JP2010255302A - Viscous seismic response control wall - Google Patents

Viscous seismic response control wall Download PDF

Info

Publication number
JP2010255302A
JP2010255302A JP2009106766A JP2009106766A JP2010255302A JP 2010255302 A JP2010255302 A JP 2010255302A JP 2009106766 A JP2009106766 A JP 2009106766A JP 2009106766 A JP2009106766 A JP 2009106766A JP 2010255302 A JP2010255302 A JP 2010255302A
Authority
JP
Japan
Prior art keywords
wall
viscous damping
viscous
plate
rising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009106766A
Other languages
Japanese (ja)
Other versions
JP4431187B1 (en
Inventor
Mitsuo Miyazaki
光生 宮崎
Sachihiro Nishimura
幸洋 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Design Inc Japan
Original Assignee
Dynamic Design Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Design Inc Japan filed Critical Dynamic Design Inc Japan
Priority to JP2009106766A priority Critical patent/JP4431187B1/en
Application granted granted Critical
Publication of JP4431187B1 publication Critical patent/JP4431187B1/en
Publication of JP2010255302A publication Critical patent/JP2010255302A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To contribute to achievement of a seismic response control structure building of higher performance by stabilizing and reinforcing the damping performance of a viscous seismic response control wall used for seismic response control structurization of a superhigh-rise building or the like and enhancing the cost performance of an apparatus. <P>SOLUTION: A wall member for connecting an upper floor to a lower floor of a building or another structure is provided with holes 34 at both ends of a rising wall (an external wall steel plate) 31 of the viscous seismic response control wall, and a horizontal communicating pipeline 35 filled with a viscous fluid 5 is provided on the outside. In addition, a friction damper function utilizing a hanging wall (an internal wall steel plate) and the rising wall (the external wall steel plate) is added to stabilize a viscous resistance mechanism, to increase a resistance force and to reduce a resistance force fluctuation ratio depending on temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、構造物の振動エネルギー吸収能力を高めて減衰性能の高い構造物とすることによって、構造物の耐震安全性を向上させると共に、風や交通振動、その他の動的外力によって発生する構造物の振動を効果的に抑制できる制震・制振構造物および免震構造物を実現する減衰装置の内、特に「粘性制震壁」に関するものである。   The present invention improves the seismic safety of the structure by increasing the vibration energy absorption capacity of the structure to provide a structure with high damping performance, as well as a structure generated by wind, traffic vibration, and other dynamic external forces. The present invention relates to a damping / vibration control structure that can effectively suppress vibration of an object and a damping device that realizes a seismic isolation structure, particularly “viscous damping wall”.

建築物や工作物・塔状構造物など各種の構造物の耐震安全性を高め、また風その他の動的外力による構造物の振動を抑制して居住性能を改善するために、構造物にエネルギー吸収装置(以下、「減衰装置」と表現する場合もある)を取付け、構造物の減衰性能を高める方法が開発・実用化されている。これまでに実用化されている建築構造物用の代表的な減衰装置としては、鋼材や鉛の塑性変形を利用する金属履歴ダンパー、高減衰ゴムや粘弾性材料を利用する粘弾性ダンパー、オイルダンパーや壁形状箱の内部に粘性流体を封入した粘性減衰壁「粘性制震壁」などの粘性ダンパーなどがある。   Energy is applied to structures to improve the seismic safety of various structures such as buildings, workpieces and tower structures, and to improve living performance by suppressing vibrations of structures caused by wind and other dynamic external forces. A method of improving the damping performance of a structure by attaching an absorbing device (hereinafter also referred to as “attenuating device”) has been developed and put into practical use. Typical damping devices for building structures that have been put to practical use so far are metal hysteresis dampers that use plastic deformation of steel and lead, viscoelastic dampers that use high damping rubber and viscoelastic materials, and oil dampers. There are also viscous dampers such as a viscous damping wall “viscous damping wall” in which a viscous fluid is sealed inside a wall-shaped box.

構造物の応答抑制という観点からは、速度に比例した抵抗力を発揮する粘性ダンパーが最も優れている。粘性ダンパーの内、シリンダー形状のオイルダンパーは、温度依存性が小さいという利点を有するが、作動時には高い内部圧力を発生するため内部流体の漏れの危険性があり、長期間に渡るシーリング(漏れ防止)性能に不安がある。   From the viewpoint of suppressing the response of the structure, a viscous damper that exhibits a resistance force proportional to the speed is the best. Among viscous dampers, cylinder-shaped oil dampers have the advantage of low temperature dependence, but they generate high internal pressure during operation, and there is a risk of leakage of internal fluids. ) I'm worried about performance.

粘性ダンパーの内、壁形状の粘性制震壁は、極めて単純な機構で構成されており、オイルダンパーのような高い内部圧力が発生しないのでメンテナンスフリーで長期耐久性に優れ、作動信頼性が高く、構造物に高い粘性減衰性能を付与できるので、阪神大震災以降、高層建物を中心にして採用事例が増加している。また粘性制震壁は、免震構造の減衰装置としても利用されている。   Among the viscous dampers, the wall-shaped viscous damping wall is composed of an extremely simple mechanism, and does not generate high internal pressure like oil dampers, so it is maintenance-free, has excellent long-term durability, and has high operational reliability. Since it can give high viscous damping performance to structures, the number of adoption cases has been increasing mainly in high-rise buildings since the Great Hanshin Earthquake. The viscous damping walls are also used as damping devices for seismic isolation structures.

粘性制震壁は特許第1577568号(特許文献1参照)で発明され、開発実用化された後、以下に示す部分的な改良(特許文献2〜5参照)等がなされて今日に至っている。   The viscous damping wall was invented in Japanese Patent No. 1577568 (see Patent Document 1), and after development and practical use, the following partial improvements (see Patent Documents 2 to 5) and the like have been made to date.

特公平2−1947号公報Japanese Patent Publication No.2-1947 特開平11−071935号公報Japanese Patent Laid-Open No. 11-071935 特開2000−220318号公報JP 2000-220318 A 特開2001−132265号公報JP 2001-132265 A 特開2007−009452号公報JP 2007-009452 A

既知の従来技術には、次のような解決すべき課題があった。   The known prior art has the following problems to be solved.

粘性制震壁の第一課題は、粘性減衰壁の力学特性の安定化に関するものである。粘性制震壁は、粘性流体のせん断抵抗を基本原理にしており、外壁鋼板で構成されている粘性流体の貯留槽内を内壁鋼板が水平移動する。この時、内壁鋼板の前面は粘性流体を押しのけるため粘性流体が貯留部上部に盛り上がり抵抗力が上昇する。一方、内壁鋼板の後面では内壁鋼板の移動により生じた隙間を粘性流体が埋めようとするが、粘度が高いために粘性流体の流動が追いつかず、大きな窪みが生じ、その後内壁鋼板が戻って来る時に粘性流体が不足して有効面積が減少しているために抵抗力が低下したり、時には空気泡を巻き込み、これを内壁鋼板が押しつぶして大きな破裂音が生じる場合がある等、特に大振幅の振動が繰り返される場合の抵抗力の安定に改善すべき問題がある。   The first issue of viscous damping walls is related to the stabilization of the mechanical properties of viscous damping walls. The viscous damping wall is based on the shear resistance of viscous fluid, and the inner wall steel plate moves horizontally within the viscous fluid storage tank composed of the outer wall steel plate. At this time, since the front surface of the inner wall steel plate pushes away the viscous fluid, the viscous fluid rises to the upper part of the reservoir and the resistance force increases. On the other hand, the viscous fluid tries to fill the gap created by the movement of the inner wall steel plate on the rear surface of the inner wall steel plate, but because the viscosity is high, the flow of the viscous fluid does not catch up and a large depression is formed, and then the inner wall steel plate returns. Since the effective area is sometimes reduced due to the lack of viscous fluid, the resistance is reduced, and sometimes air bubbles are entrained, and the inner wall steel plate may crush this, resulting in a large bursting sound. There is a problem to improve the stability of the resistance force when the vibration is repeated.

第二課題は、同じく力学特性の課題であるが、粘性抵抗力の大きさは粘性流体の粘度に依存する。如何なる粘性流体であれその粘度は温度によって異なるため、粘性制震壁の発生抵抗力は温度の影響を受けざるを得ない。これを温度依存性と言うが、粘性制震壁は粘性流体の温度が高いと流体の粘度が低下して抵抗力が下がり、逆に温度の低い冬季には粘度が高くなり抵抗力が大きくなるという性質を有している。即ち、粘性制震壁の抵抗力を環境条件に対して安定化させるには、「温度依存性の解消」もしくは「温度変化に伴う抵抗力変動の緩和」、特に「高温時における抵抗力の低下を防止する方法」の実現が望まれる。   The second problem is also a problem of mechanical characteristics, but the magnitude of the viscous resistance depends on the viscosity of the viscous fluid. Since the viscosity of any viscous fluid varies depending on the temperature, the resistance force generated by the viscous damping wall must be affected by the temperature. This is called temperature dependence, but if the temperature of the viscous damping wall is high, the viscosity of the fluid decreases and the resistance decreases, and conversely, the viscosity increases and the resistance increases in winter when the temperature is low. It has the property of In other words, in order to stabilize the resistance of the viscous damping wall against environmental conditions, “Resolve temperature dependence” or “Relieve resistance fluctuation due to temperature change”, especially “Reduction of resistance at high temperature” Realization of a “method for preventing the occurrence” is desired.

第三の課題は、「経済性」である。粘性制震壁の長所の一つは、抵抗力の大きさを鋼板間の隙間、粘性流体の粘度および抵抗板壁板の面積によってかなり自由に調整できることにある。しかし、隙間と粘性流体の粘度の調整はかなり精密且つ微妙なものとなるため、性能調整を最も行い易いのは壁板の面積である。即ち、大きな抵抗力を得るためには大面積が必要であり、そのためには大きな壁体を製作するか、壁板を2重3重と多重構成にすれば良いが、いずれにしても装置費が高くならざるを得ない。この優れた減衰装置を広く普及させるためには、大抵抗力の粘性減衰壁を低コストで供給できることが求められる。   The third issue is “economy”. One of the advantages of the viscous damping wall is that the magnitude of the resistance force can be adjusted fairly freely by the gap between the steel plates, the viscosity of the viscous fluid, and the area of the resistance plate wall plate. However, since the adjustment of the gap and the viscosity of the viscous fluid is quite precise and delicate, it is the area of the wall plate that is most easily adjusted for performance. That is, in order to obtain a large resistance, a large area is required. For that purpose, a large wall body can be manufactured or a wall plate can be made into a double and triple structure. Must be high. In order to widely disseminate this excellent damping device, it is required that a viscous damping wall having a large resistance can be supplied at low cost.

第四の課題は、第一課題と第三課題の複合によって生じる課題である。即ち、第三課題の経済性を解決する方策として、粘性制震壁の鋼板間の隙間を狭くすると抵抗力を上昇させることができるが、隙間を狭くするとその部分の粘性流体の量が僅かになるため、内壁鋼板の移動に伴ってその前後に押し出されたり、引き込まれたりする粘性流体の影響を受ける範囲(面積)が大きくなり、性能変動を受ける影響がより大きくなるという性能の安定化の問題が顕著になる。   The fourth problem is a problem caused by the combination of the first problem and the third problem. In other words, as a measure to solve the economic problem of the third problem, if the gap between the steel plates of the viscous damping wall is narrowed, the resistance can be increased, but if the gap is narrowed, the amount of viscous fluid in that part is slightly reduced. Therefore, as the inner wall steel plate moves, the range (area) affected by the viscous fluid that is pushed back and forth is increased, and the effect of performance fluctuations becomes greater. The problem becomes noticeable.

本発明は、上記の課題を解決するためになされたもので、構造物用の優れた減衰装置である粘性制震壁の性能を更に改善し、且つ低コストの装置に改良して経済的観点からも採用を容易にし、減衰性能の高い、耐震安全性能の高い建築構造物の普及に貢献できる粘性制震壁を提供することを目的とする。   The present invention has been made to solve the above-described problems, and further improves the performance of the viscous damping wall, which is an excellent damping device for a structure, and improves the cost to a low-cost device. The purpose of this study is to provide a viscous damping wall that can be easily adopted and contribute to the spread of building structures with high damping performance and high seismic safety.

以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、両外壁面を構成する立ち上がり壁の両端部の妻面近傍に孔をあけ、前記外壁面の外側に前記孔を連結する水平連通管路を設けて、その内部にも粘性流体を充填していることを特徴とする粘性制震壁。
The following configurations are means for solving the above-described problems.
<Configuration 1>
It is a wall member that connects the upper and lower floors of buildings and other structures. A plurality of wall boards fixed to the floor slabs or beams of the lower floor are raised in parallel, and the edges of the wall boards are closed. A box-shaped wall is formed, and one or more hanging wall plates fixed to the floor slab or beam on the upper floor are inserted into the box-shaped wall body, and a viscous fluid is inserted into the gap between the rising wall plate and the hanging wall plate. In the viscous damping wall filled with, a hole is formed in the vicinity of the end faces of the rising walls constituting both outer wall surfaces, and a horizontal communication pipe that connects the holes to the outside of the outer wall surface is provided, Viscous damping wall characterized in that the inside is also filled with viscous fluid.

〈構成2〉
構成1に記載の粘性制震壁において、前記外壁面外側の水平連通管路が上下方向に2段以上に渡って設けられていることを特徴とする粘性制震壁。
<Configuration 2>
The viscous damping wall according to Configuration 1, wherein the horizontal communication pipe line outside the outer wall surface is provided in two or more stages in the vertical direction.

〈構成3〉
構成1又は2に記載の粘性制震壁において、前記立ち上がり外壁面の最上端の外側に水平連通管路の粘性流体液溜まり部を設け、その上部に内側垂下壁の直近まで覆う上面蓋を配置し、前記上面蓋と前記内側垂下壁との隙間をゴムパッキン等の弾性体を密着させてシールしていることを特徴とする粘性制震壁。
<Configuration 3>
In the viscous damping wall according to Configuration 1 or 2, a viscous fluid liquid reservoir portion of a horizontal communication pipe is provided outside the uppermost end of the rising outer wall surface, and an upper surface cover is disposed on the upper portion so as to cover the inner hanging wall. And a gap between the upper surface lid and the inner hanging wall is sealed with an elastic body such as a rubber packing so as to seal the viscous damping wall.

〈構成4〉
構成1乃至3のいずれかに記載の粘性制震壁において、前記水平連通管路の上面に内部の粘性流体を確認できる点検孔を設けていることを特徴とする粘性制震壁。
<Configuration 4>
4. The viscous damping wall according to any one of configurations 1 to 3, wherein an inspection hole for confirming an internal viscous fluid is provided on an upper surface of the horizontal communication pipe.

〈構成5〉
構成1乃至4のいずれかに記載の粘性制震壁において、前記垂下壁の端部妻面の鉛直形状を、前記立ち上がり壁両端部の孔部分で最も内側にし、前記孔の中間高さ位置で最も外側になるように傾斜させていること、もしくは前記垂下壁の端部において前記外壁の孔位置の高さ付近を凹形状に切り込んでいることを特徴とする粘性制震壁。
<Configuration 5>
In the viscous damping wall according to any one of the first to fourth aspects, the vertical shape of the end face of the drooping wall is set to the innermost side at the hole portions at both ends of the rising wall, and at the intermediate height position of the hole. A viscous damping wall characterized by being inclined so as to be on the outermost side, or by cutting the vicinity of the height of the hole position of the outer wall into a concave shape at the end of the hanging wall.

〈構成6〉
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、下階の床スラブまたは梁もしくは梁上の連結部材に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁もしくは連結部材に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、両外壁面を構成する立ち上がり壁の両端部に、前記箱状壁体の中央部幅(厚さ)よりも大きな幅を有する粘性流体の鉛直形状の液溜まり部を有していることを特徴とする粘性制震壁。
<Configuration 6>
A wall member that connects the upper and lower floors of buildings and other structures, and the walls of the floor slabs on the lower floor or a plurality of wall plates fixed to beams or connecting members on the beams are raised in parallel. A box-shaped wall is formed by closing the plate end, and one or more hanging wall plates fixed to the floor slab or beam or connecting member on the upper floor are inserted into the box-shaped wall, and the rising wall plate In the viscous damping wall in which a viscous fluid is filled in the gap between the wall plate and the hanging wall plate, the width of the central wall (thickness) of the box-shaped wall body is larger at both ends of the rising wall constituting both outer wall surfaces. A viscous damping wall characterized by having a vertical liquid reservoir for viscous fluid.

〈構成7〉
構成6に記載の粘性制震壁において、前記外壁面の両端部付近に鉛直方向に複数の孔を設け、その両外側にL型部材を配置して前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
<Configuration 7>
In the viscous damping wall according to Configuration 6, a plurality of holes are provided in the vertical direction near both end portions of the outer wall surface, and L-shaped members are arranged on both outer sides to configure the liquid pool portion having the vertical shape. A viscous damping wall characterized by

〈構成8〉
構成6に記載の粘性制震壁において、前記立ち上がり箱状壁体の端部妻面鋼板に鉛直方向に複数の孔もしくはスリットを設け、前記端部妻面鋼板の外側にC型部材を配置して前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
<Configuration 8>
In the viscous damping wall according to Configuration 6, a plurality of holes or slits are provided in a vertical direction in the end face steel plate of the rising box-like wall body, and a C-shaped member is disposed outside the end face steel plate. A viscous damping wall characterized in that it constitutes the liquid pool part of the vertical shape.

〈構成9〉
構成6に記載の粘性制震壁において、前記立ち上がり外壁面の両端部に角形鋼管を鉛直方向に配置して、前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
<Configuration 9>
The viscous damping wall according to Configuration 6, wherein square steel pipes are vertically arranged at both ends of the rising outer wall surface to constitute the liquid pool portion having the vertical shape. .

〈構成10〉
構成6に記載の粘性制震壁において、前記立ち上がり外壁面の両端部に円形鋼管を鉛直方向に配置して、前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
<Configuration 10>
The viscous damping wall according to Configuration 6, wherein a circular steel pipe is vertically arranged at both ends of the rising outer wall surface to constitute the liquid pool portion having the vertical shape. .

〈構成11〉
構成6乃至10のいずれかに記載の粘性制震壁において、前記立ち上がり外壁面の外側両側面に水平方向の水平連通管路を取り付け、その両端部を前記立ち上がり外壁面の両端部に配置した前記鉛直形状の液だまり部と連結していることを特徴とする粘性制震壁。
<Configuration 11>
In the viscous damping wall according to any one of Configurations 6 to 10, the horizontal horizontal communication pipes are attached to both outer side surfaces of the rising outer wall surface, and both end portions thereof are arranged at both end portions of the rising outer wall surface. Viscous vibration control wall characterized by being connected to a vertical liquid pool.

〈構成12〉
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、前記立ち上がり壁板の一部を前記垂下壁に隙間なく接触させ、且つ接触部の両壁板を貫通する高力ボルトを配置し、前記高力ボルトに軸力を導入しており、前記建築物の上階と下階間の相対変位によって接触している前記壁板間に摩擦力を発生せしめることを特徴とする粘性制震壁。
<Configuration 12>
It is a wall member that connects the upper and lower floors of buildings and other structures. A plurality of wall boards fixed to the floor slabs or beams of the lower floor are raised in parallel, and the edges of the wall boards are closed. A box-shaped wall is formed, and one or more hanging wall plates fixed to the floor slab or beam on the upper floor are inserted into the box-shaped wall body, and a viscous fluid is inserted into the gap between the rising wall plate and the hanging wall plate. In the viscous damping wall filled with a high-strength bolt that makes a part of the rising wall plate contact the hanging wall without a gap and penetrates both wall plates of the contact portion, the high-strength bolt A viscous damping wall characterized in that an axial force is introduced and a frictional force is generated between the wall plates in contact with each other by relative displacement between the upper floor and the lower floor of the building.

〈構成13〉
構成12に記載の粘性制震壁において、接触部における前記立ち上がり壁、もしくは垂下壁の一部に摩擦沓動部材を組み込んでいることを特徴とする粘性制震壁。
<Configuration 13>
13. The viscous damping wall according to Configuration 12, wherein a frictional peristaltic member is incorporated in a part of the rising wall or the hanging wall in the contact portion.

〈構成14〉
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、前記垂下壁の上部付近に水平板を取り付け、その水平板に接触し且つ一旦が前記立ち上がり壁に固定された水平板を設け、接触している両水平板を貫通する高力ボルトを配置し、前記高力ボルトに軸力を導入しており、前記建築物の上階と下階間の相対変位によって接触している前記水平板間に摩擦力を発生せしめることを特徴とする粘性制震壁。
<Configuration 14>
It is a wall member that connects the upper and lower floors of buildings and other structures. A plurality of wall boards fixed to the floor slabs or beams of the lower floor are raised in parallel, and the edges of the wall boards are closed. A box-shaped wall is formed, and one or more hanging wall plates fixed to the floor slab or beam on the upper floor are inserted into the box-shaped wall body, and a viscous fluid is inserted into the gap between the rising wall plate and the hanging wall plate. In the viscous damping wall filled with a horizontal plate, a horizontal plate is attached near the upper part of the hanging wall, and a horizontal plate that is in contact with the horizontal plate and is once fixed to the rising wall is provided. A high-strength bolt that penetrates the plate is arranged, axial force is introduced to the high-strength bolt, and friction force is applied between the horizontal plates that are in contact by relative displacement between the upper floor and the lower floor of the building. Viscous damping wall characterized by generating.

〈構成15〉
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、前記立ち上がり壁の上端部の外側に、相対面し接触する2枚以上の摩擦板を配置し、その平面内部もしくは外側近傍に高力ボルトを配置して軸力を導入しており、前記摩擦板の一方を上階の梁もしくは梁に一体化された接合部材に固定し、他方の摩擦板を前記粘性制震壁の立ち上がり壁の上部付近に固定した摩擦ダンパーを複合していることを特徴とする粘性制震壁。
<Configuration 15>
It is a wall member that connects the upper and lower floors of buildings and other structures. A plurality of wall boards fixed to the floor slabs or beams of the lower floor are raised in parallel, and the edges of the wall boards are closed. A box-shaped wall is formed, and one or more hanging wall plates fixed to the floor slab or beam on the upper floor are inserted into the box-shaped wall body, and a viscous fluid is inserted into the gap between the rising wall plate and the hanging wall plate. In the viscous damping wall filled with, two or more friction plates facing and contacting each other are arranged outside the upper end of the rising wall, and high strength bolts are arranged inside or near the outside of the plane. Axial force is introduced, one of the friction plates is fixed to the upper floor beam or a joint member integrated with the beam, and the other friction plate is fixed near the upper part of the rising wall of the viscous damping wall. Viscous damping wall characterized by compounding friction damper.

〈構成16〉
構成15に記載の粘性制震壁において、前記摩擦ダンパーの構成を、前記粘性制震壁の立ち上がり壁側に固定された回転中心軸とその中心軸回りに回転できる回転摩擦板を有し、前記回転摩擦板の一端を上階梁側に連結し、他方を前記粘性制震壁に固定された摩擦平板と接触させ、両者の摩擦面近傍に高力ボルトを配置して両摩擦板を締め付けており、前記回転中心軸と前記上階梁側の連結点までの距離L1と前記回転中心軸と前記摩擦面の中心までの距離L2を任意に設定可能としている摩擦ダンパーを複合していることを特徴とする粘性制震壁。
<Configuration 16>
The viscous damping wall according to Configuration 15, wherein the friction damper includes a rotation center axis fixed to a rising wall side of the viscous damping wall and a rotating friction plate that can rotate about the center axis, One end of the rotating friction plate is connected to the upper floor beam side, the other is brought into contact with the friction flat plate fixed to the viscous damping wall, and high friction bolts are arranged near both friction surfaces to tighten both friction plates. And a friction damper that can arbitrarily set a distance L1 between the rotation center axis and the connection point on the upper floor side and a distance L2 between the rotation center axis and the center of the friction surface. Characteristic viscous damping wall.

〈構成17〉
構成1乃至16のいずれかに記載の粘性制震壁において、上階から垂下する壁を2枚以上、下階からの立ち上がり壁を3枚以上としていることを特徴とする粘性制震壁。
<Configuration 17>
The viscous damping wall according to any one of Structures 1 to 16, wherein there are two or more walls hanging from the upper floor and three or more rising walls from the lower floor.

本発明において、粘性制震壁の内壁鋼板の移動に伴う粘性流体の流動が安定化され、特に大振幅の振動時においても安定した粘性減衰抵抗とエネルギー吸収性能を提供できるようになった。   In the present invention, the flow of the viscous fluid accompanying the movement of the inner wall steel plate of the viscous damping wall is stabilized, and it has become possible to provide a stable viscous damping resistance and energy absorption performance even when a large amplitude vibration is caused.

また本発明は、粘性制震壁の内壁鋼板の移動に伴い、粘性制震壁の端部において内壁の移動する前面側では粘性流体が盛り上がり、後ろ側では粘性流体の窪みが生じる現象を大きく緩和するものである。   In addition, the present invention greatly reduces the phenomenon that viscous fluid swells on the front side where the inner wall moves at the end of the viscous damping wall and the hollow of the viscous fluid on the rear side as the inner wall steel plate moves. To do.

例えば、従来の粘性制震壁では、内壁鋼板と外壁鋼板の隙間が2mm、粘性流体内の内壁鋼板の厚さが16mm、高さが2mの粘性制震壁の場合、地震時に内壁鋼板が5cm移動すると、内壁鋼板が押しのけようとする粘性流体は、1.6cmx200cmx5cm=1600ccとなる。従来の粘性制震壁の端部液溜まり部の外壁鋼板間の内側距離は16+2x2=20mmであるから、粘性制震壁両端部の液溜まり部の長さが10cm(内壁鋼板移動後の残り長さ=5cm)とすると、内壁鋼板の前面において粘性流体は1600/(2x5)=160cm分も盛り上がったり、後面では液面低下が生じることになり、粘性流体の溢れ出し、有効面積の低下、空気の巻き込み等が発生する。   For example, in the case of a conventional viscous damping wall, the gap between the inner wall steel plate and the outer wall steel plate is 2 mm, the thickness of the inner wall steel plate in the viscous fluid is 16 mm, and the height is 2 m. When it moves, the viscous fluid that the inner wall steel plate tends to push becomes 1.6 cm × 200 cm × 5 cm = 1600 cc. Since the inner distance between the outer wall steel plates of the end liquid reservoir of the conventional viscous damping wall is 16 + 2 × 2 = 20 mm, the length of the reservoirs at both ends of the viscous damping wall is 10 cm (the remaining length after moving the inner wall steel plate) 5cm), the viscous fluid swells up to 1600 / (2 × 5) = 160cm on the front surface of the inner wall steel plate, or the liquid level decreases on the rear surface. The viscous fluid overflows, the effective area decreases, air Entrainment occurs.

これに対して本発明の構成6乃至構成11では、粘性制震壁の両端部に幅15cmx長さ15cmの鉛直方向液だまり部を設けると、粘性流体の液面高さの変動は1600/(13.4x5+15x10)=7.4cmと従来型の1/20以下に抑制されることにな。この程度の液面変動高さは、粘性制震壁上端部に設けている液だまり部で充分吸収可能であり、溢れ出しや液面低下による有効面積の減少を防止することができる。従って、空気の巻き込み現象も回避することができる。   On the other hand, in the configurations 6 to 11 of the present invention, when the vertical liquid pool portions having a width of 15 cm and a length of 15 cm are provided at both ends of the viscous damping wall, the fluctuation of the liquid level of the viscous fluid is 1600 / ( 13.4 × 5 + 15 × 10) = 7.4 cm, which is suppressed to 1/20 or less of the conventional type. Such a liquid level fluctuation height can be sufficiently absorbed by the liquid pool provided at the upper end of the viscous damping wall, and can prevent the effective area from being reduced due to overflow or liquid level drop. Therefore, the phenomenon of air entrainment can be avoided.

更に本発明の構成1乃至構成5の方法では、内壁によって押し出される粘性流体が水平連通管路により内壁の後ろ側に回り込むことにより、液面上部の変動は殆ど生じない程度に液面が安定化されることになる。   Furthermore, in the methods according to the first to fifth aspects of the present invention, the liquid level is stabilized to such an extent that the upper part of the liquid level hardly fluctuates because the viscous fluid pushed out by the inner wall wraps around the rear side of the inner wall through the horizontal communication pipe. Will be.

また、第3の解決策としての摩擦抵抗力との複合化により、温度変化に伴う性能変動の割合が低減され、装置の抵抗力自体もパワーアップされ、パワフルな装置に進化したので、従来装置に較べてコストパフォーマンスが飛躍的に増進する。   In addition, by combining with frictional resistance as the third solution, the rate of performance fluctuation due to temperature change is reduced, and the resistance itself of the device is also powered up and evolved into a powerful device. Compared to, cost performance is dramatically improved.

近年、M8クラスの海洋性巨大地震による長周期地震動に対する超高層ビルの安全性が指摘されているが、本発明による粘性制震壁は、巨大地震の特徴である長い継続時間における多数回の繰り返し振動に対して安定した減衰性能を提供できるので、減衰装置並びに高減衰の制震構造物に対する信頼性と安全性が大きく高まったと言える。   In recent years, it has been pointed out that the safety of skyscrapers against long-period ground motion due to M8 class oceanic giant earthquakes, but the viscous damping walls according to the present invention are repeated many times in the long duration characteristic of giant earthquakes. Since stable damping performance against vibration can be provided, it can be said that the reliability and safety of the damping device and the high-damping damping structure have been greatly increased.

また粘性制震壁は、近年免震構造用の減衰装置としても利用されているが、免震構造では大きな振動振幅が必要となる。本発明の粘性制震壁は、大振幅の振動に対して安定した粘性減衰性能を提供できるので、免震構造にもこれまでにない優れた減衰装置としての効果を発揮する。   In recent years, viscous damping walls have been used as damping devices for base-isolated structures, but large vibration amplitudes are required for base-isolated structures. The viscous damping wall of the present invention can provide stable viscous damping performance against large-amplitude vibrations, and thus exhibits an effect as an excellent damping device that has never been seen in a seismic isolation structure.

本発明が対象とする粘性制震壁の基本構成と配置要領を示す図で、 (1)粘性制震壁の立面図、 (2)粘性制震壁の側面図である。It is a figure which shows the basic composition and arrangement | positioning point of the viscous damping wall which this invention makes object, (1) Elevated view of a viscous damping wall, (2) Side view of a viscous damping wall. 本発明の実施例1および実施例2を示す全体構成図で、 (1)本発明の粘性制震壁の立面図、 (2)本発明の粘性制震壁の縦断面図、 (3)本発明の粘性制震壁の妻面立面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows Example 1 and Example 2 of this invention, (1) Elevated view of the viscous damping wall of this invention, (2) Longitudinal sectional view of the viscous damping wall of this invention, (3) It is a wife face elevation of the viscous damping wall of the present invention. 従来制震壁と本発明の構成1とを比較して示した図で、 (1)従来制震壁の水平断面の水平断面図、 (2)本発明の構成1の立ち上がり壁(外壁鋼板)に設ける孔および水平連通管路の水平断面図である。It is the figure which compared and showed the conventional damping wall and the structure 1 of this invention, (1) Horizontal sectional drawing of the horizontal cross section of a conventional damping wall, (2) Standing wall (outer wall steel plate) of the structure 1 of this invention It is a horizontal sectional view of a hole and a horizontal communication pipe line provided in. 本発明の実施例3および実施例4を示す構成図で、 (1)本発明の実施例3および実施例4の立面図、 (2)本発明の実施例3および実施例4の縦断面図、 (3)上段図:本発明の実施例3の部分拡大図、 (3)下段図:本発明の実施例4の部分拡大図である。It is a block diagram which shows Example 3 and Example 4 of this invention, (1) Elevated view of Example 3 and Example 4 of this invention, (2) Longitudinal section of Example 3 and Example 4 of this invention (3) Upper view: partially enlarged view of Embodiment 3 of the present invention, (3) Lower view: partially enlarged view of Embodiment 4 of the present invention. 本発明の実施例5(構成5および構成12)を示す縦断面図で、 (1)本発明の実施例5(構成5)を示す部分拡大縦断面図、 (2)本発明の実施例5(構成5に構成12を組み合わせた場合)を示す部分拡大縦断面図である。It is a longitudinal cross-sectional view which shows Example 5 (Structure 5 and Structure 12) of this invention, (1) The partial expanded longitudinal cross-sectional view which shows Example 5 (Structure 5) of this invention, (2) Example 5 of this invention It is a partial expanded longitudinal cross-sectional view which shows (when the structure 12 is combined with the structure 5). 本発明の実施例6乃至実施例11の全体構成図を示し、 (1)本発明の粘性制震壁の立面図、 (2)本発明の粘性制震壁の縦断面図、 (3)本発明の粘性制震壁の妻面立面図である。The whole block diagram of Example 6 thru | or Example 11 of this invention is shown, (1) Elevated view of the viscous damping wall of this invention, (2) Longitudinal sectional view of the viscous damping wall of this invention, (3) It is a wife face elevation of the viscous damping wall of the present invention. 従来制震壁と本発明の実施例7(構成7)および実施例8(構成8)を示す図で、 (1)従来制震壁の水平断面図、 (2)本発明の実施例7(構成7)の水平断面図、 (3)本発明の実施例8(構成8)の水平断面図の水平断面図である。It is a figure which shows the conventional damping wall and Example 7 (configuration 7) and Example 8 (configuration 8) of the present invention. (1) Horizontal sectional view of the conventional damping wall, (2) Example 7 of the present invention ( FIG. 7 is a horizontal sectional view of Configuration 7), and (3) a horizontal sectional view of a horizontal sectional view of Embodiment 8 (Configuration 8) of the present invention. 本発明の実施例9(構成9)乃至実施例11(構成10)を示す構成図で、 (1)本発明の実施例9(構成9)の水平断面図、 (2)本発明の実施例10(構成9)の水平断面図、 (3)本発明の実施例11(構成10)の水平断面図の水平断面図である。It is a block diagram which shows Example 9 (Structure 9) thru | or Example 11 (Structure 10) of this invention, (1) Horizontal sectional drawing of Example 9 (Structure 9) of this invention, (2) Example of this invention 10 (Configuration 9) is a horizontal sectional view, and (3) is a horizontal sectional view of a horizontal sectional view of Example 11 (Configuration 10) of the present invention. 本発明の実施例12(構成11)を示し、 (1)本発明の粘性制震壁の立面図、 (2)本発明の粘性制震壁の縦断面図、 (3)本発明の粘性制震壁の水平断面図の拡大図である。Example 12 (Configuration 11) of the present invention is shown: (1) Elevated view of the viscous damping wall of the present invention, (2) Vertical sectional view of the viscous damping wall of the present invention, (3) Viscosity of the present invention It is an enlarged view of the horizontal sectional view of a damping wall. 本発明の実施例13(構成12および構成13)を示す構成図で、 (1)本発明の実施例13(構成12および構成13)の立面図、 (2)本発明の実施例13(構成12および構成13)の縦断面図、 (3)上段図:本発明の実施例13(構成12)の上部断面の部分拡大図、 (3)中段図:本発明の実施例13(構成13)の上部断面の部分拡大図、 (3)下段図:本発明の実施例13の上部端部の部分拡大断面図である。It is a block diagram which shows Example 13 (Structure 12 and Structure 13) of this invention, (1) Elevated view of Example 13 (Structure 12 and Structure 13) of this invention, (2) Example 13 of this invention ( (3) Upper view: partially enlarged view of the upper cross section of Example 13 (Configuration 12) of the present invention, (3) Middle diagram: Example 13 of the present invention (Configuration 13) ) Is a partial enlarged view of the upper cross-section of FIG. 3, (3) Lower view: It is a partial enlarged cross-sectional view of the upper end of Example 13 of the present invention. 本発明の実施例14(構成14)を示す構成図で、 (1)本発明の実施例14の立面図、 (2)本発明の実施例14の縦断面図である。It is a block diagram which shows Example 14 (Structure 14) of this invention, (1) Elevated view of Example 14 of this invention, (2) It is a longitudinal cross-sectional view of Example 14 of this invention. 本発明の実施例15(構成15)の全体構成を示す立面図である。It is an elevation view which shows the whole structure of Example 15 (Structure 15) of this invention. 本発明の実施例15(構成15)の摩擦ダンパーの構成を示す構成図で、 (1)本発明の実施例15(構成15)の摩擦ダンパーの部分立面図、 (2)本発明の実施例15(構成15)の摩擦ダンパーの部分断面図である。It is a block diagram which shows the structure of the friction damper of Example 15 (Structure 15) of this invention, (1) The partial elevation view of the friction damper of Example 15 (Structure 15) of this invention, (2) Implementation of this invention It is a fragmentary sectional view of the friction damper of Example 15 (configuration 15). 本発明の実施例16(構成16)の回転式摩擦ダンパーの構成を示す図で、 (1)本発明の実施例16(構成16)の回転式摩擦ダンパーの構成図、 (2)本発明の実施例16(構成16)の回転式摩擦ダンパーの構成図(L1<L2とした場合)である。It is a figure which shows the structure of the rotary friction damper of Example 16 (Structure 16) of this invention, (1) The block diagram of the rotary friction damper of Example 16 (Structure 16) of this invention, (2) It is a block diagram (when L1 <L2) of the rotary friction damper of Example 16 (Configuration 16).

図1は本発明が対象とする粘性制震壁の基本構成と配置要領を示す図で、(1)は粘性制震壁の立面図、(2)は粘性制震壁の側面図である。   FIG. 1 is a diagram showing the basic configuration and arrangement of a viscous damping wall targeted by the present invention. (1) is an elevation view of the viscous damping wall, and (2) is a side view of the viscous damping wall. .

粘性制震壁は、建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、図1に示すように、柱1、梁21、22で構成される建物骨組みの上下階の床スラブ20または梁21、22に直接もしくは接合部材23を介して取り付けられている。下階の床スラブ20または梁22もしくは取り付け部材23の上に壁板(外壁鋼板)31を平行に立ち上げ、その壁板端部を塞いで箱(箱状壁体)を構成している。その中に上階の床スラブ20または梁21に固定された内壁鋼板(垂下壁板)4が垂下しており、立ち上がり壁板31と垂下壁板4の隙間に粘性流体5が充填されている。   The viscous damping wall is a wall member that connects the upper and lower floors of buildings and other structures. As shown in FIG. 1, the upper and lower floors of the building frame composed of columns 1 and beams 21 and 22 are used. It is attached to the floor slab 20 or the beams 21 and 22 directly or via the joining member 23. A wall plate (outer wall steel plate) 31 is raised in parallel on the floor slab 20 or the beam 22 or the attachment member 23 on the lower floor, and a box (box-like wall body) is formed by closing the end of the wall plate. The inner wall steel plate (hanging wall plate) 4 fixed to the floor slab 20 or the beam 21 on the upper floor is suspended therein, and the gap 5 between the rising wall plate 31 and the hanging wall plate 4 is filled with the viscous fluid 5. .

本発明は、この粘性制震壁を対象としたものであり、以下、本発明の実施の形態を実施例を示す図面に基づいて説明する。   The present invention is directed to this viscous damping wall, and an embodiment of the present invention will be described below with reference to the drawings showing examples.

図2および図3(2)は、構成1および構成2を示すもので、図2(1)が本発明の粘性制震壁の全体立面形状、図2(2)が縦断面図、図2(3)が妻面立面図、図3(2)が本発明の構成1の立ち上がり壁(外壁鋼板)に設けた孔34および水平連通管路35を示す水平断面図である。   FIGS. 2 and 3 (2) show configurations 1 and 2, in which FIG. 2 (1) is the overall elevation shape of the viscous damping wall of the present invention, and FIG. 2 (2) is a longitudinal sectional view. 2 (3) is a wife face elevation, and FIG. 3 (2) is a horizontal sectional view showing a hole 34 and a horizontal communication pipe 35 provided in a rising wall (outer wall steel plate) of Configuration 1 of the present invention.

図2(1)に示すとおり、外側立ち上がり壁31の両端部の妻面の近傍に孔34をあけ、その両端の孔34を連結する水平連通管路35を設けて、その内部にも粘性流体5を充填している。その孔34のある高さの水平断面を、図3(2)に示している。   As shown in FIG. 2 (1), holes 34 are formed in the vicinity of the end faces of the both ends of the outer rising wall 31, and horizontal communication pipes 35 that connect the holes 34 at both ends are provided. 5 is filled. A horizontal cross section having a height with the hole 34 is shown in FIG.

従来の粘性制震壁の平断面は、図3(1)に示すように単に外壁鋼板31の箱の中に内壁鋼板4を挿入しただけの構成であったため、内壁鋼板4が移動すると、前面側で押された粘性流体52の逃げ場がないため上部の液溜まり部分に盛り上がり、反対側の後方では内壁鋼板がいなくなった分だけの隙間ができるため、粘性流体に大きな窪みが発生し、内壁鋼板4が帰って来る場合に粘性流体の有効面積部51が減少したり、空気泡を巻き込む等の異常現象が発生する。   Since the conventional cross section of the viscous damping wall has a configuration in which the inner wall steel plate 4 is simply inserted into the box of the outer wall steel plate 31 as shown in FIG. Since there is no escape space for the viscous fluid 52 pushed on the side, it rises in the upper liquid pool part, and on the opposite side, a gap corresponding to the disappearance of the inner wall steel plate is formed. When 4 comes back, the effective area 51 of the viscous fluid decreases or an abnormal phenomenon such as entrainment of air bubbles occurs.

本発明では、図3(2)に示すとおり、外壁鋼板31の両端部に孔34を設け、その外側に水平連通管路35を配置した。従って、内壁鋼板4の移動によって押された粘性流体52は孔34を通って水平連通管路35内に入り、その内部の粘性流体54が後方の孔34を経て内壁鋼板4の後ろ側に回り込むことができるので、粘性流体の盛り上がりや窪みを生じることがなく、内壁鋼板側面の粘性流体51のせん断層流による一定の抵抗力を安定的に発揮することが可能となった。   In the present invention, as shown in FIG. 3 (2), holes 34 are provided at both ends of the outer wall steel plate 31, and a horizontal communication pipe 35 is disposed outside the holes 34. Accordingly, the viscous fluid 52 pushed by the movement of the inner wall steel plate 4 enters the horizontal communication pipe 35 through the hole 34, and the viscous fluid 54 inside thereof passes around the rear side of the inner wall steel plate 4 through the rear hole 34. Therefore, it is possible to stably exhibit a certain resistance force due to the shear laminar flow of the viscous fluid 51 on the side surface of the inner wall steel plate without causing the swell or depression of the viscous fluid.

孔34およびそれを繋ぐ水平連通管路35は、図2(1)に示すように、上下方向3段に設けられている。粘性制震壁の高さに応じて、水平連通管路35を2段以上に設け、粘性制震壁全高さに渡って粘性体の移動がスムースに行われるようにしたのが本発明の構成2である。   The holes 34 and the horizontal communication pipe 35 connecting the holes 34 are provided in three stages in the vertical direction as shown in FIG. According to the configuration of the present invention, the horizontal communication pipe 35 is provided in two or more stages according to the height of the viscous damping wall, and the viscous body is smoothly moved over the entire height of the viscous damping wall. 2.

図4は構成3および構成4の実施例を示す構成図で、図4(1)が立面図、図4(2)が縦断面図、図4(3)の上段図が図4(2)の上側の丸で囲った部分の拡大図、図4(3)の下段図が図4(2)の下側の丸で囲った部分の拡大図である。   FIG. 4 is a block diagram showing an embodiment of Configuration 3 and Configuration 4. FIG. 4 (1) is an elevation view, FIG. 4 (2) is a longitudinal sectional view, and FIG. ) Is an enlarged view of the upper circled portion, and the lower part of FIG. 4 (3) is an enlarged view of the lower circled portion of FIG. 4 (2).

粘性制震壁の最上部は、従来は上方が解放された液溜まりであったが、図4(3)の上段図に示すように、液溜まり部外壁鋼板33の上端に水平板による上面蓋330を取り付け、その先端と内壁鋼板の間にゴムパッキン61を噛ませてシールしている。これにより、最上部における液の盛り上がりがあった場合にも液の溢れ出しを防止し、且つ工事中における雨水の浸入防止機能も兼備している。   Conventionally, the uppermost part of the viscous damping wall is a liquid reservoir whose upper part is released, but as shown in the upper part of FIG. 330 is attached, and a rubber packing 61 is inserted between the tip and the inner wall steel plate to seal it. As a result, even when there is a swell of liquid at the top, the liquid is prevented from overflowing, and it also has a function of preventing rainwater from entering during construction.

図4(3)の下段図は、水平連通管路35に粘性流体54が確実に充填されていることを確認するための点検孔62の設置図である。水平連通管路35の上面にネジを設け、ボルトにより漏洩防止機能を有する点検孔62を構成している。   The lower part of FIG. 4 (3) is an installation view of the inspection hole 62 for confirming that the viscous fluid 54 is reliably filled in the horizontal communication pipe 35. A screw is provided on the upper surface of the horizontal communication pipe 35, and an inspection hole 62 having a leakage preventing function is constituted by a bolt.

図5(1)は、構成5の実施例である。構成1および構成2で設けた水平連通管路35に粘性流体が確実且つ容易に流入するために、内壁鋼板4の端部妻面の鉛直形状を、立ち上がり壁両端部に設けた孔34部分で最も内側(立面中央寄り)に、上下の孔34の中間高さ位置で最も外側(立面妻側寄り)になるように傾斜させている。これにより、内壁鋼板4が移動し粘性流体52を推した時に、粘性流体が孔34の方向に自然に推し集められる形状としている。   FIG. 5A is an example of configuration 5. In order for the viscous fluid to surely and easily flow into the horizontal communication pipe 35 provided in the configuration 1 and the configuration 2, the vertical shape of the end face of the inner wall steel plate 4 is formed by the holes 34 provided at both ends of the rising wall. Inclined to the innermost side (near the center of the vertical surface) so as to be the outermost side (near the vertical surface wife) at the intermediate height position of the upper and lower holes 34. Thereby, when the inner wall steel plate 4 moves and thrusts the viscous fluid 52, the viscous fluid is naturally pushed and collected in the direction of the hole 34.

図5(2)は、立ち上がり壁両端部にも設けた孔34に粘性流体が流入しやすいように、内壁鋼板の孔34の高さ位置に凹形状の切り込み44を設け、内壁鋼板4が移動した場合にも孔34部を内壁鋼板4で塞がないようにした場合である。
尚、同図の36は、外壁鋼板の面外方向への開きを拘束するためのボルトとスペーサー用鞘管の組合せ部、41は内壁鋼板4がそのボルト36に接触しないための動き代としてのルーズホールである 。
In FIG. 5B, a concave notch 44 is provided at the height of the hole 34 of the inner wall steel plate so that the viscous fluid easily flows into the holes 34 provided at both ends of the rising wall, and the inner wall steel plate 4 moves. In this case, the hole 34 is not blocked by the inner wall steel plate 4.
In the figure, 36 is a combined portion of a bolt and a spacer sheath tube for restraining the outward opening of the outer wall steel plate, and 41 is a movement allowance for the inner wall steel plate 4 not to contact the bolt 36. Loose Hall.

図6は、本発明の第二の基本構成である構成6の全体形状を示すもので、図6(1)が本発明粘性制震壁の全体立面形状、図6(2)が縦断面図、図6(3)が妻面立面図である。   FIG. 6 shows the overall shape of Configuration 6, which is the second basic configuration of the present invention. FIG. 6 (1) is the overall elevation shape of the viscous damping wall of the present invention, and FIG. 6 (2) is a longitudinal section. FIG. 6 and FIG. 6 (3) are elevations of the wife surface.

図6(1)に示すとおり、外側立ち上がり壁の両端部の妻面の近傍において鉛直形状の粘性流体の液だまり部38を設けている。   As shown in FIG. 6 (1), vertical liquid pools 38 are provided in the vicinity of the end faces of both ends of the outer rising wall.

従来の粘性制震壁の平断面は、図7(1)に示すように単に外壁鋼板31の箱の中に内壁鋼板4を挿入しただけの構成であったため、内壁鋼板4が移動すると、前面側で押された粘性流体52の逃げ場がないため上部の液溜まり部分に盛り上がり、反対側の後方では内壁鋼板が移動した分だけの隙間ができるため、粘性流体に大きな窪みが発生し、内壁鋼板が復帰した場合に粘性流体の有効面積部51が減少したり、空気泡を巻き込む等の異常現象が発生する。   Since the conventional cross section of the viscous damping wall has a configuration in which the inner wall steel plate 4 is simply inserted into the box of the outer wall steel plate 31 as shown in FIG. Since there is no escape space for the viscous fluid 52 pushed on the side, it rises in the upper liquid reservoir, and on the opposite side, a gap corresponding to the amount of movement of the inner wall steel plate is created, so that a large depression is generated in the viscous fluid, and the inner wall steel plate When the wakes up, the effective area 51 of the viscous fluid decreases or an abnormal phenomenon such as entrainment of air bubbles occurs.

本発明では、図6(1)に示すとおり、外壁鋼板31の両端部に粘性流体の液だまり部38が存在するため、内壁鋼板4の移動によって発生する粘性流体の盛り上がりおよび低下量が飛躍的に緩和され、内壁鋼板側面の粘性流体51のせん断層流による一定の抵抗力を安定的に発揮することを可能としたものである。   In the present invention, as shown in FIG. 6 (1), the liquid pool 38 of the viscous fluid exists at both ends of the outer wall steel plate 31, so that the rise and decrease amount of the viscous fluid generated by the movement of the inner wall steel plate 4 is dramatically increased. Therefore, it is possible to stably exert a certain resistance force due to the shear laminar flow of the viscous fluid 51 on the side surface of the inner wall steel plate.

図7および図8は、図6(1)における液だまり部38の構成方法を具体的に示したものである。   FIG. 7 and FIG. 8 specifically show a method of configuring the liquid pool portion 38 in FIG.

図7(2)は、構成7を実現する実施例7を示す粘性制震壁の平断面図である。粘性制震壁の外壁鋼板31の両端部付近に粘性流体の通過用孔39をあけ、その外側にL字型部材381を配置して、粘性流体の液だまり部38(液だまり部の粘性流体55)を構成している。   FIG. 7 (2) is a plan sectional view of the viscous damping wall showing the seventh embodiment that realizes the configuration 7. Viscous fluid passage holes 39 are formed in the vicinity of both end portions of the outer wall steel plate 31 of the viscous damping wall, and an L-shaped member 381 is disposed on the outer side thereof, so that a fluid reservoir 38 (viscous fluid in the reservoir) is formed. 55).

図7(3)は、構成8を実現する実施例3を示す粘性制震壁の平断面図である。粘性制震壁の妻面鋼板32に粘性流体の通過用孔39をあけ、その外側にC字型部材382を配置して、粘性流体の液だまり部38(液だまり部の粘性流体55)を構成している。   FIG. 7 (3) is a plan sectional view of the viscous damping wall showing the third embodiment that realizes the configuration 8. A viscous fluid passage hole 39 is formed in the end face steel plate 32 of the viscous damping wall, and a C-shaped member 382 is disposed on the outside thereof, so that the liquid reservoir 38 (viscous fluid 55 of the liquid reservoir) is formed. It is composed.

図8(1)は、構成9を実現する実施例9を示す粘性制震壁の平断面図である。粘性制震壁の両端部に角形鋼管383を配置して、粘性流体の液だまり部38(液だまり部の粘性流体55)を構成している。   FIG. 8 (1) is a plan sectional view of a viscous damping wall showing a ninth embodiment that realizes the configuration 9. Square steel pipes 383 are disposed at both ends of the viscous damping wall to constitute a liquid pool 38 (viscous fluid 55 in the liquid pool).

実施例9は、両端部の液だまり部と粘性制震壁端部の妻面鋼板が角形鋼管383で一体化しており、組立時の溶接量も少なく、粘性流体の貯留部有効面積も確保しやすく、より合理的な構成となっている。   In Example 9, the liquid pools at both ends and the end face steel plate at the end of the viscous damping wall are integrated by a square steel pipe 383, so that the welding amount during assembly is small and the effective area for storing the viscous fluid is secured. It is easier and more rational.

図8(2)は、構成9のバリエーションの実施例である。実施例9で設けた粘性制震壁の両端部の角形鋼管383を45°回転させて配置したものであり、こうすることにより、粘性制震壁底部において下側の梁部材もしくは連結部材と接合する高力ボルトの配置が容易になるという効果を有している。   FIG. 8B is an example of a variation of configuration 9. The square steel pipes 383 at both ends of the viscous damping wall provided in Example 9 are rotated by 45 °, thereby joining the lower beam member or connecting member at the bottom of the viscous damping wall. This has the effect of facilitating the arrangement of the high strength bolts.

図8(3)は、構成10を実現する実施例11を示す粘性制震壁の平断面図である。粘性制震壁の両端部に円形鋼管384を配置して、粘性流体の液だまり部38(液だまり部の粘性流体55)を構成している。   FIG. 8 (3) is a cross-sectional plan view of a viscous damping wall showing Example 11 for realizing the configuration 10. The circular steel pipes 384 are disposed at both ends of the viscous damping wall to constitute a liquid pool portion 38 (viscous portion viscous fluid 55) of the viscous fluid.

実施例11は、実施例9および10と同様に、両端部の液だまり部と粘性制震壁端部の妻面鋼板が円形鋼管384で一体化しており、組立時の溶接量も少なく、粘性流体の貯留部有効面積も確保しやすく、より合理的な構成となっている。   In Example 11, as in Examples 9 and 10, the liquid pool at both ends and the end face steel plate at the end of the viscous damping wall are integrated with a circular steel pipe 384, and the welding amount during assembly is small, and the viscosity is low. It is easy to secure the effective area of the fluid reservoir, and it has a more rational configuration.

また実施例11は、実施例10と同様に、粘性制震壁底部において下側の梁部材もしくは連結部材と接合する高力ボルトの配置が容易になるという効果も有している。   In addition, as in the tenth embodiment, the eleventh embodiment also has an effect that the arrangement of the high-strength bolts to be joined to the lower beam member or the connecting member at the bottom of the viscous damping wall is facilitated.

図9は、本発明の構成11を示す実施例で、図9(1)が粘性制震壁の全体立面形状、図9(2)がその縦断面図、図9(3)が水平断面の拡大図である。   FIG. 9 is an embodiment showing the constitution 11 of the present invention, FIG. 9 (1) is the overall elevation shape of the viscous damping wall, FIG. 9 (2) is its longitudinal sectional view, and FIG. 9 (3) is the horizontal sectional view. FIG.

図9(1)および図9(3)に示すように、粘性制震壁の立ち上がり外壁面31の外側両側面に水平方向の水平管路351を取り付け、その両端を粘性制震壁の両端部の鉛直部材383の内部に構成した鉛直液だまり部38(粘性流体55)に連結したものである。   As shown in FIGS. 9 (1) and 9 (3), horizontal horizontal pipe lines 351 are attached to both outer side surfaces of the rising outer wall surface 31 of the viscous damping wall, and both ends thereof are opposite ends of the viscous damping wall. This is connected to the vertical liquid pool portion 38 (viscous fluid 55) formed inside the vertical member 383.

内部鋼板4が水平に移動すると、内部鋼板4の前面側では粘性流体が鉛直液だまり部に押し出され、後面側では吸引されることになるが、その前後の鉛直液だまり部55が水平管路351(内部54)により連通されているので、内壁鋼板4の前面側で押し出された粘性体が粘性管路54を経由して後ろ側の鉛直液だまり部38(粘性流体55)に移動することにより、粘性流体が一定の液面高さで維持され、安定した粘性抵抗力を発揮できることになる。   When the inner steel plate 4 moves horizontally, the viscous fluid is pushed out to the vertical liquid pool portion on the front side of the inner steel plate 4 and is sucked on the rear surface side. 351 (inside 54) communicates, the viscous body pushed out on the front side of the inner wall steel plate 4 moves to the vertical vertical liquid pool 38 (viscous fluid 55) via the viscous conduit 54. Thus, the viscous fluid is maintained at a constant liquid level, and a stable viscous resistance force can be exhibited.

構成12から構成16は、温度変化による抵抗力の変動率を低減し、合わせて装置全体の抵抗力を高めるために、粘性制震壁に摩擦抵抗力を付加する構成である。即ち、構成12〜構成16の粘性制震壁は、「粘性抵抗力Fv+摩擦抵抗力Fμ」の複合型減衰装置を実現したものであり、仮に粘性抵抗力Fvの温度による抵抗力が±50%あるとしても、例えば粘性抵抗力と同等の摩擦抵抗力Fμを付加すれば変動幅は±25%に半減することになり、装置全体の抵抗力を安定化することができる。   The configurations 12 to 16 are configurations in which a frictional resistance force is added to the viscous damping wall in order to reduce the variation rate of the resistance force due to a temperature change and increase the resistance force of the entire apparatus. That is, the viscous damping walls of the constitutions 12 to 16 realize a composite damping device of “viscous resistance force Fv + friction resistance force Fμ”, and the resistance force due to the temperature of the viscous resistance force Fv is ± 50%. Even if there is, for example, if the frictional resistance force Fμ equivalent to the viscous resistance force is added, the fluctuation range is halved to ± 25%, and the resistance force of the entire apparatus can be stabilized.

図10は、構成12および構成13の実施例である。図10(1)および(2)に示すように、立ち上がり壁(=外壁鋼板)31の上端部付近を内壁鋼板(=垂下壁)4に隙間なく接触させ、且つ接触部の両壁板を貫通する高力ボルト90を配置し、その高力ボルト90に軸力を導入することにより、上階と下階間の層間変位によって接触している立ち上がり壁31と垂下壁4との間にずれが発生すると両壁板間にすべり摩擦力を発生させるものである。   FIG. 10 shows an example of the configuration 12 and the configuration 13. As shown in FIGS. 10 (1) and 10 (2), the vicinity of the upper end of the rising wall (= outer wall steel plate) 31 is brought into contact with the inner wall steel plate (= hanging wall) 4 without any gap, and both wall plates of the contact portion are penetrated. The high-strength bolt 90 is arranged, and axial force is introduced into the high-strength bolt 90, so that there is a displacement between the rising wall 31 and the hanging wall 4 that are in contact by the interlayer displacement between the upper floor and the lower floor. When generated, a sliding friction force is generated between both wall plates.

図10(3)は、粘性制震壁上端部付近の拡大断面図であり、上段図は壁板を締め付ける軸力を導入している高力ボルト90の配置位置、中断図は構成13に示した垂下壁(内壁鋼板)4に摩擦沓動材7を組み込んでいる位置の断面図、下段図は図10(1)の上部付近の両端部に示す粘性流体が溢れた場合にそれを受け止める貯留部53の構成断面である。   FIG. 10 (3) is an enlarged cross-sectional view of the vicinity of the upper end of the viscous damping wall. The upper diagram shows the arrangement position of the high-strength bolt 90 that introduces the axial force for tightening the wall plate, and the interruption diagram is shown in configuration 13. Sectional view of the position where the frictional peristaltic material 7 is incorporated in the hanging wall (inner wall steel plate) 4, and the lower diagram is a storage that catches when the viscous fluid shown at both ends near the upper part of FIG. 10 (1) overflows FIG.

また図5(2)には、内壁鋼板4の上部付近以外に摩擦沓動材7を組み込んだ実施例を示しており、側面の外壁鋼板31の孕みだし防止に用いているボルト36を摩擦力用軸力導入に利用する構成を示している。   FIG. 5 (2) shows an embodiment in which the frictional peristaltic material 7 is incorporated in addition to the vicinity of the upper part of the inner wall steel plate 4, and the bolt 36 used for preventing the side wall outer steel plate 31 from squeezing out is used as a friction force. The structure utilized for the axial force introduction is shown.

図11は、構成14の実施例である。粘性制震壁に摩擦抵抗力を付加する第二の方法として、垂下壁(内壁鋼板)4の上部付近に水平板43を取り付け、その水平板に接触し且つ一旦が立ち上がり壁(外壁鋼板)31に固定された水平板37を配置して水平板41を挟み、高力ボルト90を貫通させて軸力を導入することにより、上階と下階間の層間変位によって接触している水平板間にすべり摩擦力を発生させる。   FIG. 11 shows an example of the configuration 14. As a second method of adding frictional resistance to the viscous damping wall, a horizontal plate 43 is attached in the vicinity of the upper portion of the hanging wall (inner wall steel plate) 4 and comes into contact with the horizontal plate and once rises (outer wall steel plate) 31. The horizontal plate 37 fixed to the horizontal plate 41 is sandwiched, and the horizontal plate 41 is sandwiched between the horizontal plates 41. Generates sliding friction force.

図12は、摩擦力を発生させる摩擦ダンパー9の一方を上階の梁側に、他方を粘性制震壁の立ち上がり壁(=外壁鋼板)の上部付近に固定する構成15の方法を示している。図13はその摩擦ダンパー9の構成を示す拡大図であり、上階の梁側に固定された内部摩擦板81とそれを挟む外側摩擦板82、および軸力を導入する高力ボルト90を示している。また両摩擦板81と82の接触部には摩擦沓動材7を介在させている。   FIG. 12 shows a method of the configuration 15 in which one of the friction dampers 9 that generate a frictional force is fixed to the upper floor beam side, and the other is fixed near the upper part of the rising wall (= outer wall steel plate) of the viscous damping wall. . FIG. 13 is an enlarged view showing the configuration of the friction damper 9, showing an internal friction plate 81 fixed on the beam side of the upper floor, an outer friction plate 82 sandwiching the internal friction plate 81, and a high-strength bolt 90 for introducing axial force. ing. Further, the frictional peristaltic material 7 is interposed between the contact portions of the friction plates 81 and 82.

図14は同じく摩擦ダンパーを粘性制震壁の上部付近に取り付ける構成16の実施例である。図14の摩擦ダンパーは、摩擦板83がその取り付けピン92(回転中心ピン)を中心として回転できることに特徴がある。摩擦板83の上部には上階梁側に固定された連結部材81およびそのピン91(上部ピン)により上階の水平変位が摩擦板83に伝達され、摩擦板83は回転運動を起こしてその下方に取り付けられている摩擦沓動板7の部分ですべり摩擦抵抗力を発生する。   FIG. 14 similarly shows an embodiment of the configuration 16 in which the friction damper is attached near the upper part of the viscous damping wall. The friction damper of FIG. 14 is characterized in that the friction plate 83 can rotate around its mounting pin 92 (rotation center pin). A horizontal displacement of the upper floor is transmitted to the friction plate 83 by the connecting member 81 fixed to the upper floor beam side and its pin 91 (upper pin) on the upper portion of the friction plate 83, and the friction plate 83 causes a rotational motion to A sliding frictional resistance force is generated at the portion of the friction sliding plate 7 attached below.

回転中心ピン92と上部ピン91間の距離L1と回転中心ピン92と下方の摩擦沓動板7の中心までの距離L2の比率を変える(L1<L2)ことにより、摩擦沓動板7で発生する摩擦力Fを(L2/L1)倍に増幅することができ、ボルト90による導入軸力が小さくても大きな摩擦抵抗力を得ることができる。   It is generated in the friction peristaltic plate 7 by changing the ratio of the distance L1 between the center pin 92 and the upper pin 91 and the distance L2 between the center pin 92 and the center of the lower friction peristaltic plate 7 (L1 <L2). The friction force F to be amplified can be amplified by (L2 / L1) times, and a large frictional resistance force can be obtained even if the introduction axial force by the bolt 90 is small.

2003年の十勝沖地震(Mw8.0)では石油タンクが炎上し、長周期地震動の脅威が明らかになった。その後日本建築学会と土木学会による共同研究により、長周期地震動に対する超高層ビルの耐震性能に問題があることが明らかになった。周期数秒の固有周期を持つ超高層ビルの耐震安全性を改善できる方法が建物の減衰性能を高める制震構造の採用である。   The 2003 Tokachi-oki earthquake (Mw 8.0) ignited an oil tank and revealed the threat of long-period ground motion. Later, joint research between the Architectural Institute of Japan and the Japan Society of Civil Engineers revealed that there was a problem with the seismic performance of high-rise buildings against long-period ground motion. One way to improve the seismic safety of skyscrapers with a natural period of several seconds is to adopt a seismic control structure that enhances the damping performance of the building.

超高層ビルを制震構造化するには、建物にエネルギー吸収性能を付与する減衰装置(ダンパー)を付加することであり、そのダンパーの中で最も単純で高性能、且つパワフルな減衰装置が粘性制震壁である。但し、コスト的には鋼材の履歴ダンパー等に較べて若干高く付くために、その採用は高付加価値の建物等に限定されているのが実状である。   In order to build a high-rise building into a seismic control structure, it is necessary to add a damping device (damper) that imparts energy absorption performance to the building. Among the dampers, the simplest, high-performance, and powerful damping device is viscous. It is a damping wall. However, the cost is slightly higher than that of steel history dampers, so the actual use is limited to buildings with high added value.

また15階建て以下の短周期の中低層構造物に対しては、免震構造が最も優れた安全性を提供でき、本発明の粘性制震壁は、免震構造物用の減衰装置としても優れた性能を提供できる。   In addition, the seismic isolation structure can provide the most excellent safety for medium- and low-rise structures with a short period of 15 stories or less. The viscous damping wall of the present invention can also be used as a damping device for a seismic isolation structure. Excellent performance can be provided.

以上のとおり、本発明によりこの粘性制震壁の力学的課題が改善され、且つ更にパワフルな装置に進化したので、従来装置に較べて相対的にコストパフォーマンスがアップし、超高層ビルを中心とする長周期構造物および免震構造物の耐震性能改善に大きく貢献することが期待される。   As described above, the mechanical problems of this viscous damping wall have been improved by the present invention, and since it has evolved into a more powerful device, the cost performance is relatively improved as compared with the conventional device, mainly in high-rise buildings. It is expected to contribute greatly to improving the seismic performance of long-period structures and seismic isolation structures.

1 :柱
20:床スラブ
21:上階側の梁
22:下階側の梁
23:粘性制震壁の取り付け部材
31:粘性制震壁の立ち上がり壁(外壁鋼板)の側面鋼板
32:粘性制震壁の立ち上がり壁(外壁鋼板)の妻面鋼板
33:粘性制震壁の立ち上がり壁(外壁鋼板)の上部液溜まり部鋼板
330:粘性制震壁の上部液溜まり部の上面
34:立ち上がり壁(外壁鋼板)の側面鋼板31の端部に設けた孔
35:端部孔34を繋ぐ水平連通管路
351:水平連通管路
36:外壁鋼板を締め付けるボルトおよびスペーサー鞘管
37:立ち上がり壁(外壁鋼板)に固定された摩擦抵抗用水平板
38:制震壁両端部の鉛直液溜まり部
381:外壁鋼板31の外側に鉛直液溜まり部を構成するためのL型部材
382:立ち上がり壁妻面鋼板32の外側に鉛直液溜まり部を構成するC型部材
383:鉛直液溜まりを構成するための制震壁両端部の角形鋼管
384:鉛直液溜まりを構成するための制震壁両端部の円形鋼管
39:粘性流体の通過用の孔もしくはスリット
4 :粘性制震壁の垂下壁(内壁鋼板)
41:垂下壁(内壁鋼板)に設けたボルト36の可動用ルーズホール
42:垂下壁(内壁鋼板)前面および後面端部のテーパー形状
43:垂下壁(内壁鋼板)の上部付近に設けた摩擦抵抗用水平板
44:垂下壁(内壁鋼板)前面および後面端部の凹形状切り込み部
5 :粘性流体
51:抵抗壁板側面の粘性流体層流部
52:垂下壁板(内壁鋼板)前面および後面部の粘性流体
53:粘性制震壁上部の粘性流体貯留部
54:水平連通管路およびその内部の粘性流体
61:粘性流体貯留部上部のゴムパッキン
62:水平連通管路の粘性流体点検孔およびその栓ボルト
7 :摩擦ダンパー用摩擦沓動材
81:摩擦ダンパーの上部梁側取り付け部材
82:摩擦ダンパーの立ち上がり壁(外壁鋼板)側の取り付け部材
83:回転式摩擦ダンパーの回転板
9 :摩擦ダンパー
90:摩擦ダンパーの軸力導入用高力ボルト
91:回転式摩擦ダンパーの上部梁側ピン部材
92:回転式摩擦ダンパーの回転中心ピンボルト
93:取り付け用ボルト
DESCRIPTION OF SYMBOLS 1: Column 20: Floor slab 21: Upper floor side beam 22: Lower floor side beam 23: Attachment member of viscous damping wall 31: Side surface steel plate of rising wall (outer wall steel plate) of viscous damping wall 32: Viscosity damping Steel plate 33 of rising wall (outer wall steel plate) of seismic wall 33: Upper liquid pool part steel plate of rising wall (outer wall steel plate) of viscous damping wall 330: Upper surface of upper liquid pool part of viscous damping wall 34: Rising wall ( Hole 35 provided at the end of the side surface steel plate 31 of the outer wall steel plate 35: Horizontal communication pipe 351 connecting the end hole 34 351: Horizontal communication pipe 36: Bolt and spacer sheath pipe 37 for tightening the outer wall steel plate 37: Standing wall (outer wall steel plate) ) Fixed friction plate 38: vertical liquid reservoirs at both ends of the damping wall 381: L-shaped member for forming a vertical liquid reservoir outside the outer wall steel plate 31 382: Lead outside C-shaped member constituting the liquid reservoir 383: Square steel pipes at both ends of the damping wall for constituting the vertical liquid reservoir 384: Circular steel pipes at both ends of the damping wall for constituting the vertical liquid reservoir 39: Viscous fluid Passing hole or slit 4: Drooping wall (inner wall steel plate) of viscous damping wall
41: Loose hole for moving the bolt 36 provided on the hanging wall (inner wall steel plate) 42: Tapered shape of the front and rear end portions of the hanging wall (inner wall steel plate) 43: Friction resistance provided near the upper part of the hanging wall (inner wall steel plate) Horizontal plate 44: Concave cut portion at the front and rear end of the hanging wall (inner wall steel plate) 5: Viscous fluid 51: Viscous fluid laminar flow portion at the side of the resistance wall plate 52: Front wall of the hanging wall plate (inner wall steel plate) Viscous fluid 53: Viscous fluid reservoir above the viscous damping wall 54: Horizontal communication pipe and viscous fluid inside it 61: Rubber packing above the viscous fluid reservoir 62: Viscosity fluid inspection hole and plug in the horizontal duct Bolt 7: Friction vibration material for friction damper 81: Upper beam side mounting member of friction damper 82: Mounting member on the rising wall (outer wall steel plate) side of friction damper 83: Rotary friction damper Rotating plate 9: Friction damper 90: High-strength bolt for introducing axial force of the friction damper 91: Upper beam side pin member of the rotary friction damper 92: Rotation center pin bolt of the rotary friction damper 93: Mounting bolt

Claims (17)

建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、
下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、
両外壁面を構成する立ち上がり壁の両端部の妻面近傍に孔をあけ、前記外壁面の外側に前記孔を連結する水平連通管路を設けて、その内部にも粘性流体を充填していることを特徴とする粘性制震壁。
A wall member that connects the upper and lower floors of buildings and other structures,
A plurality of wall plates fixed to the floor slab or beam on the lower floor are raised in parallel, and the end of the wall plate is closed to form a box-shaped wall body, which is fixed to the floor slab or beam on the upper floor In a viscous damping wall in which a plurality of suspended wall plates are inserted into the box-shaped wall body and a viscous fluid is filled in a gap between the rising wall plate and the suspended wall plate,
Holes are formed in the vicinity of the end faces of both ends of the rising walls constituting both outer wall surfaces, a horizontal communication pipe line is provided outside the outer wall surfaces to connect the holes, and the inside is filled with viscous fluid. A viscous damping wall characterized by that.
請求項1に記載の粘性制震壁において、
前記外壁面外側の水平連通管路が上下方向に2段以上に渡って設けられていることを特徴とする粘性制震壁。
In the viscous damping wall according to claim 1,
The viscous damping wall according to claim 1, wherein the horizontal communication pipe line outside the outer wall surface is provided in two or more stages in the vertical direction.
請求項1又は2に記載の粘性制震壁において、
前記立ち上がり外壁面の最上端の外側に水平連通管路の粘性流体液溜まり部を設け、その上部に内側垂下壁の直近まで覆う上面蓋を配置し、前記上面蓋と前記内側垂下壁との隙間をゴムパッキン等の弾性体を密着させてシールしていることを特徴とする粘性制震壁。
In the viscous damping wall according to claim 1 or 2,
A viscous fluid liquid reservoir portion of a horizontal communication pipe line is provided outside the uppermost end of the rising outer wall surface, and an upper surface cover is disposed on the upper portion thereof to cover the inner suspension wall, and a gap between the upper surface lid and the inner suspension wall is disposed. A viscous damping wall characterized in that an elastic body such as rubber packing is adhered and sealed.
請求項1乃至3のいずれかに記載の粘性制震壁において、
前記水平連通管路の上面に内部の粘性流体を確認できる点検孔を設けていることを特徴とする粘性制震壁。
The viscous damping wall according to any one of claims 1 to 3,
A viscous damping wall comprising an inspection hole for confirming an internal viscous fluid on an upper surface of the horizontal communication pipe.
請求項1乃至4のいずれかに記載の粘性制震壁において、
前記垂下壁の端部妻面の鉛直形状を、前記立ち上がり壁両端部の孔部分で最も内側にし、前記孔の中間高さ位置で最も外側になるように傾斜させていること、もしくは前記垂下壁の端部において前記外壁の孔位置の高さ付近を凹形状に切り込んでいることを特徴とする粘性制震壁。
The viscous damping wall according to any one of claims 1 to 4,
The vertical shape of the end face of the hanging wall is inclined so that it is the innermost at the hole portion at both ends of the rising wall and the outermost at the intermediate height position of the hole, or the hanging wall A viscous vibration-damping wall characterized in that the vicinity of the height of the hole position of the outer wall is cut into a concave shape at the end of the wall.
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、
下階の床スラブまたは梁もしくは梁上の連結部材に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁もしくは連結部材に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、
両外壁面を構成する立ち上がり壁の両端部に、前記箱状壁体の中央部幅(厚さ)よりも大きな幅を有する粘性流体の鉛直形状の液溜まり部を有していることを特徴とする粘性制震壁。
A wall member that connects the upper and lower floors of buildings and other structures,
A floor slab on the lower floor or a plurality of wall plates fixed to a beam or a connecting member on the beam are raised in parallel, and a box-shaped wall body is formed by closing the end of the wall plate. In the viscous damping wall in which one or more suspended wall plates fixed to a beam or a connecting member are inserted into the box-shaped wall body, and a viscous fluid is filled in a gap between the rising wall plate and the suspended wall plate,
It is characterized by having a vertical reservoir of viscous fluid having a width larger than the width (thickness) of the central portion of the box-like wall body at both ends of the rising walls constituting both outer wall surfaces. Viscous damping wall.
請求項6に記載の粘性制震壁において、
前記外壁面の両端部付近に鉛直方向に複数の孔を設け、その両外側にL型部材を配置して前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
The viscous damping wall according to claim 6,
A viscous damping wall, wherein a plurality of holes are provided in the vertical direction in the vicinity of both ends of the outer wall surface, and L-shaped members are disposed on both outer sides to constitute the liquid pool portion of the vertical shape.
請求項6に記載の粘性制震壁において、
前記立ち上がり箱状壁体の端部妻面鋼板に鉛直方向に複数の孔もしくはスリットを設け、
前記端部妻面鋼板の外側にC型部材を配置して前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
The viscous damping wall according to claim 6,
Provide a plurality of holes or slits in the vertical direction on the end face steel plate of the rising box-like wall,
A viscous damping wall, wherein a C-shaped member is disposed outside the end-face steel plate to constitute the liquid pool portion having the vertical shape.
請求項6に記載の粘性制震壁において、
前記立ち上がり外壁面の両端部に角形鋼管を鉛直方向に配置して、前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
The viscous damping wall according to claim 6,
The viscous damping wall according to claim 1, wherein square steel pipes are arranged in the vertical direction at both ends of the rising outer wall surface to constitute the liquid pool portion having the vertical shape.
請求項6に記載の粘性制震壁において、
前記立ち上がり外壁面の両端部に円形鋼管を鉛直方向に配置して、前記鉛直形状の液だまり部を構成していることを特徴とする粘性制震壁。
The viscous damping wall according to claim 6,
A viscous damping wall characterized in that a circular steel pipe is arranged in the vertical direction at both ends of the rising outer wall surface to constitute the liquid pool portion of the vertical shape.
請求項6乃至10のいずれかに記載の粘性制震壁において、
前記立ち上がり外壁面の外側両側面に水平方向の水平連通管路を取り付け、
その両端部を前記立ち上がり外壁面の両端部に配置した前記鉛直形状の液だまり部と連結していることを特徴とする粘性制震壁。
In the viscous damping wall according to any one of claims 6 to 10,
A horizontal horizontal communication pipe is attached to both outer side surfaces of the rising outer wall surface,
A viscous damping wall characterized in that both ends thereof are connected to the vertical liquid pools disposed at both ends of the rising outer wall surface.
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、
下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、
前記立ち上がり壁板の一部を前記垂下壁に隙間なく接触させ、且つ接触部の両壁板を貫通する高力ボルトを配置し、前記高力ボルトに軸力を導入しており、前記建築物の上階と下階間の相対変位によって接触している前記壁板間に摩擦力を発生せしめることを特徴とする粘性制震壁。
A wall member that connects the upper and lower floors of buildings and other structures,
A plurality of wall plates fixed to the floor slab or beam on the lower floor are raised in parallel, and the end of the wall plate is closed to form a box-shaped wall body, which is fixed to the floor slab or beam on the upper floor In a viscous damping wall in which a plurality of suspended wall plates are inserted into the box-shaped wall body and a viscous fluid is filled in a gap between the rising wall plate and the suspended wall plate,
A part of the rising wall plate is brought into contact with the hanging wall without a gap, and a high-strength bolt penetrating both wall plates of the contact portion is arranged, and axial force is introduced to the high-strength bolt, and the building A viscous damping wall characterized in that a frictional force is generated between the wall plates in contact with each other by relative displacement between an upper floor and a lower floor.
請求項12に記載の粘性制震壁において、
接触部における前記立ち上がり壁、もしくは垂下壁の一部に摩擦沓動部材を組み込んでいることを特徴とする粘性制震壁。
The viscous damping wall according to claim 12,
A viscous vibration control wall characterized in that a frictional peristaltic member is incorporated in a part of the rising wall or hanging wall in the contact portion.
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、
下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、
前記垂下壁の上部付近に水平板を取り付け、その水平板に接触し且つ一旦が前記立ち上がり壁に固定された水平板を設け、接触している両水平板を貫通する高力ボルトを配置し、前記高力ボルトに軸力を導入しており、前記建築物の上階と下階間の相対変位によって接触している前記水平板間に摩擦力を発生せしめることを特徴とする粘性制震壁。
A wall member that connects the upper and lower floors of buildings and other structures,
A plurality of wall plates fixed to the floor slab or beam on the lower floor are raised in parallel, and the end of the wall plate is closed to form a box-shaped wall body, which is fixed to the floor slab or beam on the upper floor In a viscous damping wall in which a plurality of suspended wall plates are inserted into the box-shaped wall body and a viscous fluid is filled in a gap between the rising wall plate and the suspended wall plate,
A horizontal plate is attached near the upper portion of the hanging wall, a horizontal plate that is in contact with the horizontal plate and once fixed to the rising wall is provided, and a high-strength bolt that penetrates both horizontal plates that are in contact is disposed. A viscous damping wall characterized in that an axial force is introduced into the high-strength bolt and a frictional force is generated between the horizontal plates in contact with each other by a relative displacement between the upper floor and the lower floor of the building. .
建築物およびその他の構造物の上階と下階を結ぶ壁部材であり、
下階の床スラブまたは梁に固定された複数枚の壁板を平行に立ち上げ、その壁板端部を塞いで箱状壁体を構成し、上階の床スラブまたは梁に固定された1枚以上の垂下壁板を前記箱状壁体の中に挿入し、立ち上がり壁板と垂下壁板の隙間に粘性流体が充填されている粘性制震壁において、
前記立ち上がり壁の上端部の外側に、相対面し接触する2枚以上の摩擦板を配置し、その平面内部もしくは外側近傍に高力ボルトを配置して軸力を導入しており、前記摩擦板の一方を上階の梁もしくは梁に一体化された接合部材に固定し、他方の摩擦板を前記粘性制震壁の立ち上がり壁の上部付近に固定した摩擦ダンパーを複合していることを特徴とする粘性制震壁。
A wall member that connects the upper and lower floors of buildings and other structures,
A plurality of wall plates fixed to the floor slab or beam on the lower floor are raised in parallel, and the end of the wall plate is closed to form a box-shaped wall body, which is fixed to the floor slab or beam on the upper floor In a viscous damping wall in which a plurality of suspended wall plates are inserted into the box-shaped wall body and a viscous fluid is filled in a gap between the rising wall plate and the suspended wall plate,
Two or more friction plates facing and contacting each other are arranged outside the upper end portion of the rising wall, and high force bolts are arranged inside or near the outside of the plane to introduce axial force. One of the above is fixed to the upper floor beam or a joint member integrated with the beam, and the other friction plate is combined with a friction damper in the vicinity of the upper part of the rising wall of the viscous damping wall. Viscous damping wall.
請求項15に記載の粘性制震壁において、
前記摩擦ダンパーの構成を、前記粘性制震壁の立ち上がり壁側に固定された回転中心軸とその中心軸回りに回転できる回転摩擦板を有し、前記回転摩擦板の一端を上階梁側に連結し、他方を前記粘性制震壁に固定された摩擦平板と接触させ、両者の摩擦面近傍に高力ボルトを配置して両摩擦板を締め付けており、
前記回転中心軸と前記上階梁側の連結点までの距離L1と前記回転中心軸と前記摩擦面の中心までの距離L2を任意に設定可能としている摩擦ダンパーを複合していることを特徴とする粘性制震壁。
The viscous damping wall according to claim 15,
The friction damper has a rotation center axis fixed to the rising wall side of the viscous damping wall and a rotation friction plate that can rotate around the center axis, and one end of the rotation friction plate is on the upper floor beam side. Connected, the other is brought into contact with a friction flat plate fixed to the viscous damping wall, both high friction bolts are arranged in the vicinity of both friction surfaces, and both friction plates are tightened.
It is characterized by combining a friction damper that can arbitrarily set a distance L1 between the rotation center axis and the connection point on the upper floor side and a distance L2 between the rotation center axis and the center of the friction surface. Viscous damping wall.
請求項1乃至16のいずれかに記載の粘性制震壁において、
上階から垂下する壁を2枚以上、下階からの立ち上がり壁を3枚以上としていることを特徴とする粘性制震壁。
The viscous damping wall according to any one of claims 1 to 16,
A viscous damping wall characterized by having two or more walls hanging from the upper floor and three or more rising walls from the lower floor.
JP2009106766A 2009-04-24 2009-04-24 Viscous damping wall Active JP4431187B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106766A JP4431187B1 (en) 2009-04-24 2009-04-24 Viscous damping wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106766A JP4431187B1 (en) 2009-04-24 2009-04-24 Viscous damping wall

Publications (2)

Publication Number Publication Date
JP4431187B1 JP4431187B1 (en) 2010-03-10
JP2010255302A true JP2010255302A (en) 2010-11-11

Family

ID=42072753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106766A Active JP4431187B1 (en) 2009-04-24 2009-04-24 Viscous damping wall

Country Status (1)

Country Link
JP (1) JP4431187B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242182A (en) * 2011-05-17 2012-12-10 Oiles Ind Co Ltd Method for analyzing movement of vibration control wall, program for the same, storage medium storing program and analysis device to execute method
JP5138825B1 (en) * 2012-04-16 2013-02-06 株式会社ダイナミックデザイン Viscous damping wall
WO2019097933A1 (en) * 2017-11-14 2019-05-23 オイレス工業株式会社 Vibration control device
JP2019100001A (en) * 2017-11-29 2019-06-24 株式会社免制震ディバイス Vibration suppression device for structure
JP2020008115A (en) * 2018-07-10 2020-01-16 日鉄レールウェイテクノス株式会社 Vibration control wall

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894536A (en) * 2017-04-10 2017-06-27 广州大学 A kind of novel damping oil damper
CN107366365A (en) * 2017-07-31 2017-11-21 上海史狄尔建筑减震科技有限公司 Wall frcition damper
CN109024966A (en) * 2018-09-20 2018-12-18 无锡圣丰建筑新材料有限公司 The oiling of ultrathin viscous damping wall balances slot structure
CN112382066B (en) * 2020-11-25 2022-06-10 深圳市特发信息股份有限公司 Wading alarm system for detecting underground garage
CN114086673B (en) * 2021-11-24 2023-06-27 中天建设集团有限公司 Blocking method for damper part of outer wall of high-rise building

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021947B2 (en) * 1984-10-02 1990-01-16 Sumitomo Const
JPH0586744A (en) * 1991-09-27 1993-04-06 Sumitomo Constr Co Ltd Base isolation device and manufacture thereof
JPH09310531A (en) * 1996-05-23 1997-12-02 Shimizu Corp Vibration-control device with limited damping force
JP2000240319A (en) * 1999-02-17 2000-09-05 Menseihin Sogo Kikaku:Kk Vibration control wall and structure provided with the same
JP2004183332A (en) * 2002-12-03 2004-07-02 Sumitomo Mitsui Construction Co Ltd Seismic response control device and seismic response controlled structure
JP2008215071A (en) * 2008-04-14 2008-09-18 Sumitomo Mitsui Construction Co Ltd Seismic response control apparatus and seismic control structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021947B2 (en) * 1984-10-02 1990-01-16 Sumitomo Const
JPH0586744A (en) * 1991-09-27 1993-04-06 Sumitomo Constr Co Ltd Base isolation device and manufacture thereof
JPH09310531A (en) * 1996-05-23 1997-12-02 Shimizu Corp Vibration-control device with limited damping force
JP2000240319A (en) * 1999-02-17 2000-09-05 Menseihin Sogo Kikaku:Kk Vibration control wall and structure provided with the same
JP2004183332A (en) * 2002-12-03 2004-07-02 Sumitomo Mitsui Construction Co Ltd Seismic response control device and seismic response controlled structure
JP2008215071A (en) * 2008-04-14 2008-09-18 Sumitomo Mitsui Construction Co Ltd Seismic response control apparatus and seismic control structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242182A (en) * 2011-05-17 2012-12-10 Oiles Ind Co Ltd Method for analyzing movement of vibration control wall, program for the same, storage medium storing program and analysis device to execute method
JP5138825B1 (en) * 2012-04-16 2013-02-06 株式会社ダイナミックデザイン Viscous damping wall
WO2019097933A1 (en) * 2017-11-14 2019-05-23 オイレス工業株式会社 Vibration control device
JP2019090217A (en) * 2017-11-14 2019-06-13 オイレス工業株式会社 Vibration control device
TWI675971B (en) * 2017-11-14 2019-11-01 日商翁令司工業股份有限公司 Seismic device
KR20200077465A (en) * 2017-11-14 2020-06-30 오이레스 고교 가부시끼가이샤 Vibration control device
KR102602629B1 (en) * 2017-11-14 2023-11-16 오이레스 고교 가부시끼가이샤 vibration isolation device
JP2019100001A (en) * 2017-11-29 2019-06-24 株式会社免制震ディバイス Vibration suppression device for structure
JP2020008115A (en) * 2018-07-10 2020-01-16 日鉄レールウェイテクノス株式会社 Vibration control wall
JP7074595B2 (en) 2018-07-10 2022-05-24 日鉄レールウェイテクノス株式会社 Damping wall

Also Published As

Publication number Publication date
JP4431187B1 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4431187B1 (en) Viscous damping wall
JP5763788B2 (en) Displacement amplification type vibration control system and its construction method
RU2526928C2 (en) Bearing structure with increased damping on account of structure
JP6388647B2 (en) Viscous wall-connected damper for use in outrigger building construction
KR101478654B1 (en) Seismic Retrofit Technology using Diagrid Frames
Sadek et al. Passive energy dissipation devices for seismic applications
CN106245810B (en) A kind of damping wall with pressure-bearing sliding properties
JP4212610B2 (en) Seismic isolation structure
JP5270959B2 (en) Vibration control frame with composite damper
JP5138825B1 (en) Viscous damping wall
JP2004068289A (en) Earthquake proof frame
JP3843174B2 (en) Seismic isolation structure
JP2008215071A (en) Seismic response control apparatus and seismic control structure
JPS63275825A (en) Vibration absorbing device
JP2010173860A (en) Device for horizontally supporting mast of tower crane
JP2014234590A (en) Base isolation device
Hameed et al. Seismic performance of low to medium rise reinforced concrete buildings using passive energy dissipation devices
JP4419218B2 (en) Energy absorption structure of beam-column joint
JP2006009477A (en) Intermediate base isolating structure of existing building
Youssef Viscous dampers at multiple levels for the historic preservation of Los Angeles City Hall
JP2005187185A (en) Device for horizontally supporting mast of tower crane
KR100994175B1 (en) Hybrid isolator
CN202577647U (en) Self-guiding viscous damping wall
JP4208459B2 (en) Damping wall
JP6837865B2 (en) Vibration control building

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4431187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250