the damping force and the displacement change as shown by the arrow (14) in a state where both the viscous force and the frictional force are applied, the displacement direction of the vibration is reversed, and the displacement of the second convex portion 42 with respect to the first convex portion 41
  • the displacement is reduced as shown by the arrow (15) in a state where only the viscous force is applied by the backlash of the switching mechanism 40, and the second convex portion 42 is again formed on the first convex portion 41.
  • the switching mechanism 40 exerts a viscous force and a frictional force as shown by an arrow (16) to increase the damping force.
  • the damping force and the displacement change as shown by the arrow (17) in a state where both the viscous force and the frictional force are applied.
  • the vibration of the lower beam 2 and the upper beam 3 in the horizontal direction can be damped by the viscous damper 11 and the friction damper 30 by the configuration of the vibration control device 10 according to the first embodiment described above. Specifically, on the viscous damper 11 side, when the resistance plate 14 suspended from the upper beam 3 moves horizontally with respect to the viscous fluid container 12 provided on the lower beam 2, the viscous fluid container By the viscous fluid 13 stored in 12, the horizontal vibration of the resistance plate 14 with respect to the viscous fluid container 12 is attenuated.
  • the friction transmission plate 31 moves in the horizontal direction with respect to the resistance plate 14
  • the friction transmission plate is provided by the friction force generating portion 32 provided between the friction transmission plate 31 and the resistance plate 14.
  • the horizontal vibration of the resistance plate 14 with respect to 31 is attenuated.
  • the switching mechanism 40 when the horizontal displacement of the viscous fluid container 12 with respect to the friction transfer plate 31 exceeds the first predetermined distance L1, the first member 41 provided in the viscous fluid container 12 transmits friction.
  • the friction transmission plate 31 moves in the horizontal direction relative to the resistance plate 14 with the viscous fluid container 12 in contact with the second member 42 provided on the plate 31.
  • the first member 41 is a first convex portion 41 projecting toward the friction transmission plate 31 disposed above the upper part of the viscous fluid container 12, and the second member 42 is a friction transmission plate Since it is the 2nd convex part 42 which protrudes toward the viscous fluid container 12 from the lower part of 31 and the 1st convex part 41 and the 2nd convex part 42 are alternately arranged by predetermined spacing L1, a plurality,
  • the first convex portion 41 moves in the horizontal direction
  • the second convex portion 42 is in contact with the second convex portion 42 at a plurality of places, and switching from damping of seismic intensity only by the viscous damper 11 to damping of vibration including the friction damper 30 is reliably performed. be able to.
  • the switching mechanism 40 can smoothly contact the first convex portion 41 and the second convex portion 42 by the buffer mechanism 43.
  • the vibration control apparatus 50 according to the second embodiment of the present invention is provided, for example, in a structure 1 including a lower beam 2 and an upper beam 3 of a building or the like. .
  • the vibration control device 50 includes a viscous damper 51 that damps relative horizontal vibration between the lower beam 2 and the upper beam 3 with a viscous force, and the lower beam 2 connected to the viscous damper 51 and the upper beam. It comprises a friction damper 70 for damping the vibration in the horizontal direction of the beam 3 by friction, and a switching mechanism 80 for switching between damping of vibration by the viscous damper 51 alone and damping of vibration by the friction damper 70 alone.
  • the viscous damper 51 has a bottomed rectangular cylindrical viscous fluid container 52 fixed so that the bottom surface abuts on the upper surface of the lower beam portion 2, a viscous fluid 53 stored in the viscous fluid container 52, and an upper beam portion 3 and a friction transmission plate 71 suspended in a fixed state, and a resistance plate suspended by the friction transmission plate 71 via the friction damper 70 and immersed in the viscous fluid 53 and horizontally moving relative to the viscous fluid container 52 And 54.
  • the viscous fluid container 52 has a box-like shape in which the dimension in the Y direction is set smaller than the dimensions in the X direction and the Z direction and the upper side is opened, and a bottom 55 and an upright wall 56 rising from the bottom 55;
  • a lower gusset 58 is provided at the lower end of the upright wall 56 so as to extend a bottom 55 and is fastened to the lower beam 2 via a fastening member 57.
  • the viscous fluid container 52 is provided with a bulge preventing bolt 59 which penetrates the front and rear upright wall portions 56 to prevent the viscous fluid container 52 from swelling in the Y direction.
  • the bottom 55 and the lower gusset 58 may be integrally formed.
  • the viscous fluid 53 is, for example, a high viscosity polymer material such as silicone oil or hydrocarbon compound, and is made of a material that is flame retardant, weather resistant, durable, and does not cause a decrease in viscosity due to repeated shearing. It is done.
  • the friction transfer plate 71 is a plate material formed in a substantially rectangular shape long in the horizontal direction in a front view, is fastened by the fastening member 61 over the entire area in the X direction of the upper end portion, and is L-shaped in cross section in the YZ plane in the X direction It has an extending upper gusset 62 and a through hole 73 which is horizontally elongated in the center.
  • a fastening member 74 inserted from a through hole (not shown) formed in the upper portion of the resistance plate 54 is passed through the through hole 73.
  • the upper gusset 62 is fastened to the upper beam 3 via a fastening member 64.
  • the resistance plate 54 is a plate material formed in a rectangular shape in a front view, and is formed in the upper part through a through hole (not shown) through which the fastening member 74 passes, and the through hole 63 formed in a substantially rectangular shape in the center and lower part. And have.
  • the upper portion of the resistance plate 54 is overlapped with the friction transmission plate 71 in the Y direction, and the fastening member 74 inserted in the Y direction into the through hole of the resistance plate 54 and the through hole 73 of the friction transmission plate 71 Is fastened to the friction transfer plate 71.
  • the through hole 63 is passed through a bulge preventing bolt 59.
  • the friction damper 70 includes a friction transmission plate 71 fastened to the upper gusset 62 by a fastening member 61, a resistance plate 54 provided horizontally movably in the ⁇ X direction with respect to the friction transmission plate 71, a resistance plate 54, and the friction. And a friction force generation unit 72 provided between the transmission plate 71 and the transmission plate 71.
  • the friction transfer plate 71 is disposed above the viscous fluid container 52.
  • the frictional force generation unit 72 is provided on the friction transfer plate 71 and has a predetermined friction coefficient (not shown) for generating a frictional force larger than the viscous force of the viscous damper 51, and a mating member provided on the resistance plate 54. It consists of stainless steel (not shown) as a material.
  • a through hole 73 for inserting the fastening member 74 is formed in the friction transmission plate 71.
  • a through hole (not shown) is formed in the upper portion of the resistance plate 54, and the friction transmission plate 71 is formed by the fastening member 74 inserted in the Y direction into the through hole of the resistance plate 54 and the through hole 73 of the friction transmission plate 71.
  • the resistance plate 54 is fastened to the
  • the fastening member 74 is composed of a screw-formed steel rod (so-called PC steel rod) and a nut.
  • a pressure bearing plate (not shown) having a washer function is disposed between the nut and the friction transmission plate 71 in a rectangular shape in a front view.
  • the fastening member 74 may be configured as a bolt and a nut.
  • one resistance plate 54 is disposed on one friction transmission plate 71.
  • the present invention is not limited to this. Even if one friction transmission plate 71 is sandwiched by two resistance plates 54, Preferably, a friction force generating portion 72 is provided between the friction transmission plate 71 and the resistance plate 54, and if the friction force acts on the friction force generation portion 72 by the axial force of the fastening member 74, the friction transmission plate 71 and the resistance plate 54 are provided. There may be a difference in the number of Further, in the embodiment, the friction force generating portion 72 is provided as a separate member between the friction transmission plate 71 and the resistance plate 54 respectively, but is not limited to this. The friction transmission plate 71 and the resistance plate 54 are directly connected The sliding portions may be used as the frictional force generator 72 by sliding.
  • the switching mechanism 80 is provided in the viscous fluid container 52 passing through the substantially rectangular through hole 63 formed to penetrate the resistance plate 54 and the through hole 63, and the switching mechanism 80 of the viscous fluid container 52 with respect to the resistance plate 54.
  • a through hole (not shown) is formed in the passing member 81 and the swelling prevention bolt 59 is inserted into the through hole, but the invention is not limited thereto.
  • the passing member 81 is integrated with the swelling prevention bolt 59. It is good also as bolt 59 itself for swelling prevention.
  • the through hole 63 may be a long hole for escaping the bolt 59 for bulging.
  • the first predetermined interval L1 is a range until the passing member 81 or the bolt 59 for swelling prevention abuts on the through hole 63.
  • the second predetermined interval L2 is larger than the first predetermined interval L1.
  • the second predetermined distance L2 is a distance from the left end of the threaded portion of the fastening member 74 in the X direction to the left edge of the through hole 73 in the state where there is no displacement of the resistance plate 54 with respect to the viscous fluid container 52
  • the distance from the right end of the screw portion of the fastening member 74 to the right edge of the through hole 73 is also a second predetermined interval L2.
  • the switching mechanism 80 is provided with a buffer mechanism 83 for relieving the collision between the passing member 81 or the swelling prevention bolt 59 and the through hole 63 at a portion where the passing member 81 or the swelling prevention bolt 59 contacts the through hole 63.
  • the buffer mechanism 83 is made of, for example, an elastic member.
  • the friction damper 70 is a damping device utilizing the frictional resistance of the frictional force generator 72, and transmits the axial force or the clamping force of the clamping member 74 to the friction material of the frictional force generator 72 by clamping the clamping member 74. Do. By moving the resistance plate 54 and the friction transmission plate 71 relative to each other in the horizontal direction, a dynamic friction force is generated on the friction surface to obtain a frictional resistance, thereby damping the vibration of the resistance plate 54 against the friction transmission plate 71 by the friction force It is.
  • the switching mechanism 80 damps the vibration due to the viscosity damper 51 alone according to the magnitude of the displacement of the viscous fluid container 52 relative to the resistance plate 54 due to the vibration of the upper beam 3 relative to the lower beam 2. And damping of the vibration caused by When the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 is within the first predetermined distance L1, the passing member 81 does not abut against the through hole 63 or the passing member 81 does not abut against the through hole 63 Only the viscous damper 51 works because it does not try to displace more than it does. When the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 exceeds the first predetermined interval L1, the passing member 81 abuts on the through hole 63 and becomes integral with the viscous fluid container 52 and the resistance plate 54. Displace.
  • the resistance plate 54 is displaced with respect to the friction transmission plate 71, and only the friction damper 70 is effective.
  • only the viscosity damper 51 works when the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 is within the first predetermined distance L1, and the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 is When the first predetermined interval L1 is exceeded, only the friction damper 70 is switched to be effective.
  • a vibration control device 50 is disposed between the lower beam 2 and the upper beam 3.
  • the viscous damper 51 and the friction damper 70 are connected in series, and the switching mechanism 80 is further connected.
  • the switching mechanism 80 When the relative displacement (vibration) of the upper beam portion 3 with respect to the lower beam portion 2 is small (within the range of the first predetermined interval L1 of the switching mechanism 80), the switching mechanism 80 is rattling (first predetermined interval L1) Since the change is not made, the vibration is damped only by the viscous damper 51.
  • the switching mechanism 80 When the relative displacement (vibration) of the upper beam 3 with respect to the lower beam 2 is large (when the first predetermined distance L1 of the switching mechanism 80 is exceeded), the switching mechanism 80 is switched. Only the damper 70 acts to damp the vibration.
  • the upper beam 3 is displaced as shown by the arrow (21) with respect to the lower beam 2.
  • the resistance plate 54 is displaced together with the friction transfer plate 71 as shown by the arrow (22), and the vibration is damped only by the viscous damper 51.
  • the upper beam 3 is further added to the lower beam 2 as shown by the arrow (23).
  • the passage member 81 abuts on the through hole 63 to switch the switching mechanism 80.
  • the switching mechanism 80 displaces the friction transmission plate 71 relative to the resistance plate 54 as shown by the arrow (24).
  • the friction damper 70 acts to damp the vibration only with the friction damper 70.
  • the frictional force When the viscous force is larger than the frictional force, the frictional force starts to occur. Due to the velocity dependence of the viscous body, the viscous force exceeds the frictional force when the seismic velocity is high.
  • the first member 41 is a first convex portion in a rectangular shape in front view
  • the second member 42 is a second convex portion in a rectangular shape in front view, but the present invention is not limited thereto.
  • the second member 42 also has a trapezoidal or semicircular shape in a front view, or the first member 41 has a pin that protrudes in the + Y direction, and the second member has a pin receiving portion, etc. If it switches so that the friction transmission board 31 may be displaced with respect to the resistance board 14 when 1 predetermined space
  • the distance from the right end of the first member 41 to the left end of the second member 42 adjacent to the right, and the right end of the second member 42 adjacent to the left from the left end of the first member 41 The first predetermined distance L1 and both of them are equally displaced to the left and right, but the present invention is not limited to this, and the distance from the right end of the first member 41 to the left end of the second member 42 adjacent to the right
  • the distance from the left end of the first member 41 to the right end of the second member 42 adjacent to the left may be set to be non-uniform.

Abstract

Provided is a vibration control device in which a vibration damping function effectively acts both when vibration displacement is large and when vibration displacement is small. This vibration control device 10 is provided on a structure 1 including a lower beam part 2 and an upper beam part 3. The vibration control device 10 is provided with a viscous damper 11, a friction damper 30, and a switching mechanism 40 that switches between vibration damping by only the viscous damper 11 and vibration damping by a combination of the viscous damper 11 and the friction damper 30. The switching mechanism 40 is provided with: first members 41 provided on a viscous fluid container 12; and second members 42 which are provided on a friction transmission plate 31 so as to face the horizontal movement direction of the first members 41, and which come into contact with the first members 41 when the horizontal displacement of the viscous fluid container 12 with respect to the friction transmission plate 31 exceeds a first predetermined gap L1, thereby moving the friction transmission plate 31 together with the viscous fluid container 12 in the horizontal direction.

Description

制震装置Vibration control equipment
 本発明は、下側梁部と上側梁部とを含む構造物に備えられた制震装置に関する。 The present invention relates to a vibration control device provided in a structure including a lower beam and an upper beam.
 従来、建物などの構造物には、その制震性を向上させるために、水平方向の震動を減衰する制震装置が設置される。例えば、建物の場合には、水平方向に延在している下側梁部とその上側梁部との間に制震装置が備えられる。 Conventionally, in a structure such as a building, in order to improve its damping performance, a vibration control device that damps horizontal vibration is installed. For example, in the case of a building, a vibration control device is provided between the horizontally extending lower beam and the upper beam.
 このような制震装置として、水平方向の震動を粘性力がある粘性流体を用いて減衰する粘性ダンパと、水平方向の震動を復元力がある鉛プラグ入り免震ゴムを用いて減衰する履歴型ダンパとを備えた複合式の制震装置が知られている(例えば、特許文献1参照)。 As such a vibration control device, a viscous damper that damps horizontal vibration using a viscous fluid with viscosity, and a hysteresis type that damps horizontal vibration using a lead-plug isolation rubber that has restoring force There is known a composite vibration control device provided with a damper (see, for example, Patent Document 1).
 特許文献1の制震装置は、粘性ダンパと、履歴型ダンパとから構成されている。粘性ダンパは、下側梁部上に設けられた粘性流体容器と、該粘性流体容器に貯留された粘性流体と、上側梁部から垂下されて粘性流体に浸漬されるとともに粘性流体容器に対し水平移動する抵抗板とを備えている。履歴型ダンパは、一端面が抵抗板に固定された鉛プラグ入り免震ゴムと、該鉛プラグ入り免震ゴムの他端面と粘性流体容器の外面とを固定する固定板とを備えている。 The vibration control device of Patent Document 1 includes a viscous damper and a hysteresis type damper. The viscous damper includes a viscous fluid container provided on the lower beam, a viscous fluid stored in the viscous fluid container, and a lower part suspended from the upper beam to be immersed in the viscous fluid and horizontal to the viscous fluid container. And a moving resistance plate. The hysteresis type damper is provided with a lead plug-filled base isolation rubber whose one end surface is fixed to the resistance plate, and a fixing plate which fixes the other end face of the lead plug-containing base isolation rubber and the outer surface of the viscous fluid container.
 建物に水平方向の震動が作用すると、抵抗板に対して粘性流体容器が水平方向に震動する。粘性ダンパでは、粘性流体容器の内面と抵抗板との間にある粘性流体が、抵抗板に対する粘性流体容器の水平方向の震動を減衰させる。履歴ダンパでは、固定板を介して粘性流体容器の外面と抵抗板との間にある鉛プラグ入り免震ゴムが、抵抗板に対する粘性流体容器の水平方向の震動を減衰させる。 When a horizontal vibration acts on a building, the viscous fluid container vibrates horizontally with respect to the resistance plate. In a viscous damper, the viscous fluid between the inner surface of the viscous fluid container and the resistance plate damps horizontal vibrations of the viscous fluid container relative to the resistance plate. In the hysteresis damper, a lead-plug isolation rubber interposed between the outer surface of the viscous fluid container and the resistance plate via the fixed plate damps horizontal vibration of the viscous fluid container relative to the resistance plate.
特開2001-248326号公報JP 2001-248326 A
 上記特許文献1の制震装置によれば、粘性ダンパと履歴ダンパとが設けられている。しかしながら、粘性ダンパと比較して、履歴型ダンパは硬い(小さい変位でも荷重が大きい)ため、震動の変位が大きい(荷重が大きい)場合は減衰機能を発揮するが、微振動(小さい荷重)では変形せず震動を減衰できない。そのため、粘性ダンパと履歴ダンパとを並列に設けると、震動の変位が小さい場合に減衰性能が低下する。
 本発明の目的は、かかる従来技術の課題に鑑み、震動の変位が大きい場合と小さい場合共に震動の減衰機能が有効に効く制震装置を提供することにある。
According to the vibration control device of Patent Document 1, the viscous damper and the hysteresis damper are provided. However, hysteresis-type dampers are harder (large loads even with small displacements) compared to viscous dampers, and therefore exhibit damping functions when vibration displacement is large (large loads), but with micro-vibrations (small loads) It can not damp the vibration without deformation. Therefore, when the viscous damper and the hysteresis damper are provided in parallel, the damping performance is degraded when the displacement of the vibration is small.
An object of the present invention is, in view of the problems of the prior art, to provide a vibration control apparatus in which the vibration damping function is effective both when the displacement of the vibration is large and when the displacement is small.
 [1]本発明の第1態様の制震装置は、
 下側梁部と上側梁部とを含む構造物に備えられた制震装置であって、
 前記下側梁部と前記上側梁部の水平方向の震動を粘性力で減衰する粘性ダンパと、該粘性ダンパに連結され前記下側梁部と前記上側梁部の水平方向の震動を摩擦力で減衰する摩擦ダンパと、前記粘性ダンパの単独による震動の減衰と前記粘性ダンパ及び前記摩擦ダンパの併用による震動の減衰とを切り替える切換機構と備え、
 前記粘性ダンパは、前記下側梁部上に固定された粘性流体容器と、該粘性流体容器に貯留された粘性流体と、前記上側梁部に固定された状態で垂下されて前記粘性流体に浸漬されるとともに前記粘性流体容器に対し水平移動する抵抗板とを備え、
 前記摩擦ダンパは、前記抵抗板に対し水平移動可能に設けられた摩擦伝達板と、該摩擦伝達板と前記粘性ダンパの前記抵抗板との間に設けられた摩擦力発生部とを備え、
 前記切換機構は、前記粘性流体容器に設けられた第1部材と、該第1部材の水平移動方向に対向して前記摩擦伝達板に設けられた第2部材とを備え、前記摩擦伝達板に対する前記粘性流体容器の水平方向の変位が前記第1部材の水平方向の端部と該端部に対向する前記第2部材の端部の第1所定間隔を超えたときに前記第1部材に当接することで前記摩擦伝達板を前記粘性流体容器と共に前記抵抗板に対して相対的に水平方向に移動させること特徴とする。
[1] A vibration control system according to a first aspect of the present invention,
A vibration control device provided in a structure including a lower beam portion and an upper beam portion,
A viscous damper that damps horizontal vibration of the lower beam portion and the upper beam portion with viscosity, and a frictional force that is connected to the viscous damper and causes horizontal vibration of the lower beam portion and the upper beam portion A friction damper for damping, and a switching mechanism for switching between vibration damping by the viscosity damper alone and vibration damping by the combination of the viscosity damper and the friction damper;
The viscous damper is suspended in a viscous fluid container fixed on the lower beam, a viscous fluid stored in the viscous fluid container, and fixed to the upper beam and dipped in the viscous fluid. And a resistance plate moving horizontally with respect to the viscous fluid container,
The friction damper includes a friction transmission plate provided so as to be horizontally movable with respect to the resistance plate, and a friction force generator provided between the friction transmission plate and the resistance plate of the viscous damper,
The switching mechanism includes a first member provided to the viscous fluid container, and a second member provided to the friction transmission plate opposite to the horizontal movement direction of the first member, and the switching mechanism is directed to the friction transmission plate When the horizontal displacement of the viscous fluid container exceeds the first predetermined interval between the horizontal end of the first member and the end of the second member opposite to the end, the first member is pressed against the first member The friction transfer plate is moved horizontally with respect to the resistance plate together with the viscous fluid container by being in contact with each other.
 当該構成の制震装置によれば、下側梁部と上側梁部の水平方向の震動は、粘性ダンパと摩擦ダンパとによって減衰することができる。具体的には、粘性ダンパ側では、下側梁部上に固定された粘性流体容器に対して、上側梁部に固定された状態で垂下された抵抗板が水平方向に移動すると、粘性流体容器に貯留された粘性流体によって、粘性流体容器に対する抵抗板の水平方向の震動が減衰される。 According to the vibration control device of the configuration, horizontal vibration of the lower beam portion and the upper beam portion can be damped by the viscous damper and the friction damper. Specifically, on the viscosity damper side, when the resistance plate suspended in a state fixed to the upper beam portion moves horizontally to the viscous fluid container fixed on the lower beam portion, the viscous fluid container The viscous fluid stored therein damps horizontal vibrations of the resistance plate relative to the viscous fluid container.
 また、摩擦ダンパ側では、抵抗板に対して摩擦伝達板が水平方向に移動すると、摩擦伝達板と抵抗板との間に設けられた摩擦力発生部によって、摩擦伝達板に対する抵抗板の水平方向の震動が減衰される。ここで、切換機構は、摩擦伝達板に対する粘性流体容器の水平方向の変位が第1部材の水平方向の端部と該端部に対向する第2部材の端部の第1所定間隔を超えたときに、粘性流体容器に設けられた第1部材が、摩擦伝達板に設けられた第2部材に当接し、粘性流体容器と共に摩擦伝達板が水平方向に移動する。 Also, on the friction damper side, when the friction transfer plate moves in the horizontal direction with respect to the resistance plate, the friction force generating portion provided between the friction transfer plate and the resistance plate causes the horizontal direction of the resistance plate to the friction transfer plate The earthquake's vibration is attenuated. Here, the switching mechanism is configured such that the horizontal displacement of the viscous fluid container with respect to the friction transfer plate exceeds a first predetermined distance between the horizontal end of the first member and the end of the second member facing the end. Sometimes, the first member provided in the viscous fluid container abuts on the second member provided in the friction transfer plate, and the friction transfer plate moves horizontally with the viscous fluid container.
 このため、震動の変位が小さく、摩擦伝達板に対する粘性流体容器の水平方向の変位が第1所定間隔以下の場合は、第1部材が第2部材に当接せず摩擦伝達板が水平方向に移動しないので、摩擦ダンパは効かず、粘性ダンパのみ有効に効く。そして、震動の変位が大きくなり、摩擦伝達板に対する粘性流体容器の水平方向の変位が第1所定間隔を超えた場合は、第1部材が第2部材に当接して摩擦伝達板が水平方向に移動するので、摩擦ダンパも効き、結果、摩擦ダンパと粘性ダンパの両方が有効に効く。すなわち、震動の変位が小さい場合は粘性ダンパのみ効き、震動の変位が大きい場合は粘性ダンパと摩擦ダンパの両方が効く。このように、震動の変位が大きい場合と小さい場合共に震動の減衰機能を有効に効かせることができる。 Therefore, when the displacement of the vibration is small and the horizontal displacement of the viscous fluid container with respect to the friction transmission plate is equal to or less than the first predetermined interval, the first member does not abut the second member and the friction transmission plate is in the horizontal direction. Since it does not move, the friction damper does not work, and only the viscous damper works effectively. When the displacement of the vibration increases and the horizontal displacement of the viscous fluid container with respect to the friction transmission plate exceeds the first predetermined interval, the first member abuts on the second member and the friction transmission plate is in the horizontal direction. As it moves, the friction damper also works, and as a result, both the friction damper and the viscosity damper work effectively. That is, when the displacement of the vibration is small, only the viscous damper works, and when the displacement of the vibration is large, both the viscous damper and the friction damper work. Thus, the vibration damping function can be effectively used both when the displacement of the vibration is large and small.
 [2]また、本発明の制震装置において、
 前記切換機構では、
 前記摩擦伝達板は、前記粘性流体容器の上方に配置され、
 前記第1部材は、前記粘性流体容器の上部から前記摩擦伝達板に向かって突出する第1凸部であり、
 前記第2部材は、前記摩擦伝達板の下部から前記粘性流体容器に向かって突出する第2凸部であり、
 前記第1凸部と前記第2凸部は、前記第1凸部の水平移動方向に所定の間隔をおいて交互に複数配置されていることが好ましい。
[2] Further, in the vibration control device of the present invention,
In the switching mechanism,
The friction transfer plate is disposed above the viscous fluid container,
The first member is a first convex portion protruding toward the friction transmission plate from an upper portion of the viscous fluid container,
The second member is a second convex portion that protrudes toward the viscous fluid container from the lower portion of the friction transfer plate,
It is preferable that a plurality of the first convex portions and the second convex portions are alternately arranged at predetermined intervals in the horizontal movement direction of the first convex portions.
 当該構成の制震装置によれば、第1部材は粘性流体容器の上部からその上方に配置された摩擦伝達板に向かって突出する第1凸部であり、第2部材は摩擦伝達板の下部から粘性流体容器に向かって突出する第2凸部であり、第1凸部と第2凸部とが所定の間隔をおいて交互に複数配置されているので、第1凸部が水平方向に移動した際に第2凸部と複数個所で接触して粘性ダンパのみによる震度の減衰から摩擦ダンパも含めた震動の減衰への切換を確実に行うことができる。 According to the vibration control device of the configuration, the first member is a first convex portion that protrudes from the upper portion of the viscous fluid container toward the friction transmission plate disposed above, and the second member is the lower portion of the friction transmission plate And the first convex portion and the second convex portion are alternately arranged at predetermined intervals, so that the first convex portion is in the horizontal direction. When moving, it is possible to switch from damping of seismic intensity only by the viscous damper to damping of vibration including the friction damper by contacting the second convex portion at a plurality of locations.
 [3]また、本発明の制震装置において、
 前記切換機構は、前記第1凸部と前記第2凸部が当接する部分に、前記第1凸部と前記第2凸部の衝突を緩和する緩衝機構を備えていることが好ましい。
[3] In the vibration control device of the present invention,
It is preferable that the switching mechanism includes a buffer mechanism that reduces a collision between the first convex portion and the second convex portion at a portion where the first convex portion and the second convex portion abut.
 当該構成の制震装置によれば、緩衝機構によって第1凸部と第2凸部の当接を円滑に行うことができる。 According to the vibration control apparatus of the said structure, contact with a 1st convex part and a 2nd convex part can be performed smoothly by a buffer mechanism.
 [4]本発明の第2態様の制震装置は、
 下側梁部と上側梁部とを含む構造物に備えられた制震装置であって、
 前記下側梁部と前記上側梁部の水平方向の震動を粘性力で減衰する粘性ダンパと、該粘性ダンパに連結され前記下側梁部と前記上側梁部の水平方向の震動を摩擦力で減衰する摩擦ダンパと、前記粘性ダンパの単独による震動の減衰と該摩擦ダンパの単独による震動の減衰とを切り替える切換機構と備え、
 前記粘性ダンパは、前記下側梁部上に固定された粘性流体容器と、該粘性流体容器に貯留された粘性流体と、前記上側梁部に固定された状態で垂下された摩擦伝達板と、該摩擦伝達板から前記摩擦ダンパを介して垂下されて前記粘性流体に浸漬されるとともに前記粘性流体容器に対し水平移動する抵抗板とを備え、
 前記摩擦ダンパは、前記摩擦伝達板と、該摩擦伝達板に対し水平移動可能に設けられた前記抵抗板と、前記抵抗板と該摩擦伝達板との間に設けられた摩擦力発生部とを備え、
 前記切換機構は、前記抵抗板に貫通するように形成された貫通孔と、該貫通孔を通過して前記粘性流体容器に設けられ、前記抵抗板に対する前記粘性流体容器の水平方向の変位が第1所定間隔を超えたときに前記貫通孔の縁に当接することで前記抵抗板を前記粘性流体容器と共に前記摩擦伝達板に対して相対的に水平方向に移動させる通過部材とを備えていることを特徴とする。
[4] The vibration control system of the second aspect of the present invention is
A vibration control device provided in a structure including a lower beam portion and an upper beam portion,
A viscous damper that damps horizontal vibration of the lower beam portion and the upper beam portion with viscosity, and a frictional force that is connected to the viscous damper and causes horizontal vibration of the lower beam portion and the upper beam portion A friction damper for damping, and a switching mechanism for switching between vibration damping by the viscous damper alone and vibration damping by the friction damper alone;
The viscous damper includes a viscous fluid container fixed on the lower beam portion, a viscous fluid stored in the viscous fluid container, and a friction transfer plate suspended in a state fixed to the upper beam portion. And a resistance plate which is suspended from the friction transfer plate via the friction damper and immersed in the viscous fluid and horizontally moves relative to the viscous fluid container.
The friction damper includes the friction transmission plate, the resistance plate provided so as to be horizontally movable with respect to the friction transmission plate, and a friction force generating portion provided between the resistance plate and the friction transmission plate. Equipped
The switching mechanism is provided in the viscous fluid container through the through hole formed to penetrate the resistance plate and the through hole, and the horizontal displacement of the viscous fluid container with respect to the resistance plate is (1) A passing member for moving the resistance plate horizontally with the viscous fluid container relative to the friction transmission plate by abutting on the edge of the through hole when the predetermined distance is exceeded It is characterized by
 当該構成の制震装置によれば、下側梁部と上側梁部の水平方向の震動は、粘性ダンパと摩擦ダンパとによって減衰することができる。具体的には、粘性ダンパ側では、下側梁部上に固定された粘性流体容器に対して、上側梁部に摩擦ダンパを介して垂下された抵抗板が水平方向に移動すると、粘性流体容器に貯留された粘性流体によって、粘性流体容器に対する抵抗板の水平方向の震動が減衰される。 According to the vibration control device of the configuration, horizontal vibration of the lower beam portion and the upper beam portion can be damped by the viscous damper and the friction damper. Specifically, on the viscosity damper side, when the resistance plate suspended from the upper beam via the friction damper moves horizontally with respect to the viscous fluid container fixed on the lower beam, the viscous fluid container The viscous fluid stored therein damps horizontal vibrations of the resistance plate relative to the viscous fluid container.
 また、摩擦ダンパ側では、抵抗板に対して摩擦伝達板が水平方向に移動すると、摩擦伝達板と抵抗板との間に設けられた摩擦力発生部によって、摩擦伝達板に対する抵抗板の水平方向の震動が減衰される。ここで、切換機構は、抵抗板に対する粘性流体容器の水平方向の変位が第1所定間隔を超えたときに、粘性流体容器に設けられた通過部材が、抵抗板に設けられた貫通孔の縁に当接し、粘性流体容器と共に抵抗板が水平方向に移動する。 Also, on the friction damper side, when the friction transfer plate moves in the horizontal direction with respect to the resistance plate, the friction force generating portion provided between the friction transfer plate and the resistance plate causes the horizontal direction of the resistance plate to the friction transfer plate The earthquake's vibration is attenuated. Here, when the horizontal displacement of the viscous fluid container with respect to the resistance plate exceeds the first predetermined distance, the switching mechanism is the edge of the through hole provided in the resistance plate with the passage member provided in the viscous fluid container. The resistance plate moves horizontally with the viscous fluid container.
 このため、震動の速度及び変位が小さく、抵抗板に対する粘性流体容器の水平方向の変位が第1所定間隔以下の場合は、通過部材が貫通孔の縁に当接せず抵抗板が粘性流体容器と共に水平方向に移動しないので、摩擦ダンパは効かず、粘性ダンパのみ有効に効く。そして、震動の速度及び変位が大きくなり、抵抗板に対する粘性流体容器の水平方向の変位が第1所定間隔を超えた場合は、通過部材部が貫通孔の縁に当接して抵抗板が粘性流体容器と共に水平方向に移動するので、粘性ダンパが効かずに摩擦ダンパのみが効く状態となる。すなわち、震動の速度及び変位が小さい場合は、速度及び変位が小さい震動に有効な粘性ダンパのみ効き、震動の速度及び変位が大きい場合は、速度及び変位が大きい震動に有効な摩擦ダンパが効く。このように、震動の速度及び変位が大きい場合と小さい場合共に震動の減衰機能を有効に効かせることができる。 Therefore, when the vibration velocity and displacement are small and the horizontal displacement of the viscous fluid container with respect to the resistance plate is less than the first predetermined distance, the passing member does not abut the edge of the through hole and the resistance plate is the viscous fluid container The friction damper does not work, and only the viscous damper works effectively. When the vibration velocity and displacement increase and the horizontal displacement of the viscous fluid container with respect to the resistance plate exceeds the first predetermined distance, the passing member abuts against the edge of the through hole and the resistance plate becomes viscous fluid. Since it moves horizontally with the container, only the friction damper is effective without the viscous damper being effective. That is, when the velocity and displacement of the vibration are small, only the viscous damper effective for vibrations with small velocity and displacement works, and when the velocity and displacement of the vibration are large, the effective friction damper works for vibrations with large velocity and displacement. Thus, the vibration damping function can be effectively used both when the velocity and displacement of the vibration are large and small.
 [5]また、本発明の制震装置において、
 前記切換機構では、
 前記通過部材は、前記粘性流体容器の膨らみを防止する膨らみ防止用ボルトであり、
 前記貫通孔は、前記膨らみ防止用ボルトの逃がし長孔であることが好ましい。
[5] Further, in the vibration control device of the present invention,
In the switching mechanism,
The passage member is a bulge preventing bolt that prevents the viscous fluid container from swelling.
It is preferable that the through hole is a relief elongated hole of the bulge preventing bolt.
 当該構成の制震装置によれば、切換機構は、粘性流体容器の膨らみを防止する膨らみ防止用ボルトと、該膨らみ防止用ボルトの逃がし長孔を利用するので、簡単な構成にすることができる。 According to the vibration control device of the configuration, the switching mechanism uses the expansion prevention bolt for preventing expansion of the viscous fluid container and the escape long hole of the expansion prevention bolt, so that the structure can be simplified. .
 [6]また、本発明の制震装置において、
 前記切換機構は、前記通過部材と前記貫通孔の縁が当接する部分に、前記通過部材と前記貫通孔の縁の衝突を緩和する緩衝機構を備えていることが好ましい。
[6] In the vibration control device of the present invention,
It is preferable that the switching mechanism includes a buffer mechanism that reduces the collision between the passing member and the edge of the through hole at a portion where the passing member abuts the edge of the through hole.
 当該構成の制震装置によれば、緩衝機構によって通過部材と貫通孔の縁との当接を円滑に行うことができる。 According to the vibration control apparatus of the said structure, contact with the edge of a passage member and a through-hole can be smoothly performed by a buffer mechanism.
本発明の第1実施形態に係る制震装置を概念的に示す正面図。BRIEF DESCRIPTION OF THE DRAWINGS The front view which shows notionally the vibration control apparatus which concerns on 1st Embodiment of this invention. 図1の制震装置を模式的に示す図である。It is a figure which shows the damping device of FIG. 1 typically. 図1の制震装置における震動による変位がない状態の作用図。The action view in the state without the displacement by the vibration in the vibration control apparatus of FIG. 図1の制震装置における震動による変位が小さい状態の作用図。The action view in the state where displacement by vibration is small in the vibration control device of FIG. 図1の制震装置における震動による変位が大きい状態の作用図。The action view in the state where displacement by vibration is large in the vibration control device of FIG. 図1の制震装置における震動による変位が小さい状態の減衰力と変位の関係を示す図。The figure which shows the relationship between the damping force of a state with a small displacement by vibration in the damping device of FIG. 1, and displacement. 図1の制震装置における震動による変位が大きい状態の減衰力と変位の関係を示す図。The figure which shows the relationship between the damping force of a state with a large displacement by vibration in the damping device of FIG. 1, and displacement. 図1の制震装置における震動による変位がより大きい状態の減衰力と変位の関係を示す図。The figure which shows the relationship between the damping force of the state in which the displacement by vibration in the damping device of FIG. 1 is large, and displacement. 本発明の第2実施形態に係る制震装置を示す正面図である。It is a front view which shows the vibration control apparatus which concerns on 2nd Embodiment of this invention. 図5の制震装置を模式的に示す図である。It is a figure which shows typically the vibration control apparatus of FIG. 図5の制震装置における震動による変位がない状態の作用図。The action view in the state without the displacement by the vibration in the damping device of FIG. 図5の制震装置における震動による変位が小さい状態の作用図。The action view in the state where displacement by vibration is small in the vibration control device of FIG. 図5の制震装置における震動による変位が大きい状態の作用図。The action view in the state where displacement by vibration is large in the vibration control device of FIG. 図5の制震装置における変動による変位が小さい状態の減衰力と変位の関係を示す図。The figure which shows the relationship between the damping force of a state with a small displacement by the fluctuation | variation in the damping device of FIG. 5, and a displacement. 図5の制震装置における変動による変位が大きい状態の減衰力と変位の関係を示す図。The figure which shows the relationship between the damping force of a state with a large displacement by the fluctuation | variation in the damping device of FIG. 5, and a displacement. 図5の制震装置における変動による変位がより大きい状態の減衰力と変位の関係を示す図。The figure which shows the relationship between the damping force of a state with a large displacement by the fluctuation | variation in the damping device of FIG. 5, and a displacement.
 (第1実施形態)
 図1に示されているように、本発明の第1実施形態に係る制震装置10は、例えば建物等の構造物1に備えられている。構造物1は、水平方向に延びる下側梁部2と、当該下側梁部2から上方に延びる柱(不図示)と、下側梁部2よりも上方で柱に支持され水平方向に延びる上側梁部3とを含んでいる。
First Embodiment
As shown in FIG. 1, the vibration control device 10 according to the first embodiment of the present invention is provided, for example, in a structure 1 such as a building. The structure 1 is horizontally supported by the lower beam 2 extending in the horizontal direction, a pillar (not shown) extending upward from the lower beam 2, and the pillar supported above the lower beam 2 in the horizontal direction. And the upper beam portion 3 are included.
 制震装置10は、下側梁部2と上側梁部3との水平方向の相対的な震動を粘性力で減衰する粘性ダンパ11と、該粘性ダンパ11に連結され下側梁部2と上側梁部3の水平方向の震動を摩擦力で減衰する摩擦ダンパ30と、粘性ダンパ11の単独による震動の減衰と粘性ダンパ11及び摩擦ダンパ30の併用による震動の減衰とを切り替える切換機構40と備えている。粘性ダンパ単独と併用との切り替えが行われる。 The vibration control device 10 includes a viscous damper 11 that damps relative horizontal vibration between the lower beam 2 and the upper beam 3 with a viscous force, and the lower beam 2 connected to the viscous damper 11 and the upper beam. The friction damper 30 damps the horizontal vibration of the beam 3 by friction, and the switching mechanism 40 switches the vibration damping by the viscosity damper 11 alone and the vibration damping by the combined use of the viscosity damper 11 and the friction damper 30 ing. Switching between the viscous damper alone and in combination is performed.
 (粘性ダンパ11の構成)
 説明の便宜上、水平面のうち下側梁部2が延びる水平方向(左右方向)をX方向とし、水平面のうちX方向に対する垂直方向(図面の表裏方向)をY方向とし、鉛直方向(上下方向)をZ方向とする。
(Configuration of viscosity damper 11)
For convenience of explanation, the horizontal direction (horizontal direction) in which the lower beam 2 extends in the horizontal plane is taken as the X direction, and the vertical direction (front and back direction in the drawing) in the horizontal plane is taken as the Y direction. In the Z direction.
 粘性ダンパ11は、下側梁部2の上面に底面が当接するように固定された有底矩形筒状の粘性流体容器12と、該粘性流体容器12に貯留された粘性流体13と、上側梁部3に固定された状態で垂下されて粘性流体13に浸漬されるとともに粘性流体容器12に対し水平移動する抵抗板14とを備えている。 The viscous damper 11 has a bottomed rectangular cylindrical viscous fluid container 12 fixed so that the bottom surface abuts on the upper surface of the lower beam portion 2, a viscous fluid 13 stored in the viscous fluid container 12, and an upper beam A resistance plate 14 which is suspended in a state of being fixed to the portion 3 and is immersed in the viscous fluid 13 and horizontally moves relative to the viscous fluid container 12 is provided.
 粘性流体容器12は、X方向及びZ方向の寸法に比較してY方向の寸法が小さく設定され且つ上方が開放された箱形状であり、底部15と、該底部15から立ち上がる立壁部16と、該立壁部16の下端部に底部15をY方向に延長するように設けられ締結部材17を介して下側梁部2に締結された下部ガセット18とを備えている。また、粘性流体容器12には、正面及び背面の立壁部16を貫通して粘性流体容器12のY方向の膨らみを防止する膨らみ防止用ボルト19が設けられている。底部15と下部ガセット18とを一体に形成しても差し支えない。 The viscous fluid container 12 is in the form of a box whose dimensions in the Y direction are set smaller than the dimensions in the X direction and the Z direction and whose upper side is open, and has a bottom 15 and an upright wall 16 rising from the bottom 15 A lower gusset 18 is provided at the lower end of the upstanding wall 16 so as to extend a bottom 15 in the Y direction and is fastened to the lower beam 2 via a fastening member 17. Further, the viscous fluid container 12 is provided with a bulge preventing bolt 19 which penetrates the front and rear upright wall portions 16 to prevent the viscous fluid container 12 from swelling in the Y direction. The bottom portion 15 and the lower gusset 18 may be integrally formed.
 粘性流体13は、例えばシリコーンオイルや炭化水素化合物などの高粘度の高分子材料であり、難燃性、耐候性、耐久性を有し、粘性流体容器12に対する抵抗板14の変位による繰り返しの粘性流体13のせん断にも粘性の低下を起こさない材料で構成されている。 The viscous fluid 13 is, for example, a high viscosity polymer material such as silicone oil or hydrocarbon compound, has flame retardancy, weather resistance, durability, and has repeated viscosity due to displacement of the resistance plate 14 with respect to the viscous fluid container 12. It is made of a material which does not cause a decrease in viscosity even when the fluid 13 is sheared.
 抵抗板14は、正面視で略矩形状に形成された板材であり、上端部のX方向全域に亘って締結部材21によって締結されYZ平面における断面L字状でX方向に延びる上部ガセット22と、中央部及び下部に水平方向に長く形成された貫通孔23とを備えている。該貫通孔23に、膨らみ防止用ボルト19が通されている。上部ガセット22は、締結部材24を介して上側梁部3に締結されている。
 (摩擦ダンパ30の構成)
The resistance plate 14 is a plate formed in a substantially rectangular shape in a front view, and is fastened by the fastening member 21 over the entire area in the X direction of the upper end portion, and an upper gusset 22 extending in the X direction with an L-shaped cross section in the YZ plane And a through hole 23 formed longitudinally in the central portion and the lower portion. The through hole 23 is passed through a bulge preventing bolt 19. The upper gusset 22 is fastened to the upper beam 3 via a fastening member 24.
(Configuration of friction damper 30)
 摩擦ダンパ30は、粘性ダンパ11の抵抗板14に対し±X方向水平移動可能に設けられた摩擦伝達板31と、該摩擦伝達板31と抵抗板14とのY方向の間に挟持されるように設けられた摩擦力発生部32と、を備えている。 The friction damper 30 is held between the friction transmission plate 31 provided so as to be movable horizontally in the ± X direction with respect to the resistance plate 14 of the viscous damper 11, and the Y direction of the friction transmission plate 31 and the resistance plate 14 And a frictional force generator 32 provided on the
 摩擦伝達板31は、正面視で水平方向に長く略矩形状に形成された板材であり、粘性流体容器12の上方に配置されると共に抵抗板14の両面に配置されている。 The friction transfer plate 31 is a plate member formed in a substantially rectangular shape long in the horizontal direction in a front view, and is disposed above the viscous fluid container 12 and disposed on both sides of the resistance plate 14.
 摩擦力発生部32は、摩擦伝達板31に設けられ所定の摩擦係数を有する摩擦材(不図示)と、抵抗板14に設けられた相手材としてのステンレス鋼など(不図示)とからなる。摩擦伝達板31には締結部材34を挿通させるための貫通孔(不図示)が形成されている。抵抗板14の上部には水平方向に長い貫通孔33が形成されており、摩擦伝達板31の貫通孔及び抵抗板14の貫通孔33にY方向に挿通される締結部材34によって、摩擦伝達板31が抵抗板14に締結されている。また、締結部材34は、PC鋼棒やボルトなどとナットとから構成されている。ナットと摩擦伝達板31との間に正面視矩形状で座金機能を有する支圧板など(不図示)が配置されている。 The frictional force generating portion 32 is formed of a friction material (not shown) provided on the friction transmission plate 31 and having a predetermined coefficient of friction, and stainless steel (not shown) as a mating material provided on the resistance plate 14. The friction transmission plate 31 is formed with a through hole (not shown) for inserting the fastening member 34. A horizontally extending through hole 33 is formed in the upper portion of the resistance plate 14, and the friction transmitting plate is formed by the fastening member 34 inserted in the Y direction into the through hole of the friction transmission plate 31 and the through hole 33 of the resistance plate 14. 31 is fastened to the resistance plate 14. The fastening member 34 is composed of a PC steel rod, a bolt, etc. and a nut. Between the nut and the friction transfer plate 31, a bearing plate (not shown) having a washer function and having a rectangular shape in a front view is disposed.
 また、実施例では、一枚の抵抗板14の両側に摩擦伝達板31を配置したが、これに限定されず、一枚の摩擦伝達板31を2枚の抵抗板14で挟む構成としてもよく、摩擦伝達板31と抵抗板14との間に摩擦力発生部32が設けられ、締結部材34の軸力によって摩擦力発生部32に摩擦力が作用すれば摩擦伝達板31と抵抗板14の枚数が異なっても差し支えない。 Moreover, although the friction transmission plate 31 was arrange | positioned at the both sides of the resistance plate 14 of 1 sheet in the Example, it is not limited to this, It is good also as a structure which pinches the friction transmission plate 31 of 1 sheet by the resistance plate 14 of 2 sheets. A friction force generating portion 32 is provided between the friction transmission plate 31 and the resistance plate 14, and if the friction force is applied to the friction force generation portion 32 by the axial force of the fastening member 34, the friction transmission plate 31 and the resistance plate 14 are The number may differ.
 実施例では、摩擦力発生部32を、摩擦伝達板31と抵抗板14との間に別部材として設けたが、これに限定されず、摩擦伝達板31と抵抗板14とを直接摺動させて該摺動部分をそれぞれ摩擦力発生部32としても差し支えない。また、実施例では、抵抗板14を一枚の板で構成したが、これに限定されず、上側梁部3に固定された状態で垂下されて一体的に移動すれば、抵抗板14を摩擦発生部32の上下で2枚に分離して締結部材等で接続させてもよく、抵抗板14が全体として2枚、3枚以上で構成されても差し支えない。 In the embodiment, although the friction force generating portion 32 is provided as a separate member between the friction transmission plate 31 and the resistance plate 14, the present invention is not limited to this, and the friction transmission plate 31 and the resistance plate 14 are directly slid The sliding portions may be used as the frictional force generator 32 respectively. In the embodiment, although the resistance plate 14 is formed of a single plate, the invention is not limited thereto. If the resistance plate 14 is suspended while being fixed to the upper beam portion 3 and moves integrally, the resistance plate 14 is rubbed. The upper and lower portions of the generation portion 32 may be separated into two sheets and connected by a fastening member or the like, and the resistance plate 14 may be constituted of two sheets, three sheets or more as a whole.
 (切換機構40の構成)
 切換機構40は、粘性流体容器12に設けられた複数の第1部材41と、該第1部材41の±X方向(水平方向)に対向して摩擦伝達板31に設けられ、摩擦伝達板31に対する粘性流体容器12の±X方向(水平方向)の変位が第1所定間隔L1を超えたときに第1部材41に当接するように配置された複数の第2部材42とを備えている。第1所定間隔L1は、第1部材41の水平方向の端部と該端部に対向する第2部材42の端部との間隔である。
(Configuration of switching mechanism 40)
The switching mechanism 40 is provided on the friction transmission plate 31 so as to face the plurality of first members 41 provided on the viscous fluid container 12 and in the ± X direction (horizontal direction) of the first member 41. And a plurality of second members 42 arranged to abut the first member 41 when the displacement of the viscous fluid container 12 in the ± X direction (horizontal direction) exceeds the first predetermined distance L1. The first predetermined distance L1 is the distance between the horizontal end of the first member 41 and the end of the second member 42 facing the end.
 詳細には、摩擦伝達板31が粘性流体容器12の上方に配置されている。複数の第1部材41は、粘性流体容器12の上部から摩擦伝達板31に向かって(又は+Z方向に)突出する第1凸部である。第2部材42は、摩擦伝達板31の下部から粘性流体容器12に向かって(又は-Z方向に)突出する第2凸部である。 Specifically, the friction transfer plate 31 is disposed above the viscous fluid container 12. The plurality of first members 41 are first convex portions that project toward the friction transmission plate 31 from the upper portion of the viscous fluid container 12 (or in the + Z direction). The second member 42 is a second convex portion that protrudes from the lower portion of the friction transfer plate 31 toward the viscous fluid container 12 (or in the −Z direction).
 複数の第1凸部41はX方向に相互に離間して配置されている。複数の第2凸部42はX方向に相互に離間して配置されている。隣り合う一対の第1凸部41の間に一の第2凸部42がX方向について当該一対の第1部材41と同一の第1所定間隔L1をおいて配置されている。複数の第1凸部41と第2凸部42は、水平方向に第1所定間隔L1をおいて交互に配置されている。複数の第1凸部41と第2凸部42とは、すべて第1所定間隔L1で等間隔に配置されている。また、第1凸部41の上端は、第2凸部42の下端よりも+Z方向に高い位置にある。 The plurality of first convex portions 41 are disposed apart from each other in the X direction. The plurality of second convex portions 42 are spaced apart from each other in the X direction. One second convex portion 42 is arranged between the pair of adjacent first convex portions 41 at the same first predetermined interval L1 as the pair of first members 41 in the X direction. The plurality of first convex portions 41 and the second convex portions 42 are alternately arranged at a first predetermined interval L1 in the horizontal direction. The plurality of first convex portions 41 and the second convex portions 42 are all arranged at equal intervals at a first predetermined interval L1. Further, the upper end of the first convex portion 41 is at a position higher in the + Z direction than the lower end of the second convex portion 42.
 また、抵抗板14は、粘性流体容器12に対して水平方向に移動可能であるが、その第2所定間隔L2は、膨らみ防止用ボルト19が貫通孔23に当接するまでの範囲であり、第2所定間隔L2は第1所定間隔L1よりも大きい。第2所定間隔L2は、粘性流体容器12に対する抵抗板14の変位がない状態で、X方向における膨らみ防止用ボルト19のねじ部の左端部から貫通孔23の左縁までの距離であり、X方向における膨らみ防止用ボルト19のねじ部の右端部から貫通孔23の右縁までの距離も第2所定間隔L2である。 Also, although the resistance plate 14 is movable in the horizontal direction with respect to the viscous fluid container 12, the second predetermined interval L2 is a range until the swelling prevention bolt 19 abuts on the through hole 23, and The second predetermined interval L2 is larger than the first predetermined interval L1. The second predetermined distance L2 is a distance from the left end portion of the screw portion of the expansion prevention bolt 19 in the X direction to the left edge of the through hole 23 in a state where the resistance plate 14 is not displaced with respect to the viscous fluid container 12 The distance from the right end of the threaded portion of the anti-inflation bolt 19 in the direction to the right edge of the through hole 23 is also a second predetermined interval L2.
 また、切換機構40は、第1部材41と第2部材42が当接する部分に、第1部材41と第2部材42の衝突を緩和する緩衝機構43を備えている。緩衝機構43は、例えば弾性部材で構成される。 Further, the switching mechanism 40 is provided with a buffer mechanism 43 at a portion where the first member 41 and the second member 42 abut against each other, for relieving the collision of the first member 41 and the second member 42. The buffer mechanism 43 is formed of, for example, an elastic member.
 (粘性ダンパ11の作用)
 粘性ダンパ11では、粘性流体容器12と抵抗板14との間には隙間が形成されており、該隙間に粘性流体13が入り込んでいる。粘性ダンパ11は、下側梁部2に対して上側梁部3が水平方向に震動する際、粘性流体容器12に対する抵抗板14の水平方向の相対的な震動による粘性流体13の粘性せん断抵抗力を利用し、粘性流体容器12に対する抵抗板14の震動を粘性力で減衰するものである。
(Function of viscous damper 11)
In the viscous damper 11, a gap is formed between the viscous fluid container 12 and the resistance plate 14, and the viscous fluid 13 enters the gap. When the upper beam portion 3 vibrates in the horizontal direction with respect to the lower beam portion 2, the viscous damper 11 is a viscous shear resistance force of the viscous fluid 13 due to the horizontal relative vibration of the resistance plate 14 with respect to the viscous fluid container 12. Is used to damp the vibration of the resistance plate 14 relative to the viscous fluid container 12 with viscous force.
 (摩擦ダンパ30の作用)
 摩擦ダンパ30は、摩擦力発生部32の摩擦抵抗力を利用した減衰装置であり、締結部材34を締め付けることによって、摩擦力発生部32の摩擦材に締結部材34の軸力又は締め付け力を伝達する。抵抗板14と摩擦伝達板31が水平方向に相対移動することにより、摩擦面に動摩擦力を発生させ摩擦抵抗力を得て、摩擦伝達板31に対する抵抗板14の震動を摩擦力で減衰するものである。
(Function of friction damper 30)
The friction damper 30 is a damping device that utilizes the frictional resistance of the frictional force generation unit 32, and transmits the axial force or the clamping force of the clamping member 34 to the friction material of the frictional force generation unit 32 by clamping the clamping member 34. Do. By moving the resistance plate 14 and the friction transmission plate 31 relative to each other in the horizontal direction, a dynamic friction force is generated on the friction surface to obtain a frictional resistance, thereby damping the vibration of the resistance plate 14 with respect to the friction transmission plate 31 by the friction force It is.
 (切換機構40の作用)
 切換機構40は、下側梁部2に対する上側梁部3の震動による、摩擦伝達板31に対する粘性流体容器12の変位の大きさに応じて、粘性ダンパ11の単独による震動の減衰と、粘性ダンパ11と摩擦ダンパ30の併用による震動の減衰とを切換えるものである。摩擦伝達板31に対する粘性流体容器12の水平方向の変位が第1所定間隔L1以内では、第1部材41が第2部材に当接しない、又は当接しても第1部材41と共に第2部材が変位しないので、粘性ダンパ11のみが効く。
(Operation of switching mechanism 40)
The switching mechanism 40 damps the vibration due to the viscosity damper 11 alone according to the magnitude of the displacement of the viscous fluid container 12 with respect to the friction transmission plate 31 due to the vibration of the upper beam 3 with respect to the lower beam 2. 11 and switching of damping of vibration by the combined use of the friction damper 30. When the horizontal displacement of the viscous fluid container 12 with respect to the friction transmission plate 31 is within the first predetermined distance L1, the first member 41 does not abut against the second member or the second member together with the first member 41 Since it does not displace, only the viscous damper 11 works.
 摩擦伝達板31に対する粘性流体容器12の水平方向の変位が第1所定間隔L1を超えた場合では、第1部材41が第2部材42に当接して第1部材41と共に第2部材42が変位する。このため、粘性ダンパ11と摩擦ダンパ30の両方が効く。このように切換機構40は、第1部材41に対する第2部材42の変位が第1所定間隔L1以内では粘性ダンパ11のみ効かせ、第1部材41に対する第2部材42の変位が第1所定間隔L1を超えた場合には粘性ダンパ11と摩擦ダンパ30の両方が効くように切換えるものである。 When the horizontal displacement of the viscous fluid container 12 with respect to the friction transmission plate 31 exceeds the first predetermined interval L1, the first member 41 abuts on the second member 42, and the second member 42 is displaced together with the first member 41. Do. For this reason, both the viscous damper 11 and the friction damper 30 are effective. As described above, in the switching mechanism 40, the displacement of the second member 42 with respect to the first member 41 causes the displacement of the second member 42 with respect to the first member 41 only when the displacement of the second member 42 with respect to the first member 41 is within the first predetermined distance L1. When L1 is exceeded, switching is performed so that both the viscous damper 11 and the friction damper 30 become effective.
 (第1実施形態の制震装置10の構成)
 図2に示されているように、下側梁部2と上側梁部3との間に制震装置10が配置されている。制震装置10では、粘性ダンパ11と摩擦ダンパ30とを並列に連結し、さらに切換機構40を連結している。
(Configuration of Vibration Control Device 10 According to First Embodiment)
As shown in FIG. 2, the damping device 10 is disposed between the lower beam 2 and the upper beam 3. In the vibration control device 10, the viscous damper 11 and the friction damper 30 are connected in parallel, and the switching mechanism 40 is further connected.
 下側梁部2に対する上側梁部3の相対変位(震動)が小さいとき(切換機構40の第1所定間隔L1の範囲内のとき)は、切換機構40がガタ(第1所定間隔L1)により切り換わらないので、粘性ダンパ11のみで震動を減衰させる。 When the relative displacement (vibration) of the upper beam portion 3 with respect to the lower beam portion 2 is small (within the range of the first predetermined interval L1 of the switching mechanism 40), the switching mechanism 40 generates a rattle (first predetermined interval L1). Since no change is made, vibration is damped only by the viscous damper 11.
 下側梁部2に対する上側梁部3の相対変位(震動)が大きいとき(切換機構40の第1所定間隔L1を超えたとき)は、切換機構40が切り換わるので、摩擦ダンパ30も作用し、粘性ダンパ11及び摩擦ダンパ30の両方で震動を減衰させる。
 (第1実施形態の制震装置10の作用)
 説明の便宜上、震動する際は下側梁部2に対して上側梁部3が変位するものとする。
 図3Aに示されているように、震動していない状態では、下側梁部2に対して上側梁部3が移動しない。
When the relative displacement (vibration) of the upper beam 3 to the lower beam 2 is large (when the first predetermined distance L1 of the switching mechanism 40 is exceeded), the switching mechanism 40 switches, so the friction damper 30 also acts. The vibration is damped by both the viscous damper 11 and the friction damper 30.
(Operation of vibration control device 10 of the first embodiment)
For the convenience of explanation, it is assumed that the upper beam 3 is displaced with respect to the lower beam 2 when vibrating.
As shown in FIG. 3A, the upper beam 3 does not move relative to the lower beam 2 in a non-vibrated state.
 図3Bに示されているように、震動が小さい状態(図3Aの第1所定間隔L1の範囲内)では、下側梁部2に対して上側梁部3が矢印(1)のように変位し、抵抗板14と共に摩擦伝達板31が矢印(2)のように変位し、粘性ダンパ11のみで震動を減衰させる。 As shown in FIG. 3B, in a state where the vibration is small (within the range of the first predetermined interval L1 in FIG. 3A), the upper beam 3 is displaced relative to the lower beam 2 as shown by arrow (1) The friction transfer plate 31 is displaced together with the resistance plate 14 as shown by the arrow (2), and the vibration is damped only by the viscous damper 11.
 図3Cに示されているように、震動が大きい状態(図3Aの第1所定間隔L1を超える範囲)では、下側梁部2に対して上側梁部3が矢印(3)のようにさらに変位し、第1凸部41に第2凸部42が当接して切換機構40が切り換わる。抵抗板14は矢印(4)のようにさらに変位するが、切換機構40によって摩擦伝達板31はそれ以降変位しなくなる。そのため、摩擦抵抗板31は抵抗板14に対して矢印(5)のように相対変位する。結果、摩擦ダンパ30も作用し、粘性ダンパ11及び摩擦ダンパ30の両方で震動を減衰させる。 As shown in FIG. 3C, in a state where the vibration is large (a range exceeding the first predetermined interval L1 in FIG. 3A), the upper beam 3 is further added to the lower beam 2 as shown by the arrow (3). The second protrusion 42 abuts on the first protrusion 41 to switch the switching mechanism 40. The resistance plate 14 is further displaced as shown by the arrow (4), but the switching mechanism 40 prevents the friction transmission plate 31 from being displaced thereafter. Therefore, the frictional resistance plate 31 is displaced relative to the resistance plate 14 as indicated by the arrow (5). As a result, the friction damper 30 also acts to damp the vibration with both the viscosity damper 11 and the friction damper 30.
 図3Aにおける第2所定間隔L2よりも、X方向における抵抗板14の右端部から粘性流体容器12の内壁までの第3所定間隔L3が大きいので、図3Cにおいて膨らみ防止用ボルト19が貫通孔23のX方向端部に当接し、抵抗板14のX方向端部が粘性流体容器12の内壁に当接しない。 The third predetermined distance L3 from the right end of the resistance plate 14 in the X direction to the inner wall of the viscous fluid container 12 in the X direction is larger than the second predetermined distance L2 in FIG. 3A. The X-direction end of the resistance plate 14 does not abut the inner wall of the viscous fluid container 12.
 (減衰力と変位の関係(履歴形状))
 図4Aに示されているように、震動による変位が小さい状態では、切換機構40の変位が第1所定間隔L1以内(ガタ以内)であるため、減衰力として、粘性ダンパ11による粘性力のみ発生する。震動発生直後は、矢印(11)のように減衰力が大きくなり、次いで粘性力のみが作用し矢印(12)のように減衰力と変位が変化する。
(Relationship between damping force and displacement (historic shape))
As shown in FIG. 4A, when the displacement due to vibration is small, the displacement of the switching mechanism 40 is within the first predetermined interval L1 (within the backlash), so only the viscous force generated by the viscosity damper 11 is generated as a damping force. Do. Immediately after the occurrence of vibration, the damping force is increased as shown by an arrow (11), and then only the viscous force is applied, and the damping force and the displacement are changed as shown by an arrow (12).
 図4Bに示されているように、震動による変位が中位の状態では、切換機構40の変位が第1所定間隔L1を超える(ガタより大きくなる)ため、減衰力として、粘性ダンパ11による粘性力と摩擦ダンパ30による摩擦力が発生する。震動発生直後は、矢印(13)のように2段階の曲線となるようにして変位が中位の状態で減衰力が大きくなる。粘性ダンパ11の粘性力と摩擦ダンパ30の摩擦力とによる減衰力は、図4Aに示した粘性ダンパ11の粘性力のみによる減衰力よりも大きくなる。 As shown in FIG. 4B, when the displacement due to vibration is moderate, the displacement of the switching mechanism 40 exceeds the first predetermined interval L1 (becomes larger than the rattling), and the viscosity by the viscosity damper 11 is used as a damping force. Force and friction due to the friction damper 30 are generated. Immediately after the occurrence of a vibration, the damping force becomes large in a state where the displacement is in a medium state so as to form a two-step curve as shown by the arrow (13). The damping force due to the viscous force of the viscous damper 11 and the frictional force of the friction damper 30 is larger than the damping force due to only the viscous force of the viscous damper 11 shown in FIG. 4A.
 次いで、粘性力及び摩擦力の両方が作用した状態で矢印(14)のように減衰力と変位が変化し、震動の変位方向が逆になり第1凸部41に対する第2凸部42の変位方向が逆方向になると切換機構40のガタの分だけ粘性力のみが作用した状態で矢印(15)のように変位が小さくなるように変化し、再び第1凸部41に第2凸部42が当接して切換機構40によって矢印(16)のように粘性力及び摩擦力が作用して減衰力が大きくなる。次いで、粘性力及び摩擦力の両方が作用した状態で矢印(17)のように減衰力と変位が変化する。 Then, the damping force and the displacement change as shown by the arrow (14) in a state where both the viscous force and the frictional force are applied, the displacement direction of the vibration is reversed, and the displacement of the second convex portion 42 with respect to the first convex portion 41 When the direction is reversed, the displacement is reduced as shown by the arrow (15) in a state where only the viscous force is applied by the backlash of the switching mechanism 40, and the second convex portion 42 is again formed on the first convex portion 41. And the switching mechanism 40 exerts a viscous force and a frictional force as shown by an arrow (16) to increase the damping force. Then, the damping force and the displacement change as shown by the arrow (17) in a state where both the viscous force and the frictional force are applied.
 図4Cに示されているように、震動による変位がより大きい状態では、切換機構40の変位が第1所定間隔L1を超える(ガタより大きくなる)ため、減衰力として、粘性ダンパ11による粘性力と摩擦ダンパ30による摩擦力が発生する。減衰力の変化については図4Bとほぼ同様となるが、図4Bの状態に比較し、変位が大きくなる。 As shown in FIG. 4C, since the displacement of the switching mechanism 40 exceeds the first predetermined interval L1 (becomes larger than the looseness) in a state where the displacement due to vibration is larger, the viscous force by the viscous damper 11 is used as a damping force. And the friction damper 30 generates a frictional force. The change in damping force is substantially the same as that in FIG. 4B, but the displacement is larger compared to the state in FIG. 4B.
 以上に述べた第1実施形態の制震装置10の構成によって、下側梁部2と上側梁部3の水平方向の震動は、粘性ダンパ11と摩擦ダンパ30とによって減衰することができる。具体的には、粘性ダンパ11側では、下側梁部2上に設けられた粘性流体容器12に対して、上側梁部3から垂下された抵抗板14が水平方向に移動すると、粘性流体容器12に貯留された粘性流体13によって、粘性流体容器12に対する抵抗板14の水平方向の震動が減衰される。 The vibration of the lower beam 2 and the upper beam 3 in the horizontal direction can be damped by the viscous damper 11 and the friction damper 30 by the configuration of the vibration control device 10 according to the first embodiment described above. Specifically, on the viscous damper 11 side, when the resistance plate 14 suspended from the upper beam 3 moves horizontally with respect to the viscous fluid container 12 provided on the lower beam 2, the viscous fluid container By the viscous fluid 13 stored in 12, the horizontal vibration of the resistance plate 14 with respect to the viscous fluid container 12 is attenuated.
 また、摩擦ダンパ30側では、抵抗板14に対して摩擦伝達板31が水平方向に移動すると、摩擦伝達板31と抵抗板14との間に設けられた摩擦力発生部32によって、摩擦伝達板31に対する抵抗板14の水平方向の震動が減衰される。ここで、切換機構40は、摩擦伝達板31に対する粘性流体容器12の水平方向の変位が第1所定間隔L1を超えたときに、粘性流体容器12に設けられた第1部材41が、摩擦伝達板31に設けられた第2部材42に当接し、粘性流体容器12と共に摩擦伝達板31が抵抗板14に対して相対的に水平方向に移動する。 Further, on the friction damper 30 side, when the friction transmission plate 31 moves in the horizontal direction with respect to the resistance plate 14, the friction transmission plate is provided by the friction force generating portion 32 provided between the friction transmission plate 31 and the resistance plate 14. The horizontal vibration of the resistance plate 14 with respect to 31 is attenuated. Here, in the switching mechanism 40, when the horizontal displacement of the viscous fluid container 12 with respect to the friction transfer plate 31 exceeds the first predetermined distance L1, the first member 41 provided in the viscous fluid container 12 transmits friction. The friction transmission plate 31 moves in the horizontal direction relative to the resistance plate 14 with the viscous fluid container 12 in contact with the second member 42 provided on the plate 31.
 このため、震動の変位が小さく、摩擦伝達板31に対する粘性流体容器12の相対的な水平方向の変位が第1所定間隔L1以下の場合は、第1部材41が第2部材42に当接せず摩擦伝達板31が相対的に水平方向に移動しないので、摩擦ダンパ30は効かず、粘性ダンパ11のみ有効に効く。 For this reason, when the displacement of vibration is small and the relative horizontal displacement of the viscous fluid container 12 with respect to the friction transmission plate 31 is less than the first predetermined distance L1, the first member 41 abuts on the second member 42. Because the friction transmission plate 31 does not move relatively horizontally, the friction damper 30 does not work, and only the viscous damper 11 works effectively.
 そして、震動の変位が大きくなり、摩擦伝達板31に対する粘性流体容器12の相対的な水平方向の変位が第1所定間隔L1を超えた場合は、第1部材41が第2部材42に当接して粘性流体容器12と共に摩擦伝達板31が抵抗板14に対して相対的に水平方向に移動するので、摩擦ダンパ30も効き、結果、摩擦ダンパ30と粘性ダンパ11の両方が有効に効く。すなわち、震動の変位が小さい場合は粘性ダンパ11のみ効き、震動の変位が大きい場合は粘性ダンパ11と摩擦ダンパ30の両方が効く。このように、震動の変位が大きい場合と小さい場合共に震動の減衰機能を有効に効かせることができる。 Then, when the displacement of vibration increases and the relative horizontal displacement of the viscous fluid container 12 with respect to the friction transfer plate 31 exceeds the first predetermined distance L1, the first member 41 abuts on the second member 42. Since the friction transmission plate 31 moves in the horizontal direction relative to the resistance plate 14 together with the viscous fluid container 12, the friction damper 30 also works, and as a result, both the friction damper 30 and the viscosity damper 11 work effectively. That is, when the displacement of vibration is small, only the viscous damper 11 is effective, and when the displacement of vibration is large, both the viscous damper 11 and the friction damper 30 are effective. Thus, the vibration damping function can be effectively used both when the displacement of the vibration is large and small.
 さらに、切換機構40において、第1部材41は粘性流体容器12の上部からその上方に配置された摩擦伝達板31に向かって突出する第1凸部41であり、第2部材42は摩擦伝達板31の下部から粘性流体容器12に向かって突出する第2凸部42であり、第1凸部41と第2凸部42とが所定の間隔L1をおいて交互に複数配置されているので、第1凸部41が水平方向に移動した際に第2凸部42と複数個所で接触して粘性ダンパ11のみによる震度の減衰から摩擦ダンパ30も含めた震動の減衰への切換を確実に行うことができる。 Furthermore, in the switching mechanism 40, the first member 41 is a first convex portion 41 projecting toward the friction transmission plate 31 disposed above the upper part of the viscous fluid container 12, and the second member 42 is a friction transmission plate Since it is the 2nd convex part 42 which protrudes toward the viscous fluid container 12 from the lower part of 31 and the 1st convex part 41 and the 2nd convex part 42 are alternately arranged by predetermined spacing L1, a plurality, When the first convex portion 41 moves in the horizontal direction, the second convex portion 42 is in contact with the second convex portion 42 at a plurality of places, and switching from damping of seismic intensity only by the viscous damper 11 to damping of vibration including the friction damper 30 is reliably performed. be able to.
 さらに、切換機構40は、緩衝機構43によって第1凸部41と第2凸部42の当接を円滑に行うことができる。 Further, the switching mechanism 40 can smoothly contact the first convex portion 41 and the second convex portion 42 by the buffer mechanism 43.
 (第2実施形態)
 第1実施形態と同様の構成については、説明を省略し、符号を流用するものとする。図5に示されているように、本発明の第2実施形態に係る制震装置50は、例えば建物等の下側梁部2と上側梁部3とを含む構造物1に備えられている。
Second Embodiment
The description of the same configuration as that of the first embodiment will be omitted, and the reference numerals will be used. As shown in FIG. 5, the vibration control apparatus 50 according to the second embodiment of the present invention is provided, for example, in a structure 1 including a lower beam 2 and an upper beam 3 of a building or the like. .
 制震装置50は、下側梁部2と上側梁部3との水平方向の相対的な震動を粘性力で減衰する粘性ダンパ51と、該粘性ダンパ51に連結され下側梁部2と上側梁部3の水平方向の震動を摩擦力で減衰する摩擦ダンパ70と、粘性ダンパ51の単独による震動の減衰と該摩擦ダンパ70の単独による震動の減衰とを切り替える切換機構80と備えている。 The vibration control device 50 includes a viscous damper 51 that damps relative horizontal vibration between the lower beam 2 and the upper beam 3 with a viscous force, and the lower beam 2 connected to the viscous damper 51 and the upper beam. It comprises a friction damper 70 for damping the vibration in the horizontal direction of the beam 3 by friction, and a switching mechanism 80 for switching between damping of vibration by the viscous damper 51 alone and damping of vibration by the friction damper 70 alone.
 (粘性ダンパ51の構成)
 粘性ダンパ51は、下側梁部2上面に底面が当接するように固定された有底矩形筒状の粘性流体容器52と、該粘性流体容器52に貯留された粘性流体53と、上側梁部3に固定された状態で垂下された摩擦伝達板71と、該摩擦伝達板71に摩擦ダンパ70を介して垂下されて粘性流体53に浸漬されるとともに粘性流体容器52に対し水平移動する抵抗板54とを備えている。
(Configuration of viscosity damper 51)
The viscous damper 51 has a bottomed rectangular cylindrical viscous fluid container 52 fixed so that the bottom surface abuts on the upper surface of the lower beam portion 2, a viscous fluid 53 stored in the viscous fluid container 52, and an upper beam portion 3 and a friction transmission plate 71 suspended in a fixed state, and a resistance plate suspended by the friction transmission plate 71 via the friction damper 70 and immersed in the viscous fluid 53 and horizontally moving relative to the viscous fluid container 52 And 54.
 粘性流体容器52は、X方向及びZ方向の寸法に比較してY方向の寸法が小さく設定され且つ上方が開放された箱形状であり、底部55と、該底部55から立ち上がる立壁部56と、該立壁部56の下端部に底部55を延長するように設けられ締結部材57を介して下側梁部2に締結された下部ガセット58とを備えている。また、粘性流体容器52には、正面及び背面の立壁部56を貫通して粘性流体容器52のY方向の膨らみを防止する膨らみ防止用ボルト59が設けられている。底部55と下部ガセット58とを一体に形成しても差し支えない。 The viscous fluid container 52 has a box-like shape in which the dimension in the Y direction is set smaller than the dimensions in the X direction and the Z direction and the upper side is opened, and a bottom 55 and an upright wall 56 rising from the bottom 55; A lower gusset 58 is provided at the lower end of the upright wall 56 so as to extend a bottom 55 and is fastened to the lower beam 2 via a fastening member 57. Further, the viscous fluid container 52 is provided with a bulge preventing bolt 59 which penetrates the front and rear upright wall portions 56 to prevent the viscous fluid container 52 from swelling in the Y direction. The bottom 55 and the lower gusset 58 may be integrally formed.
 粘性流体53は、例えばシリコーンオイルや炭化水素化合物などの高粘度の高分子材料であり、難燃性、耐候性、耐久性を有し、繰り返しのせん断にも粘性の低下を起こさない材料で構成されている。 The viscous fluid 53 is, for example, a high viscosity polymer material such as silicone oil or hydrocarbon compound, and is made of a material that is flame retardant, weather resistant, durable, and does not cause a decrease in viscosity due to repeated shearing. It is done.
 摩擦伝達板71は、正面視で水平方向に長く略矩形状に形成された板材であり、上端部のX方向全域に亘って締結部材61によって締結されYZ平面における断面L字状でX方向に延びる上部ガセット62と、中央部に水平方向に長く形成された貫通孔73とを備えている。抵抗板54の上部に形成された貫通孔(不図示)から挿通された締結部材74が貫通孔73に通されている。上部ガセット62は、締結部材64を介して上側梁部3に締結されている。 The friction transfer plate 71 is a plate material formed in a substantially rectangular shape long in the horizontal direction in a front view, is fastened by the fastening member 61 over the entire area in the X direction of the upper end portion, and is L-shaped in cross section in the YZ plane in the X direction It has an extending upper gusset 62 and a through hole 73 which is horizontally elongated in the center. A fastening member 74 inserted from a through hole (not shown) formed in the upper portion of the resistance plate 54 is passed through the through hole 73. The upper gusset 62 is fastened to the upper beam 3 via a fastening member 64.
 抵抗板54は、正面視で矩形状に形成された板材であり、上部に形成され締結部材74を通す貫通孔(不図示)と、中央部及び下部に略矩形状に形成された貫通孔63とを備えている。抵抗板54の上部は、摩擦伝達板71にY方向に重ねられており、抵抗板54の貫通孔及び摩擦伝達板71の貫通孔73にY方向に挿通される締結部材74によって、抵抗板54が摩擦伝達板71に締結されている。貫通孔63に、膨らみ防止用ボルト59が通されている。 The resistance plate 54 is a plate material formed in a rectangular shape in a front view, and is formed in the upper part through a through hole (not shown) through which the fastening member 74 passes, and the through hole 63 formed in a substantially rectangular shape in the center and lower part. And have. The upper portion of the resistance plate 54 is overlapped with the friction transmission plate 71 in the Y direction, and the fastening member 74 inserted in the Y direction into the through hole of the resistance plate 54 and the through hole 73 of the friction transmission plate 71 Is fastened to the friction transfer plate 71. The through hole 63 is passed through a bulge preventing bolt 59.
 (摩擦ダンパ70の構成)
 摩擦ダンパ70は、上部ガセット62に締結部材61で締結された摩擦伝達板71と、該摩擦伝達板71に対し±X方向水平移動可能に設けられた抵抗板54と、抵抗板54と該摩擦伝達板71との間に設けられた摩擦力発生部72と、を備えている。摩擦伝達板71は、粘性流体容器52の上方に配置されている。
(Configuration of friction damper 70)
The friction damper 70 includes a friction transmission plate 71 fastened to the upper gusset 62 by a fastening member 61, a resistance plate 54 provided horizontally movably in the ± X direction with respect to the friction transmission plate 71, a resistance plate 54, and the friction. And a friction force generation unit 72 provided between the transmission plate 71 and the transmission plate 71. The friction transfer plate 71 is disposed above the viscous fluid container 52.
 摩擦力発生部72は、摩擦伝達板71に設けられ粘性ダンパ51の粘性力よりも大きい摩擦力を発生させる所定の摩擦係数を有する摩擦材(不図示)と、抵抗板54に設けられた相手材としてのステンレス鋼(不図示)とからなる。摩擦伝達板71には締結部材74を挿通させるための貫通孔73が形成されている。抵抗板54の上部には貫通孔(不図示)が形成されており、抵抗板54の貫通孔及び摩擦伝達板71の貫通孔73にY方向に挿通される締結部材74によって、摩擦伝達板71に抵抗板54が締結されている。また、締結部材74は、ねじが形成された鋼棒(いわゆるPC鋼棒)とナットとから構成されている。ナットと摩擦伝達板71との間に正面視矩形状で座金機能を有する支圧板(不図示)が配置されている。 The frictional force generation unit 72 is provided on the friction transfer plate 71 and has a predetermined friction coefficient (not shown) for generating a frictional force larger than the viscous force of the viscous damper 51, and a mating member provided on the resistance plate 54. It consists of stainless steel (not shown) as a material. A through hole 73 for inserting the fastening member 74 is formed in the friction transmission plate 71. A through hole (not shown) is formed in the upper portion of the resistance plate 54, and the friction transmission plate 71 is formed by the fastening member 74 inserted in the Y direction into the through hole of the resistance plate 54 and the through hole 73 of the friction transmission plate 71. The resistance plate 54 is fastened to the In addition, the fastening member 74 is composed of a screw-formed steel rod (so-called PC steel rod) and a nut. A pressure bearing plate (not shown) having a washer function is disposed between the nut and the friction transmission plate 71 in a rectangular shape in a front view.
 締結部材74を、ボルトとナットとの構成としてもよい。また、実施例では、一枚の摩擦伝達板71に一枚の抵抗板54を配置したが、これに限定されず、一枚の摩擦伝達板71を2枚の抵抗板54で挟む構成としてもよく、摩擦伝達板71と抵抗板54との間に摩擦力発生部72が設けられ、締結部材74の軸力によって摩擦力発生部72に摩擦力が作用すれば摩擦伝達板71と抵抗板54の枚数が異なっても差し支えない。また、実施例では、摩擦力発生部72を、それぞれ摩擦伝達板71と抵抗板54との間に別部材として設けたが、これに限定されず、摩擦伝達板71と抵抗板54とを直接摺動させて該摺動部分をそれぞれ摩擦力発生部72としても差し支えない。 The fastening member 74 may be configured as a bolt and a nut. In the embodiment, one resistance plate 54 is disposed on one friction transmission plate 71. However, the present invention is not limited to this. Even if one friction transmission plate 71 is sandwiched by two resistance plates 54, Preferably, a friction force generating portion 72 is provided between the friction transmission plate 71 and the resistance plate 54, and if the friction force acts on the friction force generation portion 72 by the axial force of the fastening member 74, the friction transmission plate 71 and the resistance plate 54 are provided. There may be a difference in the number of Further, in the embodiment, the friction force generating portion 72 is provided as a separate member between the friction transmission plate 71 and the resistance plate 54 respectively, but is not limited to this. The friction transmission plate 71 and the resistance plate 54 are directly connected The sliding portions may be used as the frictional force generator 72 by sliding.
 (切換機構80の構成)
 切換機構80は、抵抗板54に貫通するように形成された略矩形状の貫通孔63と、該貫通孔63を通過して粘性流体容器52に設けられ、抵抗板54に対する粘性流体容器52の±X方向(水平方向)の変位が第1所定間隔L1を超えたときに貫通孔63の縁に当接することで抵抗板54を粘性流体容器52と共に±X方向(水平方向)に移動させる通過部材81とを備え、貫通孔63の縁から通過部材81までの±X方向(水平方向)の第1所定間隔L1は、摩擦伝達板71に対する抵抗板54の±X方向(水平方向)の移動可能な第2所定間隔L2よりも小さく設定されている。
(Configuration of switching mechanism 80)
The switching mechanism 80 is provided in the viscous fluid container 52 passing through the substantially rectangular through hole 63 formed to penetrate the resistance plate 54 and the through hole 63, and the switching mechanism 80 of the viscous fluid container 52 with respect to the resistance plate 54. Passing the resistance plate 54 together with the viscous fluid container 52 in the ± X direction (horizontal direction) by contacting the edge of the through hole 63 when the displacement in the ± X direction (horizontal direction) exceeds the first predetermined interval L1 And a first predetermined distance L1 in the ± X direction (horizontal direction) from the edge of the through hole 63 to the passing member 81 is the movement of the resistance plate 54 with respect to the friction transfer plate 71 in the ± X direction (horizontal direction) It is set smaller than the possible second predetermined interval L2.
 実施例では、通過部材81に貫通孔(不図示)を形成して該貫通孔に膨らみ防止用ボルト59を挿通したが、これに限定されず、通過部材81を膨らみ防止用ボルト59と一体にして、膨らみ防止用ボルト59そのものとしてもよい。この場合、貫通孔63は、膨らみ防止用ボルト59の逃がし長孔としてもよい。 In the embodiment, a through hole (not shown) is formed in the passing member 81 and the swelling prevention bolt 59 is inserted into the through hole, but the invention is not limited thereto. The passing member 81 is integrated with the swelling prevention bolt 59. It is good also as bolt 59 itself for swelling prevention. In this case, the through hole 63 may be a long hole for escaping the bolt 59 for bulging.
 また、抵抗板54は、粘性流体容器52に対して水平方向に移動可能であるが、その第1所定間隔L1は、通過部材81又は膨らみ防止用ボルト59が貫通孔63に当接するまでの範囲であり、第2所定間隔L2は第1所定間隔L1よりも大きい。第2所定間隔L2は、粘性流体容器52に対する抵抗板54の変位がない状態で、X方向における締結部材74のねじ部の左端部から貫通孔73の左縁までの距離であり、X方向における締結部材74のねじ部の右端部から貫通孔73の右縁までの距離も第2所定間隔L2である。 Further, although the resistance plate 54 is movable in the horizontal direction with respect to the viscous fluid container 52, the first predetermined interval L1 is a range until the passing member 81 or the bolt 59 for swelling prevention abuts on the through hole 63. The second predetermined interval L2 is larger than the first predetermined interval L1. The second predetermined distance L2 is a distance from the left end of the threaded portion of the fastening member 74 in the X direction to the left edge of the through hole 73 in the state where there is no displacement of the resistance plate 54 with respect to the viscous fluid container 52 The distance from the right end of the screw portion of the fastening member 74 to the right edge of the through hole 73 is also a second predetermined interval L2.
 また、切換機構80は、通過部材81又は膨らみ防止用ボルト59が貫通孔63に当接する部分に、通過部材81又は膨らみ防止用ボルト59と貫通孔63の衝突を緩和する緩衝機構83を備えている。緩衝機構83は、例えば弾性部材で構成される。 Further, the switching mechanism 80 is provided with a buffer mechanism 83 for relieving the collision between the passing member 81 or the swelling prevention bolt 59 and the through hole 63 at a portion where the passing member 81 or the swelling prevention bolt 59 contacts the through hole 63. There is. The buffer mechanism 83 is made of, for example, an elastic member.
 (粘性ダンパ51の作用)
 粘性ダンパ51では、粘性流体容器52と抵抗板54との間には隙間が形成されており、該隙間に粘性流体53が入り込んでいる。粘性ダンパ51は、下側梁部2に対して上側梁部3が水平方向に震動する際、粘性流体容器52に対する抵抗板54の水平方向の相対的な震動による粘性流体53の粘性せん断抵抗力を利用し、粘性流体容器52に対する抵抗板54の震動を粘性力で減衰するものである。
(Function of viscous damper 51)
In the viscous damper 51, a gap is formed between the viscous fluid container 52 and the resistance plate 54, and the viscous fluid 53 enters the gap. When the upper beam portion 3 vibrates in the horizontal direction with respect to the lower beam portion 2, the viscous damper 51 has a viscous shear resistance force of the viscous fluid 53 due to the horizontal relative vibration of the resistance plate 54 with respect to the viscous fluid container 52. Is used to damp the vibration of the resistance plate 54 relative to the viscous fluid container 52 with viscous force.
 (摩擦ダンパ70の作用)
 摩擦ダンパ70は、摩擦力発生部72の摩擦抵抗力を利用した減衰装置であり、締結部材74を締め付けることによって、摩擦力発生部72の摩擦材に締結部材74の軸力又は締め付け力を伝達する。抵抗板54と摩擦伝達板71が水平方向に相対移動することにより、摩擦面に動摩擦力を発生させ摩擦抵抗力を得て、摩擦伝達板71に対する抵抗板54の震動を摩擦力で減衰するものである。
(Function of friction damper 70)
The friction damper 70 is a damping device utilizing the frictional resistance of the frictional force generator 72, and transmits the axial force or the clamping force of the clamping member 74 to the friction material of the frictional force generator 72 by clamping the clamping member 74. Do. By moving the resistance plate 54 and the friction transmission plate 71 relative to each other in the horizontal direction, a dynamic friction force is generated on the friction surface to obtain a frictional resistance, thereby damping the vibration of the resistance plate 54 against the friction transmission plate 71 by the friction force It is.
 (切換機構80の作用)
 切換機構80は、下側梁部2に対する上側梁部3の震動による、抵抗板54に対する粘性流体容器52の変位の大きさに応じて、粘性ダンパ51の単独による震動の減衰と、摩擦ダンパ70の単独による震動の減衰とを切換えるものである。抵抗板54に対する粘性流体容器52の水平方向の変位が第1所定間隔L1以内では、通過部材81が貫通孔63に当接しない、又は当接しても貫通孔63に対して通過部材81がそれよりも大きく変位しようとしないので、粘性ダンパ51のみが効く。抵抗板54に対する粘性流体容器52の水平方向の変位が第1所定間隔L1を超えた場合では、通過部材81が貫通孔63に当接して粘性流体容器52と抵抗板54と一体的になり共に変位する。
(Operation of switching mechanism 80)
The switching mechanism 80 damps the vibration due to the viscosity damper 51 alone according to the magnitude of the displacement of the viscous fluid container 52 relative to the resistance plate 54 due to the vibration of the upper beam 3 relative to the lower beam 2. And damping of the vibration caused by When the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 is within the first predetermined distance L1, the passing member 81 does not abut against the through hole 63 or the passing member 81 does not abut against the through hole 63 Only the viscous damper 51 works because it does not try to displace more than it does. When the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 exceeds the first predetermined interval L1, the passing member 81 abuts on the through hole 63 and becomes integral with the viscous fluid container 52 and the resistance plate 54. Displace.
 このため、抵抗板54が摩擦伝達板71に対して変位し摩擦ダンパ70のみが効く。このように切換機構80は、抵抗板54に対する粘性流体容器52の水平方向の変位が第1所定間隔L1以内では粘性ダンパ51のみ効かせ、抵抗板54に対する粘性流体容器52の水平方向の変位が第1所定間隔L1を超えた場合には摩擦ダンパ70のみ効くように切換えるものである。 Therefore, the resistance plate 54 is displaced with respect to the friction transmission plate 71, and only the friction damper 70 is effective. Thus, in the switching mechanism 80, only the viscosity damper 51 works when the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 is within the first predetermined distance L1, and the horizontal displacement of the viscous fluid container 52 with respect to the resistance plate 54 is When the first predetermined interval L1 is exceeded, only the friction damper 70 is switched to be effective.
 (第2実施形態の制震装置50の構成)
 図6に示されているように、下側梁部2と上側梁部3との間に制震装置50が配置されている。制震装置50では、粘性ダンパ51と摩擦ダンパ70とを直列に連結し、さらに切換機構80が連結されている。
(Configuration of Vibration Control Device 50 According to Second Embodiment)
As shown in FIG. 6, a vibration control device 50 is disposed between the lower beam 2 and the upper beam 3. In the vibration control device 50, the viscous damper 51 and the friction damper 70 are connected in series, and the switching mechanism 80 is further connected.
 下側梁部2に対する上側梁部3の相対変位(震動)が小さいとき(切換機構80の第1所定間隔L1の範囲内のとき)は、切換機構80がガタ(第1所定間隔L1)により切り換わらないので、粘性ダンパ51のみで震動を減衰させる。 When the relative displacement (vibration) of the upper beam portion 3 with respect to the lower beam portion 2 is small (within the range of the first predetermined interval L1 of the switching mechanism 80), the switching mechanism 80 is rattling (first predetermined interval L1) Since the change is not made, the vibration is damped only by the viscous damper 51.
 下側梁部2に対する上側梁部3の相対変位(震動)が大きいとき(切換機構80の第1所定間隔L1を超えたとき)は、切換機構80が切り換わるので、粘性ダンパ51に代わり摩擦ダンパ70のみが作用し震動を減衰させる。 When the relative displacement (vibration) of the upper beam 3 with respect to the lower beam 2 is large (when the first predetermined distance L1 of the switching mechanism 80 is exceeded), the switching mechanism 80 is switched. Only the damper 70 acts to damp the vibration.
 (第2実施形態の制震装置50の作用)
 説明の便宜上、震動する際は下側梁部2に対して上側梁部3が変位するものとする。図7Aに示されているように、震動していない状態では、下側梁部2に対して上側梁部3が移動しない。
(Operation of vibration control device 50 of the second embodiment)
For the convenience of explanation, it is assumed that the upper beam 3 is displaced with respect to the lower beam 2 when vibrating. As shown in FIG. 7A, the upper beam 3 does not move relative to the lower beam 2 in a non-vibration state.
 図7Bに示されているように、震動が小さい状態(図7Aの第1所定間隔L1の範囲内)では、下側梁部2に対して上側梁部3が矢印(21)のように変位し、摩擦伝達板71と共に抵抗板54が矢印(22)のように変位し、粘性ダンパ51のみで震動を減衰させる。 As shown in FIG. 7B, in a state where the vibration is small (within the range of the first predetermined interval L1 in FIG. 7A), the upper beam 3 is displaced as shown by the arrow (21) with respect to the lower beam 2. The resistance plate 54 is displaced together with the friction transfer plate 71 as shown by the arrow (22), and the vibration is damped only by the viscous damper 51.
 図7Cに示されているように、震動が大きい状態(図7Aの第1所定間隔L1を超える範囲)では、下側梁部2に対して上側梁部3が矢印(23)のようにさらに変位し、貫通孔63に通過部材81が当接して切換機構80が切り換わる。抵抗板54は粘性流体容器52に対して変位しなくなるが、切換機構80によって摩擦伝達板71は、抵抗板54に対して矢印(24)のように変位する。結果、摩擦ダンパ70が作用し、摩擦ダンパ70のみで震動を減衰させる。 As shown in FIG. 7C, in a state where the vibration is large (a range exceeding the first predetermined interval L1 in FIG. 7A), the upper beam 3 is further added to the lower beam 2 as shown by the arrow (23). The passage member 81 abuts on the through hole 63 to switch the switching mechanism 80. Although the resistance plate 54 is not displaced relative to the viscous fluid container 52, the switching mechanism 80 displaces the friction transmission plate 71 relative to the resistance plate 54 as shown by the arrow (24). As a result, the friction damper 70 acts to damp the vibration only with the friction damper 70.
 図7Cにおいて、震動による変位の速度が大きい場合には、粘性力が摩擦力を上回るため、切換機構80で貫通孔63に通過部材81が当接しなくても摩擦力が発生することがある。 In FIG. 7C, when the speed of displacement due to vibration is large, the viscous force exceeds the frictional force, so that the frictional force may occur even if the passing member 81 does not contact the through hole 63 in the switching mechanism 80.
 (減衰力と変位の関係(履歴形状))
 図8Aに示されているように、震動による変位が小さい状態では、切換機構80の変位が第1所定間隔L1以内(ガタ以内)であるため、減衰力として、粘性ダンパ51による粘性力のみ発生する。震動発生直後は、矢印(31)のように変位が小さい状態で減衰力が大きくなり、次いで粘性力のみが作用し矢印(32)のように減衰力と変位が変化する。
(Relationship between damping force and displacement (historic shape))
As shown in FIG. 8A, since the displacement of the switching mechanism 80 is within the first predetermined interval L1 (within the backlash) in a state where the displacement due to vibration is small, only the viscous force generated by the viscosity damper 51 is generated as a damping force. Do. Immediately after the occurrence of vibration, the damping force increases with a small displacement as shown by the arrow (31), and then only the viscous force acts, and the damping force and the displacement change as shown by the arrow (32).
 図8Bに示されているように、震動による変位が中位の状態では、切換機構80の変位が第1所定間隔L1を超える(ガタより大きくなる)と、減衰力として、摩擦ダンパ30による摩擦力のみ発生する。震動発生直後の切換機構80の変位が第1所定間隔L1より小さい範囲では、矢印(33)のように粘性力のみが作用して減衰力が大きくなり、次いで貫通孔63に通過部材81が当接して切換機構80によって矢印(34)のように摩擦力のみが作用して減衰力が大きくなる。 As shown in FIG. 8B, when the displacement due to vibration is moderate, if the displacement of the switching mechanism 80 exceeds the first predetermined interval L1 (becomes larger than the rattling), the friction by the friction damper 30 is used as a damping force. Force only occurs. In the range where the displacement of the switching mechanism 80 immediately after the occurrence of vibration is smaller than the first predetermined interval L1, only the viscous force acts as shown by the arrow (33) to increase the damping force, and then the passing member 81 At the same time, only the frictional force acts on the switching mechanism 80 as shown by the arrow (34) to increase the damping force.
 次いで、摩擦力のみが作用した状態で矢印(35)のように減衰力と変位が変化し、震動の変位方向が逆になり貫通孔63に対する通過部材81の変位方向が逆方向になると切換機構80のガタの分だけ粘性力のみが作用した状態で矢印(36)のように変位が小さくなるように変化し、再び貫通孔63に通過部材81が当接して切換機構80によって矢印(37)のように摩擦力のみが作用して減衰力が大きくなる。次いで、摩擦力のみが作用した状態で矢印(38)のように減衰力と変位が変化する。 Then, when only the frictional force acts, the damping force and the displacement change as shown by the arrow (35), and when the displacement direction of the vibration becomes opposite and the displacement direction of the passing member 81 with respect to the through hole 63 becomes the reverse direction The displacement changes so as to decrease as shown by the arrow (36) in a state where only the viscous force is applied by the amount of the rattling of 80, and the passing member 81 abuts the through hole 63 again and the switching mechanism 80 causes the arrow (37). As in the above, only the frictional force acts to increase the damping force. Next, the damping force and the displacement change as indicated by the arrow (38) in the state where only the frictional force is applied.
 粘性力が摩擦力より大きい場合には、摩擦力が生じ始める。粘性体の速度依存性により、地震の速度が大きいと、粘性力が摩擦力を上回る。 When the viscous force is larger than the frictional force, the frictional force starts to occur. Due to the velocity dependence of the viscous body, the viscous force exceeds the frictional force when the seismic velocity is high.
 図8Cに示されているように、震動による変位がより大きい状態では、減衰力の変化については図8Bとほぼ同様となるが、図8Bの状態に比較し、変位が大きくなる。 As shown in FIG. 8C, in the state where the displacement due to vibration is larger, the change in damping force is substantially similar to that in FIG. 8B, but the displacement becomes larger compared to the state in FIG. 8B.
 第1実施形態では、第1部材41を正面視矩形状の第1凸部とし、第2部材42を正面視矩形状の第2凸部としたがこれに限定されず、第1部材41を正面視で台形や半円形とし、第2部材42も台形や半円形とする構成や、第1部材41を+Y方向に突出するピンとし、第2部材をピンの受け部とする構成など、第1所定間隔L1を超えたときに抵抗板14に対して摩擦伝達板31が変位するように切り換われば他の構成であっても差し支えない。 In the first embodiment, the first member 41 is a first convex portion in a rectangular shape in front view, and the second member 42 is a second convex portion in a rectangular shape in front view, but the present invention is not limited thereto. The second member 42 also has a trapezoidal or semicircular shape in a front view, or the first member 41 has a pin that protrudes in the + Y direction, and the second member has a pin receiving portion, etc. If it switches so that the friction transmission board 31 may be displaced with respect to the resistance board 14 when 1 predetermined space | interval L1 is exceeded, it may be another structure.
 また、第1実施形態では、第1部材41の右端から右方に隣り合う第2部材42の左端までの距離と、第1部材41の左端から左方に隣り合う第2部材42の右端までの距離との両方を第1所定距離L1として左右均等に変位するようにしたが、これに限定されず、第1部材41の右端から右方に隣り合う第2部材42の左端までの距離と、第1部材41の左端から左方に隣り合う第2部材42の右端までの距離とを非均等になるように設定しても差し支えない。 In the first embodiment, the distance from the right end of the first member 41 to the left end of the second member 42 adjacent to the right, and the right end of the second member 42 adjacent to the left from the left end of the first member 41 The first predetermined distance L1 and both of them are equally displaced to the left and right, but the present invention is not limited to this, and the distance from the right end of the first member 41 to the left end of the second member 42 adjacent to the right The distance from the left end of the first member 41 to the right end of the second member 42 adjacent to the left may be set to be non-uniform.
1‥構造物、2‥下側梁部、3‥上側梁部、10、50‥制震装置、11、51‥粘性ダンパ、12、52‥粘性流体容器、13、53‥粘性流体、14、54‥抵抗板、30、70‥摩擦ダンパ、31、71‥摩擦伝達板、32、72‥摩擦力発生部、40、80‥切換機構、41‥第1部材(第1凸部)、42‥第2部材(第2凸部)、43、83‥緩衝機構、19、59‥膨らみ防止用ボルト、63‥貫通孔、81‥通過部材、L1‥第1所定間隔、L2‥第2所定間隔、L3‥第3所定間隔。
 
1 .. Structure, 2 .. Lower beam, 3 .. Upper beam, 10, 50. Damping device 11, 51 .. Viscosity damper, 12, 52. Viscous fluid container, 13, 53. Viscous fluid, 14, 54. Resistance plate 30, 70. Friction damper 31, 71. Friction transmission plate 32, 32. Friction force generator 40, 80. Switching mechanism 41. First member (first convex portion) 42.. Second member (second convex portion) 43, 83. Buffer mechanism 19, 59 .. Expansion prevention bolt 63. Through hole 81. Passing member L1. First predetermined interval L2. Second predetermined interval L3 .. Third predetermined interval.

Claims (6)

  1.  下側梁部と上側梁部とを含む構造物に備えられた制震装置であって、
     前記下側梁部と前記上側梁部の水平方向の震動を粘性力で減衰する粘性ダンパと、該粘性ダンパに連結され前記下側梁部と前記上側梁部の水平方向の震動を摩擦力で減衰する摩擦ダンパと、前記粘性ダンパの単独による震動の減衰と前記粘性ダンパ及び前記摩擦ダンパの併用による震動の減衰とを切り替える切換機構と備え、
     前記粘性ダンパは、前記下側梁部上に固定された粘性流体容器と、該粘性流体容器に貯留された粘性流体と、前記上側梁部に固定された状態で垂下されて前記粘性流体に浸漬されるとともに前記粘性流体容器に対し水平移動する抵抗板とを備え、
     前記摩擦ダンパは、前記抵抗板に対し水平移動可能に設けられた摩擦伝達板と、該摩擦伝達板と前記粘性ダンパの前記抵抗板との間に設けられた摩擦力発生部とを備え、
     前記切換機構は、前記粘性流体容器に設けられた第1部材と、該第1部材の水平移動方向に対向して前記摩擦伝達板に設けられた第2部材とを備え、前記摩擦伝達板に対する前記粘性流体容器の水平方向の変位が前記第1部材の水平方向の端部と該端部に対向する前記第2部材の端部の第1所定間隔を超えたときに前記第1部材に当接することで前記摩擦伝達板を前記粘性流体容器と共に前記抵抗板に対して相対的に水平方向に移動させること特徴とする制震装置。
    A vibration control device provided in a structure including a lower beam portion and an upper beam portion,
    A viscous damper that damps horizontal vibration of the lower beam portion and the upper beam portion with viscosity, and a frictional force that is connected to the viscous damper and causes horizontal vibration of the lower beam portion and the upper beam portion A friction damper for damping, and a switching mechanism for switching between vibration damping by the viscosity damper alone and vibration damping by the combination of the viscosity damper and the friction damper;
    The viscous damper is suspended in a viscous fluid container fixed on the lower beam, a viscous fluid stored in the viscous fluid container, and fixed to the upper beam and dipped in the viscous fluid. And a resistance plate moving horizontally with respect to the viscous fluid container,
    The friction damper includes a friction transmission plate provided so as to be horizontally movable with respect to the resistance plate, and a friction force generator provided between the friction transmission plate and the resistance plate of the viscous damper,
    The switching mechanism includes a first member provided to the viscous fluid container, and a second member provided to the friction transmission plate opposite to the horizontal movement direction of the first member, and the switching mechanism is directed to the friction transmission plate When the horizontal displacement of the viscous fluid container exceeds the first predetermined interval between the horizontal end of the first member and the end of the second member opposite to the end, the first member is pressed against the first member A vibration control device characterized by moving the friction transmission plate horizontally with the viscous fluid container relative to the resistance plate by contacting.
  2.  請求項1記載の制震装置であって、
     前記切換機構では、
     前記摩擦伝達板は、前記粘性流体容器の上方に配置され、
     前記第1部材は、前記粘性流体容器の上部から前記摩擦伝達板に向かって突出する第1凸部であり、
     前記第2部材は、前記摩擦伝達板の下部から前記粘性流体容器に向かって突出する第2凸部であり、
     前記第1凸部と前記第2凸部は、前記第1凸部の水平移動方向に所定の間隔をおいて交互に複数配置されていることを特徴とする制震装置。
    The vibration control device according to claim 1,
    In the switching mechanism,
    The friction transfer plate is disposed above the viscous fluid container,
    The first member is a first convex portion protruding toward the friction transmission plate from an upper portion of the viscous fluid container,
    The second member is a second convex portion that protrudes toward the viscous fluid container from the lower portion of the friction transfer plate,
    A vibration control device characterized in that the plurality of first convex portions and the plurality of second convex portions are alternately arranged at predetermined intervals in the horizontal movement direction of the first convex portion.
  3.  請求項1記載の制震装置であって、
     前記切換機構は、前記第1部材と前記第2部材が当接する部分に、前記第1部材と前記第2部材の衝突を緩和する緩衝機構を備えていることを特徴とする制震装置。
    The vibration control device according to claim 1,
    The vibration control device according to claim 1, wherein the switching mechanism includes a buffer mechanism that reduces a collision between the first member and the second member at a portion where the first member and the second member abut.
  4.  下側梁部と上側梁部とを含む構造物に備えられた制震装置であって、
     前記下側梁部と前記上側梁部の水平方向の震動を粘性力で減衰する粘性ダンパと、該粘性ダンパに連結され前記下側梁部と前記上側梁部の水平方向の震動を摩擦力で減衰する摩擦ダンパと、前記粘性ダンパの単独による震動の減衰と該摩擦ダンパの単独による震動の減衰とを切り替える切換機構と備え、
     前記粘性ダンパは、前記下側梁部上に固定された粘性流体容器と、該粘性流体容器に貯留された粘性流体と、前記上側梁部に固定された状態で垂下された摩擦伝達板と、該摩擦伝達板から前記摩擦ダンパを介して垂下されて前記粘性流体に浸漬されるとともに前記粘性流体容器に対し水平移動する抵抗板とを備え、
     前記摩擦ダンパは、前記摩擦伝達板と、該摩擦伝達板に対し水平移動可能に設けられた前記抵抗板と、前記抵抗板と該摩擦伝達板との間に設けられた摩擦力発生部とを備え、
     前記切換機構は、前記抵抗板に貫通するように形成された貫通孔と、該貫通孔を通過して前記粘性流体容器に設けられ、前記抵抗板に対する前記粘性流体容器の水平方向の変位が第1所定間隔を超えたときに前記貫通孔の縁に当接することで前記抵抗板を前記粘性流体容器と共に前記摩擦伝達板に対して相対的に水平方向に移動させる通過部材とを備えていることを特徴とする制震装置。
    A vibration control device provided in a structure including a lower beam portion and an upper beam portion,
    A viscous damper that damps horizontal vibration of the lower beam portion and the upper beam portion with viscosity, and a frictional force that is connected to the viscous damper and causes horizontal vibration of the lower beam portion and the upper beam portion A friction damper for damping, and a switching mechanism for switching between vibration damping by the viscous damper alone and vibration damping by the friction damper alone;
    The viscous damper includes a viscous fluid container fixed on the lower beam portion, a viscous fluid stored in the viscous fluid container, and a friction transfer plate suspended in a state fixed to the upper beam portion. And a resistance plate which is suspended from the friction transfer plate via the friction damper and immersed in the viscous fluid and horizontally moves relative to the viscous fluid container.
    The friction damper includes the friction transmission plate, the resistance plate provided so as to be horizontally movable with respect to the friction transmission plate, and a friction force generating portion provided between the resistance plate and the friction transmission plate. Equipped
    The switching mechanism is provided in the viscous fluid container through the through hole formed to penetrate the resistance plate and the through hole, and the horizontal displacement of the viscous fluid container with respect to the resistance plate is (1) A passing member for moving the resistance plate horizontally with the viscous fluid container relative to the friction transmission plate by abutting on the edge of the through hole when the predetermined distance is exceeded Vibration control device characterized by.
  5.  請求項4記載の制震装置であって、
     前記切換機構では、
     前記通過部材は、前記粘性流体容器の膨らみを防止する膨らみ防止用ボルトであり、
     前記貫通孔は、前記膨らみ防止用ボルトの逃がし長孔であることを特徴とする制震装置。
    The vibration control device according to claim 4, wherein
    In the switching mechanism,
    The passage member is a bulge preventing bolt that prevents the viscous fluid container from swelling.
    The vibration control device according to claim 1, wherein the through hole is a relief long hole of the expansion preventing bolt.
  6.  請求項4記載の制震装置であって、
     前記切換機構は、前記通過部材と前記貫通孔の縁が当接する部分に、前記通過部材と前記貫通孔の縁の衝突を緩和する緩衝機構を備えていることを特徴とする制震装置。
     
    The vibration control device according to claim 4, wherein
    The vibration control device according to claim 1, wherein the switching mechanism includes a buffer mechanism that reduces a collision between the passing member and the edge of the through hole at a portion where the passing member abuts the edge of the through hole.
PCT/JP2018/038494 2017-11-14 2018-10-16 Vibration control device WO2019097933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197034959A KR102602629B1 (en) 2017-11-14 2018-10-16 vibration isolation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017219046A JP6854232B2 (en) 2017-11-14 2017-11-14 Seismic control device
JP2017-219046 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019097933A1 true WO2019097933A1 (en) 2019-05-23

Family

ID=66540179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038494 WO2019097933A1 (en) 2017-11-14 2018-10-16 Vibration control device

Country Status (4)

Country Link
JP (1) JP6854232B2 (en)
KR (1) KR102602629B1 (en)
TW (1) TWI675971B (en)
WO (1) WO2019097933A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464600A (en) * 2021-07-22 2021-10-01 同济大学 Damping device
CN114263364A (en) * 2021-12-24 2022-04-01 武汉华科永信建筑工程有限公司 Reinforcing structure of existing structural beam and construction method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300912A (en) * 2003-03-17 2004-10-28 Taisei Corp Vibration control damper coping with habitability
JP2007247733A (en) * 2006-03-15 2007-09-27 Takanori Sato Damper set
JP2010255302A (en) * 2009-04-24 2010-11-11 Dynamic Design:Kk Viscous seismic response control wall
JP2014194116A (en) * 2013-03-28 2014-10-09 Tokyu Construction Co Ltd Vibration control structure of building

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169248A (en) * 1996-12-09 1998-06-23 Maeda Corp Base-isolating device
TW382037B (en) * 1998-07-21 2000-02-11 Ohbayashi Corp Damper
JP4042366B2 (en) * 2001-08-10 2008-02-06 鹿島建設株式会社 Damping coefficient switching type hydraulic damper
JP4933848B2 (en) * 2006-06-28 2012-05-16 株式会社小松製作所 Resin component fastening structure and construction machine exterior panel fastened by this fastening structure
JP2008215071A (en) * 2008-04-14 2008-09-18 Sumitomo Mitsui Construction Co Ltd Seismic response control apparatus and seismic control structure
KR101191726B1 (en) * 2010-06-10 2012-10-16 조선대학교산학협력단 Damping device for structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300912A (en) * 2003-03-17 2004-10-28 Taisei Corp Vibration control damper coping with habitability
JP2007247733A (en) * 2006-03-15 2007-09-27 Takanori Sato Damper set
JP2010255302A (en) * 2009-04-24 2010-11-11 Dynamic Design:Kk Viscous seismic response control wall
JP2014194116A (en) * 2013-03-28 2014-10-09 Tokyu Construction Co Ltd Vibration control structure of building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464600A (en) * 2021-07-22 2021-10-01 同济大学 Damping device
CN113464600B (en) * 2021-07-22 2023-04-28 同济大学 Damping device
CN114263364A (en) * 2021-12-24 2022-04-01 武汉华科永信建筑工程有限公司 Reinforcing structure of existing structural beam and construction method thereof
CN114263364B (en) * 2021-12-24 2023-01-31 武汉华科永信建筑工程有限公司 Reinforcing structure of existing structural beam and construction method thereof

Also Published As

Publication number Publication date
KR102602629B1 (en) 2023-11-16
JP2019090217A (en) 2019-06-13
TW201930746A (en) 2019-08-01
JP6854232B2 (en) 2021-04-07
TWI675971B (en) 2019-11-01
KR20200077465A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP4355673B2 (en) Building seismic control structure
KR102102614B1 (en) Friction damper with multiple slip loads
WO2019097933A1 (en) Vibration control device
JP6192961B2 (en) Vibration control device
KR101844041B1 (en) Friction device with variable resistance force, and seismic device and friction damper using the same
KR100887565B1 (en) Seismic isolating device with multi-damping fuction
JP2006234049A (en) Viscous body damper for base isolation structure
JP2002180418A (en) Base isolation structure system in bridge
JP2008138833A (en) Damper device, method of designing damper device, vibration control structure, vibration control method
JP2016105021A (en) Base-isolation mechanism
KR102196109B1 (en) Vibration isolation device
JP2014231897A (en) Tension brace vibration control system
JP6745095B2 (en) Damper mounting structure
KR102444015B1 (en) Anti-vibration electrical safety control board
JP2006153210A (en) Seismic isolator
JP2021107742A (en) Linear rolling bearing
JP2016094989A (en) Vibration absorber and building
JP2017145839A (en) Base isolation mechanism
JP6531479B2 (en) Seismic isolation structure
JP7455682B2 (en) Buffer structure and buffer material
JP6846313B2 (en) Superstructure bearing structure
JP5973818B2 (en) Vibration isolator and bush used for the same
KR100335072B1 (en) Restrained Stroke Active Tuned Mass Damper Device in Structures
JP4299695B2 (en) Vibration reduction device
JP3812271B2 (en) Damper device and base-isolated building equipped with this damper device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878861

Country of ref document: EP

Kind code of ref document: A1