WO2019096139A1 - 处理气体中污染物的方法及设备 - Google Patents
处理气体中污染物的方法及设备 Download PDFInfo
- Publication number
- WO2019096139A1 WO2019096139A1 PCT/CN2018/115299 CN2018115299W WO2019096139A1 WO 2019096139 A1 WO2019096139 A1 WO 2019096139A1 CN 2018115299 W CN2018115299 W CN 2018115299W WO 2019096139 A1 WO2019096139 A1 WO 2019096139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- electrochemical
- treatment
- plasma
- gas according
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/326—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/323—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/818—Employing electrical discharges or the generation of a plasma
Definitions
- the invention relates to the technical field of environmental protection, and in particular to a method and a device for treating pollutants in a gas.
- Volatile organic compounds are organic compounds having a saturated vapor pressure of more than 133.32 Pa at normal temperature and a boiling point of 50 to 260 ° C at normal pressure, such as toluene, cyclohexane, formaldehyde, etc., or at normal temperature and pressure. Any volatile organic solid or liquid underneath.
- VOCS Volatile organic compounds
- the existing method for treating VOCS in a gas mainly has a plasma gas treatment mode, which directly introduces the exhaust gas to be treated, bombards the volatile organic gas molecules by the action of positive and negative ions driven by an external electric field, thereby destroying its molecular structure. It is converted into CO 2 , H 2 O, CO, etc., thereby reducing or removing volatile organic waste gas for the purpose of purifying air.
- the filter layer (such as activated carbon, cloth bag, etc.) with strong adsorption performance is used for plasma treatment.
- the main function of the filter layer is to reduce the size of the particles in the exhaust gas, stabilize the gas flow field, and initially reduce the exhaust gas. Gas molecules.
- the present invention provides a method and apparatus for treating contaminants in a gas to more effectively treat contaminants in the gas.
- the present invention provides a method of treating a contaminant in a gas, the method comprising the steps of:
- S2 Plasma treatment of the electrochemical pre-purification treatment gas to degrade the pollutants in the gas.
- the electrochemical pre-purification treatment is at least used to: hydrophilicize a portion of the organic gas molecules to form a gas-microdroplet mixture.
- the plasma treatment is at least used to: degrade the gas-microdroplet mixture by ionization.
- the electrochemical pre-purification treatment is also at least used to: remove a portion of the soluble contaminants; and/or decompose a portion of the organic gas molecules to form metastable molecules; and/or activate a portion of the organic gas molecules to form an activating molecule.
- the plasma treatment is also at least used to cause the activated molecules and/or metastable molecules to undergo ionization decomposition under the action of an electric field and a plasma.
- the solution used in the electrochemical pretreatment process is a dynamic water film sprayed between the cathode and the anode of the electrochemical processor.
- the raw material of the dynamic water film is tap water or an aqueous solution of hydrogen peroxide.
- the material base of the cathode and the anode is titanium, and the surface of the substrate is provided with one of ruthenium, osmium, iron, ruthenium, palladium, platinum, lead, ruthenium and alloys or oxides thereof or Several.
- the plasma processing uses a generating electrode in the shape of a flat plate, a cylinder or a cylinder.
- the surface of the generating electrode is an insulating material or a nano-conductive material.
- the present invention also provides an apparatus for treating a contaminant in a gas, comprising a duct outer casing, the air duct casing being partitioned into an electrochemical treatment zone and a plasma treatment zone, and the gas to be treated is from the wind.
- the air inlet of the outer casing enters and flows through the electrochemical treatment zone and the plasma processing zone in sequence, and then flows out from the air outlet of the air duct casing;
- the electrochemical treatment zone is used for electrochemical pre-cleaning treatment of the gas to be treated;
- the plasma treatment zone is used to plasma treat the electrochemical pre-purification treatment gas to degrade the pollutants in the gas.
- a plurality of pairs of electrochemical electrodes are disposed in the electrochemical treatment zone, and each set of electrochemical electrodes includes a cathode and an anode.
- all of the anodes are electrically connected to the positive electrode of the power source through the first circuit interface in parallel through the first conductive member, and all the cathodes are connected in parallel through the second conductive interface through the second circuit interface and the power source.
- the negative electrode is electrically connected.
- a water washing device disposed in the air duct casing to partition the air duct casing into an electrochemical treatment region and a plasma processing region; the water washing device is configured to The treatment zone ejects a liquid to form a dynamic water film between the cathode and the anode of the electrochemical treatment zone as a solution for the chemical pretreatment treatment.
- the water washing device includes: a water supply pipe, the water supply pipe is provided with a plurality of nozzles on one side of the electrochemical treatment region, and liquid is ejected through the plurality of nozzles, A dynamic water film is formed between the cathode and the anode of the chemical treatment zone.
- the water washing device further includes a water deflector disposed obliquely, the water flap being disposed on a side close to the plasma processing region.
- the plasma processing region is provided with more than one set of generating electrodes, each set of generating electrodes comprising a cathode and an anode.
- all of the anodes are electrically connected to the positive electrode of the power source through the third circuit interface in parallel via the third conductive member, and all the cathodes are connected in parallel through the fourth conductive interface through the fourth circuit interface and the power source.
- the negative electrode is electrically connected.
- the method for treating pollutants in a gas provided by the present invention the electrochemical pre-purification treatment of the gas to be treated first, and the plasma treatment of the electrochemical pre-purification treatment gas to degrade the pollutants in the gas Therefore, the conventional method for treating pollutants in a gas is only required to pre-filter the gas before the plasma treatment, thereby failing to effectively promote the ionization of the volatile organic gas, and the present invention passes the strong oxidation by the gas to be treated.
- the electrochemical electrode system of the substance or the strong oxidizing intermediate enhances the ability and reactivity of the organic gas molecules to carry the micro droplets, effectively promotes the gas treatment process of the subsequent plasma treatment, and enables the post plasma treatment.
- the removal efficiency of the volatile organic compounds gas is further improved not only with the aid of the pre-electrochemical treatment, but also the new components generated by the reaction of the organic gases in the electrochemical pretreatment purification process can be removed.
- FIG. 1 is a schematic perspective structural view of an apparatus for treating a pollutant in a gas according to an embodiment of the present invention
- FIG. 2 is a top plan view of an apparatus for treating pollutants in a gas according to an embodiment of the present invention
- Figure 3 is a gas chromatogram of toluene gas to be treated in an embodiment of the present invention.
- Figure 5 is a gas chromatogram of toluene gas after only plasma purification treatment in an embodiment of the present invention
- FIG. 6 is a gas chromatogram of toluene gas after purification by electrochemical pretreatment purification treatment and plasma purification treatment according to an embodiment of the present invention
- Figure 7 is a gas chromatogram of n-hexane gas to be treated in another embodiment of the present invention.
- Figure 8 is a gas chromatogram of n-hexane gas after only electrochemical cleaning treatment in another embodiment of the present invention.
- Figure 10 is a gas chromatogram of n-hexane gas combined by electrochemical purification treatment and plasma purification treatment in another embodiment of the present invention.
- the conventional plasma gas treatment method directly introduces the gas to be treated or only the filter layer with strong adsorption performance.
- the main function of the filter layer is to reduce the size of the particles in the gas, stabilize the gas flow field, and initially Reducing gas molecules in the exhaust gas; the filter layer interacts with the gas to be treated as an adsorption effect, and does not react with gas molecules that move to the subsequent plasma gas treatment system after flowing through the filter layer, that is, gas molecules flowing through the filter layer There is no change in itself, so the pre-filter layer has no auxiliary effect on the plasma gas treatment process.
- the reaction efficiency of positive and negative ions and gas molecules is very limited, especially under dynamic conditions with a certain flow velocity in the airway. Therefore, plasma air purification has been limited to the treatment of low pollutant concentration itself. Application.
- the applicant attempts to introduce the micro-droplets directly into the plasma processing equipment by using atomized water vapor.
- the micro-arc discharge of the plasma-generating electrodes may be caused by the aggregation of the micro-droplets, and an explosion may occur.
- the efficiency of gas treatment is reduced, and the danger of plasma gas treatment equipment is aggravated.
- the direct introduction of micro-droplets by atomized water vapor is only applicable to the case of nano-level micro current sensors based on electrical signal analysis.
- the inventors of the present application have creatively designed a gas purification method combining liquid electrochemistry, gas electronics and plasma technology, which covers three states of liquid, gas and plasma of a substance, and is a kind of A gas purification method with high efficiency, low cost, and a wide range of treatment gases.
- the present invention provides a method of treating contaminants in a gas, the method comprising the steps of:
- S1 performing electrochemical pre-purification treatment on the gas to be treated; the step is at least used to: hydrophilicize part of the organic gas molecules to form a gas-microdroplet mixture;
- S2 performing plasma treatment on the electrochemical pre-purification treatment gas to degrade the pollutants in the gas; the step is at least used to: degrade the gas-microdroplet mixture by ionization.
- the method for treating pollutants in a gas of the present invention passes the active groups generated in the electrochemical pretreatment purification process, so that the gas molecules carry more droplets to form a gas-microdroplet mixture, thereby greatly improving the subsequent plasma treatment.
- the local micro electric field promotes the ionization of gas molecules, thereby improving the overall volatile organic matter removal efficiency and purifying the air in a wider range of scenes.
- the present invention can be described as the opposite, and overcomes the technical bias in the field from the perspective of thinking.
- the electrochemical method is skillfully utilized, and the active groups generated in the electrochemical treatment cause the gas molecules to carry more droplets to form a gas-microdroplet mixture, which further solves the direct introduction of atomized water vapor.
- the gas treatment efficiency is reduced, and the dangerous capacity of the plasma gas processing equipment is aggravated, and an unexpected technical effect is achieved.
- the electrochemical pre-cleaning treatment is further used to at least: remove a part of soluble pollutants; and/or decompose part of organic gas molecules to form metastable molecules. And/or activate some of the organic gas molecules to form activated molecules.
- the plasma treatment is also at least used to cause the activated molecules and/or metastable molecules to undergo ionization decomposition under the action of an electric field and a plasma.
- the plasma treatment may also be used to form macromolecules formed by addition. The plasma interaction decomposes. Thereby, the efficiency of plasma treatment is further improved, and organic pollutants in the gas are more effectively removed.
- the electrochemical treatment can be carried out, for example, by using an electrode system for sewage treatment.
- the principle of the electrode system for sewage treatment is: using an electro-electrode electrolysis technique, specifically, an electrochemical electrolysis reaction between electrochemical electrodes by using an electrochemical solution.
- Strong oxidizing substances as reactants or catalysts include chlorates, hypochlorites, H 2 O 2 and O 3 , and strong oxidizing intermediates include electrons, HO-, HO 2 , O 2- , etc.
- the harmful substances in the wastewater under the action of strong oxidizing substances or strong oxidizing intermediates, the redox reaction will change the molecular formula of the organic matter, and the mass transfer driving force will increase.
- the affinity of the organic molecules with water is increased; the oxidative decomposition is directly converted into water, CO 2 , and inorganic salts; the addition reaction occurs to form macromolecules between the molecules of the organic molecules; an electron transfer reaction occurs to form an activated molecule or a metastable molecule.
- the post-stage plasma gas treatment equipment not only further improves the removal efficiency of volatile organic compounds gas with the aid of the electrode system for pre-treatment of sewage, but also removes new components generated by the reaction of organic gases in the electrode system for sewage treatment.
- the component may be, for example, a hydroxyl radical which may be added to a benzene ring structure molecule or an addition reaction with thymine, and a hydroxyl group and another group may be added to the molecular structure of the reactant.
- the electrochemical pretreatment treatment uses a solution that is a dynamic water film that is sprayed between the cathode and the anode of the electrochemical processor.
- the dynamic water film serves as a solution for electrochemical pretreatment purification on the one hand, and reduces the flow rate of the gas on the other hand, so that the gas can be relatively more fully reacted during the electrochemical pretreatment process; in addition, the dynamic water film As a solution, it is also possible to remove a part of the soluble contaminants in the gas.
- the raw material of the dynamic water film is tap water or a hydrogen peroxide solution, and tap water or hydrogen peroxide is electrochemically reacted between the electrochemical electrodes to form a strong oxidizing substance.
- the material base of the cathode and the anode of the electrochemical processor is titanium, and the surface of the substrate is provided with one or more of ruthenium, osmium, iron, iridium, palladium, platinum, lead, ruthenium and alloys or oxides thereof.
- the present invention is not limited thereto, as long as the electrode material satisfies the following conditions: the redox potential is close to the oxygen evolution reaction potential, for example, the oxygen electrode in the acidic environment has a standard electrode potential of 1.23 V RHE , and the electrode material used is higher than This potential can be stabilized.
- the shape of the generating electrode used in the plasma treatment is a flat plate, a cylinder or a column.
- the surface of the generating electrode is an insulating material or a nano-conductive material such as a pair of carbon nanotubes and zinc oxide nanowires.
- the purification process of the pollutants in the gas by the method is as follows:
- the voltage applied to the electrochemical electrode can produce a strong oxidizing substance or a strong oxidizing intermediate in the tap water or hydrogen peroxide dynamic water film, and the reaction with the pollutant in the gas includes increasing the affinity of the pollutant molecule with water. Oxidative decomposition purification, electron transfer reaction to form activated molecules and metastable molecules, and addition to form macromolecules;
- the initially purified gas enters the plasma region for treatment, and the pollutant molecules combined with the micro droplets degrade in the electric field, and the activated molecules and metastable molecules undergo ionization and decomposition under the action of electric field and plasma.
- the macromolecule formed by the addition in the pre-electrochemical reaction can also be decomposed by interaction with the plasma.
- the embodiment of the present invention further provides an apparatus for treating pollutants in a gas.
- the apparatus includes a duct shell 1, and the duct shell 1 is divided into An electrochemical treatment zone and a plasma treatment zone, the gas to be treated enters from the air inlet of the air duct casing, and sequentially flows through the electrochemical treatment zone and the plasma processing zone, and then flows out from the air outlet of the air duct casing; among them:
- the electrochemical treatment zone is used for electrochemical pre-cleaning treatment of the gas to be treated;
- the plasma treatment zone is used to plasma treat the electrochemical pre-purification treatment gas to degrade the pollutants in the gas.
- the electrochemical treatment zone is provided with a plurality of pairs of electrochemical electrodes, each set of electrochemical electrode pairs comprising a cathode and an anode.
- the electrochemical treatment region is disposed near the air inlet, and a plurality of sets of flat surface modified yttrium alloy electrode electrochemical electrodes 3 are disposed therein, and all the anodes are connected in parallel through the first conductive member 4 and pass through the first circuit interface 5
- the positive electrode is electrically connected to the positive electrode of the power source, and all the cathodes are electrically connected to the negative electrode of the power source through the second circuit interface 7 through the second conductive member 6 in parallel.
- the plasma processing region is provided with more than one set of generating electrodes, each of which includes a cathode and an anode.
- the plasma processing region is disposed near the air outlet, and a plurality of sets of flat plasma generating electrodes 13 are disposed therein, the surface of which is modified by zinc oxide nanowires, and all the anodes are connected in parallel through the third conductive member 14 and then pass through the third circuit.
- the interface 15 is electrically connected to the positive pole of the power source, and all the cathodes are electrically connected to the negative pole of the power source through the fourth circuit interface 17 through the fourth conductive member 16 in parallel.
- the height of the generating electrode of the flat electrochemical electrode 3 and the plasma processing region is equal to the height of the air duct casing 1, and is alternately disposed in the air duct casing 1 in accordance with the width direction of the duct casing 1 in accordance with the cathode and the anode.
- the corresponding position within the chamber allows the gas entering the duct casing 1 to undergo electrochemical pre-cleaning treatment and plasma treatment.
- the apparatus further includes a water washing device disposed within the duct housing 1 to separate the duct shell 1 into an electrochemical treatment region and a plasma processing region; the water washing device is configured to eject the electrochemical treatment region The liquid forms a dynamic water film between the cathode and the anode of the electrochemical treatment zone as a solution for chemical pretreatment.
- the water washing apparatus includes: a water supply pipe 10, and the water supply pipe 10 is provided with a plurality of nozzles 11 toward one side of the electrochemical treatment zone to form an array of nozzles.
- a water channel interface 9 is arranged above the water washing device, and is connected to the water supply pipe 10 of the water washing device.
- a drain port 8 is provided on the side of the air duct casing at the bottom of the electrode of the electrochemical processor for recovering the solution after the electrochemical reaction;
- the waterway interface 9 enters the water supply conduit 10 and is ejected by a plurality of nozzles 11 to form a dynamic water film between the cathode and the anode of the electrochemical treatment zone.
- the water supply pipe 10 includes a plurality of water pipes, a plurality of water pipes are arranged along the height direction of the air duct casing 1, and each water pipe is provided with a plurality of nozzles 11; or the water supply pipe 10 includes a whole water pipe along the air duct casing 1
- the height direction is arranged in a serpentine shape, and each of the segments is provided with a plurality of nozzles 11; thereby forming a uniform dynamic water film in the height direction between the cathode and the anode of the flat electrochemical electrode 3.
- the air duct casing 1 includes a duct roof 2, and the air duct roof 2 is provided with a plurality of connecting holes for connecting the waterway, the circuit interface, the external water supply of the air duct, and the power supply system.
- the water washing apparatus further includes a water blocking plate 12 disposed obliquely, the water blocking plate 12 being disposed on a side close to the plasma processing region, for example, inclined 45 degrees downward toward the plasma processing region side, of course, the inclination The angle is not unique and can be adjusted as appropriate.
- the water deflector 12 By setting the water deflector 12, the gas-carrying water can be slightly collected to prevent the gas humidity from being too high, and the plasma portion is prevented from forming too many excessive droplets to ensure the efficiency of the plasma treatment and the safety of the equipment.
- the method for processing the pollutants in the gas is: the external power source connects the voltage to the cathode and the anode of the electrochemical treatment region through the circuit interface to form an electric field, and the gas enters the electrochemical treatment region, and is sprayed by the water washing device.
- the tap water or the aqueous hydrogen peroxide solution forms a dynamic water film between the electrodes of the electrochemical treatment zone and reduces the flow rate of the gas, so that the gas interacts with a strong oxidizing substance or a strong oxidizing intermediate generated between the electrodes of the electrochemical treatment zone. Degraded, activated or hydrophilic.
- the pretreated gas After passing through the water retaining plate of the water washing device, the pretreated gas is directly ionized and degraded by a strong electric field between the plasma generating electrodes in the plasma processing region, or interacts with the generated plasma to be decomposed and purified.
- the treated gas is discharged from the air outlet of the plasma processor.
- the number, structure and size of the electrodes should be selected according to the application environment, the water washing device should be turned on, and the gas to be treated should be introduced after the voltage is applied to the electrodes in the electrochemical treatment area and the plasma processing area, respectively.
- the present invention compares toluene and n-hexane as an example:
- tap water is used as a solution, and about 2000 ppm of toluene gas is introduced into the air inlet, and combined with electrochemical gas treatment, plasma gas treatment after water washing, electrochemical treatment and plasma treatment.
- the gas purification method treats the toluene gas, wherein the gas flow rate is about 5 L/min, the voltage between the plates of the electrochemical gas treatment is between 30 V and 40 V, and the current is between 0.2 A and 0.5 A. The current is between 2uA and 5uA between 20kV and 30kV.
- the gas maps at the air outlets under various conditions were respectively measured by gas chromatography analysis techniques, corresponding to Fig. 3 to Fig. 6.
- the abscissas are time and the ordinate is the gas characteristic response reading signal obtained by the gas chromatograph analyzer.
- the position of the peak in the line represents the gas species information, and the area of the peak represents the concentration of the gas. According to the measurement results of FIG. 3 to FIG. 6, the combination of electrochemical gas treatment and plasma gas treatment not only greatly improves the efficiency of plasma gas treatment, but also effectively avoids new formation in electrochemical treatment. Gas component contamination.
- n-hexane gas is introduced into the air inlet, and combined with electrochemical gas treatment, plasma gas treatment after water washing, electrochemical treatment and plasma treatment.
- the gas purification method treats n-hexane gas, wherein the gas flow rate is about 5 L/min, the voltage between the plates treated by the electrochemical gas is between 30 V and 40 V, and the current is between 0.2 A and 0.5 A. The voltage is between 20kV and 25kV and the current is between 2uA and 5uA.
- the gas maps at the air outlets under various conditions were respectively measured by gas chromatography analysis techniques, corresponding to Fig. 7 to Fig.
- the abscissa is time and the ordinate is the gas characteristic response reading signal obtained by the gas chromatograph analyzer.
- the position of the peak in the line represents the gas species information, and the area of the peak represents the concentration of the gas. According to the measurement results, the combination of electrochemical gas treatment and plasma gas treatment greatly improves the efficiency of plasma gas treatment.
- the electrochemical gas treatment refers to that only the voltage is connected to the cathode and the anode of the electrochemical treatment region to form an electric field, and the water washing device is activated, but the plasma treatment is not initiated; the plasma gas treatment after the water washing refers to not starting. Electrochemical treatment, only the water washing device and plasma treatment are started; the combination of electrochemical treatment and plasma treatment refers to starting electrochemical treatment, water washing device and plasma treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Treating Waste Gases (AREA)
Abstract
一种处理气体中污染物的方法和设备,该方法包括以下步骤:S1:对待处理的气体进行电化学前置净化处理;S2:对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物;该设备包括风道外壳(1),风道外壳(1)被分隔成电化学处理区域与等离子体处理区域,待处理的气体从风道外壳(1)的入风口进入,并依次流经电化学处理区域与等离子体处理区域后由风道外壳(1)的出风口流出;其中,电化学处理区域用于对待处理的气体进行电化学前置净化处理;等离子体处理区域用于对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物。
Description
本发明涉及环保技术领域,尤其涉及一种处理气体中污染物的方法及设备。
挥发性有机物(VOCS,volatile organic compounds)是指常温下饱和蒸汽压大于133.32Pa、常压下沸点在50~260℃的有机化合物,例如甲苯、环己烷、甲醛等等,或在常温常压下任何能挥发的有机固体或液体。随着工业的发展,VOCS的排放量显著增加,而VOCS对人类的健康和生存环境存在巨大的危害;因而如何对气体进行净化,有效去除气体中的VOCS已成为环保领域关注的一个焦点。
现有的处理气体中VOCS的方法主要有等离子体气体处理方式,其直接引入待处理的废气,通过在外加电场驱动的正负离子运动对挥发性有机物气体分子进行轰击,进而破坏其分子结构将其转化为CO
2、H
2O、CO等,从而降低或去除挥发性有机物废气以达到净化空气的目的。或者前置有较强吸附性能的过滤层(如活性炭、布袋等)再进行等离子体处理,过滤层的主要作用为减少废气中尺寸较大的颗粒物、稳定气流场,同时初步地降低废气中的气体分子。
然而,无论采用何种等离子体生成方式,正负离子与气体分子的反应效率均十分有限,尤其是在气道中有一定流速的动态条件下,因此等离子体空气净化一直限于处理污染物浓度本身较低(约100ppm)的应用场合。
因此,有必要对气体中污染物的处理方式进行改进。
发明内容
本发明提出了一种处理气体中污染物的方法及设备,以更有效地对气体中的污染物进行处理。
为了解决上述问题,本发明提供一种处理气体中污染物的方法,该方法 包括以下步骤:
S1、对待处理的气体进行电化学前置净化处理;
S2:对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物。
所述电化学前置净化处理至少用以:使部分有机气体分子亲水,形成气体-微液滴混合体。
所述等离子体处理至少用以:使气体-微液滴混合体被离化而降解。
所述电化学前置净化处理还至少用以:去除部分可溶性的污染物;和/或使部分有机气体分子分解,形成亚稳态分子;和/或使部分有机气体分子活化,形成活化分子。
所述等离子体处理还至少用以:使活化分子和/或亚稳态分子在电场和等离子体作用下发生离化分解。
优选地,所述电化学前置净化处理采用的溶液为:喷射在电化学处理器的阴极与阳极之间的动态水膜。
在本发明的一个实施例中,所述动态水膜的原料为自来水或双氧水溶液。
在本发明的一个实施例中,所述阴极与阳极的材料基底为钛,基底表面设置有钌、铱、铁、铑、钯、铂、铅、钽及其合金或氧化物中的一种或者几种。
在本发明的一个实施例中,所述等离子体处理采用的发生电极的形状为平板、圆筒或圆柱状。
在本发明的一个实施例中,所述发生电极的表面为绝缘材料或纳米导电材料。
同时,为了解决上述问题,本发明还提供一种处理气体中污染物的设备,包括风道外壳,所述风道外壳被分隔成电化学处理区域与等离子体处理区域,待处理的气体从风道外壳的入风口进入,并依次流经所述电化学处理区域与所述等离子体处理区域后由风道外壳的出风口流出;其中:
所述电化学处理区域用于对待处理的气体进行电化学前置净化处理;
所述等离子体处理区域用于对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物。
所述电化学处理区域内设置有一组以上电化学电极对,每组电化学电极对均包括阴极和阳极。
在本发明的一个实施例中,所有的阳极经第一导电部件并联后通过第一电路接口与电源的正极电性连接,所有的阴极经第二导电部件并联后通过第二电路接口与电源的负极电性连接。
优选地,还包括水洗装置,所述水洗装置设置在所述风道外壳内,将所述风道外壳分隔成电化学处理区域与等离子体处理区域;所述水洗装置用于向所述电化学处理区域喷射液体,在所述电化学处理区域的阴极和阳极之间形成动态水膜,作为所述化学前置净化处理的溶液。
在本发明的一个实施例中,所述水洗装置包括:供水管道,所述供水管道朝向所述电化学处理区域的一侧设置有若干喷嘴,液体经所述若干喷嘴喷出,在所述电化学处理区域的阴极和阳极之间形成动态水膜。
优选地,所述水洗装置还包括倾斜设置的挡水板,所述挡水板设置在靠近所述等离子体处理区域的一侧。
在本发明的一个实施例中,所述等离子体处理区域设置有一组以上的发生电极,每组发生电极均包括阴极和阳极。
在本发明的一个实施例中,所有的阳极经第三导电部件并联后通过第三电路接口与电源的正极电性连接,所有的阴极经第四导电部件并联后通过第四电路接口与电源的负极电性连接。
本发明由于采用以上技术方案,使之与现有技术相比,存在以下的优点和积极效果:
1)本发明提供的处理气体中污染物的方法,通过先对待处理的气体进行电化学前置净化处理,再对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物,从而解决了传统的处理气体中污染物的方法仅在等离子体处理前对气体进行前置过滤因而无法有效促进挥发性有机物气体离化的缺点,本发明通过使待处理的气体经过含有强氧化性物质或强氧化性中间物的电化学电极系统,提高了有机物气体分子携带微液滴的能力和反应活性,有效地促进了后续等离子体处理的气体处理过程,使得后置的等离子体处理,不仅在前置电化学处理的辅助下进一步提高挥发性有机物气体的去除效率, 同时能去除在电化学前置净化处理中有机气体反应生成的新成分。
图1是本发明实施例提供的处理气体中污染物的设备的立体结构示意图;
图2是本发明实施例提供的处理气体中污染物的设备的俯视示意图;
图3是本发明一实施例中待处理的甲苯气体气相色谱图;
图4是本发明一实施例中仅通过电化学净化处理后的甲苯气体气相色谱图;
图5是本发明一实施例中仅通过等离子体净化处理后的甲苯气体气相色谱图;
图6是本发明一实施例中通过电化学前置净化处理和等离子体净化处理结合净化后的甲苯气体气相色谱图;
图7是本发明另一实施例中待处理的正己烷气体气相色谱图;
图8是本发明另一实施例中仅通过电化学净化处理后的正己烷气体气相色谱图;
图9是本发明另一实施例中仅通过等离子体净化处理后的正己烷气体气相色谱图;
图10是本发明另一实施例中通过电化学净化处理和等离子体净化处理结合后的正己烷气体气相色谱图。
图中:1-风道外壳,2-风道顶盖,3-电化学电极,4-第一导电部件,5-第一电路接口,6-第二导电部件,7-第二电路接口,8-排水口,9水路接口,10-供水管道,11-喷嘴,12-挡水板,13-发生电极,14-第三导电部件,15-第三电路接口,16-第四导电部件,17-第四电路接口
以下结合附图和具体实施例对本发明提出的处理气体中污染物的方法及设备作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征 将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
在提出本本发明之前,本申请的发明人对目前可能的处理气体中污染物的方法进行了充分的研究,具体研究如下:
1)传统的等离子体气体处理方式直接引入待处理的气体或者仅前置有较强吸附性能的过滤层,过滤层的主要作用为减少气体中尺寸较大的颗粒物、稳定气流场,同时初步地降低废气中的气体分子;过滤层与待处理的气体相互作用为吸附效应,与流经过滤层后移动至后续的等离子体气体处理系统的气体分子未发生反应,即流经过滤层的气体分子本身没有发生变化,所以前置过滤层对于等离子体气体处理过程没有辅助作用。而无论采用何种等离子体生成方式,正负离子与气体分子的反应效率均十分有限,尤其是在气道中有一定流速的动态条件下,因此等离子体空气净化一直限于处理污染物浓度本身较低的应用场合。
2)申请人在研究等离子体气体处理的机理的基础上进行大量的实验,发现若气体分子携带水分子将促进该气体分子在电场中的离化而提高等离子体的产生效率,因此申请人也尝试在对气体进行等离子体处理之前先对气体进行水洗,即在等离子体气体处理装置前置水洗装置,然而因为大量的挥发性有机物气体分子在水中的溶解率很低,比如甲苯在水中的溶解度仅为0.053g/100mL(温度为25℃时),所以直接让待处理的挥发性有机物气体分子流经水溶液难以实现水分子的携带,同时也很难实现很多类有机气体的直接吸收。
为了使气体分子携带水分子,申请人尝试采用雾化水汽直接在等离子体处理设备中导入微液滴,然而发现存在微液滴凝聚引起等离子体发生电极的微弧放电的可能性,可能发生爆炸;反而降低了气体处理效率,同时加剧了等离子体气体处理设备的危险性。采用雾化水汽直接导入微液滴的做法仅适用于以电信号分析为主的纳安级微小电流传感器场合。
基于上述研究,本申请的发明人创造性地设计了一种结合液态电化学、气体电子学和等离子体技术的气体净化方法,该方法涵盖物质的液、气、等离子体三种状态,是一种高效率、低成本、处理气体种类范围广的气体净化 方法。具体的,本发明提供了一种处理气体中污染物的方法,该方法包括以下步骤:
S1、对待处理的气体进行电化学前置净化处理;该步骤至少用以:使部分有机气体分子亲水,形成气体-微液滴混合体;
S2:对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物;该步骤至少用以:使气体-微液滴混合体被离化而降解。
本发明的处理气体中污染物的方法通过电化学前置净化处理中产生的活性基团,使气体分子携带更多液滴,形成气体-微液滴混合体,从而大幅提升后续等离子体处理的局部微电场以促进气体分子的电离,进而提高整体的挥发性有机物去除效率,实现更宽范围场景下净化空气的目的。
由于大量的挥发性有机物气体分子在水中的溶解率很低,因而本领域的技术人员极难想到通过使有机气体分子亲水,形成气体-微液滴混合体的方式来提高等离子体的处理效率,本发明可谓反其道而行之,从思路上克服了本领域的技术偏见。另外巧妙地利用了电化学的方式,通过电化学处理中产生的活性基团,使气体分子携带更多液滴,形成气体-微液滴混合体,又进一步解决了直接引入雾化水汽而导致的降低了气体处理效率,同时加剧了等离子体气体处理设备的危险性容的问题,达到了意想不到的技术效果。
当然,在本发明的处理气体中污染物的方法中,所述电化学前置净化处理还至少用以:去除部分可溶性的污染物;和/或使部分有机气体分子分解,形成亚稳态分子;和/或使部分有机气体分子活化,形成活化分子。所述等离子体处理还至少用以:使活化分子和/或亚稳态分子在电场和等离子体作用下发生离化分解。另外,在电化学前置净化处理的过程中,可能存在部分有机气体分子加成,形成大分子的现象,针对此可能情况,所述等离子体处理还可以用以使加成形成的大分子与等离子体相互作用发生分解。从而更进一步地提高等离子体处理的效率,更有效地去除气体中的有机污染物。
其中,电化学处理例如可采用污水处理用电极系统进行,污水处理用电极系统的原理是:利用电极间电解技术,具体地,利用电化学溶液在电化学电极间发生电化学电解反应而产生的强氧化物质作为反应剂或催化剂(其中,电化学反应产生的强氧化性物质包括氯酸盐、次氯酸盐、H
2O
2和O
3,强氧化 性的中间体包括电子、HO-、HO
2、O
2-等自由基),废水中的有害物质分子,在强氧化性物质或强氧化性中间体的作用下,将发生氧化还原反应改变有机物分子式,使传质驱动力增大,有机物分子与水亲和力提高;发生氧化分解直接转化为水、CO
2、无机盐;发生加成反应使有机物分子间形成大分子;发生电子转移反应,形成活化分子或亚稳态分子。通过经过含有强氧化性物质或强氧化性中间物的污水处理用电极系统,提高了有机物气体分子携带微液滴的能力和反应活性,有效地促进了后续等离子体气体处理器中的气体处理过程。后置的等离子体气体处理设备,不仅在前置污水处理用电极系统的辅助下进一步提高挥发性有机物气体的去除效率,同时能去除污水处理用电极系统中有机气体反应生成的新成分,这些新成分例如可以为:羟基自由基可与苯环结构分子加成,也可与胸腺嘧啶发生加成反应,在反应物分子结构上增加一个羟基和另一个基团。
作为优选实施方式,所述电化学前置净化处理采用的溶液为:喷射在电化学处理器的阴极与阳极之间的动态水膜。该动态水膜一方面作为电化学前置净化处理的溶液,另一方面可降低气体的流速,使得气体可在电化学前置净化处理地过程中相对更充分地反应;另外,该动态水膜作为溶液还可去除气体中的部分可溶性的污染物。
作为进一步优选实施方式,所述动态水膜的原料为自来水或双氧水溶液,自来水或双氧水在电化学电极间进行电化学反应后生成强氧化性物质。
其中,电化学处理器的阴极与阳极的材料基底为钛,基底表面设置有钌、铱、铁、铑、钯、铂、铅、钽及其合金或氧化物中的一种或者几种。当然,本发明并不以此为限,只要电极材料满足以下条件即可:氧化还原电势与析氧反应电势接近,如酸性环境中氧析出标准电极电势为1.23V
RHE,所用电极材料需高于此电势才能稳定存在。
其中,所述等离子体处理采用的发生电极的形状为平板、圆筒或圆柱状。发生电极的表面为绝缘材料或纳米导电材料,比如碳纳米管和氧化锌纳米线对。
该方法对气体中污染物的净化过程如下:
(1)电化学气体处理中,首先部分可溶的气体分子或颗粒物将在溶液中 被溶解滤除;
(2)电化学电极上加载的电压能使自来水或双氧水动态水膜产生强氧化性物质或强氧化性中间体,与气体中的污染物能发生的反应包括增大污染物分子与水的亲和力、发生氧化分解净化、电子转移反应形成活化分子与亚稳态分子,以及加成形成大分子;
(3)初步净化后的气体进入等离子体区域中处理,结合了微液滴的污染物分子在电场中发生降解,活化分子和亚稳态分子在电场和等离子体作用下发生离化分解,同时前置电化学反应中加成形成的大分子也能与等离子体相互作用发生分解。
本发明实施例还提供了一种处理气体中污染物的设备,请参考图1及图2,如图1及图2所示,该设备包括风道外壳1,该风道外壳1被分隔成电化学处理区域与等离子体处理区域,待处理的气体从风道外壳的入风口进入,并依次流经所述电化学处理区域与所述等离子体处理区域后由风道外壳的出风口流出;其中:
所述电化学处理区域用于对待处理的气体进行电化学前置净化处理;
所述等离子体处理区域用于对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物。
其中,电化学处理区域内设置有一组以上电化学电极对,每组电化学电极对均包括阴极和阳极。例如,电化学处理区域设置在入风口附近,其内设置有多组平板状表面修饰铱钽合金的钛电极电化学电极3,所有的阳极经第一导电部件4并联后通过第一电路接口5与电源的正极电性连接,所有的阴极经第二导电部件6并联后通过第二电路接口7与电源的负极电性连接。
等离子体处理区域设置有一组以上的发生电极,每组发生电极均包括阴极和阳极。例如,等离子体处理区域设置在出风口附近,其内设置有多组平板状等离子体发生电极13,其表面由氧化锌纳米线修饰,所有的阳极经第三导电部件14并联后通过第三电路接口15与电源的正极电性连接,所有的阴极经第四导电部件16并联后通过第四电路接口17与电源的负极电性连接。
作为优选实施方式,平板状电化学电极3以及等离子体处理区域的发生电极的高度与风道外壳1的高度相等,均沿风道外壳1的宽度方向按照阴极、 阳极交替设置在风道外壳1内的相应位置处,从而使得进入风道外壳1内的气体均能经过电化学前置净化处理以及等离子体处理。
在优选实施例中,该设备还包括水洗装置,水洗装置设置在风道外壳1内,将风道外壳1分隔成电化学处理区域与等离子体处理区域;水洗装置用于向电化学处理区域喷射液体,在电化学处理区域的阴极和阳极之间形成动态水膜,作为化学前置净化处理的溶液。具体地,在本发明的一个实施例中,水洗装置包括:供水管道10,且供水管道10朝向电化学处理区域的一侧设置有若干喷嘴11,形成喷嘴阵列。在水洗装置的上方设有水路接口9,连接至水洗装置的供水管道10,电化学处理器的电极底部的风道外壳侧面设有排水口8,用于回收电化学反应后的溶液;液体经水路接口9进入供水管道10内,由若干喷嘴11喷出,在电化学处理区域的阴极和阳极之间形成动态水膜。其中,供水管道10包括若干水管,若干水管沿风道外壳1的高度方向排布,每个水管上均设置有若干喷嘴11;或者供水管道10包括一整根水管,该水管沿风道外壳1的高度方向蛇形排布,每一段上均设置有若干喷嘴11;从而使得平板状电化学电极3阴极与阳极间在高度方向均能形成均匀的动态水膜。
其中,风道外壳1包括一风道顶盖2,风道顶盖2设有若干连接孔,用于水路、电路接口与风道外部供水、供电系统的连接。
作为优选实施例,水洗装置还包括倾斜设置的挡水板12,挡水板12设置在靠近等离子体处理区域的一侧,例如向等离子体处理区域一侧朝下倾斜45度,当然,该倾斜角度并不是唯一的,可根据情况合理调整。通过设置挡水板12,可对气体携带的水进行稍微收集,以免气体湿度太高,防止等离子体部分形成过多过大的液滴,以保证等离子体处理的效率及设备的安全。
本发明实施例提供的处理气体中污染物的设备的使用方法为:外加电源通过电路接口将电压接入电化学处理区域的阴极和阳极形成电场,气体进入电化学处理区域中,由水洗装置喷出自来水或双氧水溶液在电化学处理区域的电极间形成动态水膜并降低了气体的流速,从而气体与在电化学处理区域的电极间产生的强氧化性物质或强氧化性中间体相互作用而降解、活化或亲水。经前置处理后的气体通过水洗装置的挡水板后,在等离子体处理区域中 被等离子体发生电极间的强电场直接电离降解,或与生成的等离子体发生相互作用而分解净化。处理后的气体由等离子体处理器的出风口排出。
使用本设备前,应根据应用环境选择电极数量、结构和尺寸,开启水洗装置,在电化学处理区域和等离子体处理区域的电极上上分别加载电压之后,引入待处理的气体。
为了对本发明的效果进行进一步陈述,本发明以甲苯与正己烷为例进行比对说明如下:
1.对甲苯的处理
使用本发明提供的上述设备,采用自来水为溶液,在入风口处通入约2000ppm的甲苯气体,分别采用电化学气体处理、水洗后的等离子体气体处理、电化学处理和等离子体处理相结合的气体净化方式对甲苯气体进行处理,其中气体流速约5L/min,电化学气体处理的极板间电压在30V到40V之间,电流在0.2A到0.5A之间,等离子体处理的电极间电压为20kV到30kV之间,电流在2uA到5uA之间。通过气相色谱分析技术分别测量了各条件下出风口处的气体图谱,分别对应图3至图6,图谱中横坐标为时间,纵坐标为气相色谱分析仪所得到的气体特征响应读数信号。谱线中峰的位置代表气体种类信息,峰的面积代表气体的浓度。根据图3至图6的测量结果可知,将电化学气体处理和等离子体气体处理相结合后,不仅大幅提升了等离子体气体处理的效率,更有效地避免了在电化学处理中所形成的新的气体组分污染。
2.对正己烷的处理
使用本发明提供的上述设备,采用自来水为溶液,在入风口处通入约2000ppm的正己烷气体,分别采用电化学气体处理、水洗后的等离子体气体处理、电化学处理和等离子体处理结合的气体净化方式对正己烷气体进行处理,其中气体流速约5L/min,电化学气体处理的极板间电压在30V到40V之间,电流在0.2A到0.5A之间,等离子体处理的电极间电压为20kV到25kV之间,电流在2uA到5uA之间。通过气相色谱分析技术分别测量了各条件下出风口处的气体图谱,分别对应图7至图10,图谱中横坐标为时间,纵坐标为气相色谱分析仪所得到的气体特征响应读数信号。谱线中峰的位置代表气体种类信息,峰的面积代表气体的浓度。根据测量结果可知,将电化学气体 处理和等离子体气体处理相结合后,大幅提升了等离子体气体处理的效率。
上述处理中,电化学气体处理指的是仅将电压接入电化学处理区域的阴极和阳极形成电场,启动水洗装置,但不启动等离子体处理;水洗后的等离子体气体处理指的是不启动电化学处理,仅启动水洗装置和等离子体处理;电化学处理和等离子体处理相结合指的是启动电化学处理、水洗装置和等离子体处理。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。
Claims (18)
- 一种处理气体中污染物的方法,其特征在于,该方法包括以下步骤:S1、对待处理的气体进行电化学前置净化处理;S2:对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物。
- 如权利要求1所述的处理气体中污染物的方法,其特征在于,所述电化学前置净化处理至少用以:使部分有机气体分子亲水,形成气体-微液滴混合体。
- 如权利要求2所述的处理气体中污染物的方法,其特征在于,所述等离子体处理至少用以:使气体-微液滴混合体被离化而降解。
- 如权利要求3所述的处理气体中污染物的方法,其特征在于,所述电化学前置净化处理还至少用以:去除部分可溶性的污染物;和/或使部分有机气体分子分解,形成亚稳态分子;和/或使部分有机气体分子活化,形成活化分子。
- 如权利要求4所述的处理气体中污染物的方法,其特征在于,所述等离子体处理还至少用以:使活化分子和/或亚稳态分子在电场和等离子体作用下发生离化分解。
- 如权利要求1至5任一项所述的处理气体中污染物的方法,其特征在于,所述电化学前置净化处理采用的溶液为:喷射在电化学处理器的阴极与阳极之间的动态水膜。
- 如权利要求6所述的处理气体中污染物的方法,其特征在于,所述动态水膜的原料为自来水或双氧水溶液。
- 如权利要求6所述的处理气体中污染物的方法,其特征在于,所述阴极与阳极的材料基底为钛,基底表面设置有钌、铱、铁、铑、钯、铂、铅、钽及其合金或氧化物中的一种或者几种。
- 如权利要求1至5任一项所述的处理气体中污染物的方法,其特征在于,所述等离子体处理采用的发生电极的形状为平板、圆筒或圆柱状。
- 如权利要求9所述的处理气体中污染物的方法,其特征在于,所述发生电极的表面为绝缘材料或纳米导电材料。
- 一种处理气体中污染物的设备,其特征在于,包括风道外壳,所述风道外壳被分隔成电化学处理区域与等离子体处理区域,待处理的气体从风道外壳的入风口进入,并依次流经所述电化学处理区域与所述等离子体处理区域后由风道外壳的出风口流出;其中:所述电化学处理区域用于对待处理的气体进行电化学前置净化处理;所述等离子体处理区域用于对电化学前置净化处理后的气体进行等离子体处理以降解气体中的污染物。
- 如权利要求11所述的处理气体中污染物的设备,其特征在于,所述电化学处理区域内设置有一组以上电化学电极对,每组电化学电极对均包括阴极和阳极。
- 如权利要求12所述的处理气体中污染物的设备,其特征在于,所有的阳极经第一导电部件并联后通过第一电路接口与电源的正极电性连接,所有的阴极经第二导电部件并联后通过第二电路接口与电源的负极电性连接。
- 如权利要求12所述的处理气体中污染物的设备,其特征在于,还包括水洗装置,所述水洗装置设置在所述风道外壳内,将所述风道外壳分隔成电化学处理区域与等离子体处理区域;所述水洗装置用于向所述电化学处理区域喷射液体,在所述电化学处理区域的阴极和阳极之间形成动态水膜,作为所述化学前置净化处理的溶液。
- 如权利要求14所述的处理气体中污染物的设备,其特征在于,所述水洗装置包括:供水管道,所述供水管道朝向所述电化学处理区域的一侧设置有若干喷嘴,液体经所述若干喷嘴喷出,在所述电化学处理区域的阴极和阳极之间形成动态水膜。
- 如权利要求14或15所述的处理气体中污染物的设备,其特征在于,所述水洗装置还包括倾斜设置的挡水板,所述挡水板设置在靠近所述等离子体处理区域的一侧。
- 如权利要求11所述的处理气体中污染物的设备,其特征在于,所述等离子体处理区域设置有一组以上的发生电极,每组发生电极均包括阴极和阳极。
- 如权利要求17所述的处理气体中污染物的设备,其特征在于,所有的阳极经第三导电部件并联后通过第三电路接口与电源的正极电性连接,所有的阴极经第四导电部件并联后通过第四电路接口与电源的负极电性连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711127756.2 | 2017-11-15 | ||
CN201711127756.2A CN107694298B (zh) | 2017-11-15 | 2017-11-15 | 处理气体中污染物的方法及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019096139A1 true WO2019096139A1 (zh) | 2019-05-23 |
Family
ID=61179568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/115299 WO2019096139A1 (zh) | 2017-11-15 | 2018-11-14 | 处理气体中污染物的方法及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107694298B (zh) |
WO (1) | WO2019096139A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112915743A (zh) * | 2021-01-25 | 2021-06-08 | 中山大学 | 一种有机废气多相催化氧化处理系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107694298B (zh) * | 2017-11-15 | 2024-03-22 | 上海睿筑环境科技有限公司 | 处理气体中污染物的方法及设备 |
CN113082277B (zh) * | 2021-04-26 | 2022-02-08 | 燕山大学 | 一种利用通电耦合等离子体处理有毒气体的系统和方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203090725U (zh) * | 2013-01-24 | 2013-07-31 | 江苏新阪神太阳能有限公司 | 废气处理装置 |
CN104415659A (zh) * | 2013-08-19 | 2015-03-18 | 纳米及先进材料研发院有限公司 | 用于气体的消毒和净化的等离子体驱动的催化剂系统 |
CN204656315U (zh) * | 2015-04-07 | 2015-09-23 | 季宇锋 | 一种烘道烟雾及涂装voc尾气净化系统 |
CN105423416A (zh) * | 2015-10-30 | 2016-03-23 | 西安交通大学 | 一种空气净化装置 |
CN106310826A (zh) * | 2016-10-14 | 2017-01-11 | 徐州工程学院 | 一种用于垃圾处理系统中高效空气净化装置及其工作方法 |
CN107694298A (zh) * | 2017-11-15 | 2018-02-16 | 上海睿筑环境科技有限公司 | 处理气体中污染物的方法及设备 |
CN207507231U (zh) * | 2017-11-15 | 2018-06-19 | 上海睿筑环境科技有限公司 | 处理气体中污染物的设备 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT8122U1 (de) * | 2005-02-23 | 2006-02-15 | Wolfgang Dipl Ing Dr Kladnig | Neuartiger nasswäscher für die oxidative eliminierung von luftschadstoffen aus industriellen abgasen |
JP2012055501A (ja) * | 2010-09-09 | 2012-03-22 | Panasonic Corp | 空気清浄装置 |
CN102688672A (zh) * | 2012-06-08 | 2012-09-26 | 深圳市泓耀环境科技发展股份有限公司 | 一种对燃烧系统所产生废气的脱硝方法及其装置 |
CN103708583B (zh) * | 2012-10-08 | 2016-07-06 | 苏州卓融水处理科技有限公司 | 一种电解氧化废水处理系统 |
CN103394265B (zh) * | 2013-08-09 | 2015-04-22 | 沈欣军 | 厨房油烟深度净化处理的方法 |
CN103480223B (zh) * | 2013-09-09 | 2015-05-20 | 上海龙净环保科技工程有限公司 | 高烟速pm2.5和污染物湿式烟气净化系统及净化方法 |
CN104722184B (zh) * | 2013-12-18 | 2020-03-10 | 苏州鼎德电环保科技有限公司 | 一种洗涤塔及包括其的废气净化系统,空气净化方法 |
CN104084012A (zh) * | 2014-07-15 | 2014-10-08 | 浙江惠尔涂装环保设备有限公司 | 一种低温等离子废气处理方法 |
CN104383812B (zh) * | 2014-11-22 | 2017-03-01 | 重庆睿容环保科技有限公司 | VOCs低温等离子复合处理系统 |
CN105983304A (zh) * | 2015-11-26 | 2016-10-05 | 安徽世界村新材料有限公司 | 一种模块化废橡胶再生废气绿色处理成套工艺 |
CN105944524A (zh) * | 2016-06-08 | 2016-09-21 | 黄立维 | 一种放电等离子体去除有害气体的方法和装置 |
-
2017
- 2017-11-15 CN CN201711127756.2A patent/CN107694298B/zh active Active
-
2018
- 2018-11-14 WO PCT/CN2018/115299 patent/WO2019096139A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203090725U (zh) * | 2013-01-24 | 2013-07-31 | 江苏新阪神太阳能有限公司 | 废气处理装置 |
CN104415659A (zh) * | 2013-08-19 | 2015-03-18 | 纳米及先进材料研发院有限公司 | 用于气体的消毒和净化的等离子体驱动的催化剂系统 |
CN204656315U (zh) * | 2015-04-07 | 2015-09-23 | 季宇锋 | 一种烘道烟雾及涂装voc尾气净化系统 |
CN105423416A (zh) * | 2015-10-30 | 2016-03-23 | 西安交通大学 | 一种空气净化装置 |
CN106310826A (zh) * | 2016-10-14 | 2017-01-11 | 徐州工程学院 | 一种用于垃圾处理系统中高效空气净化装置及其工作方法 |
CN107694298A (zh) * | 2017-11-15 | 2018-02-16 | 上海睿筑环境科技有限公司 | 处理气体中污染物的方法及设备 |
CN207507231U (zh) * | 2017-11-15 | 2018-06-19 | 上海睿筑环境科技有限公司 | 处理气体中污染物的设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112915743A (zh) * | 2021-01-25 | 2021-06-08 | 中山大学 | 一种有机废气多相催化氧化处理系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107694298A (zh) | 2018-02-16 |
CN107694298B (zh) | 2024-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019096139A1 (zh) | 处理气体中污染物的方法及设备 | |
US7959884B2 (en) | Apparatus for purifying air and purifying method thereof | |
WO2014185616A1 (ko) | 유전체 배리어 방전 플라즈마를 이용한 폐수처리 장치 및 방법 | |
CN107398144B (zh) | 一种气体放电协同溶液吸收去除有害气体的方法和装置 | |
KR100946782B1 (ko) | 응축-흡착 공정 및 발전된 촉매 산화 공정을 통해 유기폐기 가스를 처리 및 정화하는 방법 및 그것을 위한 장치 | |
CN104383812A (zh) | VOCs低温等离子复合处理系统 | |
CN103742984B (zh) | 磁电微水幕空气净化方法及装置 | |
CN207507231U (zh) | 处理气体中污染物的设备 | |
CN108283870B (zh) | 一种等离子体废气综合处理装置 | |
JP4457603B2 (ja) | ガス浄化装置 | |
CN107096358A (zh) | 一种新型低温等离子处理设备 | |
CN208260501U (zh) | 一种综合废气处理装置 | |
CN203797809U (zh) | 一种工业用空气净化器 | |
CN201077784Y (zh) | 辉光等离子体污水处理器 | |
CN109316913B (zh) | 一种湿式放电反应器在去除废气中二氧化硫气体中的应用 | |
CN213790953U (zh) | 一种废气处理装置 | |
WO2020216370A1 (zh) | 一种VOCs气体处理装置及方法 | |
JP4461273B2 (ja) | 排ガスの窒素酸化物除去方法及び排ガスの窒素酸化物除去装置 | |
CN109126433B (zh) | 一种利用紫外激活气相过硫酸盐去除挥发性有机化合物的方法及装置 | |
CN116651194A (zh) | 废气处理方法及装置 | |
CN217139894U (zh) | 钛精矿烘干尾气深度净化及脱白装置 | |
CN213965952U (zh) | 一种尾气处理系统 | |
CN203704147U (zh) | 磁电微水幕空气净化装置 | |
CN221182267U (zh) | 一种实验室有机类废气净化装置 | |
CN209885576U (zh) | 一种光催化净化有机废气的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18879229 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18879229 Country of ref document: EP Kind code of ref document: A1 |