CN104882780A - 一种薄膜型有机聚合物激光器的制备方法 - Google Patents

一种薄膜型有机聚合物激光器的制备方法 Download PDF

Info

Publication number
CN104882780A
CN104882780A CN201510316248.3A CN201510316248A CN104882780A CN 104882780 A CN104882780 A CN 104882780A CN 201510316248 A CN201510316248 A CN 201510316248A CN 104882780 A CN104882780 A CN 104882780A
Authority
CN
China
Prior art keywords
organic polymer
laser
film
grating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510316248.3A
Other languages
English (en)
Other versions
CN104882780B (zh
Inventor
翟天瑞
李松涛
陈丽
王丽
张新平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201510316248.3A priority Critical patent/CN104882780B/zh
Priority to US15/109,650 priority patent/US9667035B1/en
Priority to PCT/CN2015/082963 priority patent/WO2016197423A1/zh
Publication of CN104882780A publication Critical patent/CN104882780A/zh
Application granted granted Critical
Publication of CN104882780B publication Critical patent/CN104882780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0635Thin film lasers in which light propagates in the plane of the thin film provided with a periodic structure, e.g. using distributed feed-back, grating couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0211Substrates made of ternary or quaternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/178Solid materials amorphous, e.g. glass plastic

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Lasers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

一种薄膜型有机聚合物激光器的制备方法,将有机聚合物材料溶解在有机溶剂中,制成有机聚合物溶液;将有机聚合物溶液旋涂在无光栅结构或有光栅结构的基底上,获得厚度均匀的有机聚合物薄膜;对于无光栅结构的基底,将紫外激光干涉图案直接与有机聚合物薄膜作用,在有机聚合物薄膜上直写出单周期的光栅或不同周期、不同方向的光栅;对于有光栅结构的基底,则忽略;使用盐酸、水溶剂,浸泡附有有机聚合物薄膜的基底,有机聚合物薄膜自动剥离基底,形成带有光栅结构的有机聚合物薄膜。当外界光泵浦时,薄膜型有机聚合物激光器上的有机聚合物吸收泵浦光能量,发射出的荧光,在光栅作用下多次反射实现增益,从而获得激光输出。

Description

一种薄膜型有机聚合物激光器的制备方法
技术领域
本发明涉及一种薄膜型有机聚合物激光器的制备方法,属于光电技术领域。
背景技术
1972年,美国贝尔实验室的H.Kogelnik和C.V.Shank采用电磁场的耦合波理论,分析了DFB激光器的工作原理与特性。DFB(Distributed FeedbackLaser),即分布式反馈激光器,其基本原理是内置了布拉格光栅(BraggGrating),激光振荡不是靠F-P腔来实现,而是依靠沿纵向等间隔分布的光栅所形成的光耦合。DFB激光器具有反射率高、增益长度长、较强的发射波长选择性和稳定性以及低阈值的特点。
近年来,有机聚合物材料的高速发展,使得有机聚合物激光器的制造成为可能。1992年,Daniel Moses发现MEH-PPV的二甲苯溶液能够发出激光,其量子产率可以与Rhodamine 6G相媲美。1996年,美国Heeger小组将MEH-PPV混入PS基质中,并加入适量的TiO2纳米晶体,制成厚度在微米量级(典型厚度为200um)的薄膜,在532nm脉冲激光的泵浦下,观察到增益窄化现象。1996年,英国剑桥大学卡文迪许实验室的Friend小组首次详细的报导了光泵浦的聚合物微腔激光器的激射行为。1998年,美国的Heeger小组在BuEH-PPV薄膜中实现了光泵浦的受激发射,获得了具有高量子效率、高增益系数、低激射阈值的有机聚合物发光器件。
有机聚合物激光器的应用领域很广,如作为白光光源、传感器等,并显示出良好的应用前景。同时,对激光器的微型化、轻量化等方面提出了要求。
发明内容
本发明的目的正是基于上述考虑,提出了一种薄膜型有机聚合物激光器的制作方法,用该方法实现的激光器具备微型化、轻量化特点。
为实现上述目的,本发明采用的技术方案为一种薄膜型有机聚合物激光器的制作方法,用该方法实现的激光器包括带有光栅结构的有机聚合物薄膜。
本发明中的一种薄膜型有机聚合物激光器的制备方法,步骤如下:
S1将有机聚合物材料溶解在有机溶剂中,制成浓度为10-60mg/ml的有机聚合物溶液;
S2将有机聚合物溶液旋涂在无光栅结构或有光栅结构的基底上,旋涂速度为500-4000rpm,旋涂时间30-60s,获得厚度均匀的有机聚合物薄膜,薄膜的厚度为50-500nm;
S3对于无光栅结构的基底,将紫外激光干涉图案直接与有机聚合物薄膜作用,在有机聚合物薄膜上直写出单周期的光栅或不同周期、不同方向的光栅;对于有光栅结构的基底,则忽略此步骤;
S4使用盐酸或水等溶剂,浸泡附有有机聚合物薄膜的基底,有机聚合物薄膜自动剥离基底,形成带有光栅结构的有机聚合物薄膜,即薄膜型有机聚合物激光器。
所述的有机聚合物材料为:9,9-二辛基芴-2,7)-交替共聚-(1,4-{2,1’,3}-苯并噻二唑)(F8BT),(9,9-二辛基芴-2,7)-共聚-二(4-甲氧基苯基)-芴(F8DP),或(9,9-二辛基芴-2,7)-共聚-双-N,N’-(4-丁基苯基)-双-N,N’-苯基-1,4-苯二胺(PFB)中的一种;所述的有机溶剂为二甲苯、甲苯、氯苯、二氯苯、苯、三氯甲烷、环己烷、戊烷、己烷、辛烷中的一种;基底为ITO玻璃、FTO玻璃、AZO玻璃、水溶性薄膜PVOH、水溶性聚乙烯醇薄膜PVA中的一种;干涉灼蚀紫外激光光源为波长小于等于400nm的高能量脉冲激光。
本发明中的一种薄膜型有机聚合物激光器上的有机聚合物作为增益介质,有机聚合物光栅提供反馈。当外界光泵浦时,薄膜型有机聚合物激光器上的有机聚合物吸收泵浦光能量,发射出的荧光,在光栅作用下多次反射实现增益,从而获得激光输出。
与现有有机聚合物激光器相比,本发明具有如下有益效果:
1、实现了有机聚合物激光器的微型化和轻量化,更适合于微型器件的开发与应用;
2、薄膜型有机聚合物激光器具有激光输出线宽窄的特点,展现出优良的单色性;
3、通过改变光栅周期、改变光栅方向和更换有机聚合物材料的方式,实现不同波长输出或同时输出多波长激光。
附图说明
图1是本发明中光刻胶光栅的制作光路图;
图2是本发明中薄膜型有机聚合物激光器在基底ITO玻璃上的结构示意图;
图3是本发明中薄膜型有机聚合物激光器的结构示意图;
图4是本发明中薄膜型有机聚合物激光器以PET基片作为支架的示意图;
图5是本发明中薄膜型有机聚合物激光器发射激光的光谱图。
图中,1.1、入射光,1.2、分束镜,1.3、介质膜全反镜,1.4、待加工样品,2.1、ITO玻璃的玻璃基底,2.2、ITO薄膜,2.3、光刻胶光栅,2.4、有机聚合物,3.1、PET基片,3.2、薄膜型有机聚合物激光器,3.3、圆孔。
具体实施方式
本发明制作的带有光栅结构的有机聚合物薄膜,即薄膜型有机聚合物激光器。薄膜型有机聚合物激光器上的有机聚合物作为增益介质,光栅提供反馈。当外界光泵浦时,薄膜型有机聚合物激光器上的有机聚合物吸收泵浦光能量,发射出的荧光,在光栅作用下多次反射实现增益,从而获得激光输出。
下面结合附图和实施例具体说明本发明的实施方法,但是不限于以下实施例,实施例中基底选择ITO玻璃的玻璃基底(2.1),有机聚合物(2.4)选择F8BT,制作单波长输出的薄膜型有机聚合物激光器(3.2),该激光器制备方法包括以下步骤:
S1将适量光刻胶溶液滴在15mm×15mm×1mm的ITO玻璃的ITO面上,旋涂速度3000rpm(转/分钟),旋涂时间30s。光刻胶的型号为AllresistAR-P-3170;
S2将旋涂有光刻胶的ITO玻璃放在加热板上100℃加热1min,得到厚度约为120nm的光刻胶薄膜,然后在干涉光路中进行干涉光刻,如图1所示。脉冲激光器发出入射光(1.1),入射光(1.1)射入分束镜(1.2)后,两束光分别射入对称的介质膜全反镜(1.3)上,经两介质膜全反镜(1.3)反射后会聚至待加工样品(1.4)上。其中,干涉光刻所用激光器为He–Cd Laser(From Kimmon)脉冲激光器,发射激光波长为325nm,干涉光路两光斑的功率和为10mw,光斑直径9mm,曝光时间10s。曝光显影时间6s,得到周期为355nm的光刻胶光栅(2.3)。
S3将F8BT溶解于二甲苯,制成浓度为25mg/ml的F8BT二甲苯溶液;取适量溶液滴在步骤S2中的光刻胶光栅(2.3)上,然后进行旋涂,速度1000rpm,旋涂时间30s,得到的F8BT膜厚约为170nm。形成的结构如图2所示的样品。
S3将做好的所述样品放在盐酸中,盐酸质量浓度为20%,浸泡约20min,盐酸将ITO玻璃上的ITO薄膜(2.2)溶解,包含光刻胶光栅(2.3)和F8BT层的薄膜,厚度约290nm,自动和ITO玻璃的玻璃基底(2.1)分离,漂浮到盐酸溶液的表面。此薄膜即为薄膜型有机聚合物激光器(3.2),见图3。
S4选择中间带圆孔(3.3)的正方形PET基片(3.1),其中圆孔(3.3)直径为6mm,PET基片(3.1)的边长为20mm,厚度0.4mm,PET基片(3.1)为薄膜型有机聚合物激光器(3.2)的支架。用PET基片(3.1)捞起包含光刻胶光栅(2.3)和F8BT层的薄膜,使得薄膜覆盖圆孔(3.3),见图4。
S5使用波长为400nm的飞秒激光,该飞秒激光的重复频率为1KHz,脉冲宽度20fs,将飞秒激光作为泵浦光,照射薄膜型有机聚合物激光器(3.2)的薄膜区,实现波长为566nm的激光输出,见图5。
本发明提供了一种薄膜型有机聚合物激光器,以上显示和描述了本发明的基本原理和主要制作方法。

Claims (6)

1.一种薄膜型有机聚合物激光器的制作方法,其特征在于:用该方法实现的激光器包括带有光栅结构的有机聚合物薄膜;
其制备方法的步骤如下,
S1将有机聚合物材料溶解在有机溶剂中,制成浓度为10-60mg/ml的有机聚合物溶液;
S2将有机聚合物溶液旋涂在无光栅结构或有光栅结构的基底上,旋涂速度为500-4000rpm,旋涂时间30-60s,获得厚度均匀的有机聚合物薄膜,薄膜的厚度为50-500nm;
S3对于无光栅结构的基底,将紫外激光干涉图案直接与有机聚合物薄膜作用,在有机聚合物薄膜上直写出单周期的光栅或不同周期、不同方向的光栅;对于有光栅结构的基底,则忽略此步骤;
S4使用盐酸或水溶剂,浸泡附有有机聚合物薄膜的基底,有机聚合物薄膜自动剥离基底,形成带有光栅结构的有机聚合物薄膜,即薄膜型有机聚合物激光器。
2.根据权利要求1所述的一种薄膜型有机聚合物激光器的制作方法,其特征在于:所述的有机聚合物材料为:9,9-二辛基芴-2,7)-交替共聚-(1,4-{2,1’,3}-苯并噻二唑)(F8BT),(9,9-二辛基芴-2,7)-共聚-二(4-甲氧基苯基)-芴(F8DP),或(9,9-二辛基芴-2,7)-共聚-双-N,N’-(4-丁基苯基)-双-N,N’-苯基-1,4-苯二胺(PFB)中的一种。
3.根据权利要求1所述的一种薄膜型有机聚合物激光器的制作方法,其特征在于:所述的有机溶剂为二甲苯、甲苯、氯苯、二氯苯、苯、三氯甲烷、环己烷、戊烷、己烷、辛烷中的一种。
4.根据权利要求1所述的一种薄膜型有机聚合物激光器的制作方法,其特征在于:所述基底为ITO玻璃、FTO玻璃、AZO玻璃、水溶性薄膜PVOH、水溶性聚乙烯醇薄膜PVA中的一种。
5.根据权利要求1所述的一种薄膜型有机聚合物激光器的制作方法,其特征在于:所述紫外激光为波长小于等于400nm的高能量脉冲激光。
6.根据权利要求1所述的一种薄膜型有机聚合物激光器的制作方法,其特征在于:基底选择ITO玻璃的玻璃基底(2.1),有机聚合物(2.4)选择F8BT,制作单波长输出的薄膜型有机聚合物激光器(3.2),该激光器制备方法包括以下步骤,
S1将适量光刻胶溶液滴在15mm×15mm×1mm的ITO玻璃的ITO面上,旋涂速度3000转/分钟,旋涂时间30s;光刻胶的型号为AllresistAR-P-3170;
S2将旋涂有光刻胶的ITO玻璃放在加热板上100℃加热1min,得到厚度约为120nm的光刻胶薄膜,然后在干涉光路中进行干涉光刻;脉冲激光器发出入射光(1.1),入射光(1.1)射入分束镜(1.2)后,两束光分别射入对称的介质膜全反镜(1.3)上,经两介质膜全反镜(1.3)反射后会聚至待加工样品(1.4)上;其中,干涉光刻所用激光器为He–Cd Laser脉冲激光器,发射激光波长为325nm,干涉光路两光斑的功率和为10mw,光斑直径9mm,曝光时间10s;曝光显影时间6s,得到周期为355的光刻胶光栅(2.3);
S3将F8BT溶解于二甲苯,制成浓度为25mg/ml的F8BT二甲苯溶液;取适量溶液滴在步骤S2中的光刻胶光栅(2.3)上,然后进行旋涂,速度1000rpm,旋涂时间30s,得到的F8BT膜厚约为170nm;形成样品;
S3将做好的所述样品放在盐酸中,盐酸质量浓度为20%,浸泡约20min,盐酸将ITO玻璃上的ITO薄膜(2.2)溶解,包含光刻胶光栅(2.3)和F8BT层的薄膜,厚度约290nm,自动和ITO玻璃的玻璃基底(2.1)分离,漂浮到盐酸溶液的表面;此薄膜即为薄膜型有机聚合物激光器(3.2);
S4选择中间带圆孔(3.3)的正方形PET基片(3.1),其中圆孔(3.3)直径为6mm,PET基片(3.1)的边长为20mm,厚度0.4mm,PET基片(3.1)为薄膜型有机聚合物激光器(3.2)的支架;用PET基片(3.1)捞起包含光刻胶光栅(2.3)和F8BT层的薄膜,使得薄膜覆盖圆孔(3.3);
S5使用波长为400nm的飞秒激光,该飞秒激光的重复频率为1KHz,脉冲宽度20fs,将飞秒激光作为泵浦光,照射薄膜型有机聚合物激光器(3.2)的薄膜区,实现波长为566nm的激光输出。
CN201510316248.3A 2015-06-10 2015-06-10 一种薄膜型有机聚合物激光器的制备方法 Active CN104882780B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510316248.3A CN104882780B (zh) 2015-06-10 2015-06-10 一种薄膜型有机聚合物激光器的制备方法
US15/109,650 US9667035B1 (en) 2015-06-10 2015-06-30 Method for preparing organic polymer thin film laser
PCT/CN2015/082963 WO2016197423A1 (zh) 2015-06-10 2015-06-30 一种薄膜型有机聚合物激光器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510316248.3A CN104882780B (zh) 2015-06-10 2015-06-10 一种薄膜型有机聚合物激光器的制备方法

Publications (2)

Publication Number Publication Date
CN104882780A true CN104882780A (zh) 2015-09-02
CN104882780B CN104882780B (zh) 2017-10-13

Family

ID=53950168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510316248.3A Active CN104882780B (zh) 2015-06-10 2015-06-10 一种薄膜型有机聚合物激光器的制备方法

Country Status (3)

Country Link
US (1) US9667035B1 (zh)
CN (1) CN104882780B (zh)
WO (1) WO2016197423A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096025A1 (zh) * 2017-11-15 2019-05-23 苏州大学张家港工业技术研究院 连续光泵浦的聚合物激光器及其制备方法
CN110137799A (zh) * 2019-05-29 2019-08-16 北京工业大学 一种激光出射方向可调的复合腔激光器
CN110429470A (zh) * 2019-05-29 2019-11-08 北京工业大学 一种出射激光偏振态可调的腔耦合型dfb激光器
CN111555115A (zh) * 2020-05-19 2020-08-18 北京工业大学 一种出射相干光的vcsel阵列芯片
CN111682398A (zh) * 2020-06-11 2020-09-18 南京邮电大学 一种基于光响应的波长可调谐有机薄膜激光器件及应用
CN111900620A (zh) * 2020-07-22 2020-11-06 南京邮电大学 一种波长可调的弹性有机激光器及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201711097D0 (en) * 2017-07-10 2017-08-23 Univ Court Univ St Andrews Laser device
US11837842B2 (en) * 2019-12-29 2023-12-05 Hong Kong Baptist University Tunable laser materials comprising solid-state blended polymers
CN113031364B (zh) * 2021-02-01 2022-08-26 山东师范大学 Y6在光限幅中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102649196A (zh) * 2011-02-23 2012-08-29 北京工业大学 紫外激光干涉灼蚀有机半导体激光器直写方法
CN102651534A (zh) * 2011-02-23 2012-08-29 北京工业大学 基于激光干涉光刻的分布反馈式有机半导体激光器制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759127B2 (en) * 2003-12-05 2010-07-20 Massachusetts Institute Of Technology Organic materials able to detect analytes
JP5205866B2 (ja) * 2007-08-23 2013-06-05 住友電気工業株式会社 モールドの形成方法、回折格子の形成方法、および分布帰還型半導体レーザの製造方法
JP2010015874A (ja) * 2008-07-04 2010-01-21 Kyoto Institute Of Technology 有機光学デバイス、その製造方法、及び増幅又は狭線化した光を発する方法
CN102651537B (zh) * 2011-02-23 2014-07-30 北京工业大学 基于有源波导光栅结构的有机半导体激光器的制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102649196A (zh) * 2011-02-23 2012-08-29 北京工业大学 紫外激光干涉灼蚀有机半导体激光器直写方法
CN102651534A (zh) * 2011-02-23 2012-08-29 北京工业大学 基于激光干涉光刻的分布反馈式有机半导体激光器制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERNARD WENGER 等: "mechanically tunable conjugated polymer distributed feedback lasers", 《APPLIED PHYSICS LETTERS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096025A1 (zh) * 2017-11-15 2019-05-23 苏州大学张家港工业技术研究院 连续光泵浦的聚合物激光器及其制备方法
US10879670B2 (en) 2017-11-15 2020-12-29 Soochow University Continuous-wave pumped polymer laser and preparation method thereof
CN110137799A (zh) * 2019-05-29 2019-08-16 北京工业大学 一种激光出射方向可调的复合腔激光器
CN110429470A (zh) * 2019-05-29 2019-11-08 北京工业大学 一种出射激光偏振态可调的腔耦合型dfb激光器
CN110429470B (zh) * 2019-05-29 2021-07-30 北京工业大学 一种出射激光偏振态可调的腔耦合型dfb激光器
CN111555115A (zh) * 2020-05-19 2020-08-18 北京工业大学 一种出射相干光的vcsel阵列芯片
CN111555115B (zh) * 2020-05-19 2021-05-07 北京工业大学 一种出射相干光的vcsel阵列芯片
CN111682398A (zh) * 2020-06-11 2020-09-18 南京邮电大学 一种基于光响应的波长可调谐有机薄膜激光器件及应用
CN111900620A (zh) * 2020-07-22 2020-11-06 南京邮电大学 一种波长可调的弹性有机激光器及其制备方法

Also Published As

Publication number Publication date
WO2016197423A1 (zh) 2016-12-15
CN104882780B (zh) 2017-10-13
US9667035B1 (en) 2017-05-30
US20170149210A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
CN104882780A (zh) 一种薄膜型有机聚合物激光器的制备方法
CN103094488B (zh) 电致发光器件及其制造方法
Suárez et al. Polymer/perovskite amplifying waveguides for active hybrid silicon photonics
CN101572286B (zh) 偏振出光发光二极管
CN103107482A (zh) 单模光子晶体垂直腔面发射激光器及其制备方法
CN101304058B (zh) 发光二极管
CN102790354B (zh) 垂直腔面发射激光器的制作方法
CN104865638A (zh) 一种泄漏双包层光纤中包层光的方法
CN101588018B (zh) 内腔式多有源区光子晶体垂直腔面发射半导体激光器
CN105226500B (zh) 柔性可调谐多波长有机半导体激光器及制备方法
CN103401142B (zh) 高功率高稳定性单模垂直腔面发射半导体激光器
CN108039637A (zh) 一种有机回音壁式(wgm)谐振腔的制备方法
CN201435526Y (zh) 外腔大功率三有源区光子晶体垂直腔面发射半导体激光器
CN101588019B (zh) 外腔式多有源区光子晶体垂直腔面发射半导体激光器
CN102751417A (zh) 带有ZnO微米图形阵列的LED管芯及其制备方法
CN102468376B (zh) 三元GaAsP铝电极发光二极管芯片制备方法
CN208189972U (zh) 一种基于硅纳米片的激光脉冲调制器及基于该激光脉冲调制器的激光器
CN109507006B (zh) 应用于vcsel结构外延片的光致发光测试的逐层刻蚀方法及其vcsel结构外延片
CN102623890A (zh) 多孔缺陷匹配型光子晶体面发射激光器
Zhang et al. Ultra-efficient optical gain and lasing in MDACl2-doped perovskite thin films
CN203026559U (zh) 电致发光器件
CN101895059B (zh) 一种带有模式滤波器的高亮度条形半导体激光器
Xie et al. Silicon nanocrystals to enable silicon photonics Invited Paper
CN201119048Y (zh) AlGaInP-LED微显示器件
KR20170127088A (ko) 발광다이오드용 반사전극 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant