JP2000240319A - Vibration control wall and structure provided with the same - Google Patents

Vibration control wall and structure provided with the same

Info

Publication number
JP2000240319A
JP2000240319A JP11039301A JP3930199A JP2000240319A JP 2000240319 A JP2000240319 A JP 2000240319A JP 11039301 A JP11039301 A JP 11039301A JP 3930199 A JP3930199 A JP 3930199A JP 2000240319 A JP2000240319 A JP 2000240319A
Authority
JP
Japan
Prior art keywords
container
vibration control
viscous fluid
damping wall
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11039301A
Other languages
Japanese (ja)
Other versions
JP4156737B2 (en
Inventor
Naoto Ichikawa
直人 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MENSEIHIN SOGO KIKAKU KK
Original Assignee
MENSEIHIN SOGO KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MENSEIHIN SOGO KIKAKU KK filed Critical MENSEIHIN SOGO KIKAKU KK
Priority to JP03930199A priority Critical patent/JP4156737B2/en
Publication of JP2000240319A publication Critical patent/JP2000240319A/en
Application granted granted Critical
Publication of JP4156737B2 publication Critical patent/JP4156737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control wall facilitating the design of a beam by comprising a vessel whose upward side is opened, injecting a viscous fluid into the inside and an inner plate capable of moving in the viscous fluid, and providing a support member having a sliding mechanism on both the outsides of the vessel. SOLUTION: A vibration control wall 20 is fixed on the beam 14 of the horizontal structural member of a lower layer story, and constituted of a vessel 22 whose upward side is opened, injecting viscous fluid 21, and an inner plate 30 capable of moving in the viscous fluid 21 in the vessel 22. The reinforcing posts 35, 36 of support members are fixed on both the outsides of the vessel 22, and a sliding mechanism 40 is provided between the beams 16 of an upper layer story. A downward plate 41 fixed on the upper end of the reinforcing posts 35, 36 and an upward plate 42 fixed on the lower face of the beam 16 are oppositely contacted through a sliding plate 43, and connected by coupling members such as four bolts 44 and nuts 45. Thereby shearing force acting on the beam can be bore on the support members of both the outsides, strength calculation of the beam is facilitated and the design of the beam is facilitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地震時に地震によ
る振動を減衰させることができる制震壁および制震壁を
備える構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration control wall capable of attenuating vibration caused by an earthquake during an earthquake, and a structure having the vibration control wall.

【0002】[0002]

【従来の技術】従来の制震壁1は、図12に示されるよ
うに下層階の梁や床等の水平構造部材2に取り付けられ
た容器3と、容器3内に間隔を有して非接触状態に位置
し上層階の梁等の水平構造部材4に取り付けられて容器
内を移動可能な内板5と、容器3内に収納された粘性流
体6とから構成されている。そして、地震等により上下
の水平構造部材4、2間に振動による相対運動が発生す
ると粘性流体6内を内板5が左右に移動し、このときの
粘性抵抗により振動が減衰されて制震するものである。
また、制震壁を備える構造物は前記の制震壁1が柱7、
7、梁2、4から構成される構造物の上下の梁2、4間
に設置され、多層階の構造物の場合は各階に設置されて
いる。
2. Description of the Related Art As shown in FIG. 12, a conventional vibration control wall 1 has a container 3 attached to a horizontal structural member 2 such as a beam or a floor on a lower floor, and a non-contained space 3 in the container 3. An inner plate 5 which is located in a contact state and is attached to a horizontal structural member 4 such as a beam on an upper floor and is movable in the container, and a viscous fluid 6 stored in the container 3. Then, when relative motion due to vibration occurs between the upper and lower horizontal structural members 4 and 2 due to an earthquake or the like, the inner plate 5 moves left and right in the viscous fluid 6, and the vibration is attenuated by viscous resistance at this time. Things.
Further, in the structure having the vibration control wall, the above-described vibration control wall 1 has a pillar 7,
7, installed between the upper and lower beams 2 and 4 of the structure composed of the beams 2 and 4, and in the case of a multi-story structure, it is installed on each floor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記し
た制震壁および制震壁を備える構造物においては、以下
のような問題があった。すなわち、図12において地震
等の振動により構造物の各階において、上部の水平構造
部材である梁4と、下部の梁2との間の変位差により例
えばQ、Qという力が生ずると、制震壁1においては粘
性流体6中を内板5が水平方向に移動し、その粘性抵抗
により地震による振動を減衰させる。このとき容器3に
対して内板5が例えば右方向に移動すると、内部の粘性
流体6を介して容器3には面方向に時計回転方向の回転
力Mが作用し、この反力として上下の梁4、2には上下
方向に剪断力Rが生ずる。この剪断力Rは、前記した場
合には制震壁1の左側では下向きに作用し、制震壁1の
右側では上向きに作用する。そして、相対運動の方向が
逆の場合は、制震壁1の左側では上向きに作用し、制震
壁1の右側では下向きに作用する。
However, the above-described damping wall and the structure having the damping wall have the following problems. That is, in FIG. 12, when forces such as Q and Q are generated due to a difference in displacement between the upper horizontal structural member beam 4 and the lower horizontal beam 2 at each floor of the structure due to vibration such as an earthquake, vibration is suppressed. In the wall 1, the inner plate 5 moves in the viscous fluid 6 in the horizontal direction, and the vibration caused by the earthquake is attenuated by the viscous resistance. At this time, when the inner plate 5 moves, for example, rightward with respect to the container 3, a rotational force M in the clockwise direction acts on the container 3 via the internal viscous fluid 6 in the plane direction. A shear force R is generated in the beams 4 and 2 in the vertical direction. In the case described above, the shearing force R acts downward on the left side of the damping wall 1 and acts upward on the right side of the damping wall 1. When the direction of the relative motion is reversed, the motion acts upward on the left side of the damping wall 1 and acts downward on the right side of the damping wall 1.

【0004】この上下方向に作用する剪断力Rが大きい
と、梁の設計が困難となる問題点があるため、多層の構
造物においては制震壁を各階に設置する場合、剪断力R
の一部が互いに打ち消されるように、図12(c)のよ
うに制震壁1を互い違いに配置して設計する。しかしな
がら、この場合でも中央部の剪断力R1〜R4は上下方
向で打ち消されても、左側および右側の剪断力R1〜R
4は依然として残り、左側の下向きの合力F1=2(R
2+R4)、右側の上向きの合力F2=2(R1+R
3)は梁に作用して地中梁等の地中構造物にも作用する
ため、制震壁1の設計の重要なポイントとなる。制震壁
1はその減衰能力が大きいほど剪断力Rは大きくなり、
特に制震壁の内板が3枚ともなり減衰効果が大きいもの
となると、剪断力Rが極めて大きくなるため、梁の設計
は極めて困難となる問題点がある。
[0004] If the shearing force R acting in the vertical direction is large, there is a problem that the design of the beam becomes difficult. Therefore, when a vibration control wall is installed on each floor in a multilayer structure, the shearing force R is increased.
As shown in FIG. 12 (c), the damping walls 1 are alternately arranged and designed so that a part of the damping walls are canceled each other. However, even in this case, even if the shear forces R1 to R4 in the central portion are canceled in the vertical direction, the shear forces R1 to R4 on the left and right sides
4 still remains, and the resultant force F1 = 2 (R
2 + R4), right upward resultant force F2 = 2 (R1 + R
3) acts on a beam and also acts on an underground structure such as an underground beam, which is an important point in designing the damping wall 1. As the damping capacity of the damping wall 1 increases, the shear force R increases,
In particular, when there are three inner plates of the damping wall and the damping effect is large, the shear force R becomes extremely large, so that there is a problem that the design of the beam becomes extremely difficult.

【0005】本発明は、前記問題点を解決するためにな
されたものであり、梁に作用する剪断力Rを両外側の支
持部材により負担させることにより梁の強度計算が容易
となり、梁の設計が容易となるばかりでなく、構造物の
本柱の鉛直力負担も減少させて梁の小型化が達成でき、
設計が容易となる制震壁および制震壁を備える構造物を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the shear force R acting on the beam is borne by the support members on both outer sides, whereby the calculation of the strength of the beam is facilitated, and the design of the beam is facilitated. Not only is easier, but also the vertical force load on the main pillar of the structure is reduced, and the beam can be made smaller.
It is an object of the present invention to provide a damping wall and a structure including the damping wall, which can be easily designed.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る制震壁は、上方が開口し内部に粘性流
体が注入された容器と、この容器内に位置し粘性流体中
を移動可能である内板とから構成され、前記容器の両外
側に垂直荷重を支持し水平方向の移動を許容する滑り機
構を有する支持部材を備えることを特徴とし、支持部材
は鉄骨より形成される添え柱を基本形とし、支持部材が
コンクリート材、鉄骨コンクリート材より構成され、容
器の被覆を兼ねることも考えられる。
In order to achieve the above object, a vibration damping wall according to the present invention comprises a container having an upper opening and a viscous fluid injected therein and a viscous fluid positioned in the container. A support member having a sliding mechanism that supports a vertical load on both sides of the container and allows horizontal movement, and the support member is formed of a steel frame. It is also conceivable that the supporting member is made of a concrete material or a steel-frame concrete material, and serves also as a covering for the container.

【0007】また、制震壁を備える構造物は、垂直構造
部材、水平構造部材および平行する水平構造部材間に位
置する制震壁とから構成され、前記制震壁は下層階の水
平構造部材に固定され上方が開口し内部に粘性流体が注
入された容器と、上層階の水平構造部材に固定され前記
容器内に位置し粘性流体中を移動可能である内板とから
構成され、前記容器の両外側に垂直荷重を支持し水平方
向の移動を許容する滑り機構を有する支持部材を備える
ことを特徴とする。
[0007] The structure provided with a vibration control wall is composed of a vertical structural member, a horizontal structural member, and a vibration control wall located between parallel horizontal structural members, and the vibration control wall is a horizontal structural member on a lower floor. A container which is fixed to the upper side and is open at the top and into which a viscous fluid is injected, and an inner plate fixed to a horizontal structural member on an upper floor and located in the container and movable in the viscous fluid, the container comprising: A support member having a sliding mechanism that supports a vertical load and allows horizontal movement is provided on both outer sides.

【0008】支持部材は鉄骨より形成される添え柱を基
本形とし、支持部材がコンクリート材、鉄骨コンクリー
ト材より構成され、容器の被覆を兼ねることも考えられ
る。水平構造部材は制震壁を支持するフレーム部材と、
垂直構造部材から延在する突出部材とを連結して構成し
てもよく、フレーム部材と突出部材とは連結ピンにより
連結されるように構成してもよい。
[0008] The support member is basically made of a supporting pillar formed of a steel frame, and the support member is made of a concrete material or a steel frame concrete material. The horizontal structural members are frame members that support the damping wall,
The projecting member extending from the vertical structural member may be connected, and the frame member and the projecting member may be connected by a connecting pin.

【0009】前記のように構成された制震壁および制震
壁を備える構造物によれば、制震壁に地震等による相対
運動が加わると制震壁の容器に面方向の回転力が発生
し、この回転力を阻止する垂直荷重である剪断力が梁に
生ずるが、この剪断力は支持部材により負担されるた
め、梁の設計が容易となるとともに梁の小型化が達成で
きる。また、支持部材は水平方向の移動は許容されるた
め制震壁の機能を阻害することは無い。
According to the damping wall and the structure including the damping wall configured as described above, when a relative motion due to an earthquake or the like is applied to the damping wall, a rotational force in a plane direction is generated in the container of the damping wall. However, a shearing force, which is a vertical load that prevents this rotational force, is generated in the beam. However, since this shearing force is borne by the support member, the design of the beam becomes easy and the size of the beam can be reduced. Further, since the support member is allowed to move in the horizontal direction, it does not hinder the function of the damping wall.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を図面を参照し
て説明する。図1(a)は本発明に係る制震壁および制
震壁を備える構造物の一実施形態の要部正面図、図1
(b)は図1(a)のA−A線断面図、図2(a)は図
1(a)の要部拡大正面図、図2(b)は図2(a)の
B−B線断面図、図3(a)は図2(a)のC−C線断
面図、図3(b)は図2(a)のD−D線断面図であ
る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a front view of a main part of an embodiment of a damping wall and a structure including the damping wall according to the present invention, FIG.
2B is a sectional view taken along line AA of FIG. 1A, FIG. 2A is an enlarged front view of a main part of FIG. 1A, and FIG. 2B is BB of FIG. 2A. 3A is a cross-sectional view taken along line CC of FIG. 2A, and FIG. 3B is a cross-sectional view taken along line DD of FIG. 2A.

【0011】図1〜3において、構造物10は垂直構造
部材である柱12、水平構造部材である下層階の梁1
4、上層階の梁16および平行する水平構造部材である
梁14、16間に位置する制震壁20とから構成されて
いる。本実施形態では、柱12は四角型鋼、梁14、1
6はH型鋼が用いられている。制震壁20は下層階の水
平構造部材である梁14に固定され上方が開口し内部に
粘性流体21が注入された容器22と、上層階の水平構
造部材である梁16に固定され容器22内に位置して粘
性流体21中を移動可能である内板30とから構成され
ている。粘性流体21はポリイソブチレン等の高粘度の
流体が用いられる。制震壁20は構造物が多層階の場合
には各階の所定位置に設置されるものであり、本実施形
態では制震壁20の下層階側に制震壁20Aが、上層階
側に制震壁20Bが設置されている。
1 to 3, a structure 10 includes a pillar 12 as a vertical structural member and a beam 1 on a lower floor as a horizontal structural member.
4. Upper beams 16 and damping walls 20 located between beams 14 and 16 which are parallel horizontal structural members. In this embodiment, the column 12 is a square steel, beams 14, 1
No. 6 uses an H-shaped steel. The damping wall 20 is fixed to a beam 14 which is a horizontal structural member on the lower floor and is open at the upper side and has a viscous fluid 21 injected therein, and a container 22 fixed to a beam 16 which is a horizontal structural member on the upper floor. And an inner plate 30 which is located inside and is movable in the viscous fluid 21. As the viscous fluid 21, a high-viscosity fluid such as polyisobutylene is used. When the structure is a multi-story floor, the damping wall 20 is installed at a predetermined position on each floor. In this embodiment, the damping wall 20A is located on the lower floor side of the damping wall 20 and is located on the upper floor side. The earthquake wall 20B is installed.

【0012】容器22は所定の間隔をもって対向する1
対の平板23、24と、1対の平板の両端部を閉じる1
対の側板25、25および底部を閉じる底板26とから
形成され、上部が開口しており上部の開口部には1対の
フランジ板27、27が固着されて補強されている。こ
のフランジ板27、27の部分は幅広であり、粘性流体
21の溜部となっている。なお、制震壁20の容器22
は下層階の梁14に固定される例を示したが、1階に制
震壁20を設置する場合は、容器22は1階の床等の水
平構造部材に固定されるものである。
The containers 22 are opposed to each other at a predetermined interval.
Closing both ends of the pair of flat plates 23 and 24 and 1
A pair of side plates 25, 25 and a bottom plate 26 for closing the bottom are formed, and the upper portion is open. A pair of flange plates 27, 27 are fixed to the upper opening and reinforced. The portions of the flange plates 27 are wide and serve as reservoirs for the viscous fluid 21. The container 22 of the damping wall 20
Has shown the example fixed to the beam 14 of the lower floor, but when installing the damping wall 20 on the first floor, the container 22 is fixed to a horizontal structural member such as the floor on the first floor.

【0013】内板30は厚さが10〜15mm程度の鋼
板から構成され、内板30と1対の平板23、24との
間に数mm〜5mm程度の間隙が形成され、この間隙に
粘性流体21が注入され、内板30は粘性流体21内を
面方向に水平に移動可能な構成である。このように制震
壁20は構成され、地震等により上層階の構造部材であ
る梁16と下層階の構造部材である梁14との間に相対
的な運動が加わると容器22内の粘性流体21中を内板
30が移動し、そのときの粘性抵抗により地震による振
動を減衰させるものである。
The inner plate 30 is made of a steel plate having a thickness of about 10 to 15 mm, and a gap of about several mm to 5 mm is formed between the inner plate 30 and the pair of flat plates 23 and 24. The fluid 21 is injected, and the inner plate 30 is configured to be horizontally movable in the plane direction in the viscous fluid 21. The damping wall 20 is configured as described above, and when a relative motion is applied between the beam 16 as the structural member on the upper floor and the beam 14 as the structural member on the lower floor due to an earthquake or the like, the viscous fluid in the container 22 is increased. The inner plate 30 moves through the inside 21 and attenuates the vibration caused by the earthquake by viscous resistance at that time.

【0014】制震壁20の容器22の両外側には支持部
材である添え柱35、36が溶接等により固着して備え
られ、添え柱35、36の下端は梁14に溶接等により
固着され、添え柱35、36と上層階の梁16との間に
垂直荷重を支持し水平方向の移動を許容する滑り機構4
0が設けられている。すなわち、容器22の側板25、
25の外側には、四角型鋼である添え柱35、36が溶
接等により固着されており、添え柱35、36は下層階
の梁14と上層階の梁16との間に位置して圧縮、引張
りの鉛直力を負担するものである。添え柱35、36の
上部には、柱材の内面に嵌合する短い継ぎ柱37が位置
しており、制震壁20の設置時には伸長可能であるが、
設置後は溶接等により固着されるものである。
On both outer sides of the container 22 of the damping wall 20, supporting columns 35 and 36 as supporting members are fixed by welding or the like, and lower ends of the supporting columns 35 and 36 are fixed to the beam 14 by welding or the like. Sliding mechanism 4 that supports a vertical load between the supporting columns 35, 36 and the beams 16 on the upper floor and allows horizontal movement.
0 is provided. That is, the side plate 25 of the container 22,
At the outer side of 25, supporting columns 35 and 36, which are square steels, are fixed by welding or the like, and the supporting columns 35 and 36 are located between the beams 14 on the lower floor and the beams 16 on the upper floor and compressed. It bears the vertical force of tension. On the upper part of the supporting pillars 35 and 36, a short connecting pillar 37 that fits on the inner surface of the pillar material is located and can be extended when the damping wall 20 is installed.
After installation, it is fixed by welding or the like.

【0015】滑り機構40は、図2、3に詳細に示され
るように、添え柱35、36の上端と上層階の梁16と
の間に位置し、添え柱35、36の上端に固着された下
方プレート41と、梁16の下面に固着された上方プレ
ート42とが滑り板43、43を介して対接し、下方プ
レート41と上方プレート42とを4本のボルト44お
よびナット45等の結合部材で結合している。滑り板4
3はステンレス板、テフロン板等の表面が円滑な薄板が
使用され、1枚あるいは複数枚が介在され、制震壁20
の地震時の水平移動を妨げないように構成されている。
As shown in detail in FIGS. 2 and 3, the sliding mechanism 40 is located between the upper ends of the supporting columns 35 and 36 and the beam 16 on the upper floor, and is fixed to the upper ends of the supporting columns 35 and 36. The lower plate 41 and the upper plate 42 fixed to the lower surface of the beam 16 are in contact with each other via sliding plates 43, 43, and the lower plate 41 and the upper plate 42 are connected by four bolts 44, nuts 45 and the like. Joined by members. Sliding plate 4
Reference numeral 3 denotes a thin plate having a smooth surface such as a stainless steel plate or a Teflon plate, one or more of which are interposed.
It is configured not to hinder horizontal movement during an earthquake.

【0016】上方プレート42にはボルトが貫通する円
形の貫通孔が穿設され、下方プレート41にはボルト4
4が貫通するとともに、ボルト44が梁16の長手方向
に沿って移動可能である長孔46が穿設されている。ボ
ルト、ナットは2枚の下方プレート41と上方プレート
42とを緊結するものでなく、下方プレート41が移動
可能な状態にダブルナット45、45により緩み止めさ
れた状態で固定され、梁14、16に作用する圧縮、引
張りの鉛直力を負担することができる。なお、上方プレ
ート42の上面には筒状部材47が固着され、ボルト4
4の頭部を梁16のフランジ部から離すことにより、ボ
ルト44、ナット45の結合を容易にしている。
The upper plate 42 is provided with a circular through hole through which bolts pass, and the lower plate 41 is provided with bolts 4.
A long hole 46 through which the bolt 44 can move along the longitudinal direction of the beam 16 is formed. The bolts and nuts do not tighten the two lower plates 41 and the upper plate 42, but are fixed in a state where the lower plates 41 are movable and are loosened by the double nuts 45, 45. It can bear the vertical force of compression and tension acting on the wire. A cylindrical member 47 is fixed to the upper surface of the upper plate 42, and the bolt 4
By separating the head of the bolt 4 from the flange of the beam 16, the connection of the bolt 44 and the nut 45 is facilitated.

【0017】本発明に係る制震壁および制震壁を備える
構造物は前記した構成であり、以下に動作について図1
〜3および図4を参照して説明する。図4は図2(a)
の移動状態を示す要部拡大正面図である。構造物10に
地震等の振動が作用し、例えば下層階の梁14に対して
上層階の梁16が右方向に移動する変位差により力Q1
が加わると、滑り機構40は図4に示されるように梁1
6が右方向に平行移動する。梁16の平行移動により梁
16に固着された制震壁20の内板30は容器22内の
粘性流体21中を移動し、このときの粘性抵抗により地
震による平行移動の振動を減衰させる。
The damping wall according to the present invention and the structure provided with the damping wall have the above-described configuration.
This will be described with reference to FIGS. FIG. 4 shows FIG.
It is a principal part enlarged front view which shows the movement state of. Vibration such as an earthquake acts on the structure 10. For example, the force Q <b> 1 is generated due to a difference in displacement between the lower floor beam 14 and the upper floor beam 16 moving rightward.
Is added, the sliding mechanism 40 moves the beam 1 as shown in FIG.
6 translates rightward. The inner plate 30 of the damping wall 20 fixed to the beam 16 by the parallel movement of the beam 16 moves in the viscous fluid 21 in the container 22, and the vibration of the parallel movement due to the earthquake is attenuated by viscous resistance at this time.

【0018】上方プレート42は上方の梁16とともに
移動するが、下方プレート41は添え柱35、36によ
り固定されているため移動せず、図4に示されるような
状態となる。すなわち、ボルト44、ナット45が長孔
46内を移動し、この移動は滑り板43により円滑に行
われる。このため、制震壁20の容器22に対する内板
30の移動が妨げられることはなく、確実な制震作用が
行われる。
The upper plate 42 moves together with the upper beam 16, but the lower plate 41 does not move because it is fixed by the supporting columns 35 and 36, and is in a state as shown in FIG. That is, the bolt 44 and the nut 45 move in the elongated hole 46, and this movement is smoothly performed by the slide plate 43. Therefore, the movement of the inner plate 30 with respect to the container 22 of the vibration damping wall 20 is not hindered, and a reliable vibration damping action is performed.

【0019】制震壁20の上方の梁16が下方の梁14
に対して、前記のように例えば右方向に移動するような
相対運動が作用すると、制震壁20の容器22には時計
回転方向の回転力M1が作用し、左方の添え柱35には
上向きの力が作用して上下の梁16、14の左側部分に
は垂直荷重として下向きの剪断力R1が生ずる。また、
右方の添え柱36には下向きの力が作用して上下の梁1
6、14の右側部分には垂直荷重として上向きの剪断力
R2が生ずる。相対運動が左方向の場合は、前記の逆
で、左方の添え柱35には上向きの剪断力R1が生じ、
右方の添え柱36には下向きの剪断力R2が生ずる。
The beam 16 above the damping wall 20 is replaced by the beam 14 below.
On the other hand, when a relative motion such as moving to the right acts on the container 22 of the damping wall 20 as described above, a rotational force M1 in the clockwise direction acts on the container 22 of the damping wall 20, and the left supporting column 35 An upward force acts on the left portions of the upper and lower beams 16 and 14 to generate a downward shear force R1 as a vertical load. Also,
A downward force acts on the right supporting column 36, and the upper and lower beams 1
An upward shearing force R2 is generated as a vertical load on the right side of 6,14. When the relative motion is in the left direction, the above is reversed, and an upward shearing force R1 is generated in the left supporting column 35,
A downward shearing force R2 is generated in the right attachment column 36.

【0020】しかしながら、これらの下向きの剪断力R
1、上向きの剪断力R2は、添え柱35、36により負
担されるため梁の強度を増大させる必要はない。このよ
うに、制震壁20の振動減衰に伴う剪断力R1、R2は
添え柱35、36により負担されるため、制震壁の減衰
性能を大きくしても梁の強度を極端に大きくする必要は
なく、梁の設計が容易となる。また、本柱である柱12
は、添え柱35、36により鉛直力負担が減少するの
で、等しい強度で設計する場合は細い柱材を使用するこ
とができて材料の節約が達成でき、同じ柱材を使用する
場合は強度を増大することができる。
However, these downward shear forces R
1. Since the upward shearing force R2 is borne by the supporting columns 35 and 36, it is not necessary to increase the strength of the beam. As described above, since the shearing forces R1 and R2 due to the vibration damping of the damping wall 20 are borne by the supporting columns 35 and 36, it is necessary to extremely increase the beam strength even if the damping performance of the damping wall is increased. No, beam design becomes easier. In addition, pillar 12 which is main pillar
Since the vertical force burden is reduced by the supporting columns 35 and 36, a thin column material can be used when designing with equal strength, and material saving can be achieved. When the same column material is used, the strength is reduced. Can increase.

【0021】本発明に係る制震壁20および制震壁を備
える構造物10は前記したような構成を有するものであ
り、制震壁は構造物が高層の場合は図5に示されるよう
に設置される。図5(a)は制震壁を備える4階建の構
造物の要部正面図、図5(b)は制震壁を備える6階建
の構造物の要部正面図である。図5(a)は制震壁20
が図1に示されるように各階の同一個所に設置された例
であり、地震等により構造物に例えば右方向の変位差に
より力Q2が作用すると、左側の添え柱35には下向き
の剪断力R1〜R4が作用し、右側の添え柱36には上
向きの剪断力R1〜R4が作用する。そして、これらの
合力F3、F4=2(R1+R2+R3+R4)は地中
梁等の地中構造部材に作用し、左側の添え柱に対応して
下向きの合力F3が、右側の添え柱に対応して上向きの
合力F4が作用する。従って地中構造部材はこれらの合
力に耐える強度を有するものである。
The damping wall 20 and the structure 10 having the damping wall according to the present invention have the above-described structure. When the structure is a high-rise building, as shown in FIG. Will be installed. FIG. 5A is a front view of a main part of a four-story structure having a vibration control wall, and FIG. 5B is a front view of a main part of a six-story structure having a vibration control wall. FIG. 5A shows the damping wall 20.
This is an example of installation at the same location on each floor as shown in FIG. 1. When a force Q2 acts on the structure due to, for example, a rightward displacement difference due to an earthquake or the like, a downward shear force is applied to the left supporting column 35. R1 to R4 act, and upward shearing forces R1 to R4 act on the right-hand side pillar 36. These resultant forces F3 and F4 = 2 (R1 + R2 + R3 + R4) act on the underground structural members such as the underground beams, and the downward resultant force F3 corresponding to the left supporting column and the upward resultant force F3 corresponding to the right supporting column. The resultant force F4 acts. Therefore, the underground structural member has the strength to withstand these resultant forces.

【0022】図5(b)は制震壁20が各階に互い違い
に設置された例であり、制震壁は奇数階には左側に、偶
数階には右側に設置され、奇数階の右側の添え柱と偶数
階の左側の添え柱とが一直線上に位置するように設置さ
れている。そして、1、3、5階には2、4、6階の制
震壁の右側の添え柱に対応して一直線上に3本の間柱4
8が設置され、2、4階には1、3、5階の制震壁の左
側の添え柱に対応して一直線上に2本の間柱49が設置
されている。
FIG. 5B shows an example in which the damping walls 20 are installed alternately on each floor. The damping walls are installed on the left side on odd-numbered floors, on the right side on even-numbered floors, and on the right side of odd-numbered floors. The sill and the sill on the left side of the even-numbered floor are installed so as to be aligned. On the first, third and fifth floors, three studs 4 are arranged in a straight line corresponding to the right-hand side pillars on the second, fourth and sixth floors.
8 are installed, and on the second and fourth floors, two studs 49 are installed on a straight line corresponding to the left-hand side pillars of the first, third and fifth floor vibration control walls.

【0023】地震等により構造物の上辺に例えば右方向
の変位差により力Q3が作用すると、各階の制震壁20
には左側の添え柱35に下向きの剪断力R1〜R6が生
じ、右側の添え柱36には上向きの剪断力R1〜R6が
生ずる。そして、梁の中央側の剪断力、すなわち1、
3、5階の下向きの剪断力R1、R3、R5と、2、
4、6階の上向きの剪断力R2、R4、R6とは打ち消
され、1、3、5階の左側の下向きの剪断力2(R2+
R4+R6)と、2、4、6階の右側の上向きの剪断力
2(R1+R3+R5)が残る。
When a force Q3 acts on the upper side of the structure due to, for example, a rightward displacement difference due to an earthquake or the like, when the force Q3 is applied,
, Downward shear forces R1 to R6 are generated on the left side pillar 35, and upward shear forces R1 to R6 are generated on the right side pillar 36. And the shear force at the center of the beam, ie 1,
3, 5th floor downward shear force R1, R3, R5, 2,
The upward shear forces R2, R4, R6 on the fourth and sixth floors are canceled out, and the downward shear forces 2 (R2 +
R4 + R6) and upward shearing force 2 (R1 + R3 + R5) on the right of the second, fourth and sixth floors remain.

【0024】このため地中構造物には、左側の添え柱に
対応して下向きの剪断力の合力F5=2(R2+R4+
R6)が間柱49を介して作用し、右側の添え柱に対応
して上向きの剪断力の合力F6=2(R1+R3+R
5)が間柱48を介して作用する。この例の場合は中央
よりの剪断力が打ち消されるため、前記した図5(a)
のような同一個所に制震壁20を設置する場合と比較し
て地中構造物に作用する合力が小さくなり、地中構造物
の強度を低下させても問題ない。このように図5
(a)、(b)の例において剪断力は梁には作用せず、
直接、地中構造物に作用するため梁の強度計算が容易と
なり設計が容易となるとともに、梁の小型化が達成でき
る。
For this reason, in the underground structure, the resultant force F5 = 2 (R2 + R4 +
R6) acts via the stud 49, and the resultant force F6 = 2 (R1 + R3 + R) of the upward shearing force corresponding to the right-hand side support post
5) acts via the stud 48. In the case of this example, since the shearing force from the center is canceled, FIG.
As compared with the case where the damping wall 20 is installed at the same place as described above, the resultant force acting on the underground structure is reduced, and there is no problem even if the strength of the underground structure is reduced. Thus, FIG.
In the examples of (a) and (b), the shear force does not act on the beam,
Since it works directly on the underground structure, the calculation of the strength of the beam is easy, the design is easy, and the size of the beam can be reduced.

【0025】つぎに本発明に係る制震壁を備える構造物
の他の実施形態について、図6、7を参照して説明す
る。図6は本発明に係る制震壁を備える構造物の他の実
施形態の要部正面図、図7(a)は図6のE−E線に沿
う拡大断面図、図7(b)は連結ピンの他の実施形態の
分解断面図である。この実施形態において、前記した実
施形態と実質的に同等の構成については同一の参照符号
を付して、詳細な説明は省略する。垂直構造部材である
柱12、12間を連結する水平構造部材は、制震壁20
の上部に位置し内板30を支持するフレーム部材50
と、柱12から延在する突出部材51(一方のみ図示)
とを連結ピン55により連結して構成される。突出部材
51は柱12に溶接される根元部の高さが大きく、先端
に向かって高さが小さくなるように下辺が傾斜してい
る。そして、突出部材51の先端部には2枚のプレート
52、52が溶接等により固着され、これらのプレート
には連結ピン55が挿入される通孔が穿設されている。
Next, another embodiment of a structure having a vibration control wall according to the present invention will be described with reference to FIGS. FIG. 6 is a front view of a main part of another embodiment of a structure having a vibration damping wall according to the present invention, FIG. 7A is an enlarged sectional view taken along line EE of FIG. 6, and FIG. It is an exploded sectional view of other embodiments of a connection pin. In this embodiment, configurations that are substantially the same as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The horizontal structural members connecting the columns 12, 12, which are vertical structural members, are
Frame member 50 which is located on the upper side and supports the inner plate 30
And a protruding member 51 extending from the column 12 (only one is shown)
Are connected by a connecting pin 55. The protruding member 51 has a large height at the root portion to be welded to the column 12 and has a lower side inclined such that the height decreases toward the tip. Two plates 52, 52 are fixed to the distal end of the protruding member 51 by welding or the like, and a through hole into which the connecting pin 55 is inserted is formed in these plates.

【0026】フレーム部材50は通常使用されるH型鋼
より小形のH型鋼が使用され、両端部に連結ピン55が
挿入される通孔が穿設されており、フレーム部材50の
通孔とプレート52、52の通孔とを貫通して連結ピン
55が挿入されている。フレーム部材50と図示してい
ない下層階のフレーム部材との間に制震壁20が設置さ
れ、その容器22は下層階のフレーム部材に固定され、
その内板30はフレーム部材50に固定されている。ま
た、容器22の両側部に固着された添え柱35は、下端
が下層階のフレーム部材に固着され、上端は滑り機構4
0を介して上層階のフレーム部材50に連結されてい
る。このようにフレーム部材50は上下方向の鉛直力が
圧縮、引張りとも添え柱35により負担されているた
め、小形のH型鋼を使用することができる。滑り機構4
0は前記した実施形態と実質的に同一の構成である。
The frame member 50 is made of an H-shaped steel smaller in size than the commonly used H-shaped steel, and has through holes at both end portions into which the connecting pins 55 are inserted. , 52, and a connecting pin 55 is inserted therethrough. A damping wall 20 is installed between the frame member 50 and a frame member on a lower floor (not shown), and the container 22 is fixed to the frame member on the lower floor,
The inner plate 30 is fixed to the frame member 50. The supporting pillar 35 fixed to both sides of the container 22 has a lower end fixed to the frame member of the lower floor, and an upper end fixed to the sliding mechanism 4.
0 to the frame member 50 on the upper floor. As described above, since the vertical force in the vertical direction of the frame member 50 is borne by the auxiliary pillar 35 in both compression and tension, a small H-shaped steel can be used. Sliding mechanism 4
Numeral 0 is substantially the same as the above-described embodiment.

【0027】連結ピン55は中央の円柱状の胴部56
と、その両側に位置する胴部より大径の円板部57、5
7およびこれらを結合するボルト58、ナット59とか
ら構成され、フレーム部材50とプレート52、52の
通孔に挿入されて両者を連結している。通孔の内径は胴
部56の外径より僅かに大きく設定され、胴部56の幅
はフレーム部材50の中央ウェブの厚さとプレート5
2、52の厚さとの和より僅かに大きく設定されている
ため、プレート52、52に対してフレーム部材50は
連結ピン55部分において回転できる構成となってい
る。
The connecting pin 55 has a cylindrical body 56 at the center.
And disk portions 57, 5 larger in diameter than the body portions located on both sides thereof.
7 and bolts 58 and nuts 59 for connecting them, and are inserted into the through holes of the frame member 50 and the plates 52, 52 to connect them. The inner diameter of the through hole is set slightly larger than the outer diameter of the body portion 56, and the width of the body portion 56 is determined by the thickness of the central web of the frame member 50 and the thickness of the plate 5.
Since the thickness is set slightly larger than the sum of the thicknesses of the frame members 2 and 52, the frame member 50 can rotate at the connection pin 55 with respect to the plates 52 and 52.

【0028】図6、7に示される実施形態において地震
等の振動が構造物に作用すると、制震壁は振動の相対運
動により容器22に対して内板30が平行移動し、その
ときの粘性抵抗力により振動を減衰させる。この平行移
動は添え柱35とフレーム部材50との間の滑り機構4
0により円滑に行われる。そして、この平行移動により
容器22に回転力が作用すると、これに対抗して剪断力
が梁に生ずるが、この剪断力は添え柱35により負担さ
れる。このため、梁の設計が容易となり、梁の小型化も
達成することができる。この例においては、梁はフレー
ム部材50と突出部材51とをプレート52、52を介
して連結ピン55により連結した構成であり、梁は連結
ピン55部分で回転可能であるため、地震等に対してよ
り柔軟に対応できる。
In the embodiment shown in FIGS. 6 and 7, when a vibration such as an earthquake acts on a structure, the damping wall causes the inner plate 30 to move in parallel with the container 22 due to the relative motion of the vibration. Vibration is attenuated by resistance. This parallel movement is caused by the sliding mechanism 4 between the supporting column 35 and the frame member 50.
0 is performed smoothly. When a rotational force acts on the container 22 due to the parallel movement, a shearing force is generated on the beam in opposition to the rotational force. Therefore, the design of the beam is facilitated, and the size of the beam can be reduced. In this example, the beam has a configuration in which the frame member 50 and the protruding member 51 are connected to each other by the connecting pin 55 via the plates 52, 52. Since the beam can rotate at the connecting pin 55, the beam is protected against an earthquake or the like. More flexible.

【0029】連結ピンは前記した例の代わりに図7
(b)に示されるものでもよい。即ち、連結ピン60は
胴部61と、2枚の円板部62、62およびこれらを結
合する皿ねじ63、63とから構成され、胴部61の中
心には皿ねじ63、63が螺合される雌ねじ部が形成さ
れている。この連結ピン60においても前記した連結ピ
ン55と同様にフレーム部材50と突出部材51とを回
転可能に連結することができる。なお、フレーム部材5
0と突出部材51との連結は、通常のハイテンションボ
ルトにより回転不能に連結するように構成してもよい。
The connecting pin is replaced with the above-mentioned example in FIG.
(B). That is, the connecting pin 60 is composed of a body portion 61, two disk portions 62, 62 and countersunk screws 63, 63 for connecting these, and countersunk screws 63, 63 are screwed into the center of the body portion 61. The female screw portion to be formed is formed. Also in this connection pin 60, the frame member 50 and the protruding member 51 can be rotatably connected similarly to the connection pin 55 described above. The frame member 5
The connection between the 0 and the protruding member 51 may be configured to be non-rotatably connected by a normal high tension bolt.

【0030】つぎに添え柱をコンクリートにより構成し
た制震壁および制震壁を備える構造物の実施形態につい
て図8〜10を参照して説明する。図8はコンクリート
製の添え柱を備える制震壁の水平方向の要部断面図、図
9は他のコンクリート製の添え柱を備える制震壁の水平
方向の要部断面図、図10は図9の制震壁の製造方法を
示す工程図である。図8は左右対称の概略半分を示して
おり、図8において、制震壁20は前記実施形態と同様
に、容器22と、容器内に注入された粘性流体21と、
粘性流体中を平行移動可能な内板30とから構成されて
いる。そして、容器22の面方向の端部にコンクリート
製の添え柱70が固着され、この添え柱70と一体のコ
ンクリートにより容器の平板面を被覆部71が被覆して
いる。添え柱70は前記した各実施形態と同様に、上層
階の梁と下層階の梁との間に滑り機構(図示せず)を介
して設置され、梁に作用する鉛直方向の引張り、圧縮方
向の剪断力を負担するものであり、前記した各実施形態
と同様の作用効果を奏するものである。
Next, a description will be given of an embodiment of a damping wall having a supporting pillar made of concrete and a structure having the damping wall, with reference to FIGS. FIG. 8 is a horizontal cross-sectional view of a principal part of a vibration control wall having a concrete supporting column, FIG. 9 is a horizontal cross-sectional view of a main part of a concrete damping wall having another concrete supporting column, and FIG. It is process drawing which shows the manufacturing method of the 9th damping wall. FIG. 8 shows a schematic half of the left-right symmetry. In FIG. 8, the damping wall 20 includes a container 22 and a viscous fluid 21 injected into the container, similarly to the above-described embodiment.
And an inner plate 30 that can translate in a viscous fluid. A concrete supporting column 70 is fixed to an end of the container 22 in the surface direction, and the covering portion 71 covers the flat surface of the container with concrete integrated with the supporting column 70. The supporting column 70 is installed between a beam on the upper floor and a beam on the lower floor via a sliding mechanism (not shown) as in each of the above-described embodiments, and acts in the vertical tension and compression directions acting on the beam. And exerts the same operational effects as the above-described embodiments.

【0031】図9も左右対称の概略半分を示しており、
図9において、制震壁20の容器22の面方向の端部に
コンクリート製の添え柱75が固着され、容器22の平
板に対して両側に発泡ポリスチレン等の断熱材76が配
置され、制震壁20の粘性流体21の温度上昇を防止す
るものである。この断熱材76を配置することによりコ
ンクリートの被覆部77は添え柱75の幅と同じとな
り、制震壁20部分と添え柱75がフラットな状態とな
る。この例の場合も前記した図8の例と同様の作用効果
を奏するものであり、この例ではさらに、制震壁20の
断熱性能を向上させることができる効果を奏する。
FIG. 9 also shows a schematic half of the left-right symmetry.
In FIG. 9, a concrete supporting column 75 is fixed to an end of the container 22 of the damping wall 20 in the surface direction, and a heat insulating material 76 such as expanded polystyrene is disposed on both sides of the flat plate of the container 22. This is to prevent the temperature of the viscous fluid 21 of the wall 20 from rising. By arranging the heat insulating material 76, the concrete covering portion 77 has the same width as the supporting column 75, and the portion of the damping wall 20 and the supporting column 75 are in a flat state. Also in this example, the same operation and effect as those in the example of FIG. 8 described above are obtained, and in this example, an effect that the heat insulation performance of the damping wall 20 can be further improved is obtained.

【0032】図9のコンクリート製の添え柱75の製法
について、図10を参照して説明する。先ず、(a)に
示されるように制震壁20の容器22内に容器がつぶれ
るのを防止するために仮板80を挿入し、容器22の平
板の外側に断熱材76、76を配置して型枠81を設置
し、型枠81内にコンクリート82を充填する。次いで
(b)に示されるように、型枠81を外すとともに仮板
80を外し、容器22内に粘性流体21を注入する。そ
して、(c)に示されるように、容器22の粘性流体2
1内に内板30を挿入してコンクリート製の添え柱75
付き制震壁が完成する。
A method for manufacturing the concrete pillar 75 shown in FIG. 9 will be described with reference to FIG. First, as shown in (a), a temporary plate 80 is inserted into the container 22 of the vibration damping wall 20 to prevent the container from being crushed, and heat insulating materials 76, 76 are arranged outside the flat plate of the container 22. The mold 81 is set up and concrete 82 is filled in the mold 81. Next, as shown in (b), the mold 81 and the temporary plate 80 are removed, and the viscous fluid 21 is injected into the container 22. Then, as shown in FIG.
1 and the inner plate 30 is inserted into
The damping wall is completed.

【0033】図11を参照して、コンクリート製の添え
柱に鉄骨を挿入した鉄骨コンクリート製の添え柱の例を
説明する。図11(a)はその一部を破断した状態の正
面図、(b)は(a)のF−F線断面図、(c)は滑り
機構を示す要部展開斜視図、(d)は(a)のG−G線
に沿う要部断面図である。下部の水平構造部材はコンク
リート製の床85であり、上部の水平構造部材はコンク
リート製の床86である。床85、86にはH型鋼の補
強梁87、88が埋め込まれており、これらの補強梁間
に制震壁20が設置されている。制震壁20は前記した
実施形態と同等の構成をしており、容器22と、容器内
に注入された粘性流体21と、粘性流体中を平行移動可
能な内板30とから構成されている。そして、容器22
の両外側にH型鋼の添え柱90、90が固着されてい
る。
With reference to FIG. 11, an example of a steel concrete concrete splint in which a steel frame is inserted into a concrete splint will be described. 11A is a front view of a partially broken state, FIG. 11B is a sectional view taken along line FF of FIG. 11A, FIG. 11C is an exploded perspective view of a main part showing a sliding mechanism, and FIG. It is a principal part sectional view which follows the GG line of (a). The lower horizontal structural member is a concrete floor 85, and the upper horizontal structural member is a concrete floor 86. H-shaped steel reinforcing beams 87, 88 are embedded in the floors 85, 86, and the damping wall 20 is installed between these reinforcing beams. The vibration damping wall 20 has the same configuration as that of the above-described embodiment, and includes a container 22, a viscous fluid 21 injected into the container, and an inner plate 30 that can move in parallel in the viscous fluid. . And the container 22
H-shaped steel columns 90, 90 are fixed to both outer sides of the steel sheet.

【0034】添え柱90と下方の床85に埋め込まれた
補強梁87とは溶接等により固着されており、添え柱9
0と上方の補強梁88とは垂直荷重を支持し水平方向の
移動を許容する滑り機構92により連結されている。す
なわち、滑り機構92は上方の補強梁88の両端部に形
成された水平方向に長い長孔93と、添え柱90の上端
に固着され補強梁88のウェブに対接する2枚の滑り板
94、94と、これらの滑り板間に支持され長孔93に
挿入される移動ピン95とから構成される。補強梁88
の両端部の下方のフランジは、滑り板94、94が移動
可能なように長手方向に貫通溝が形成されている。添え
柱90、90および制震壁の容器22はコンクリート9
6により被覆されており、容器22の一方の平板に対接
して断熱材97が配置されている。
The supporting column 90 and the reinforcing beam 87 embedded in the lower floor 85 are fixed by welding or the like.
0 and the upper reinforcing beam 88 are connected by a sliding mechanism 92 which supports a vertical load and allows horizontal movement. That is, the sliding mechanism 92 has a horizontally elongated slot 93 formed at both ends of the upper reinforcing beam 88, two sliding plates 94 fixed to the upper end of the supporting column 90 and in contact with the web of the reinforcing beam 88, 94, and a moving pin 95 supported between these sliding plates and inserted into the elongated hole 93. Reinforcement beam 88
The lower flanges at both ends are formed with through grooves in the longitudinal direction so that the sliding plates 94 can move. The supporting columns 90, 90 and the container 22 of the damping wall are made of concrete 9
6, and a heat insulating material 97 is disposed in contact with one flat plate of the container 22.

【0035】地震等が発生して下方の床85に埋め込ま
れた補強梁87と上方の床86に埋め込まれた補強梁8
8との間に相対運動が発生すると、制震壁20の容器2
2および補強梁87に固着された添え柱90、90に対
し、上方の補強梁88が滑り機構92を介して移動す
る。すなわち、2枚の滑り板94、94が補強梁88の
ウェブに対して移動し、移動ピン95は長孔93内を移
動する。このように上方の補強梁88は添え柱90、9
0に対して相対的に平行移動可能であるため、制震壁2
0の内板30は容器22内を円滑に平行移動でき、その
ときの粘性抵抗で地震の振動を減衰させる。この減衰に
より容器22に生ずる回転力に対抗して補強梁87、8
8に生ずる剪断力は圧縮、引張りとも添え柱90、90
により負担されるため、補強梁を含めた床の設計が容易
となり、梁の小型化も可能となる。
A reinforcing beam 87 embedded in the lower floor 85 due to an earthquake or the like and a reinforcing beam 8 embedded in the upper floor 86
When a relative motion occurs between the damper 8 and the
The upper reinforcing beam 88 moves via the sliding mechanism 92 with respect to the supporting columns 90, 90 fixed to the second and reinforcing beams 87. That is, the two sliding plates 94 move with respect to the web of the reinforcing beam 88, and the moving pin 95 moves in the elongated hole 93. In this way, the upper reinforcing beam 88 is attached to the supporting columns 90, 9
Because it can move relatively parallel to zero, the damping wall 2
The zero inner plate 30 can be smoothly translated in the container 22, and the vibration of the earthquake is attenuated by viscous resistance at that time. Reinforcement beams 87, 8 oppose the rotational force generated in the container 22 due to this damping.
The shear force generated at 8 is applied to both the columns 90 and 90, both in compression and in tension.
, The design of the floor including the reinforcing beams is facilitated, and the beams can be reduced in size.

【0036】なお、コンクリート製の添え柱は前記した
例の他に、鉄筋コンクリート製の添え柱であってもよい
のは勿論である。
It should be noted that the concrete pillars may be reinforced concrete pillars in addition to the above examples.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
制震壁および制震壁を備える構造物は、梁に作用する剪
断力を両外側の支持部材により負担させることにより梁
の強度計算が容易となり、梁の設計が容易となるばかり
でなく、構造物の本柱の鉛直力負担も減少させて梁の小
型化が達成できるという効果を奏する。
As described above, according to the present invention,
In the case of damping walls and structures with damping walls, the calculation of beam strength is facilitated by allowing the shearing forces acting on the beams to be borne by the support members on both outer sides, which facilitates not only the design of the beam, but also the structure. This has the effect of reducing the vertical force burden on the main pillar of the object and achieving downsizing of the beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る制震壁および制震壁を備
える構造物の一実施形態の要部正面図、(b)は(a)
のA−A線断面図、である。
FIG. 1A is a front view of a main part of an embodiment of a damping wall according to the present invention and a structure including the damping wall, and FIG.
FIG. 3 is a sectional view taken along line AA of FIG.

【図2】(a)は図1(a)の要部拡大正面図、(b)
は図2(a)のB−B線断面図である。
FIG. 2A is an enlarged front view of a main part of FIG. 1A, FIG.
FIG. 3 is a sectional view taken along line BB of FIG.

【図3】(a)は図2(a)のC−C線断面図、(b)
は図2(a)のD−D線断面図である。
3A is a cross-sectional view taken along line CC of FIG. 2A, FIG.
FIG. 3 is a sectional view taken along line DD of FIG.

【図4】図2(a)の移動状態を示す要部拡大正面図で
ある。
FIG. 4 is an enlarged front view of a main part showing a moving state of FIG. 2 (a).

【図5】(a)は制震壁を備える4階建の構造物の要部
正面図、(b)は制震壁を備える6階建の構造物の要部
正面図である。
5A is a front view of a main part of a four-story structure having a vibration control wall, and FIG. 5B is a front view of a main part of a six-story structure having a vibration control wall.

【図6】本発明に係る制震壁を備える構造物の他の実施
形態の要部正面図である。
FIG. 6 is a front view of a main part of another embodiment of the structure including the vibration damping wall according to the present invention.

【図7】(a)は図6のE−E線に沿う拡大断面図、
(b)は連結ピンの他の実施形態の分解断面図である。
FIG. 7A is an enlarged sectional view taken along line EE of FIG. 6;
(B) is an exploded sectional view of another embodiment of the connecting pin.

【図8】コンクリート製の添え柱を備える制震壁の水平
方向の要部断面図である。
FIG. 8 is a cross-sectional view of a principal part in a horizontal direction of a vibration control wall provided with a concrete supporting column.

【図9】他のコンクリート製の添え柱を備える制震壁の
水平方向の要部断面図である。
FIG. 9 is a cross-sectional view of a principal part in a horizontal direction of a vibration control wall provided with another concrete supporting column.

【図10】図9の制震壁の製造方法を示す工程図であ
る。
FIG. 10 is a process chart showing a method for manufacturing the vibration damping wall of FIG. 9;

【図11】(a)は鉄骨コンクリート製の添え柱付き制
震壁を備える構造物の一部を破断した状態の正面図、
(b)は(a)のF−F線断面図、(c)は滑り機構を
示す要部展開斜視図、(d)は(a)のG−G線に沿う
要部断面図である。
FIG. 11 (a) is a front view of a state in which a part of a structure provided with a damping wall with an attached pillar made of steel concrete is partially broken,
(B) is a sectional view taken along line FF of (a), (c) is a developed perspective view of a main part showing a sliding mechanism, and (d) is a cross sectional view of a main part taken along line GG of (a).

【図12】(a)は従来の制震壁および制震壁を備える
構造物の要部正面図、(b)は(a)の中央縦断面図、
(c)は従来の制震壁を互い違いに配置した状態の構造
物の要部正面図である。
12A is a front view of a main part of a conventional damping wall and a structure including the damping wall, FIG. 12B is a central longitudinal sectional view of FIG.
(C) is a principal part front view of the structure in the state where the conventional damping walls were alternately arranged.

【符号の説明】[Explanation of symbols]

10 構造物 12 垂直部材(柱) 14 下層階の水平部材(梁) 16 上層階の水平部材(梁) 20 制震壁 21 粘性流体 22 容器 23、24 平板 25 側板 26 底板 27 フランジ板 30 内板 35、36 添え柱 37 継ぎ柱 40 滑り機構 41 下方プレート 42 上方プレート 43 滑り板 44 ボルト 45 ナット 46 長孔 47 筒状部材 48、49 間柱 50 フレーム部材 51 突出部材 52 プレート 55、60 連結ピン 56、61 胴部 57、62 円板部 58 ボルト 59 ナット 63 皿ねじ 70、75 添え柱 71、77 被覆部 76 断熱材 80 仮板 81 型枠 82 コンクリート 85、86 床 87、88 補強梁 90 添え柱 92 滑り機構 93 長孔 94 滑り板 95 移動ピン 96 コンクリート 97 断熱材 DESCRIPTION OF SYMBOLS 10 Structure 12 Vertical member (pillar) 14 Horizontal member (beam) of lower floor 16 Horizontal member (beam) of upper floor 20 Vibration control wall 21 Viscous fluid 22 Container 23, 24 Plate 25 Side plate 26 Bottom plate 27 Flange plate 30 Inner plate 35, 36 Attached column 37 Joint column 40 Sliding mechanism 41 Lower plate 42 Upper plate 43 Sliding plate 44 Bolt 45 Nut 46 Long hole 47 Cylindrical member 48, 49 Stud 50 Frame member 51 Projecting member 52 Plate 55, 60 Connecting pin 56, 61 Body 57, 62 Disc 58 Bolt 59 Nut 63 Countersunk Screw 70, 75 Attached Column 71, 77 Covering Part 76 Insulation Material 80 Temporary Board 81 Form 82 Concrete 85, 86 Floor 87, 88 Reinforcement Beam 90 Attached Column 92 Sliding mechanism 93 Long hole 94 Sliding plate 95 Moving pin 96 Concrete 97 Insulation material

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 上方が開口し内部に粘性流体が注入され
た容器と、この容器内に位置し粘性流体中を移動可能で
ある内板とから構成され、前記容器の両外側に垂直荷重
を支持し水平方向の移動を許容する滑り機構を有する支
持部材を備えることを特徴とする制震壁。
1. A container having an upper portion opened and filled with a viscous fluid therein, and an inner plate located in the container and movable in the viscous fluid, and a vertical load is applied to both outer sides of the container. A vibration control wall comprising a support member having a sliding mechanism that supports and allows horizontal movement.
【請求項2】 支持部材は鉄骨より形成される添え柱で
あることを特徴とする請求項1記載の制震壁。
2. The vibration damping wall according to claim 1, wherein the supporting member is a supporting pillar formed of a steel frame.
【請求項3】 支持部材はコンクリート材より構成さ
れ、容器を被覆することを特徴とする請求項1記載の制
震壁。
3. The vibration control wall according to claim 1, wherein the support member is made of a concrete material and covers the container.
【請求項4】 支持部材は鉄骨コンクリート材より構成
されることを特徴とする請求項1記載の制震壁。
4. The damping wall according to claim 1, wherein the support member is made of a steel concrete material.
【請求項5】 垂直構造部材、水平構造部材および平行
する水平構造部材間に位置する制震壁とから構成され、 前記制震壁は下層階の水平構造部材に固定され上方が開
口し内部に粘性流体が注入された容器と、上層階の水平
構造部材に固定され前記容器内に位置し粘性流体中を移
動可能である内板とから構成され、前記容器の両外側に
垂直荷重を支持し水平方向の移動を許容する滑り機構を
有する支持部材を備えることを特徴とする制震壁を備え
る構造物。
5. A vertical structural member, a horizontal structural member, and a vibration control wall located between parallel horizontal structural members, wherein the vibration control wall is fixed to a horizontal structural member on a lower floor, is open at an upper side, and is internally provided. It is composed of a container in which the viscous fluid is injected, and an inner plate fixed to the horizontal structural member on the upper floor and located in the container and movable in the viscous fluid, and supports vertical loads on both outer sides of the container. A structure having a vibration control wall, comprising: a support member having a sliding mechanism that allows horizontal movement.
【請求項6】 支持部材は鉄骨より形成される添え柱で
あることを特徴とする請求項5記載の制震壁を備える構
造物。
6. The structure according to claim 5, wherein the support member is a supporting pillar formed of a steel frame.
【請求項7】 支持部材はコンクリート材より構成さ
れ、容器を被覆することを特徴とする請求項5記載の制
震壁を備える構造物。
7. The structure according to claim 5, wherein the supporting member is made of a concrete material and covers the container.
【請求項8】 支持部材は鉄骨コンクリート材より構成
されることを特徴とする請求項5記載の制震壁を備える
構造物。
8. The structure according to claim 5, wherein the support member is made of a steel concrete material.
【請求項9】 水平構造部材は制震壁を支持するフレー
ム部材と、垂直構造部材から延在する突出部材とを連結
して構成されることを特徴とする請求項5乃至8のいず
れかに記載の制震壁を備える構造物。
9. The horizontal structural member according to claim 5, wherein the horizontal structural member is formed by connecting a frame member supporting the vibration control wall and a projecting member extending from the vertical structural member. A structure comprising the damping wall described in the above.
【請求項10】 フレーム部材と突出部材とは連結ピン
により連結されることを特徴とする請求項9記載の制震
壁を備える構造物。
10. The structure according to claim 9, wherein the frame member and the projecting member are connected by a connecting pin.
JP03930199A 1999-02-17 1999-02-17 Structures with damping walls Expired - Fee Related JP4156737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03930199A JP4156737B2 (en) 1999-02-17 1999-02-17 Structures with damping walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03930199A JP4156737B2 (en) 1999-02-17 1999-02-17 Structures with damping walls

Publications (2)

Publication Number Publication Date
JP2000240319A true JP2000240319A (en) 2000-09-05
JP4156737B2 JP4156737B2 (en) 2008-09-24

Family

ID=12549312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03930199A Expired - Fee Related JP4156737B2 (en) 1999-02-17 1999-02-17 Structures with damping walls

Country Status (1)

Country Link
JP (1) JP4156737B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201819A (en) * 2000-12-28 2002-07-19 Yasui Kenchiku Sekkei Jimusho:Kk Earthquake control structure
JP2007113700A (en) * 2005-10-20 2007-05-10 Nichizou Tec:Kk Pendulum type vibration control device
JP4431187B1 (en) * 2009-04-24 2010-03-10 株式会社ダイナミックデザイン Viscous damping wall
CN106639028A (en) * 2017-01-25 2017-05-10 上海史狄尔建筑减震科技有限公司 U-shaped viscous damping wall

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201819A (en) * 2000-12-28 2002-07-19 Yasui Kenchiku Sekkei Jimusho:Kk Earthquake control structure
JP4552320B2 (en) * 2000-12-28 2010-09-29 株式会社安井建築設計事務所 Damping structure
JP2007113700A (en) * 2005-10-20 2007-05-10 Nichizou Tec:Kk Pendulum type vibration control device
JP4504295B2 (en) * 2005-10-20 2010-07-14 株式会社ニチゾウテック Pendulum type vibration control device
JP4431187B1 (en) * 2009-04-24 2010-03-10 株式会社ダイナミックデザイン Viscous damping wall
JP2010255302A (en) * 2009-04-24 2010-11-11 Dynamic Design:Kk Viscous seismic response control wall
CN106639028A (en) * 2017-01-25 2017-05-10 上海史狄尔建筑减震科技有限公司 U-shaped viscous damping wall

Also Published As

Publication number Publication date
JP4156737B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
US4974380A (en) Framing for structural walls in multistory buildings
JP2008002136A (en) Structure plane reinforcing structure
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP2000240319A (en) Vibration control wall and structure provided with the same
JP2000129951A (en) Vibration control wall
JP4095534B2 (en) Joint structure of column and beam in ramen structure and its construction method
KR101652621B1 (en) Aseismic structure for existing building
JPS63219928A (en) Elastic/plastic damper
JP2000213061A (en) Connection section structure between concrete-filled steel pipe column and steel frame beam
JP4071192B2 (en) Damping structure of building structure
JP2001248331A (en) Installation structure and installation method for vibration control damper
JP3040095U (en) Reinforcement structure and reinforcement member used therefor
CN110748076A (en) External hanging wallboard of prestressed steel pipe truss and wall manufactured and installed by using same
JPH07207755A (en) Connection part structure of reinforced concrete column and steel structure beam
JP2527975B2 (en) Building structure
JPH1162265A (en) Aseismatic reinforcing method of existing building
JPH11131663A (en) Frame body
JP2019100040A (en) Base-isolated building and construction method for base-isolated structure
JP2000291289A (en) Joining structure of earthquake resistant member
JP2001065189A (en) Stud-type vibration control device
KR20180070813A (en) Wide composite structure for reinforcing the connecting part of girders and column
KR20240019487A (en) Composite steel tube column
JP2001132266A (en) Installation structure of very soft panel damper in precast rc construction structure and its installing method
JPH07102825A (en) Arrangement construction for wall

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees