WO2019096025A1 - 连续光泵浦的聚合物激光器及其制备方法 - Google Patents

连续光泵浦的聚合物激光器及其制备方法 Download PDF

Info

Publication number
WO2019096025A1
WO2019096025A1 PCT/CN2018/114068 CN2018114068W WO2019096025A1 WO 2019096025 A1 WO2019096025 A1 WO 2019096025A1 CN 2018114068 W CN2018114068 W CN 2018114068W WO 2019096025 A1 WO2019096025 A1 WO 2019096025A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic polymer
polymer
laser
organic
optically pumped
Prior art date
Application number
PCT/CN2018/114068
Other languages
English (en)
French (fr)
Inventor
胡志军
李晓慧
翁雨燕
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Priority to US16/611,086 priority Critical patent/US10879670B2/en
Publication of WO2019096025A1 publication Critical patent/WO2019096025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1221Detuning between Bragg wavelength and gain maximum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials

Definitions

  • the present invention relates to the field of light emitting devices, and more particularly to a continuous optical pumped polymer laser and a method of fabricating the same.
  • Quasi-continuous optically pumped organic polymer lasers have been successfully fabricated in other mesoporous materials to inhibit the formation of polarons.
  • a method of doping a triplet quencher in an organic polymer optical gain medium has been developed, and a quasi-continuous optically pumped organic polymer laser has been successfully realized.
  • the above technique can effectively suppress the formation of polaron or triplet excitons, and thus successfully prepare a quasi-continuous optically pumped organic polymer laser, it is still impossible to realize a continuous optical pumping laser.
  • the continuous optically pumped organic polymer laser has great advantages in the fields of spectrometer, optical communication, chemical sensing, illumination, etc. It is more suitable for miniaturization and light weight of the device, reducing energy consumption, and the price of the pump light source is low.
  • inorganic semiconductor material can form a single crystal in which atoms have a long-range order, so that excitons can be transmitted unimpeded in the electrodeless semiconductor material.
  • the organic polymer molecular chain has a larger conformational entropy and a weaker interchain interaction. These intrinsic characteristics of organic polymer materials make it difficult to form long-range ordered structures in molecular chains in polymer films. In disordered polymer films, excitons are likely to be trapped at structural defects during transport, reducing the number and lifetime of singlet excitons. Structural defects may include chemical defects and grain boundaries of the molecular chain conformation.
  • the regulation of laser performance mainly includes the regulation of its optical pumping threshold and polarization.
  • optical pumping threshold by changing the molecular structure of the polymer, people designed and synthesized molecules with higher degree of conjugation and higher crystallinity to achieve the reduction of optical pumping threshold.
  • the laser light pumping threshold is controlled by using a distributed feedback (DFB) structure in which first-order and second-order resonant cavities coexist.
  • DFB distributed feedback
  • the continuous optical pumping organic polymer laser with adjustable laser performance has great advantages in the fields of spectrometer, optical communication, chemical sensing, illumination, etc. It is more suitable for miniaturization and light weight of devices, reducing energy consumption, and low price of pump light source. .
  • DFB structure is one of the common design methods for preparing organic polymer lasers.
  • the basic principle is to realize exciton oscillation and optical coupling through Bragg grating.
  • the advantage is that the optical gain length is large and the optical pumping threshold is low.
  • a method of constructing a DFB structure in an organic polymer film includes direct photolithography (forming a DFB structure directly in a crosslinkable organic polymer film by photolithography) and a coating method (coating an organic polymer by a coating technique) On a substrate with a Bragg grating).
  • the organic polymer remains substantially in a disordered state. But in short, current organic polymer lasers still cannot achieve continuous optical pumping.
  • an object of the present invention is to provide a continuous optical pumped polymer laser and a preparation method thereof, and the method of the invention is simple, and the organic polymer molecular chain and the supramolecular structure are oriented in a long-range orientation.
  • the obtained laser can be pumped using continuous light, and the optical pumping threshold and degree of polarization of the laser can be adjusted according to actual needs.
  • the invention provides a method for preparing a continuous optically pumped polymer laser, comprising the following steps:
  • the material of the substrate is a hard material such as silicon, silicon dioxide, aluminum oxide, quartz, glass, ITO glass, FTO glass, etc., and may also be an organic material such as polyamide. Polyester, polyvinylidene fluoride, polytetrafluoroethylene or polysiloxane.
  • the organic polymer is a polyfluorene homopolymer having an emission wavelength of 400 to 480 nm (blue region wavelength), and the polyfluorene homopolymer is poly(9,9-di) Octyl) and/or poly(9,9-diethylhexylfluorene).
  • the organic polymer is a polyfluorene-based copolymer having an emission wavelength of 480 to 580 nm (blue-green region wavelength), and the polyfluorene-based copolymer is poly(9,9-dioctylfluorene- Alternate copolymerization of-6,6'-pyridine), poly(9,9-dioctylfluorene-alternate copolymerization-6,6'-2,2'bipyridine), poly(9,9-dioctylfluorene-alternate Copolymerization of -6,6'-2,2':6'2"-terpyridine) and poly(9,9-dioctyl-alternate copolymer-1-4 benzo ⁇ 2,1'3-thiadiazole ⁇ One or several of them.
  • the organic polymer is a polyphenylene vinyl polymer having an emission wavelength of 580 to 700 nm (red region wavelength), and the polyphenylene vinyl polymer is polyphenylene vinyl polymerization.
  • Poly[2-methoxy-5-(2-ethylhexyloxy)1,4-phenylenevinylene] poly[2-methoxy-5-(3,7-dimethyloctyl) One or more of oxy)1,4-1,4-phenylenevinylene] and poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylacetylene] .
  • the organic polymer in the DFB structure has a lateral dimension greater than 1 nm, less than ⁇ , and a thickness greater than 10 nm.
  • the organic polymer is poly(9,9-dioctyl-alternating copolymer-1-4 benzo ⁇ 2,1'3-thiadiazole ⁇ )
  • the template of the structure (DFB) or the transparent substrate having the distributed feedback structure has a period of 300-400 nm.
  • the period of the DFB structure is 320 nm.
  • the period of the template having the distributed feedback structure (DFB) or the transparent substrate having the distributed feedback structure is 250-400nm.
  • the period of the DFB structure is 280 nm.
  • the number, lifetime and external quantum efficiency of singlet excitons generated by optical pumping are controlled, and a continuous optical pumping organic polymer laser with adjustable laser performance is realized, and different optical pumping thresholds and polarization degrees are prepared.
  • the continuous optically pumped organic polymer laser is more suitable for miniaturization and weight reduction of organic polymer lasers.
  • the phase transition temperature is a glass transition temperature, a crystallization temperature, or an ordered-disorder transition temperature of the liquid crystal.
  • the applied pressure is 1-100 atm.
  • the applied pressure is from 50 to 70 atmospheres.
  • step (2) the surface of the template or plate having the distributed feedback structure is pressurized for 5-30 min.
  • the method further comprises the step of coating a surface of the organic polymer with a transparent protective layer, the protective layer is made of an inorganic material or an organic material, and the inorganic material is silicon oxide or Calcium oxide or the like, the organic material is polysiloxane, polyethylene terephthalate, polyethylene naphthalate, polyamide or polytetrafluoroethylene.
  • the distributed feedback structure is a one-dimensional Bragg grating or a two-dimensional photonic crystal structure.
  • the organic solvent used in the organic solution is one or more of toluene, xylene, chlorobenzene, benzene, chloroform, cyclohexane, pentane, hexane and octane.
  • toluene xylene
  • chlorobenzene benzene
  • chloroform cyclohexane
  • pentane hexane
  • octane octane
  • the template or substrate having the distributed feedback structure may be subjected to photolithography methods such as visible light lithography, ultraviolet lithography, X-ray lithography, electron beam lithography, ion beam lithography, Prepared by nanoimprinting, etc., forming a DFB structure in the photoresist, and then transferring the DFB structure in the photoresist to the surface of the substrate by ion etching, or coating an organic polymerization on the surface of the photoresist.
  • the material replicates the DFB structure in the photoresist or substrate.
  • the organic solution has an organic solution concentration of 1.0 to 100 mg/ml.
  • the organic polymer film has a thickness of from 1 to 1000 nm.
  • the temperature increase rate is from 0.1 to 1000 ° C / min.
  • the cooling rate is 0.1 to 1000 ° C / min.
  • the molecular chain of the organic polymer undergoes a long-range order orientation and the shape is fixed.
  • the continuous optically pumped polymer laser does not contain an organic solvent.
  • the degree of orientation of the organic polymer molecules increases.
  • the optical pumping threshold of the polymer laser decreases.
  • the preparation method of the present invention and the above principles can also be applied to other fields, such as the preparation of solar cells.
  • the invention also provides a continuous optically pumped polymer laser prepared by the above preparation method, comprising a transparent substrate and an organic polymer having orientation order on a transparent substrate, wherein the organic polymer is photoinduced A luminescent polymer with a distributed feedback structure.
  • the continuous optically pumped polymer laser further comprises a protective layer on the surface of the organic polymer, the protective layer is made of an inorganic material or an organic material, the inorganic material is silicon oxide or calcium oxide, and the organic material is polysiloxane. Alkane, polyethylene terephthalate, polyethylene naphthalate, polyamide or polytetrafluoroethylene.
  • orientation order of the organic polymer may be that the molecular chain is parallel to the Bragg grating direction, perpendicular to the Bragg grating direction, or oblique to the Bragg grating direction.
  • the technical scheme adopted by the invention comprises the preparation method of the organic polymer DFB structure, and the ordering of the molecular molecular chain and the supramolecular structure orientation in the process of fabricating the DFB structure is used.
  • the method achieves a continuous optically pumped organic polymer laser.
  • the orientation of the polymer molecular chain and supramolecular structure in the DFB structure is regulated by the nano-space limitation of the DFB structure.
  • the pressure applied by the DFB structure is used to regulate the conjugate length of the polymer molecular chain in the DFB structure.
  • the long-range order of orientation of the polymer molecular chain and the supramolecular structure makes the output laser of the organic polymer laser have polarization characteristics.
  • Continuous optically pumped organic polymer lasers have extremely low optical pumping thresholds, reducing energy consumption during the use of organic polymer lasers.
  • the characteristic size of the distributed feedback structure can be controlled without changing the DFB structure.
  • the nano-space limitation of the DFB structure can be used to regulate the orientation order and orientation of the polymer molecular chain and the supramolecular structure in the DFB structure.
  • the degree of order, the continuous optical pumping organic polymer laser with adjustable laser performance is more suitable for the miniaturization and weight reduction of organic polymer lasers.
  • FIG. 1 is a schematic view showing a preparation route of a direct nanoimprint method of the present invention
  • FIG. 2 is a schematic view showing a preparation route of the reverse nanoimprint method of the present invention.
  • Example 3 is a graph showing the results of atomic force microscope topography test of the F8BT film in Example 1 of the present invention.
  • Example 4 is a test result of XRD and polarized ultraviolet absorption spectrum of the F8BT film in Example 1 of the present invention
  • Example 8 is a test result of XRD and polarized ultraviolet absorption spectrum of a PFO film in Example 2 of the present invention.
  • Figure 10 is a graph showing the results of atomic force microscope topography test of the F8BT film prepared by changing the size of the DFB structure in the third embodiment of the present invention.
  • FIG. 11 is a test result of a polarized ultraviolet absorption spectrum of an F8BT film prepared by changing the size of a DFB structure in Embodiment 3 of the present invention.
  • Figure 15 is a graph showing the results of polarization ultraviolet absorption spectrum measurement of a PFO film prepared by changing the size of a DFB structure in Example 4 of the present invention.
  • Figure 16 is a graph showing the results of the optical performance test of the PFO film prepared by changing the size of the DFB structure in the fourth embodiment of the present invention.
  • the technical solution adopted by the present invention includes a method for preparing an organic polymer DFB structure.
  • one of the preparation methods of the present invention is a direct nanoimprint method. , including the following steps:
  • the organic polymer solution is coated on the transparent substrate 1 without DFB structure to form a uniform thickness organic polymer film 2, the thickness of the organic polymer film 2 is 1-1000 nm;
  • the transparent substrate 1 without the DFB structure is placed on the hot stage, the surface of the organic polymer film 2 faces upward, and the template 3 having the DFB structure is placed on the surface of the organic polymer film 2, and the template 3 having the DFB structure
  • the surface is in contact with the surface of the organic polymer, and the temperature of the hot stage rises above the phase transition temperature of the organic polymer;
  • the template 3 having the DFB structure was peeled off from the surface of the organic polymer to obtain a continuous optically pumped polymer laser.
  • the preparation method of the present invention may also be a reverse nanoimprint method, including the following steps:
  • the thickness of the formed film is preferably close to the height of the DFB structure
  • the flat plate 6 without the DFB structure is peeled off from the surface of the organic polymer, and the organic polymer is left in the substrate 5 having the DFB structure and at the surface to obtain a continuous optically pumped polymer laser.
  • poly(9,9-dioctyl-alternating copolymer-1-4benzo[2,1'3-thiadiazole ⁇ ) F8BT
  • the luminescent wavelength of the polymer is designed to feature the size of the nanoimprint template (the period of the DFB structure in the nanoimprint template is 320 nm).
  • the direct nanoimprint technique is used to construct Prague with a width of 85 nm, a height of about 200 nm and a period of 320 nm. Grating DFB structure.
  • a spin coating technique was used to spin-coat a quartz substrate to obtain a film having a thickness of about 75 nm (spin coating conditions: F8BT was dissolved in a toluene solution at a concentration of 20 mg/ml, a spin coating speed of 5000 rpm for 1 min), and then The substrate with the spin-coated film is placed in a nanoimprinting machine, covered with a nanoimprint template (planar silicon template), the temperature of the nanoimprinting system is raised to 180 ° C, plus 60 bar pressure for 30 min, slow At room temperature, the pressure is removed, and the template is removed to obtain a high-fidelity F8BT Bragg grating DFB structure, which is a continuous optical pumped polymer laser.
  • spin coating conditions F8BT was dissolved in a toluene solution at a concentration of 20 mg/ml, a spin coating speed of 5000 rpm for 1 min
  • the substrate with the spin-coated film is placed in a nanoimprinting machine, covered with
  • the atomic force microscope topography of the F8BT film obtained by spin coating is shown in Fig. 3a.
  • the atomic force microscope topography and the cross-sectional scanning electron microscope image of the F8BT Bragg DFB structure are shown in Figs. 3b and 3c, respectively. It can be seen that F8BT completely replicates the DFB Bragg grating structure in the nanoimprint template.
  • Fig. 4a and b The molecular chain and crystal orientation in the F8BT Bragg grating obtained by the above method were analyzed by the wide-angle grazing incidence X-ray diffraction method of Shanghai light source, as shown in Fig. 4a and b, wherein Fig. 4a is the incident direction of X-ray and F8BT nanometer. The long axis direction of the strip is parallel.
  • Figure 4b shows that the incident direction of the X-ray is perpendicular to the long axis direction of the F8BT nanoribbon strip, and is defined as the q z diffraction plane perpendicular to the film substrate direction, and the direction parallel to the film film substrate is q. Xy diffraction plane.
  • the ⁇ - ⁇ stacking direction of the material F8BT is aligned perpendicular to the film substrate.
  • Quantitative characterization of the molecular backbone orientation of F8BT nanostructure arrays can be achieved by polarized ultraviolet absorption spectroscopy and polarized fluorescence spectroscopy.
  • Figure 4c is a polarized ultraviolet absorption spectrum of an organic semiconductor light-emitting polymer (F8BT) nanoribbon. It can be clearly seen from the figure that the absorption intensity along the long axis of the nanoribbon is significantly higher than the vertical direction, which further illustrates The F8BT molecular backbone is found to be aligned along the long axis of the nanoribbon.
  • F8BT organic semiconductor light-emitting polymer
  • the luminescent polymer F8BT molecular backbone can be quantitatively calculated.
  • the degree of orientation is 0.85.
  • Figure 4d shows the UV absorption spectrum of the F8BT film and nanoribbons. It can be seen from the figure that the UV absorption peak of the nanoribbon is red shifted by 2 nm than the UV absorption peak of the film.
  • the luminescence spectrum as shown in FIG. 4e, it can be seen that the luminescence intensity along the long axis direction of the nanoribbon is significantly higher than the vertical direction, thereby further demonstrating that the molecular main chain direction of F8BT is along the length of the nanostructure array.
  • FIG. 4f is a fluorescence spectrum of an organic semiconductor light-emitting polymer (F8BT) film and a nanoribbon strip, and it can be seen from the figure that the emission peak of the nanoribbon is red-shifted by 3 nm than the emission peak of the film.
  • the red shift of the UV absorption spectrum and the fluorescence spectrum further indicates that the conjugation length of F8BT in the nanoribbon is significantly longer than that in the film.
  • the transient absorption spectra of the oriented ordered F8BT Bragg grating are studied, as shown in Fig. 5. It can be seen that for the disordered F8BT thin film, the transient absorption spectrum is basically consistent with the literature reports.
  • the ⁇ OD signals at 470 nm and 570 nm correspond to photobleaching and stimulated luminescence, respectively, while the signals at wavelengths greater than 620 nm are derived from polaron or triplet excitons.
  • the photobleaching peaks of the F8BT Bragg gratings are red-shifted, which is basically consistent with the spectral red shift phenomenon found in the above ultraviolet absorption spectrum and fluorescence emission spectrum.
  • the stimulated radiance signal of F8BT is significantly narrower (full width at half maximum of 7 nm), and the intensity is significantly enhanced.
  • This aspect shows that amplified stimulated luminescence occurs in the F8BT Bragg grating, and on the other hand, the number of singlet excitons in the F8BT Bragg grating is significantly increased.
  • Figure 5b where the curve consisting of open circles represents the F8BT Bragg grating and the solid curve represents the disordered F8BT film), the lifetimes of photobleaching, polaron or triplet excitons and singlet excitons are compared.
  • Figure 6 shows.
  • Figure 6a shows the emission spectra of an F8BT organic polymer laser at different pump energy densities. It can be seen from the figure that when the energy density of the pump light is less than 28 W/cm 2 , the light output by the F8BT organic polymer laser is affected.
  • the radiant light has a full width at half maximum of 52 nm.
  • the intensity of the output light of the F8BT organic polymer laser sharply increases, and the half-height width of the output light is narrowed to about 7 nm.
  • the intensity of the output light of the F8BT organic polymer laser is further sharply increased, and the spectral width of the output light is 1.7 nm.
  • the full width at half maximum of the output light emission spectrum is gradually reduced from 52 nm to 7 nm, and when the pump energy is higher than 31 W/cm 2 , the emission spectrum is narrowed to 1.7 nm.
  • Figure 6b shows the intensity and spectral half-width of the F8BT organic polymer laser as a function of the energy density of the pump source.
  • the three-stage variation indicates that the F8BT organic polymer laser is pumped by continuous light.
  • the light output is laser light, and the threshold of optical pumping is 31 W/cm 2 .
  • the output light of the F8BT organic polymer laser has a distinct linear polarization characteristic.
  • the intensity of the output light is the largest.
  • the polarization direction of the analyzer is perpendicular to the direction of the F8BT Bragg grating, the intensity of the output light is the lowest. Its degree of polarization can reach 0.85.
  • the intensity of the output light can be modulated (Fig. 6c, d).
  • a film is formed on a transparent substrate by coating (for example, spin coating, spray coating, blade coating), and a template having a DFB structure is pressed into the organic polymer film under pressure, and organic in the process.
  • the temperature of the polymer rises above the glass transition temperature or melting point temperature or the order-disorder transition temperature of the liquid crystal.
  • the absorption structure or luminescence spectrum of the organic polymer DFB structure exhibits a red shift phenomenon of the peak position compared with the film or solution by the organic polymer DFB structure with the increased molecular conjugation length constructed by the method.
  • the continuous optically pumped organic polymer laser realized by this method not only utilizes continuous optical pumping, but also outputs continuous light.
  • the output light of the organic polymer laser prepared by the method also has polarization characteristics.
  • the characteristic size of the nanoimprint template is designed according to the Bragg diffraction equation and the emission wavelength of the organic light-emitting polymer.
  • the period of the DFB structure in the template is 280 nm.
  • the Bragg grating DFB structure with a width of 100 nm, a height of about 200 nm and a period of 280 nm is constructed by direct nanoimprint technology.
  • a spin coating technique was used to spin-coat a quartz substrate to obtain a film having a thickness of about 75 nm (spin coating conditions: PFO dissolved in a toluene solution at a concentration of 15 mg/ml, a spin coating speed of 4000 rpm, and a time of 1 min), and then The substrate with the spin-coated film is placed in a nanoimprinting machine, covered with a nanoimprint template (planar silicon template), the temperature of the nanoimprinting system is raised to 180 ° C, plus 60 bar of pressure for 5 min, Slowly down to room temperature, remove the pressure, remove the template to get a high fidelity PFO Bragg grating DFB structure, which is a continuous optical pumped polymer laser.
  • the cross-section and surface scanning electron micrographs of the PFO Bragg DFB structure are shown in Figures 7a and 7b, respectively. It can be seen that the PFO completely replicates the DFB Bragg grating structure in the nanoimprint template.
  • Fig. 8a and b The molecular chain and crystal orientation in the PFO Bragg grating obtained by the above method were analyzed by wide-angle grazing incidence X-ray diffraction method of Shanghai light source, as shown in Fig. 8a and b, wherein Fig. 8a is the incident direction of X-ray and PFO nanometer. The longitudinal direction of the strip is parallel.
  • Figure 8b shows that the incident direction of the X-ray is perpendicular to the long-axis direction of the PFO nanoribbon, defined as the q z diffraction plane perpendicular to the film substrate direction, and parallel to the direction of the thin film substrate.
  • Xy diffraction plane In Fig.
  • FIG. 9a shows the emission spectra of a PFO organic polymer laser at different pump energy densities. It can be seen from the figure that when the energy density of the pump light is less than 50 W/cm 2 , the light output by the PFO organic polymer laser is affected. The radiant light has a full width at half maximum of 8 nm.
  • FIG. 9b shows the intensity and spectral half-height of the PFO organic polymer laser as a function of the energy density of the pump source.
  • the two-stage variation indicates that the PFO organic polymer laser is pumped by continuous light.
  • the light output is laser light, and the threshold of optical pumping is 48 W/cm 2 .
  • the output light of the PFO organic polymer laser has a distinct linear polarization characteristic, as shown in Figure 9c.
  • the intensity of the output light is the largest.
  • the polarization direction of the analyzer is perpendicular to the direction of the PFO Bragg grating, the intensity of the output light is the lowest. Its degree of polarization can reach 0.60.
  • the continuous optically pumped organic polymer laser realized by this method not only utilizes continuous optical pumping, but also outputs continuous light.
  • the output light of the organic polymer laser prepared by the method also has polarization characteristics.
  • poly(9,9-dioctyl-alternating copolymer-1-4benzo[2,1'3-thiadiazole ⁇ ) F8BT
  • the luminescent wavelength of the polymer is designed to have the characteristic size of the nanoimprint template (the period of the nanoimprint template is 320 nm), and the widths of 85 nm, 95 nm, 110 nm, 135 nm, 180 nm and 200 nm are respectively constructed by direct nanoimprint technology. It is a 200 nm, Bragg grating DFB structure with a period of 320 nm.
  • FIGS. 10a-f correspond to the results of the prepared F8BT Bragg DFB structures having widths of 85 nm, 95 nm, 110 nm, 135 nm, 180 nm, and 200 nm, respectively (cycles are 320 nm).
  • Fig. 11b shows the relationship between the orientation degree of the main chain of the F8BT molecule as a function of the width. As the width increases, the orientation of the main chain of the F8BT molecule gradually decreases.
  • the transient absorption spectra of the oriented ordered F8BT Bragg gratings were investigated as shown in FIG.
  • the ⁇ OD signals at 470 nm and 570 nm correspond to photobleaching and stimulated luminescence, respectively, while the signals with wavelengths greater than 620 nm are derived from polaron or triplet excitons.
  • the stimulated radiation luminescence signal of F8BT is significantly narrower (the full width at half maximum is 7 nm), and the intensity is gradually enhanced.
  • the lifetime of the singlet excitons gradually decreases as the width of the nanoribbons increases.
  • the luminous efficiency of the singlet excitons is characterized. As the width of the nanoribbons increases, the luminous efficiency of the singlet excitons decreases.
  • a small semiconductor laser that outputs laser as continuous light is used as a pumping source, and the same period of different DFB structural size F8BT organic polymer lasers are pumped by a fiber optic spectrometer.
  • the performance was studied.
  • a small-sized semiconductor laser that outputs laser as continuous light is used as a pumping source, and the performance of a continuous optically pumped F8BT organic polymer laser is studied by a fiber optic spectrometer, as shown in FIG. Figure 13a shows the emission spectra of an F8BT organic polymer laser at different pump energy densities.
  • the energy density of the pump light when the energy density of the pump light is less than 28 W/cm 2 , the light output by the F8BT organic polymer laser is affected.
  • the radiant light has a full width at half maximum of 52 nm.
  • the intensity of the output light of the F8BT organic polymer laser sharply increases, and the half-height width of the output light is narrowed to about 7 nm.
  • the intensity of the output light of the F8BT organic polymer laser is further sharply increased, and the spectral width of the output light is 1.7 nm.
  • FIG. 13b shows the intensity and spectral half-width of the F8BT organic polymer laser as a function of the energy density of the pump source at different widths.
  • the three-stage variation indicates that the F8BT organic polymer laser is receiving continuous light.
  • the light output when pumping is laser, and the threshold of optical pumping is 31 W/cm 2 .
  • Fig. 13c statistical calculation of its threshold
  • the output light of the F8BT organic polymer laser has a distinct linear polarization characteristic.
  • the intensity of the output light is the largest.
  • the polarization direction of the analyzer is perpendicular to the direction of the F8BT Bragg grating, the intensity of the output light is the lowest.
  • the degree of polarization can reach 0.85, and its degree of polarization gradually decreases as the feature size of the Bragg grating increases.
  • the characteristic size of the nanoimprint template is designed according to the Bragg diffraction equation and the emission wavelength of the organic light-emitting polymer.
  • the period of the template is 280 nm, the width is 100 nm, 140 nm, 160 nm, respectively.
  • the Bragg grating DFB structure with a width of 100 nm, 140 nm, 160 nm, a height of about 100 nm and a period of 280 nm is constructed by direct nanoimprint technology. For the specific method, see Example 2, that is, a continuous optically pumped polymer laser is obtained.
  • Figure 14 is a scanning electron micrograph of a PFODFB grating in which the width of the nanoribbons in the DFB structure is 100 nm (Fig. a), 140 nm (Fig. b) and 160 nm (Fig. c), and the period is 280 nm.
  • the degree of molecular backbone orientation of PFO nanostructure arrays can be quantitatively characterized by polarized ultraviolet absorption spectroscopy.
  • Figure 16 shows.
  • Figure 16a shows the emission spectra of a PFO organic polymer laser at different pump energy densities. It can be seen from the figure that when the energy density of the pump light is less than 48 W/cm 2 , the light output by the PFO organic polymer laser is affected.
  • the radiant light has a full width at half maximum of 18 nm.
  • FIG. 16b shows the intensity and spectral half-height of the PFO organic polymer laser as a function of the energy density of the pump source.
  • the three-stage variation indicates that the PFO organic polymer laser is pumped by continuous light.
  • the light output is laser light
  • the threshold of optical pumping is 48 W/cm 2 .
  • I can find that its threshold gradually increases with the increase of the width.
  • the output light of the PFO organic polymer laser has a distinct linear polarization characteristic, as shown in Figure 16c.
  • the intensity of the output light is the largest.
  • the polarization direction of the analyzer is perpendicular to the direction of the PFO Bragg grating, the intensity of the output light is the lowest.
  • the degree of polarization can reach 0.65, and its degree of polarization gradually decreases as the feature size of the Bragg grating increases (Fig. 16d).
  • the modulation of the laser performance is successfully achieved by modulating the feature size of the Bragg grating.
  • the laser performance of a continuous optically pumped organic polymer laser realized by this method can be controlled by the characteristic size of the DFB structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种连续光泵浦的聚合物激光器及其制备方法:在平面透明衬底上涂覆有机聚合物的有机溶液,形成有机聚合物薄膜,将具有分布反馈式结构的模板覆在有机聚合物薄膜表面,或者在具有分布反馈式结构的透明衬底上涂覆有机聚合物溶液,形成有机聚合物薄膜,在聚合物薄膜表面覆盖一层平板;有机聚合物为光致发光聚合物;对衬底加热,使其升温至有机聚合物的相转变温度以上,对模板或平板的表面加压1-100min;缓慢降温,使衬底的温度降至有机聚合物的相转变温度以下,将模板或平板从有机聚合物表面去除,得到连续光泵浦的聚合物激光器。

Description

连续光泵浦的聚合物激光器及其制备方法 技术领域
本发明涉及发光器件领域,尤其涉及一种连续光泵浦的聚合物激光器及其制备方法。
背景技术
自从1960年美国科学家T.H.Maiman报道有机染料能够发射激光的现象,可以溶液加工的固态激光器引起了人们极大的兴趣。目前报道的制备可溶液加工的光学增益介质主要包括有机染料、有机半导体、无机纳米粒子、有机-无机杂化材料等。其中,有机聚合物由于具有较大的分子吸收截面、灵活的分子设计、与柔性基材相容的特点而备受人们关注,在光谱仪、数据通讯、化学传感、照明等领域具有广阔的应用前景。1996年,英国剑桥大学R.H.Friend课题组和美国加州大学A.J.Heeger课题组首先分别报道了基于聚苯撑乙烯PPV材料的聚合物激光器。之后,有机聚合物激光器得到迅猛发展,其目的是实现有机聚合物激光器的微型化和轻量化。
虽然人们对有机聚合物激光器进行了大量研究,但有机聚合物激光器的泵浦光源仍然局限于体积庞大、价格昂贵的飞秒或纳秒脉冲激光器,无法实现微型化和轻量化。其原因是在有机聚合物薄膜中存在严重光损耗。研究表明,光损耗主要起源于聚合物光增益介质中的极化子或三线态激子的光吸收。虽然在大部分有机半导体在光激发是能够产生具有四级能级结构的单线态激子,但单线态激子的寿命基本在皮秒量级。而极化子和三线态激子的寿命却在纳秒到毫秒范围。单线态激子和极化子以及三线态激子之间巨大的寿命差异导致聚合物光增益介质中只有少量的单线态激子存在。极化子或三线态激子的存在导致电子-空穴对的复合以及荧光淬灭。因此,大部分有机聚合物激光器都用脉冲宽度小于极化子或三线态激子寿命的飞秒或纳秒激光器泵浦。由于极化子的形成与聚合物分子之间的距离相关,因此近些年人们主要通过分子设计增大侧链的体积而增大聚合物分子链之间的距离或将聚合物分子链包裹在其他介孔材料中来抑制极化子的形成,成功地制备了准连续光泵浦的有机聚合物激光器。为了抑制三线态激子的形成,人们又发展了将有机聚合物光增益介质中掺杂三线态淬灭剂的方法,也成功地实现了准连续光泵浦的有机聚合物激光器。虽然上述技术能够有效地抑制极化子或三线态激子的形成,从而成功地制备了准连续光泵浦的有机聚合物激光器,但仍然无法实现连续光泵浦的激光器。而连续光泵浦的有机聚合物激光器在光谱仪、光通讯、化学传感、照明等领域具有巨大优势,更适合器件的微型化和轻量化,降低能耗,泵浦光源价格低。
事实上,人们早已实现连续光泵浦的无机半导体固体激光器。其原因是无机半导体材料可以形成单晶,在单晶中原子具有长程有序性,使得激子可以在无极半导体材料中无障碍地传输。而有机聚合物分子链的构象熵较大,同时链间相互作用力较弱。有机聚合物材料的这些本征特点使得聚合物薄膜中分子链难以形成长程有序结构。在无序的聚合物薄膜中,激子在传输过程中有可能在结构缺陷处被俘获,从而降低了单线态激子的数量和寿命。结构缺陷可能包括分子链构象的化学缺陷和晶粒边界等。
此外,目前对机聚合物激光器的激光性能调控仍然是一个极大的挑战,对激光器性能调控主要包括对其光泵浦阈值和偏振性的调控。在光泵浦阈值的调控方法上,通过改变聚合物的分子结构,人们设计和合成了共轭程度更高、结晶度更高的分子实现光泵浦阈值的降低。在谐振腔结构设计上,人们通过使用一阶和二阶谐振腔共存的分布反馈式(distributed feedback,DFB)结构实现激光器光泵浦阈值的调控。在激光偏振性的调控上,人们的研究主要是通过在聚合物材料上下两层蒸镀透明的金属层实现电场耦合从而形成对激光器偏振性的调控。这些调控方法比较复杂、且适用范围相当局限、金属与聚合物界面散射等缺点,并且不能实现对激光器性能进行连续调控。而激光器性能可调的连续光泵浦有机聚合物激光器在光谱仪、光通讯、化学传感、照明等领域具有巨大优势,更适合器件的微型化和轻量化,降低能耗,泵浦光源价格低。
分布反馈式(distributed feedback,DFB)结构是制备有机聚合物激光器的常用设计方式之一。其基本原理是通过布拉格光栅实现激子的震荡和光耦合,优点是光增益长度大,光泵浦阈值低。在有机聚合物薄膜中构筑DFB结构的方法包括直接光刻法(利用光刻技术直接在可交联的有机聚合物薄膜中形成DFB结构)和涂布法(利用涂布技术将有机聚合物涂布在具有布拉格光栅的衬底上)。在利用这些方法制备的DFB布拉格光栅中,有机聚合物基本保持了无序状态。但总之,目前的有机聚合物激光器,仍然无法实现连续光泵浦。
发明内容
为解决上述技术问题,本发明的目的是提供一种连续光泵浦的聚合物激光器及其制备方法,本发明的方法简单,使得有机聚合物分子链和超分子结构发生取向长程有序性,获得的激光器可使用连续光泵浦,且可根据实际需要,调节激光器的光泵浦阈值和偏振度。
本发明提供了一种连续光泵浦的聚合物激光器的制备方法,包括以下步骤:
(1)在平面的透明衬底上涂覆有机聚合物的有机溶液,形成有机聚合物薄膜,将具有分布反馈式结构(DFB)的模板覆在有机聚合物薄膜的表面,或者
在具有分布反馈式结构的透明衬底上涂覆有机聚合物溶液,形成有机聚合物薄膜,在聚合物薄膜的表面覆盖一层平板;其中有机聚合物为光致发光聚合物;
(2)对衬底加热,使其温度升到有机聚合物的相转变温度以上,然后对具有分布反馈式结构的模板或平板的表面加压1-100min;
(3)缓慢降温,使衬底的温度降低至有机聚合物的相转变温度以下,将具有分布反馈式结构的模板或平板从有机聚合物表面去除,得到连续光泵浦的聚合物激光器。
进一步地,在步骤(1)中,衬底的材质为硬质材料,如硅、二氧化硅、氧化铝、石英、玻璃、ITO玻璃、FTO玻璃等,也可以为有机材料,如聚酰胺、聚酯、聚偏氟乙烯、聚四氟乙烯或聚硅氧烷。
进一步地,在步骤(1)中,有机聚合物为发光波长在400-480nm(蓝色区域波长)的聚芴类均聚物,所述聚芴类均聚物为聚(9,9-二辛基芴)和/或聚(9,9-二乙基己基芴)。
进一步地,在步骤(1)中,有机聚合物为发光波长在480-580nm(蓝绿色区域波长)的聚芴类共聚物,聚芴类共聚物为聚(9,9-二辛基芴-交替共聚-6,6’-吡啶)、聚(9,9-二辛基芴-交替共聚-6,6’-2,2’联吡啶)、聚(9,9-二辛基芴-交替共聚-6,6’-2,2’:6’2”-三联吡啶)和聚(9,9-二辛基-交替共聚-1-4苯并{2,1’3-噻二唑})中的一种或几种。
进一步地,在步骤(1)中,有机聚合物为发光波长在580-700nm(红色区域波长)的聚苯撑乙烯类聚合物,所述聚苯撑乙烯类聚合物为聚苯撑乙烯类聚合物为聚[2-甲氧基-5-(2-乙基己氧基)1,4-苯撑乙烯撑]、聚[2-甲氧基-5-(3,7-二甲基辛氧基)1,4-苯撑乙烯撑]和聚[2-甲氧基-5-(3,7-二甲基辛氧基)-1,4-苯乙炔]中的一种或几种。
进一步地,在步骤(1)中,分布反馈式结构的周期与有机聚合物的发光波长相匹配,满足布拉格条件,即2n effΛ=2λ Bragg,其中n eff为有机聚合物的光折射系数,Λ为分布反馈式结构的周期,λ Bragg为有机聚合物的发光波长。由于在连续光泵浦的聚合物激光器制备完成后,步骤(1)所使用的有机聚合物形成薄膜,因此上述λ Bragg即为薄膜的发光波长。
DFB结构中有机聚合物的侧向尺寸大于1纳米,小于Λ,厚度大于10纳米。
进一步地,在步骤(1)中,当有机聚合物为聚(9,9-二辛基-交替共聚-1-4苯并{2,1’3-噻二唑})时,具有分布反馈式结构(DFB)的模板或具有分布反馈式结构的透明衬底的周期为300-400nm。优选地,DFB结构的周期为320nm。
进一步地,在步骤(1)中,有机聚合物为聚(9,9-二辛基芴)时,具有分布反馈式结构(DFB)的模板或具有分布反馈式结构的透明衬底的周期为250-400nm。优选地,DFB结构的周期为280nm。
在不改变DFB结构的同时调控分布式反馈式结构的特征尺寸,利用DFB结构的纳米空间限域作用调控聚合物分子链和超分子结构在DFB结构中的取向有序性以及取向有序程度,从而实现对光泵浦所产生的单线态激子的数量、寿命、发光外量子效率进行调控,实现激光器性能可调的连续光泵浦有机聚合物激光器,制备具有不同光泵浦阈值和偏振度的连续光泵浦的有机聚合物激光器,更适合有机聚合物激光器的微型化和轻量化。
进一步地,在步骤(2)和步骤(3)中,相转变温度为玻璃化转变温度、结晶温度或液晶的有序-无序转变温度。
进一步地,在步骤(2)中,施加的压力为1-100大气压。优选地,施加的压力为50-70大气压。
优选地,在步骤(2)中,对具有分布反馈式结构的模板或平板的表面加压5-30min。
进一步地,在步骤(4)中,去除模板或平板后,还包括在有机聚合物表面涂覆一层透明保护层的步骤,保护层的材质为无机材料或有机材料,无机材料为氧化硅或氧化钙等,有机材料为聚硅氧烷、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺或聚四氟乙烯等。
进一步地,在步骤(1)中,分布反馈式结构为一维布拉格光栅或二维光子晶体结构。
进一步地,在步骤(1)中,有机溶液所使用的有机溶剂为甲苯、二甲苯、氯苯、苯、三氯甲烷、环己烷、戊烷、己烷和辛烷中的一种或几种。
进一步地,在步骤(1)中,具有分布反馈式结构的模板或衬底可以通过光刻方法例如可见光光刻、紫外光光刻、X射线光刻、电子束光刻、离子束光刻、纳米压印等方法制备,在光刻胶中形成DFB结构,然后通过离子刻蚀的方式将光刻胶中的DFB结构转移至衬底表面,也可以在光刻胶表面涂覆一层有机聚合物复制光刻胶或衬底中的DFB结构。
进一步地,在步骤(1)中,有机聚合物的有机溶液浓度为1.0-100mg/ml。
进一步地,在步骤(1)中,有机聚合物薄膜的厚度为1-1000nm。
进一步地,在步骤(2)中,升温速率为0.1-1000℃/min。
进一步地,在步骤(3)中,降温速率为0.1-1000℃/min。
进一步地,在步骤(3)中,在降温过程中,有机聚合物的分子链发生长程有序性取向且形状得以固定。
进一步地,在步骤(4)中,连续光泵浦的聚合物激光器中不含有机溶剂。
进一步地,随分布式反馈式结构中有机聚合物侧向尺寸的减小,有机聚合物分子的取向度增大。
进一步地,随分布式反馈式结构中有机聚合物侧向尺寸的减小,聚合物激光器的光泵浦 阈值降低。
进一步地,随分布式反馈式结构中有机聚合物侧向尺寸的减小,聚合物激光器输出光的偏振度增大。本发明的的制备方法和以及以上原理也可以应用到其他领域,例如太阳能电池的制备中。
本发明还提供了一种采用上述制备方法所制备的连续光泵浦的聚合物激光器,包括透明衬底以及位于透明衬底上的具有取向有序性的有机聚合物,有机聚合物为光致发光聚合物且具有分布反馈式结构。
进一步地,连续光泵浦的聚合物激光器中还包括位于有机聚合物表面的保护层,保护层的材质为无机材料或有机材料,无机材料为氧化硅或氧化钙等,有机材料为聚硅氧烷、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺或聚四氟乙烯等。
进一步地,有机聚合物的取向有序性可以为分子链平行于布拉格光栅方向、垂直于布拉格光栅方向或倾斜于布拉格光栅方向。
为实现连续光泵浦的有机聚合物激光器,本发明采用的技术方案包括有机聚合物DFB结构的制备方法,DFB结构制作过程中对聚合物分子链及超分子结构取向有序性进行调控,用该方法实现的连续光泵浦的有机聚合物激光器。借由上述方案,本发明至少具有以下优点:
1、有机聚合物DFB结构加工的过程中,利用DFB结构的纳米空间限域作用调控聚合物分子链和超分子结构在DFB结构中的取向有序性。
2、利用DFB结构制作过程中所施加的压力调控DFB结构中聚合物分子链的共轭长度。
3、聚合物分子链长程有序结构的形成和共轭长度的增大(分子链和超分子结构的长程取向有序性)使光泵浦所产生的单线态激子的数量增大、寿命延长,发光外量子效率提高,实现连续光泵浦的有机聚合物激光器,更适合有机聚合物激光器的微型化和轻量化。。
4、聚合物分子链和超分子结构发生取向长程有序性,使得有机聚合物激光器的输出激光具有偏振特性。
5、连续光泵浦的有机聚合物激光器具有极低的光泵浦阈值,降低了有机聚合物激光器使用过程中的能耗。
6、可在不改变DFB结构的同时调控分布式反馈式结构的特征尺寸,利用DFB结构的纳米空间限域作用调控聚合物分子链和超分子结构在DFB结构中的取向有序性以及取向有序程度,实现激光器性能可调的连续光泵浦有机聚合物激光器,更适合有机聚合物激光器的微型化和轻量化。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依 照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明直接纳米压印方法的制备路线示意图;
图2是本发明反向纳米压印方法的制备路线示意图;
图3是本发明实施例1中,F8BT薄膜的原子力显微镜形貌测试结果;
图4是本发明实施例1中,F8BT薄膜的XRD、偏振紫外吸收光谱图测试结果;
图5是本发明实施例1中,F8BT薄膜的瞬态吸收光谱测试结果;
图6是本发明实施例1中,F8BT薄膜的激光器性能测试结果;
图7是本发明实施例2中,PFO薄膜的扫描电子显微镜形貌测试结果;
图8是本发明实施例2中,PFO薄膜的XRD、偏振紫外吸收光谱图测试结果;
图9是本发明实施例2中,PFO薄膜的激光器性能测试结果;
图10是本发明实施例3中,改变DFB结构的尺寸所制备的F8BT薄膜的原子力显微镜形貌测试结果;
图11是本发明实施例3中,改变DFB结构的尺寸所制备的F8BT薄膜的偏振紫外吸收光谱图测试结果;
图12是本发明实施例3中,改变DFB结构的尺寸所制备的F8BT薄膜的瞬态吸收光谱测试结果;
图13是本发明实施例3中,改变DFB结构的尺寸所制备的F8BT薄膜的激光器性能测试结果;
图14是本发明实施例4中,改变DFB结构的尺寸所制备的PFO薄膜的扫描电子显微镜形貌测试结果;
图15是本发明实施例4中,改变DFB结构的尺寸所制备的PFO薄膜的偏振紫外吸收光谱图测试结果
图16是本发明实施例4中,改变DFB结构的尺寸所制备的PFO薄膜的光器性能测试结果。
附图标记说明:
1-无DFB结构的透明衬底;2-有机聚合物薄膜;3-具有DFB结构的模板;4-形状固定的有机聚合物;5-具有DFB结构的衬底;6-无DFB结构的平板。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
为实现连续光泵浦的有机聚合物激光器,本发明采用的技术方案包括有机聚合物DFB结构的制备方法,具体地,参见附图1,本发明的制备方法其中之一为直接纳米压印方法,包括以下步骤:
S1.将上述有机聚合物溶解在有机溶剂中,制成浓度为1.0-100mg/ml的有机聚合物溶液;
S2.将有机聚合物溶液涂布在无DFB结构的透明衬底1上,形成厚度均一的有机聚合物薄膜2,有机聚合物薄膜2的厚度为1-1000nm;
S3.将无DFB结构的透明衬底1置于热台上,有机聚合物薄膜2表面朝上,同时将具有DFB结构的模板3置于有机聚合物薄膜2表面,具有DFB结构的模板3的表面与有机聚合物的表面接触,热台的温度升到有机聚合物的相变温度以上;
S4.在热台的温度达到上述设定温度以后,对具有DFB结构的模板3、有机聚合物薄膜2和无DFB结构的透明衬底1施加压力,压力的大小为1-100大气压,施加压力的时间为1-100分钟;
S5.降低热台的温度,直至热台的温度降低至有机聚合物的相变温度以下,形成形状固定的有机聚合物4;
S6.将具有DFB结构的模板3从有机聚合物的表面剥离,得到连续光泵浦的聚合物激光器。
具体地,参见附图2,本发明的制备方法还可以为反向纳米压印方法,包括以下步骤:
S1.将有机聚合物溶解在有机溶剂中,制成浓度为1.0-100mg/ml的有机聚合物溶液;
S2.将有机聚合物溶液涂覆在具有DFB结构的衬底5上,形成的薄膜的厚度以接近于DFB结构的高度为宜;
S3.将具有DFB结构的衬底5置于热台上,有机聚合物薄膜2表面朝上,同时将无DFB结构的平板6置于有机聚合物薄膜2表面,将热台的温度升到有机聚合物的相变温度以上;
S4.在热台的温度达到上述设定温度以后,对体系施加压力,压力的大小为1-100大气压,施加压力的时间为1-100分钟;
S5.降低热台的温度,直至热台的温度降低至有机聚合物的相变温度以下,形成形状固定的有机聚合物4;
S6.将无DFB结构的平板6从有机聚合物的表面剥离,有机聚合物留在具有DFB结构的衬底5中以及表面处,得到连续光泵浦的聚合物激光器。
以下以具体实施例来阐述本发明的技术方案。
实施例1
以发光波长在绿色区域的聚(9,9-二辛基-交替共聚-1-4苯并{2,1’3-噻二唑})(F8BT)为例,根据布拉格衍射方程和有机发光聚合物的发光波长设计了纳米压印模板的特征尺寸(纳米压印模板中DFB结构的周期为320nm),采用直接纳米压印技术构筑了宽度为85nm,高度约为200nm,周期为320nm的布拉格光栅DFB结构。首先利用旋涂技术在石英衬底上旋涂得到厚度约为75nm的薄膜(旋涂条件:F8BT溶于甲苯溶液中,浓度为20mg/ml,旋涂速度为5000rpm,时间为1min),然后带有旋涂完成的薄膜的衬底放置在纳米压印机中,盖上纳米压印模板(平面硅模板),将纳米压印系统的温度升至180℃,加上60bars的压力保持30min,缓慢降至室温,撤除压力,移除模板即可得到高保真的F8BT布拉格光栅DFB结构,即为连续光泵浦的聚合物激光器。通过旋涂得到的F8BT薄膜的原子力显微镜形貌图如图3a所示,F8BT布拉格DFB结构的原子力显微镜形貌图和剖面扫描电子显微镜图分别如图3b和3c所示。可以看出,F8BT完全复制了纳米压印模板中的DFB布拉格光栅结构。
为了证实其具有取向有序性,采用以下方法进行测试:
用上述方法得到的F8BT布拉格光栅中的分子链和晶体取向采用上海光源的广角掠入射X射线衍射的方法进行分析,如图4a和b所示,其中图4a是X射线的入射方向与F8BT纳米条带的长轴方向平行,图4b是X射线的入射方向与F8BT纳米条带的长轴方向垂直,定义垂直于薄膜衬底方向为q z衍射平面,平行于薄膜薄膜衬底的方向为q xy衍射平面。图4a和b中q z方向上都出现了一个q z=3.75nm -1(d=1.67nm)的衍射峰,对应于F8BT晶体结构的(001)衍射平面,说明了纳米条带中发光聚合物F8BT的π-π堆积方向是垂直于薄膜衬底排列的。此外,在X射线的入射方向与纳米条带长轴方向垂直方向上,q xy衍射平面内出现了q xy=4.23nm -1(d=1.48nm)对应于F8BT晶胞的(100)衍射平面,而在X射线的入射方向与纳米条带的长轴方向平行的方向上并没有出现该衍射峰,说明了F8BT分子主链的方向是沿着于纳米结构长轴方向排列的。通过偏振紫外吸收光谱和偏振荧光光谱可以实现对F8BT纳米结构阵列的分子主链取向程度进行了定量的表征。图4c是有机半导体发光聚合物(F8BT)纳米条带的偏振紫外吸收光谱图,从图中明显可以发现沿着纳米条带长轴方向的吸收强度明显高于垂直方向,这也就进一步说明了F8BT分子主链发现沿着纳米条带的长轴方向排列,此外根据公式D=(A //-A )/(A //+2A )可以定量的计算出发光聚合物F8BT分子主链的取向度为0.85。图4d是F8BT薄膜和纳米条带的紫外吸收光谱,从图中可以发现纳米条带的紫外吸收峰比薄膜的紫外吸收峰要红移2nm。对于发光光谱而言,如图4e所示,同样地可以看出沿着纳米条带长轴 方向的发光强度明显高于垂直方向,从而进一步证明F8BT的分子主链方向沿着纳米结构阵列的长轴方向排列。此外,图4f是有机半导体发光聚合物(F8BT)薄膜和纳米条带的荧光光谱,从图中可以发现纳米条带的发射峰比薄膜的发射峰要红移3nm。紫外吸收光谱和荧光光谱的红移进一步说明了纳米条带中F8BT的共轭长度明显长于薄膜中。
本实施例同时对取向有序的F8BTDFB结构中单线态激子寿命和发光量子效率的调控作用进行测试,具体结果如下:
对取向有序的F8BT布拉格光栅的瞬态吸收光谱进行研究,如图5所示。可以看出,对于无序的F8BT薄膜(thin film),其瞬态吸收光谱与文献报道基本一致。在图5a中,位于470nm和570nm处的ΔOD信号分别对应于光漂白和受激辐射发光,而波长大于620nm处的信号来自于极化子或三线态激子。同无序的薄膜相比,F8BT布拉格光栅(gratings)的光漂白峰发生红移,与上述紫外吸收光谱和荧光发光光谱中发现的光谱红移现象基本一致。同时,F8BT的受激辐射发光信号明显窄化(半高宽为7nm),而且强度明显增强。这一方面说明在F8BT布拉格光栅中发生了放大受激辐射发光,另一方面也说明F8BT布拉格光栅中单线态激子数量显著增加。在图5b中(其中,空心圆组成的曲线代表F8BT布拉格光栅,实线曲线代表无序的F8BT薄膜),比较了光漂白、极化子或三线态激子和单线态激子的寿命。可以看出,在光漂白、极化子或三线态激子的寿命基本保持不变的情况下,由于F8BT的分子和晶体取向,F8BT布拉格光栅中单线态激子的寿命明显增大,与薄膜相比,寿命可以延长两个数量级,达到极化子或三线态激子寿命的纳秒量级。
为了测试上述制备的F8BT DFB结构的连续光泵浦性能,以输出激光为连续光的小型半导体激光器作为泵浦光源,利用光纤光谱仪对连续光泵浦的F8BT有机聚合物激光器性能进行了研究,如图6所示。图6a为不同泵浦能量密度下F8BT有机聚合物激光器的发射光谱,从图中可以看出,当泵浦光的能量密度小于28W/cm 2时,F8BT有机聚合物激光器所输出的光为受激辐射光,输出光的半高宽为52纳米。当泵浦光的能量密度大于28W/cm 2但小于31W/cm 2时,F8BT有机聚合物激光器输出光的强度急剧增大,输出光的半高宽变窄,约为7纳米。而当泵浦光的能量密度大于31W/cm 2时,F8BT有机聚合物激光器输出光的强度进一步急剧增大,输出光的光谱宽度为1.7纳米。输出光发射光谱的半高宽从52nm逐渐降低为7nm,当泵浦能量高于31W/cm 2时,其发射光谱变窄为1.7nm。图6b给出了F8BT有机聚合物激光器输出光的强度和光谱半高宽随泵浦光源的能量密度变化的曲线,其三段式的变化表明F8BT有机聚合物激光器在受到连续光的泵浦时所输出的光为激光,光泵浦的阈值为31W/cm 2
另外,F8BT有机聚合物激光器的输出光具有明显的线性偏振特征。当检偏器的偏振方向平行于F8BT布拉格光栅的方向时,输出光的强度最大。而当检偏器的偏振方向垂直于F8BT布拉格光栅的方向时,输出光的强度最低。其偏振度可以达到0.85。当检偏器的偏振方向与F8BT布拉格光栅的方向有一定夹角时,输出光的强度则可以调制(图6c、d)。
可根据本实施例在透明基底上通过涂布(例如旋涂、喷涂、刮涂)方法形成薄膜,在压力作用下将具有DFB结构的模板压入到有机聚合物薄膜中,在其过程中有机聚合物的温度升高到玻璃化转变温度或熔点温度或液晶的有序-无序转变温度以上。
以上实验结果表明,利用该方法构筑的分子链和晶体取向有序的有机聚合物DFB结构,利用散射方法或光谱方法获得的有机聚合物聚集态结构信息中出现各向异性或二向色性。
利用该方法构筑的分子共轭长度增大的有机聚合物DFB结构,有机聚合物DFB结构的吸收光谱或发光光谱与薄膜或溶液相比出现峰位的红移现象。
利用该方法实现的连续光泵浦的有机聚合物激光器,其不仅利用连续光泵浦,且其输出也为连续光。此外利用该方法制备的有机聚合物激光器的输出光还具有偏振特征。
实施例2
以发光波长在蓝色区域的聚(9,9-二辛基芴)(PFO)为例,根据布拉格衍射方程和有机发光聚合物的发光波长设计了纳米压印模板的特征尺寸(纳米压印模板中DFB结构的周期为280nm),采用直接纳米压印技术构筑了宽度为100nm,高度约为200nm,周期为280nm的布拉格光栅DFB结构。首先利用旋涂技术在石英衬底上旋涂得到厚度约为75nm的薄膜(旋涂条件:PFO溶于甲苯溶液中,浓度为15mg/ml,旋涂速度为4000rpm,时间为1min),然后将带有旋涂完成的薄膜的衬底放置在纳米压印机中,盖上纳米压印模板(平面硅模板),将纳米压印系统的温度升至180℃,加上60bars的压力保持5min,缓慢降至室温,撤除压力,移除模板即可得到高保真的PFO布拉格光栅DFB结构,即为连续光泵浦的聚合物激光器。PFO布拉格DFB结构的剖面和表面扫描电子显微镜图分别如图7a和7b所示。可以看出,PFO完全复制了纳米压印模板中的DFB布拉格光栅结构。
为了证实其具有取向有序性,采用以下方法进行测试:
用上述方法得到的PFO布拉格光栅中的分子链和晶体取向采用上海光源的广角掠入射X射线衍射的方法进行分析,如图8a和b所示,其中图8a是X射线的入射方向与PFO纳米条带的长轴方向平行,图8b是X射线的入射方向与PFO纳米条带的长轴方向垂直,定义垂直于薄膜衬底方向为q z衍射平面,平行于薄膜薄膜衬底的方向为q xy衍射平面。在图8b中,q z=4.91nm -1(d=1.28nm)的衍射峰对应于PFO晶体结构的(200)衍射平面,说明了纳米条带中 发光聚合物PFO的晶体a轴的方向是垂直于薄膜衬底排列的。此外,q xy衍射平面内出现了q xy=15.14nm -1(d=0.42nm)衍射峰,其对应于PFO晶胞的(008)衍射平面。这一结果表明,在PFO的DFB结构中PFO分子的主链方向平行于光栅方向排列。而当X射线的入射方向平行于PFO纳米条带的长轴方向时(图8b),除了仍然可以观测到q z=4.91nm -1(d=1.28nm)的衍射峰,还可以在面内发现q xy=10.74nm -1(d=0.58nm)和q xy=16.11nm -1(d=0.39nm)的衍射峰,它们分别对应于PFO晶体结构的(040)和(060)衍射平面,这表明PFO晶体的b轴方向垂直于纳米条带的长轴方向。通过偏振紫外吸收光谱和偏振荧光光谱可以实现对PFO纳米结构阵列的分子主链取向程度进行了定量的表征。图8c是有机半导体发光聚合物(PFO)纳米条带的偏振紫外吸收光谱图,从图中明显可以发现沿着纳米条带长轴方向的吸收强度明显高于垂直方向,这也就进一步说明了PFO分子主链发现沿着纳米条带的长轴方向排列,此外根据公式D=(A //-A )/(A //+2A )可以定量的计算出有机半导体发光聚合物(PFO)分子主链的取向程度为0.65。
为了测试上述制备的PFO布拉格DFB光栅的连续光泵浦性能,以输出激光为连续光的小型半导体激光器作为泵浦光源,利用光纤光谱仪对连续光泵浦的PFO有机聚合物激光器性能进行了研究,如图9所示。图9a为不同泵浦能量密度下PFO有机聚合物激光器的发射光谱,从图中可以看出,当泵浦光的能量密度小于50W/cm 2时,PFO有机聚合物激光器所输出的光为受激辐射光,输出光的半高宽为8纳米。当泵浦光的能量密度大于50W/cm 2时,PFO有机聚合物激光器输出光的强度急剧增大,输出光的半高宽变窄,输出光的光谱宽度为1.5纳米。图9b给出了PFO有机聚合物激光器输出光的强度和光谱半高宽随泵浦光源的能量密度变化的曲线,其二段式的变化表明PFO有机聚合物激光器在受到连续光的泵浦时所输出的光为激光,光泵浦的阈值为48W/cm 2
另外,PFO有机聚合物激光器的输出光具有明显的线性偏振特征,如图9c。当检偏器的偏振方向平行于PFO布拉格光栅的方向时,输出光的强度最大。而当检偏器的偏振方向垂直于PFO布拉格光栅的方向时,输出光的强度最低。其偏振度可以达到0.60。
以上实验结果表明,利用本发明的方法构筑的分子链和晶体取向有序的有机聚合物DFB结构,利用散射方法或光谱方法获得的有机聚合物聚集态结构信息中出现各向异性或二向色性。
利用该方法实现的连续光泵浦的有机聚合物激光器,其不仅利用连续光泵浦,且其输出也为连续光。此外利用该方法制备的有机聚合物激光器的输出光还具有偏振特征。
实施例3
以发光波长在绿色区域的聚(9,9-二辛基-交替共聚-1-4苯并{2,1’3-噻二唑})(F8BT)为例,根据布拉格衍射方程和有机发光聚合物的发光波长设计了纳米压印模板的特征尺寸(纳米压印模板的周期为320nm),采用直接纳米压印技术分别构筑了宽度为85nm、95nm、110nm、135nm、180nm和200nm,高度约为200nm,周期为320nm的布拉格光栅DFB结构。具体方法参见实施例1,即可得到高保真的F8BT布拉格光栅DFB结构。如图10所示,图10a-f分别对应所制备的F8BT布拉格DFB结构的宽度分别为85nm、95nm、110nm、135nm、180nm和200nm的结果(周期均为320nm)。
通过偏振紫外吸收光谱和偏振荧光光谱可以实现对F8BT纳米结构阵列的分子主链取向程度进行了定量的表征。图11a是发光聚合物F8BT纳米条带的偏振紫外吸收光谱图,根据公式D=(A //-A )/(A //+2A )可以定量的计算出当DFB结构的宽度分别为85nm、95nm、110nm、135nm、180nm和200nm时,其中的有机半导体发光聚合物(F8BT)分子主链的取向程度分别为0.65,0.7,0.75,0.78,0.82和0.85。图11b是F8BT分子主链的取向程度随着宽度变化的关系,随着宽度的增加,F8BT分子主链的取向程度逐渐降低。
本实施例同时对本实施例制备的不同的取向有序的F8BT DFB结构中单线态激子寿命和发光量子效率的调控作用进行测试,具体结果如下:
对取向有序的F8BT布拉格光栅的瞬态吸收光谱进行了研究,如图12所示。在图12a中,位于470nm和570nm处的ΔOD信号分别对应于光漂白和受激辐射发光,而波长大于620nm的信号来自于极化子或三线态激子。在不同宽度的F8BT布拉格DFB结构中,F8BT的受激辐射发光信号明显窄化(半高宽为7nm),而且强度逐渐增强。这一方面说明在F8BT布拉格光栅中发生了放大受激辐射发光,另一方面也说明F8BT布拉格光栅中单线态激子数量随着结构减小的增加显著增加。在图12a中,比较光漂白、极化子或三线态激子和单线态激子的寿命,其统计结果如图12c所示。可以看出,在光漂白、极化子或三线态激子的寿命基本保持不变的情况下,由于F8BT的分子和晶体取向,F8BT布拉格光栅中单线态激子的寿命随着结构宽度的降低明显增大,达到极化子或三线态激子寿命的纳秒量级。并且其单线态激子的寿命随着纳米条带宽度的增加而逐渐降低。同时如图12d所示,通过对其单线态激子的发光效率进行了表征,随着纳米条带宽度的增加,其单线态激子的发光效率增逐渐降低。
为了测试上述制备的F8BT DFB结构的连续光泵浦性能,以输出激光为连续光的小型半导体激光器作为泵浦光源,利用光纤光谱仪对连续光泵浦的相同周期不同DFB结构尺寸F8BT有机聚合物激光器性能进行了研究。以输出激光为连续光的小型半导体激光器作为泵浦光源,利用光纤光谱仪对连续光泵浦的F8BT有机聚合物激光器性能进行了研究,如图13所 示。图13a为不同泵浦能量密度下F8BT有机聚合物激光器的发射光谱,从图中可以看出,当泵浦光的能量密度小于28W/cm 2时,F8BT有机聚合物激光器所输出的光为受激辐射光,输出光的半高宽为52纳米。当泵浦光的能量密度大于28W/cm 2但小于31W/cm 2时,F8BT有机聚合物激光器输出光的强度急剧增大,输出光的半高宽变窄,约为7纳米。而当泵浦光的能量密度大于31W/cm 2时,F8BT有机聚合物激光器输出光的强度进一步急剧增大,输出光的光谱宽度为1.7纳米。输出光发射光谱的半高宽从52nm逐渐降低为7nm,当泵浦能量高于31W/cm 2时,其发射光谱变窄为1.7nm。图13b给出了不同宽度下,F8BT有机聚合物激光器输出光的强度和光谱半高宽随泵浦光源的能量密度变化的曲线,其三段式的变化表明F8BT有机聚合物激光器在受到连续光的泵浦时所输出的光为激光,光泵浦的阈值为31W/cm 2。此外,通过对其阈值的统计计算(如图13c),可发现其阈值随着宽度的增加而逐渐增加。
另外,F8BT有机聚合物激光器的输出光具有明显的线性偏振特征。当检偏器的偏振方向平行于F8BT布拉格光栅的方向时,输出光的强度最大。而当检偏器的偏振方向垂直于F8BT布拉格光栅的方向时,输出光的强度最低。其偏振度可以达到0.85,并且其偏振度随着布拉格光栅的特征尺寸的增加而逐渐减低。综上所述我们通过对布拉格光栅特征尺寸的调制成功地实现了对其激光性能(阈值、偏振度)的调制。
实施例4
以发光波长在蓝色区域的聚(9,9-二辛基芴)(PFO)为例,根据布拉格衍射方程和有机发光聚合物的发光波长设计了纳米压印模板的特征尺寸(纳米压印模板的周期为280nm,宽度分别为100nm,140nm,160nm),采用直接纳米压印技术构筑了宽度为100nm,140nm,160nm,高度约为100nm,周期为280nm的布拉格光栅DFB结构。具体方法参见实施例2,即得到连续光泵浦的聚合物激光器。图14为PFODFB光栅的扫描电镜图,其DFB结构中纳米条带的宽度分别为100nm(图a),140nm(图b)和160nm(图c),周期为280nm。
通过偏振紫外吸收光谱可以实现对PFO纳米结构阵列的分子主链取向程度进行了定量的表征。图15a是有机半导体发光聚合物(PFO)纳米条带的偏振紫外吸收光谱图,从图中明显可以发现沿着纳米条带长轴方向的吸收强度明显高于垂直方向,这也就进一步说明了PFO分子主链发现沿着纳米条带的长轴方向排列,此外根据公式D=(A //-A )/(A //+2A )可以定量的计算出有机半导体发光聚合物(F8BT)分子主链的取向程度为0.65,0.5,0.4(图15b)。
为了测试上述制备的PFO DFB结构的连续光泵浦性能,以输出激光为连续光的小型半导体激光器作为泵浦光源,利用光纤光谱仪对连续光泵浦的PFO有机聚合物激光器性能进行了 研究,如图16所示。图16a为不同泵浦能量密度下PFO有机聚合物激光器的发射光谱,从图中可以看出,当泵浦光的能量密度小于48W/cm 2时,PFO有机聚合物激光器所输出的光为受激辐射光,输出光的半高宽为18纳米。当泵浦光的能量密度大于48W/cm 2时,PFO有机聚合物激光器输出光的强度急剧增大,输出光的半高宽变窄,输出光的光谱宽度为2纳米。图16b给出了PFO有机聚合物激光器输出光的强度和光谱半高宽随泵浦光源的能量密度变化的曲线,其三段式的变化表明PFO有机聚合物激光器在受到连续光的泵浦时所输出的光为激光,光泵浦的阈值为48W/cm 2。此外,通过对其阈值的统计计算(如图16d),我可发现其阈值随着宽度的增加而逐渐增加。
另外,PFO有机聚合物激光器的输出光具有明显的线性偏振特征,如图16c。当检偏器的偏振方向平行于PFO布拉格光栅的方向时,输出光的强度最大。而当检偏器的偏振方向垂直于PFO布拉格光栅的方向时,输出光的强度最低。其偏振度可以达到0.65,且其偏振度随着布拉格光栅的特征尺寸的增加而逐渐减低(如图16d)。综上所述,通过对布拉格光栅特征尺寸的调制成功地实现了对其激光性能(阈值、偏振度)的调制。
以上实验结果表明,利用本发明的方法构筑的分子链和晶体取向有序的有机聚合物DFB结构,利用散射方法或光谱方法获得的有机聚合物聚集态结构信息中出现各向异性或二向色性,并且其分子和晶体的有序性可以通过具有相同周期不同尺寸的DFB结构进行调控。
利用该方法构筑的相同周期不同尺寸的DFB结构,聚合物分子和晶体的长程有序程度随着宽度的增加而降低。
利用该方法实现的连续光泵浦的有机聚合物激光器,其激光器性能可以通过DFB结构的特征尺寸进行调控。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种连续光泵浦的聚合物激光器的制备方法,其特征在于,包括以下步骤:
    (1)在平面的透明衬底上涂覆有机聚合物的有机溶液,形成有机聚合物薄膜,将具有分布反馈式结构的模板覆在所述有机聚合物薄膜的表面,或者
    在具有分布反馈式结构的透明衬底上涂覆所述有机聚合物的有机溶液,形成有机聚合物薄膜,在所述聚合物薄膜的表面覆盖一层平板;其中所述有机聚合物为光致发光聚合物;
    (2)对衬底加热,使其温度升到有机聚合物的相转变温度以上,然后对所述模板或平板的表面加压1-100min;
    (3)缓慢降温,使衬底的温度降低至有机聚合物的相转变温度以下,将所述模板或平板从有机聚合物表面去除,得到所述连续光泵浦的聚合物激光器。
  2. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(1)中,所述衬底的材质为硅、二氧化硅、氧化铝、石英、玻璃、聚酰胺、聚酯、聚偏氟乙烯、聚四氟乙烯或聚硅氧烷。
  3. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(1)中,所述有机聚合物为发光波长在400-480nm的聚芴类均聚物,所述聚芴类均聚物为聚(9,9-二辛基芴)和/或聚(9,9-二乙基己基芴)。
  4. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(1)中,所述有机聚合物为发光波长在480-580nm的聚芴类共聚物,所述聚芴类共聚物为聚(9,9-二辛基芴-交替共聚-6,6’-吡啶)、聚(9,9-二辛基芴-交替共聚-6,6’-2,2’联吡啶)、聚(9,9-二辛基芴-交替共聚-6,6’-2,2’:6’2”-三联吡啶)和聚(9,9-二辛基-交替共聚-1-4苯并(2,1’3-噻二唑)中的一种或几种。
  5. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(1)中,所述有机聚合物为发光波长在580-700nm的聚苯撑乙烯类聚合物,所述聚苯撑乙烯类聚合物为聚[2-甲氧基-5-(2-乙基己氧基)1,4-苯撑乙烯撑]、聚[2-甲氧基-5-(3,7-二甲基辛氧基)1,4-苯撑乙烯撑]和聚[2-甲氧基-5-(3,7-二甲基辛氧基)-1,4-苯乙炔]中的一种或几种。
  6. 根据权利要求6所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(1)中,分布反馈式结构的周期与所述有机聚合物的发光波长相匹配,满足布拉格条件,即2n effΛ=2λ Bragg,其中n eff为所述有机聚合物的光折射系数,Λ为分布反馈式结构的周期,λ Bragg为所述有机聚合物的发光波长。
  7. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(2)和步骤(3)中,所述相转变温度为玻璃化转变温度、结晶温度或液晶的有序-无序转 变温度。
  8. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(2)中,施加的压力为1-100大气压。
  9. 根据权利要求1所述的连续光泵浦的聚合物激光器的制备方法,其特征在于:在步骤(4)中,去除所述模板或平板后,还包括在有机聚合物表面涂覆一层透明保护层的步骤,所述保护层的材质为氧化硅、氧化钙、聚硅氧烷、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚四氟乙烯。
  10. 一种根据权利要求1-9中任一项所述的制备方法所制备的连续光泵浦的聚合物激光器,其特征在于:包括透明衬底以及位于所述透明衬底上的具有取向有序性的有机聚合物,所述有机聚合物为光致发光聚合物且具有分布反馈式结构。
PCT/CN2018/114068 2017-11-15 2018-11-06 连续光泵浦的聚合物激光器及其制备方法 WO2019096025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/611,086 US10879670B2 (en) 2017-11-15 2018-11-06 Continuous-wave pumped polymer laser and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711127708.3A CN107681463B (zh) 2017-11-15 2017-11-15 连续光泵浦的聚合物激光器及其制备方法
CN201711127708.3 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019096025A1 true WO2019096025A1 (zh) 2019-05-23

Family

ID=61149654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114068 WO2019096025A1 (zh) 2017-11-15 2018-11-06 连续光泵浦的聚合物激光器及其制备方法

Country Status (3)

Country Link
US (1) US10879670B2 (zh)
CN (1) CN107681463B (zh)
WO (1) WO2019096025A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681463B (zh) 2017-11-15 2019-10-22 苏州大学 连续光泵浦的聚合物激光器及其制备方法
CN108777431B (zh) * 2018-06-18 2020-07-03 南京邮电大学 一种利用有机激光增益介质薄膜实现双自发辐射放大的方法
US11837842B2 (en) * 2019-12-29 2023-12-05 Hong Kong Baptist University Tunable laser materials comprising solid-state blended polymers
CN114613902B (zh) * 2022-02-14 2023-03-24 苏州大学 一种聚合物薄膜极化的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068601A (ja) * 1998-08-21 2000-03-03 Hitachi Ltd 利得結合分布帰還型半導体レーザ
JP2004071678A (ja) * 2002-08-02 2004-03-04 Matsushita Electric Ind Co Ltd 分布帰還型半導体レーザの製造方法
CN101001001A (zh) * 2006-12-20 2007-07-18 武汉光迅科技股份有限公司 低成本dfb激光器制作方法
CN102910579A (zh) * 2012-09-26 2013-02-06 华中科技大学 一种可提高图形深宽比的纳米压印方法及其产品
CN104882780A (zh) * 2015-06-10 2015-09-02 北京工业大学 一种薄膜型有机聚合物激光器的制备方法
CN107681463A (zh) * 2017-11-15 2018-02-09 苏州大学 连续光泵浦的聚合物激光器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160828A (en) * 1997-07-18 2000-12-12 The Trustees Of Princeton University Organic vertical-cavity surface-emitting laser
DE19809696A1 (de) * 1998-03-06 1999-09-09 Bayer Ag Kunststoff-Substrat für Festkörper-Laser
US6947459B2 (en) * 2002-11-25 2005-09-20 Eastman Kodak Company Organic vertical cavity laser and imaging system
CN101447644B (zh) * 2007-11-28 2010-11-10 中国科学院长春光学精密机械与物理研究所 电泵浦面发射耦合微腔有机激光器件
GB0809840D0 (en) * 2008-05-30 2008-07-09 Univ Catholique Louvain Ferroelectric organic memories with ultra-low voltage operation
CN102651534A (zh) * 2011-02-23 2012-08-29 北京工业大学 基于激光干涉光刻的分布反馈式有机半导体激光器制作方法
CN105356295A (zh) * 2015-11-10 2016-02-24 南京大学 基于重构-等效啁啾和纳米压印制备dfb激光器及阵列的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068601A (ja) * 1998-08-21 2000-03-03 Hitachi Ltd 利得結合分布帰還型半導体レーザ
JP2004071678A (ja) * 2002-08-02 2004-03-04 Matsushita Electric Ind Co Ltd 分布帰還型半導体レーザの製造方法
CN101001001A (zh) * 2006-12-20 2007-07-18 武汉光迅科技股份有限公司 低成本dfb激光器制作方法
CN102910579A (zh) * 2012-09-26 2013-02-06 华中科技大学 一种可提高图形深宽比的纳米压印方法及其产品
CN104882780A (zh) * 2015-06-10 2015-09-02 北京工业大学 一种薄膜型有机聚合物激光器的制备方法
CN107681463A (zh) * 2017-11-15 2018-02-09 苏州大学 连续光泵浦的聚合物激光器及其制备方法

Also Published As

Publication number Publication date
CN107681463B (zh) 2019-10-22
CN107681463A (zh) 2018-02-09
US10879670B2 (en) 2020-12-29
US20200153200A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019096025A1 (zh) 连续光泵浦的聚合物激光器及其制备方法
Wang et al. Perovskite‐based nanocrystals: synthesis and applications beyond solar cells
EP1743388B1 (de) Elektronische vorrichtungen enthaltend organische halbleiter
Klärner et al. Cross-linkable polymers based on dialkylfluorenes
Castelli et al. High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polar polymer injecting layers
Lin et al. Synthesis and optoelectronic properties of starlike polyfluorenes with a silsesquioxane core
Xu et al. Organic− inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots
Gao et al. Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles
Chen et al. Organic polarized light‐emitting diodes via förster energy transfer using monodisperse conjugated oligomers
O'Carroll et al. Conjugated polymer-based photonic nanostructures
Ji et al. Vapor-assisted solution approach for high-quality perovskite CH3NH3PbBr3 thin films for high-performance green light-emitting diode applications
JP2005340195A (ja) ナノ結晶の多層薄膜製造方法およびこれを用いた有機・無機ハイブリッドエレクトロルミネッセンス素子
Kus et al. Synthesis of nanoparticles
Rahmati et al. Interlayer engineering of flexible and large-area red organic-light-emitting diodes based on an n-annulated perylene diimide dimer
Xu et al. Hierarchical uniform crystalline nanowires of wide bandgap conjugated polymer for light-emitting optoelectronic devices
Xu et al. Multicolor random lasers based on perovskite quantum dots embedded in intrinsic Pb–MOFs
JP5723784B2 (ja) 有機電子デバイスに使用する有機層の結晶性ナノファイバ含有率を制御する方法
Kong et al. Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles
El-Bashir Effect of solvent polarity on the homogeneity and photophysical properties of MDMO-PPV films: towards efficient plastic solar cells
Yoshino et al. Organic electronic devices based on polymeric material and tunable photonic crystal
DeSilva et al. Reflectivity of 88% for four-period hybrid Bragg mirror from spin coating process
Wang et al. Controlling the chain orientation and crystal form of poly (9, 9-dioctylfluorene) films for low-threshold light-pumped lasers
Rozanski et al. Effect of film morphology on the energy transfer to emissive green defects in dialkyl polyfluorenes
Mohsennia et al. Low driving voltage in polymer light-emitting diodes with CdS nanoparticles as an electron transport layer
Tao Wearable photonics based on integrative polymeric photonic fibres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879133

Country of ref document: EP

Kind code of ref document: A1