CN110429470B - 一种出射激光偏振态可调的腔耦合型dfb激光器 - Google Patents

一种出射激光偏振态可调的腔耦合型dfb激光器 Download PDF

Info

Publication number
CN110429470B
CN110429470B CN201910459025.0A CN201910459025A CN110429470B CN 110429470 B CN110429470 B CN 110429470B CN 201910459025 A CN201910459025 A CN 201910459025A CN 110429470 B CN110429470 B CN 110429470B
Authority
CN
China
Prior art keywords
laser
organic semiconductor
emergent
photoresist
polarization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910459025.0A
Other languages
English (en)
Other versions
CN110429470A (zh
Inventor
翟天瑞
张帅
李松涛
崔丽彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910459025.0A priority Critical patent/CN110429470B/zh
Publication of CN110429470A publication Critical patent/CN110429470A/zh
Application granted granted Critical
Publication of CN110429470B publication Critical patent/CN110429470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种出射激光偏振态可调的腔耦合型DFB激光器,该激光器包括光刻胶光栅、有机半导体材料涂覆层;所述光刻胶光栅是由相同周期的两套夹角为θ的光栅组成;所述光刻胶光栅周期为335nm,所述有机半导体材料为F8BT,是涂覆在光栅层表面;当外界光泵浦时,这种出射激光偏振态可调的腔耦合型DFB激光器上的有机半导体F8BT吸收泵浦光能量,发射出的荧光,在光刻胶光栅作用下实现增益放大辐射,获得DFB激光输出,但由于不同方向的腔之间的耦合作用使两光栅出射激光的偏振矢量方向发生改变,影响了出射激光偏振特性和阈值特性,最终得到角向偏振出射光。

Description

一种出射激光偏振态可调的腔耦合型DFB激光器
技术领域
本发明涉及一种出射激光偏振态可调的腔耦合型DFB激光器,属于光电技术领域。
背景技术
分布式反馈激光器DFB(DistributedFeedbackLaser),其基本原理是内置了布拉格光栅(BraggGrating),依靠沿不同方向等间隔分布的光栅结构形成的光耦合,实现激光出射。而DFB激光器由于其制作方法简单、低发射损耗、较高发光效率和低阈值等独特的优势,成为当前研究的热点。
有机半导体材料具有宽光谱吸收特性的同时,还具有高增益系数,使得其成为优秀的激光增益材料的候选者。光泵浦有机半导体DFB激光器件由于具有宽增益谱、低阈值等优点,相关研究得到了飞快发展,如多波长出射的有机半导体DFB激光器、低阈值有机半导体DFB激光器等,在集成化激光器方面展现了应用潜力。有机半导体DFB激光器具有体积小、成本低的优势,在光学传感、信号监测方面有着重要的应用。在实际应用中,出射激光的偏振态调控是重要考量因素之一。本发明基于上述考虑,提出了一种偏振态可调的腔耦合型DFB激光器的设计和制作方法。
发明内容
本发明提供了一种出射激光偏振态可调的腔耦合型DFB激光器,其特征在于:包括提供支撑作用的玻璃基片、提供散射的光刻胶光栅结构、激光增益介质有机半导体材料;所述光刻胶光栅结构的周期为335nm;所述激光增益介质有机半导体材料为F8BT(poly[(9,9-dioctylfluorenyl-2,7– diyl)-alt-co-(1,4–benzo-{2,1’,3}–thiadiazole)])涂覆在光刻胶光栅结构上。
将聚合物光刻胶均匀旋涂在玻璃基片上,采用双光束干涉光路进行紫外曝光,通过旋转样品进行二次曝光,得到二维结构的光刻胶光栅结构,再将有机半导体F8BT溶液旋涂于光刻胶光栅结构上方,制备得到出射激光偏振态可调的腔耦合型DFB激光器。
当外界光泵浦时,腔耦合型DFB激光器上的有机半导体F8BT吸收泵浦光能量,发射出的荧光,在光刻胶光栅作用下多次反射实现增益,在复合腔之间的耦合作用下使出射激光偏振矢量方向发生改变,从而改变出射激光的偏振态,获得角向偏振DFB激光输出。
与现有DFB激光器相比,本发明具有如下有益效果:
1.1、可以通过改变干涉光刻两次曝光夹角的方法,调控复合腔之间的耦合因数,进而改变出射光偏振特性,最终使出射光斑形貌发生变化。
2、相对于其他DFB激光器,腔耦合型DFB激光器具有激光阈值可调和输出激光偏振态可调的特性。
附图说明
图1是本发明中双光束干涉法制备光刻胶光栅的光路图;
如图所示,1.1、入射光,1.2、分束镜,1.3、反射镜,1.4、光刻胶薄膜;
图2是本发明中腔耦合型DFB激光器截面结构示意图;
如图所示,2.1、玻璃基底,2.2、光栅组,2.3、有机半导体材料;
图3是本发明中两次曝光形成的夹角为θ的双光栅示意图;
如图所示,3.1、光栅;两组光栅的夹角为θ;
图4是本发明一种激光出射方向可调的复合腔DFB激光器θ分别为90、 60和45度时的激光光斑图(光束质量分析仪测量:Ophir-Spiricon LAB-USB-SP620);
图5是本发明中出射激光偏振态可调的腔耦合型激光的阈值图及光谱图。(a)表示不同曝光角度制作的二维DFB激光器的阈值变化趋势与腔体间耦合效率相吻合;(b)表示不同二维DFB激光器的光谱图。
具体实施方式
下面结合附图具体说明本发明的实施方法。
一种激光出射方向可调的复合腔DFB激光器的制作方法,包括以下步骤:
(1)将适量光刻胶(型号:AllresistAR-P-3170)溶液滴在18mm×18mm×1 mm的玻璃上,旋涂,速度2500为rpm(转/分钟),旋涂时间30s。
(2)将旋涂有光刻胶的玻璃放在加热板上110℃加热1min,得到厚度约为170nm的光刻胶薄膜,在双光束干涉光路中进行光刻处理,如图 1所示光路图。干涉光刻所用激光器为发射激光波长为343nm(FlareNX, coherent,)的脉冲激光器,光斑直径为9mm,通过旋转样品实现夹角为θ的两次曝光,曝光时间分别为15s和11s。显影时间5s,得到两组夹角为θ的周期335nm的光刻胶光栅。两次曝光的夹角θ在0~90度之间变化,而光栅周期保持不变。
(3)将F8BT(poly[(9,9-dioctylfluorenyl-2,7–diyl)-alt-co-(1,4–benzo- {2,1’,3}–thiadiazole)])溶解于二甲苯,制成浓度为23.5mg/ml的F8BT 二甲苯溶液;取适量溶液滴在步骤(1)中的光刻胶光栅上,进行旋涂,速度1800rpm,旋涂时间30s,得到的F8BT膜厚为130nm。形成的结构如图2所示的样品。
(4)使用波长为400nm的飞秒激光(重复频率:1kHz;脉冲宽度150fs) 作为泵浦光,照射薄膜型DFB激光器的薄膜区,实现波长为571nm左右的激光输出,见图5。当两组光栅之间的夹角θ发生改变的时候,得到的光斑图和出射光谱随着θ发生改变。
本发明提出一种出射激光偏振态可调的复合腔DFB激光器,以上描述是本发明的基本原理和主要制作方法,但是不限于本发明中提到的光刻胶光栅和有机半导体F8BT,采用其他方法实现的光栅、选择不同周期的光栅和选择其他有机半导体,均在本发明保护的范围内。

Claims (1)

1.一种出射激光偏振态可调的腔耦合型DFB激光器,其特征在于:包括提供支撑作用的基片、提供散射的光刻胶光栅结构、激光增益介质有机半导体材料;所述光栅结构的周期为335 nm;将激光增益介质有机半导体材料涂覆在光栅结构上;将聚合物光刻胶均匀旋涂在玻璃基片上,采用双光束干涉光路进行紫外曝光,通过旋转样品进行二次曝光,得到二维结构的光刻胶光栅结构,再将有机半导体F8BT溶液旋涂于光刻胶光栅结构上方,制备得到出射激光偏振态可调的腔耦合型DFB激光器;当外界光泵浦时,腔耦合型DFB激光器上的有机半导体F8BT吸收泵浦光能量,发射出的荧光,在光刻胶光栅作用下多次反射实现增益,在复合腔之间的耦合作用下使出射激光偏振矢量方向发生改变,从而改变出射激光的偏振态,获得角向偏振DFB激光输出。
CN201910459025.0A 2019-05-29 2019-05-29 一种出射激光偏振态可调的腔耦合型dfb激光器 Active CN110429470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910459025.0A CN110429470B (zh) 2019-05-29 2019-05-29 一种出射激光偏振态可调的腔耦合型dfb激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910459025.0A CN110429470B (zh) 2019-05-29 2019-05-29 一种出射激光偏振态可调的腔耦合型dfb激光器

Publications (2)

Publication Number Publication Date
CN110429470A CN110429470A (zh) 2019-11-08
CN110429470B true CN110429470B (zh) 2021-07-30

Family

ID=68407534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910459025.0A Active CN110429470B (zh) 2019-05-29 2019-05-29 一种出射激光偏振态可调的腔耦合型dfb激光器

Country Status (1)

Country Link
CN (1) CN110429470B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882780A (zh) * 2015-06-10 2015-09-02 北京工业大学 一种薄膜型有机聚合物激光器的制备方法
CN106019440A (zh) * 2016-07-25 2016-10-12 华中科技大学 一种新型偏振衍射光栅结构
CN106451063A (zh) * 2016-11-15 2017-02-22 北京工业大学 基于拍频结构的分布反馈式聚合物激光器的制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104075A1 (en) * 2003-04-16 2005-05-19 Evans Allan K. Feedback and coupling structures and methods
US20130037843A1 (en) * 2010-02-12 2013-02-14 Takeshi Yamao Light emitting transistor
CN105226500B (zh) * 2015-05-08 2018-03-30 北京工业大学 柔性可调谐多波长有机半导体激光器及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882780A (zh) * 2015-06-10 2015-09-02 北京工业大学 一种薄膜型有机聚合物激光器的制备方法
CN106019440A (zh) * 2016-07-25 2016-10-12 华中科技大学 一种新型偏振衍射光栅结构
CN106451063A (zh) * 2016-11-15 2017-02-22 北京工业大学 基于拍频结构的分布反馈式聚合物激光器的制作方法

Also Published As

Publication number Publication date
CN110429470A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
Wang et al. Micro‐and nanostructured lead halide perovskites: from materials to integrations and devices
Turnbull et al. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser
RU2450294C2 (ru) Оптическое устройство, способ изготовления мастер-копии, используемой при изготовлении оптического устройства, и фотоэлектрический преобразователь
US9667035B1 (en) Method for preparing organic polymer thin film laser
Hou et al. Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals
Chen et al. Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices
US8610103B2 (en) Flexible microcavities through spin coating
Zhai et al. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate
Vannahme et al. Single-mode biological distributed feedback laser
Lova et al. Engineering the emission of broadband 2D perovskites by polymer distributed Bragg reflectors
CN104868352B (zh) 三维非对称微谐振腔聚合物单模激光器
Kessel et al. Soft lithography for manufacturing scalable perovskite metasurfaces with enhanced emission and absorption
Quintana et al. An Efficient and Color‐Tunable Solution‐Processed Organic Thin‐Film Laser with a Polymeric Top‐Layer Resonator
CN110429470B (zh) 一种出射激光偏振态可调的腔耦合型dfb激光器
Carreño et al. Enhanced Photoluminescence of Cesium Lead Halide Perovskites by Quasi‐3D Photonic Crystals
CN105226500B (zh) 柔性可调谐多波长有机半导体激光器及制备方法
CN110137799B (zh) 一种激光出射方向可调的复合腔激光器
Hu et al. Threshold Size Effects in the Patterned Crystallization of Hybrid Halide Perovskites for Random Lasing
CN110600993A (zh) 一种可调谐注入锁定有机半导体dfb微腔激光放大器
AU2020102048A4 (en) A tunable injection-locked organic semiconductor laser amplifier
Guilhabert et al. Mechanically flexible organic semiconductor laser array
DeSilva et al. Reflectivity of 88% for four-period hybrid Bragg mirror from spin coating process
CN106451063B (zh) 基于拍频结构的分布反馈式聚合物激光器的制作方法
KR20180015104A (ko) 규칙적인 배열을 갖는 금속 나노구조체를 포함하는 유기 태양전지, 및 그의 제조 방법
Punke et al. Organic semiconductor lasers as integrated light sources for optical sensor systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant