WO2019095662A1 - Mwt与hit结合的太阳能电池及其制备方法 - Google Patents

Mwt与hit结合的太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2019095662A1
WO2019095662A1 PCT/CN2018/088319 CN2018088319W WO2019095662A1 WO 2019095662 A1 WO2019095662 A1 WO 2019095662A1 CN 2018088319 W CN2018088319 W CN 2018088319W WO 2019095662 A1 WO2019095662 A1 WO 2019095662A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal electrode
amorphous silicon
silicon
solar cell
layer
Prior art date
Application number
PCT/CN2018/088319
Other languages
English (en)
French (fr)
Inventor
逯好峰
吴仕梁
路忠林
李质磊
盛雯婷
张凤鸣
Original Assignee
江苏日托光伏科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏日托光伏科技股份有限公司 filed Critical 江苏日托光伏科技股份有限公司
Publication of WO2019095662A1 publication Critical patent/WO2019095662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a solar cell combining MWT and HIT and a preparation method thereof, and belongs to the technical field of solar cells and preparation methods.
  • a solar cell is a semiconductor device that converts light energy into electrical energy. After experiencing the elimination of technology and capital, the photovoltaic power generation industry is gradually moving toward high efficiency and low cost.
  • the positive and negative electrodes are respectively located on the front and back sides of the battery sheet. Since the front surface of the battery sheet is simultaneously the light receiving surface, the metal gate main gate line and the fine grid line on the front side block a part of the surface area, thereby causing a part of incident light to be lost.
  • the front metal electrode of a common crystalline silicon solar cell covers a surface area of about 5-7%, and reducing the area of the metal electrode can directly improve the energy conversion efficiency of the battery.
  • MWT Metal Wrap Through
  • the back contact structure can form a component loop connection completely on the back side of the battery, and the front side does not need a soldering strip to collect current. Therefore, the front electrode of the MWT does not need a main gate, the width of the fine gate is currently as low as 30 ⁇ m, and the coverage ratio of the front electrode is reduced to about 3%. , half the size of conventional batteries.
  • HIT Heterojunction with Intrinsic Thin-layer
  • the intermediate crystalline silicon wafer forms a transparent electrode and a collecting electrode on the top layers on both sides to form a HIT solar cell having a symmetrical structure.
  • These batteries combine the advantages of low-temperature ( ⁇ 260 °C) fabrication of thin-film solar cells, avoiding the use of conventional high-temperature (>900 °C) diffusion processes to obtain p-n junctions, and have greater efficiency values.
  • batteries of these two structures also have their own problems.
  • the electrode coverage area is significantly reduced, the efficiency of the battery is lower than that of the HIT due to the PN junction structure, passivation, and the like.
  • the HIT battery exhibits higher efficiency, its front electrode has a large coverage area and still uses a solder ribbon connection method. This tends to cause cell chip cracking and power generation attenuation, and thin silicon wafer technology cannot be applied to reduce cost.
  • the present invention provides a solar cell combining MWT and HIT and a preparation method thereof, aiming at solving several problems: (1) HIT battery The front electrode covers a large area and the incident light loss is large. (2) The HIT battery components are connected with each other by a soldering strip, which is easy to cause cracking and attenuation, and cannot be applied with thin silicon wafer technology; (3) MWP battery passivation effect is insufficient, photoelectric Conversion efficiency is lower than HIT.
  • a solar cell combining MWT and HIT is a multi-layer structure, from the front side (upper surface) to the bottom: front metal electrode, transparent conductive oxide layer (TCO), p-type amorphous silicon ((p ) a-Si), intrinsic amorphous silicon ((i) a-Si), n-type crystalline silicon substrate ((n)c-Si), intrinsic amorphous silicon ((i) a-Si), n-type An amorphous silicon ((n)a-Si), a transparent conductive oxide layer (TCO) and a back metal electrode;
  • the multilayer structure is provided with a through hole, and the through hole is filled with a filling metal electrode, the filling hole
  • the top of the metal electrode is covered with a front metal electrode and the bottom is connected to a back metal electrode of the same composition.
  • the thickness of the n-type crystalline silicon substrate of the present invention is preferably 80-180 ⁇ m.
  • the front metal electrode and the back metal electrode of the present invention are made of silver or copper.
  • the transparent conductive oxide layer (TCO) of the present invention is indium doped tin oxide (ITO), or fluorine doped tin oxide (FTO), or aluminum doped zinc oxide (AZO), and has a thickness of preferably 0.1-1 ⁇ m.
  • the thicknesses of the p-type amorphous silicon ((p) a-Si), the intrinsic amorphous silicon ((i) a-Si), and the n-type amorphous silicon ((n) a-Si) of the present invention are preferably respectively 5-15nm.
  • the conductive component of the perforated metal electrode of the present invention is silver or copper.
  • the invention simultaneously proposes a preparation method of the silicon solar cell combined with the above MWT and HIT, comprising the following steps:
  • an amorphous silicon layer is prepared by plasma enhanced chemical vapor deposition (PECVD);
  • the component of the mask used in the step 4) is paraffin or other organic compound, and the covering method is screen printing;
  • a transparent conductive layer is prepared by magnetron sputtering or chemical vapor deposition (CVD);
  • step 7 potassium hydroxide or other strong alkali solution is used as a washing liquid, and the mask layer is removed on one side in the online roller type device;
  • the red laser is used in the step 8), and the wavelength is 1064 nm;
  • the filling electrode and the back electrode are printed by the same kind of slurry
  • the curing conditions of the metal electrodes in the steps 9) and 10) are the same, the temperature is 150-220 ° C, and the time is 10-20 minutes.
  • the solar cell combined with the HIT and the HIT provided by the present invention and the preparation method thereof have the significant advantages of combining the advantages of the MWT and the HIT battery and making up for the deficiencies of the two.
  • the front electrode coverage area of the battery structure of the present invention is smaller than HIT, and the incident light loss is reduced.
  • the way of interconnecting the solder ribbon in the HIT battery assembly is eliminated, the crack and attenuation can be effectively reduced, and thin silicon is applied.
  • the film further reduces the cost; again, the intrinsic amorphous silicon layer completes the surface passivation of the single crystal silicon while forming the pn junction, which greatly reduces the leakage current and improves the battery efficiency.
  • the entire battery preparation process is carried out at a low temperature ( ⁇ 260 ° C), the silicon sheet has small bending deformation, and the performance degradation of the silicon substrate in the high temperature treatment is also eliminated.
  • 1 is a schematic structural view of a battery according to an embodiment of the present invention; the reference numerals in the figures are: 1, an n-type crystalline silicon substrate ((n)c-Si), and 2 intrinsic amorphous silicon ((i) a-Si). , 3, p-type amorphous silicon ((p) a-Si), 4, n-type amorphous silicon ((n) a-Si), 5, transparent conductive oxide layer (TCO), 6, poured metal electrode, 7, the back metal electrode, 8, the front metal electrode.
  • the structure of the silicon solar cell combined with the MWT and HIT of the present embodiment is as shown in FIG. 1.
  • the battery is a multi-layer structure, including the superposition from the front side (upper surface) to the bottom: the front metal electrode 8, transparent conductive oxidation Layer (TCO) 5, p-type amorphous silicon ((p)a-Si) 3, intrinsic amorphous silicon ((i) a-Si) 2, n-type crystalline silicon substrate ((n)c-Si) 1 Intrinsic amorphous silicon ((i) a-Si) 2, n-type amorphous silicon ((n) a-Si) 4, transparent conductive oxide layer (TCO) 5, and back metal electrode 7.
  • the multilayer structure is provided with a through hole, and the hole is filled with a filling metal electrode 6, the top of which is covered with a front metal electrode 8, and the bottom is connected to a back metal electrode 6 of the same composition.
  • the n-type single crystal silicon wafer having a side length of 156 mm and a thickness of 180 ⁇ m is used as a base material, and the specific steps of the method for preparing the silicon solar cell combined with the above MWT and HIT are as follows:
  • PECVD plasma enhanced chemical vapor deposition
  • ITO indium doped tin oxide
  • step 7) removing the protective mask in step 4) with a potassium hydroxide solution in an online roller device;
  • the invention provides a novel structure and a preparation method for mass-producing high-efficiency silicon solar cells.
  • the prepared solar cell has the excellent performance described in the present invention, and the method has strong applicability and contains great use value.

Abstract

本发明公开了一种MWT与HIT结合的太阳能电池及其制备方法,MWT与HIT结合的太阳能电池为多层结构体,其特征在于,从正面往下依次为:正面金属电极、透明导电氧化层、p型非晶硅、本征非晶硅、n型晶体硅基体、本征非晶硅、n型非晶硅、透明导电氧化层和背面金属电极;所述多层结构体上设有贯穿孔,贯穿孔内填有灌孔金属电极,所述灌孔金属电极的顶部覆盖有正面金属电极,底部与相同成分的背面金属电极相连。本发明为量产高效硅太阳能电池提供了一种新的结构以及制备方法,此方法的适用性强,使用价值高。

Description

MWT与HIT结合的太阳能电池及其制备方法 技术领域
本发明涉及一种MWT与HIT结合的太阳能电池及其制备方法,属于太阳能电池及制备方法技术领域。
背景技术
太阳能电池是一种可将光能转化成电能的半导体器件,光伏发电产业在经历了技术和资本的淘汰之后,逐渐朝着高效和低成本的方向发展。对于目前的常规太阳能电池,正、负电极分别位于电池片的正反两面。由于电池片的正面同时为受光面,处于正面的金属电极主栅线和细栅线会遮挡表面的一部分面积,从而造成一部分入射光损失。普通晶硅太阳能电池正面金属电极大约覆盖5-7%左右的表面积,减少金属电极的面积可以直接提高电池的能量转化效率。
MWT(Metal Wrap Through)是一种能有效降低正面金属遮挡面积的高效背接触太阳能电池结构。其通过贯穿电池的孔洞把正面电极连接到背面,进而利用填充孔洞的电极收集来自正面电极的光电流。背接触结构可以完全在电池背面形成组件回路联接,正面不需要焊带收集电流,因此MWT的正面电极不需要主栅,细栅宽度目前已低至30μm,正面电极的覆盖比例降低至3%左右,比常规电池减小了一半。另一种高效太阳能电池使用的是HIT(Heterojunction with Intrinsic Thin-layer)异质结结构,它是以光照射侧的p/i型非晶硅和背面侧的i/n型非晶硅夹住中间的晶体硅片,在两侧的顶层形成透明的电极和收集电极,构成具有对称结构的HIT太阳能电池。此类电池结合了薄膜太阳能电池低温(<260℃)制造的优点,避免采用传统的高温(>900℃)扩散工艺来获得p-n结,而且效率值也具有较大优势。
但是这两种结构的电池也存在各自的问题。对MWT电池来说,虽然电极覆盖面积明显减小,但由于PN结结构、钝化等原因,电池的效率值较HIT低一些。而HIT电池虽然表现出更高的效率,但其正面电极覆盖面积大,且仍然采用焊带联接的方法。这容易造成电池片隐裂及发电衰减,并且不能应用薄硅片技术以降低成本。
发明内容
发明目的:为了克服现有MWT和HIT技术中各自存在的问题和缺点,本发明提供一种MWT与HIT结合的太阳能电池及其制备方法,目的是要解决几个问题:(1)HIT电池中正面电极覆盖面积大,入射光损失大;(2)HIT电池组件中用焊带互相联接,容易造成隐裂和衰减,且不能应用薄硅片技术;(3)MWT电池钝化效果不足,光电转化效率低于HIT。
技术方案:一种MWT与HIT结合的太阳能电池,为多层结构体,从正面(上表面)往下依次为:正面金属电极、透明导电氧化层(TCO)、p型非晶硅((p)a-Si)、本征非晶硅((i)a-Si)、n型晶体硅基体((n)c-Si)、本征非晶硅((i)a-Si)、n型非晶硅((n)a-Si)、透明导电氧化层(TCO)和背面金属电极;所述多层结构体上设有贯穿孔,贯穿孔内填有灌孔金属电极,所述灌孔金属电极的顶部覆盖有正面金属电极,底部与相同成分的背面金属电极相连。
本发明所述n型晶体硅基体厚度优选为80-180μm。
本发明所述正面金属电极、背面金属电极由银或者铜材质构成。
本发明所述透明导电氧化层(TCO)为铟掺杂氧化锡(ITO),或者氟掺杂氧化锡(FTO),或者铝掺杂氧化锌(AZO),厚度优选为0.1-1μm。
本发明所述p型非晶硅((p)a-Si)、本征非晶硅((i)a-Si)、n型非晶硅((n)a-Si)的厚度分别优选为5-15nm。
本发明所述灌孔金属电极导电成分为银或铜。
本发明同时提出上述MWT与HIT结合的硅太阳能电池的制备方法,包括以下步骤:
1)晶体硅清洗、制绒;
2)晶体硅基体的正、反两面各沉积一层本征非晶硅;
3)正面沉积一层p型非晶硅;
4)背面覆盖一层圆形图案的掩膜,整体掩膜图案为n*n矩阵,n≧4;
5)背面沉积一层n型非晶硅;
6)正、反两面各沉积一层透明导电层TCO;
7)去除步骤4)中的掩膜;
8)用激光进行打孔,孔洞的位置是圆形掩膜区域的圆心;
9)在背面一次同时印刷灌孔金属电极和背面金属电极,并加热固化;
10)在正面印刷正面金属电极,并加热固化;
11)电池测试。
其中,所述步骤2)、3)、5)中均采用等离子体增强化学气相沉积法(PECVD)制备非晶硅层;
所述步骤4)中所用掩膜的成分为石蜡或其它有机化合物,覆盖的方法为丝网印刷;
所述步骤6)中采用磁控溅射法或者化学气相沉积法(CVD)制备透明导电层;
所述步骤7)中采用氢氧化钾或其它强碱溶液作为洗液,在线滚轮式设备中单面去除掩膜层;
所述步骤8)中采用红色激光,波长为1064nm;
所述步骤9)中灌孔电极和背面电极采用同种浆料印刷;
所述步骤9)、10)中金属电极的固化条件相同,温度为150-220℃,时间为10-20分钟。
有益效果:与现有技术相比,本发明所提供的MWT与HIT结合的太阳能电池及其制备方法,其显著优点在于结合了MWT和HIT电池的优势、并弥补了二者的不足。首先,本发明的电池结构正面电极覆盖面积比HIT小,入射光损失减小;其次,消除了HIT电池组件中用焊带互联的方式,可以有效地减小隐裂和衰减,并应用薄硅片进一步降低成本;再次,本征非晶硅层在pn结形成的同时完成单晶硅的表面钝化,大大降低了漏电流,提高了电池效率。而且,整个电池制备过程是在低温下进行(<260℃),硅片弯曲变形小,也消除了硅衬底在高温处理中的性能退化。
附图说明
图1为本发明实施例的电池结构示意图;图中各标号依次为:1、n型晶体硅基体((n)c-Si),2、本征非晶硅((i)a-Si),3、p型非晶硅((p)a-Si),4、n型非晶硅((n)a-Si),5、透明导电氧化层(TCO),6、灌孔金属电极,7、背面金属电极,8、正面金属电极。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本 发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例:本实施例的MWT与HIT结合的硅太阳能电池结构如图1所示,电池为多层结构体,包括从正面(上表面)往下依次叠加的:正面金属电极8、透明导电氧化层(TCO)5、p型非晶硅((p)a-Si)3、本征非晶硅((i)a-Si)2、n型晶体硅基体((n)c-Si)1、本征非晶硅((i)a-Si)2、n型非晶硅((n)a-Si)4、透明导电氧化层(TCO)5、背面金属电极7。上述多层结构体上设有贯穿孔,孔内填有灌孔金属电极6,所述灌孔金属电极6的顶部覆盖有正面金属电极8,底部与相同成分的背面金属电极6相连。
以156mm边长、厚度180μm的n型单晶硅片为基体材料,上述MWT与HIT结合的硅太阳能电池的制备方法的具体步骤如下:
1)对晶体硅片清洗,并做制绒处理;
2)使用等离子体增强化学气相沉积法(PECVD)在硅片的正、反两面各沉积一层8nm厚的本征非晶硅;
3)使用PECVD在正面沉积一层10nm厚的p型非晶硅,掺杂浓度为1×1019cm-3;
4)使用丝网印刷,在背面印刷直径为3mm的圆形石蜡保护掩膜,掩膜整体图案为6*6矩阵;
5)使用PECVD在背面沉积一层10nm厚的n型非晶硅,掺杂浓度为1×1019cm-3;
6)使用磁控溅射法在正、反两面各沉积一层200nm厚的透明导电层铟掺杂氧化锡(ITO);
7)在线滚轮式设备中用氢氧化钾溶液去除步骤4)中的保护掩膜;
8)用1064nm激光从背面进行打孔,孔洞直径为200μm,位置是每个圆形掩膜区域的圆心,所有孔洞同样为6*6矩阵;
9)使用丝网印刷,在背面用同种低温导电银胶(导电银胶的固化温度为150-250度),一次同时印刷灌孔金属电极和背面金属电极,在200℃烘箱中15分钟加热固化;
10)在正面用低温导电银胶印刷正面金属电极,在200℃烘箱中15分钟加 热固化;
11)电池测试。
本发明为量产高效硅太阳能电池提供了一种新的结构以及制备方法,制备的太阳能电池具有本发明中所述的优异性能,此方法的适用性强,包含着巨大的使用价值。

Claims (10)

  1. 一种MWT与HIT结合的太阳能电池,为多层结构体,其特征在于,从正面往下依次为:正面金属电极、透明导电氧化层(TCO)、p型非晶硅((p)a-Si)、本征非晶硅((i)a-Si)、n型晶体硅基体((n)c-Si)、本征非晶硅((i)a-Si)、n型非晶硅((n)a-Si)、透明导电氧化层(TCO)和背面金属电极;所述多层结构体上设有贯穿孔,贯穿孔内填有灌孔金属电极,所述灌孔金属电极的顶部覆盖有正面金属电极,底部与相同成分的背面金属电极相连。
  2. 如权利要求1所述的MWT与HIT结合的太阳能电池,其特征在于,所述n型晶体硅基体厚度为80-180μm。
  3. 如权利要求1所述的MWT与HIT结合的太阳能电池,其特征在于,所述透明导电氧化层(TCO)为铟掺杂氧化锡(ITO),或者氟掺杂氧化锡(FTO),或者铝掺杂氧化锌(AZO),厚度为0.1-1μm。
  4. 如权利要求1所述的MWT与HIT结合的太阳能电池,其特征在于,所述p型非晶硅、本征非晶硅、n型非晶硅的厚度分别为5-15nm。
  5. 如权利要求1-4任意一项所述的MWT与HIT结合的硅太阳能电池的制备方法,其特征在于,包括以下步骤:
    1)晶体硅清洗、制绒;
    2)晶体硅基体的正、反两面各沉积一层本征非晶硅;
    3)正面沉积一层p型非晶硅;
    4)背面覆盖一层圆形图案的掩膜,整体掩膜图案为n*n矩阵,n≧4;
    5)背面沉积一层n型非晶硅;
    6)正、反两面各沉积一层透明导电层TCO;
    7)去除步骤4)中的掩膜;
    8)用激光进行打孔,孔洞的位置是圆形掩膜区域的圆心;
    9)在背面一次同时印刷灌孔金属电极和背面金属电极,并加热固化;
    10)在正面印刷正面金属电极,并加热固化;
    11)电池测试。
  6. 如权利要求5所述的MWT与HIT结合的硅太阳能电池的制备方法,其特征在于,所述步骤2)、3)、5)中均采用等离子体增强化学气相沉积法(PECVD)制备非晶硅层。
  7. 如权利要求5所述的MWT与HIT结合的硅太阳能电池的制备方法,其特征在于,所述步骤6)中采用磁控溅射法或者化学气相沉积法(CVD)制备透明导电层。
  8. 如权利要求5所述的MWT与HIT结合的硅太阳能电池的制备方法,其特征在于,所述步骤7)中采用氢氧化钾或其它强碱溶液作为洗液,在线滚轮式设备中单面去除掩膜层。
  9. 如权利要求5所述的MWT与HIT结合的硅太阳能电池的制备方法,其特征在于,所述步骤8)中采用红色激光,波长为1064nm;所述步骤9)中灌孔电极和背面电极采用同种浆料印刷。
  10. 如权利要求5所述的MWT与HIT结合的硅太阳能电池的制备方法,其特征在于,所述步骤9)、10)中金属电极的固化条件相同,温度为150-220℃,时间为10-20分钟。
PCT/CN2018/088319 2017-11-16 2018-05-25 Mwt与hit结合的太阳能电池及其制备方法 WO2019095662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711137599.3 2017-11-16
CN201711137599.3A CN107946382A (zh) 2017-11-16 2017-11-16 Mwt与hit结合的太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095662A1 true WO2019095662A1 (zh) 2019-05-23

Family

ID=61932506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088319 WO2019095662A1 (zh) 2017-11-16 2018-05-25 Mwt与hit结合的太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN107946382A (zh)
WO (1) WO2019095662A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946382A (zh) * 2017-11-16 2018-04-20 南京日托光伏科技股份有限公司 Mwt与hit结合的太阳能电池及其制备方法
CN109473492A (zh) * 2018-12-20 2019-03-15 江苏日托光伏科技股份有限公司 适合规模化量产的mwt异质结硅太阳电池及其制备方法
CN109473493A (zh) * 2018-12-20 2019-03-15 江苏日托光伏科技股份有限公司 一种mwt异质结硅太阳电池及其制备方法
CN114256361B (zh) * 2021-12-03 2023-06-27 浙江晶科能源有限公司 一种太阳能电池、光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
CN204361108U (zh) * 2014-11-25 2015-05-27 泉州市博泰半导体科技有限公司 一种hit太阳能电池
CN104979474A (zh) * 2015-05-25 2015-10-14 中国科学院半导体研究所 基于钙钛矿电池和hit电池的叠层太阳能电池及制作方法
CN107946382A (zh) * 2017-11-16 2018-04-20 南京日托光伏科技股份有限公司 Mwt与hit结合的太阳能电池及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922733A (zh) * 2004-02-20 2007-02-28 奥斯兰姆奥普托半导体有限责任公司 光电组件、具有多个光电组件的装置和用于制造光电组件的方法
DE102010026960A1 (de) * 2010-07-12 2012-01-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaische Solarzelle und Verfahren zur Herstellung einer photovoltaischen Solarzelle
CN102738289B (zh) * 2011-04-02 2016-09-14 上海太阳能工程技术研究中心有限公司 异质结太阳能电池及其制作方法
JP5596852B2 (ja) * 2011-04-04 2014-09-24 三菱電機株式会社 太陽電池およびその製造方法、太陽電池モジュール
CN102184976A (zh) * 2011-06-10 2011-09-14 山东力诺太阳能电力股份有限公司 背接触异质结太阳电池
CN103117329B (zh) * 2013-02-17 2016-11-23 史金超 异质结mwt电池及其制作方法、载片舟

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
CN204361108U (zh) * 2014-11-25 2015-05-27 泉州市博泰半导体科技有限公司 一种hit太阳能电池
CN104979474A (zh) * 2015-05-25 2015-10-14 中国科学院半导体研究所 基于钙钛矿电池和hit电池的叠层太阳能电池及制作方法
CN107946382A (zh) * 2017-11-16 2018-04-20 南京日托光伏科技股份有限公司 Mwt与hit结合的太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN107946382A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2019095662A1 (zh) Mwt与hit结合的太阳能电池及其制备方法
US9023681B2 (en) Method of fabricating heterojunction battery
CN106601855A (zh) 一种双面发电异质结太阳能电池的制备方法
CN103489934A (zh) 一种双面透光的局部铝背场太阳能电池及其制备方法
CN104025308B (zh) 太阳能电池装置及其制造方法
TWI727728B (zh) 薄膜光伏電池串聯結構及薄膜光伏電池串聯的製備工藝
TW201445754A (zh) 太陽能電池及其製造方法
CN102184976A (zh) 背接触异质结太阳电池
JP2014504035A (ja) 太陽光発電装置及びその製造方法。
CN102214719B (zh) 基于n型硅片的背接触异质结太阳电池
CN107331713B (zh) 一种太阳能电池
CN101728459A (zh) 一种晶体硅太阳能电池的制备方法
CN102214720B (zh) 基于p型硅片的背接触异质结太阳电池
CN103367514B (zh) 一种弧形底电极薄膜太阳电池
CN105742402A (zh) 一种叠层太阳能电池的制备方法及其结构
JP2013532907A (ja) 太陽光発電装置及びその製造方法
CN103140938A (zh) 光伏发电装置及其制造方法
KR20110080663A (ko) 태양광 발전장치
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN103000738A (zh) 一种机械叠层碲化镉/多晶硅太阳能电池
CN202210522U (zh) 基于p型硅片的背接触异质结太阳电池结构
CN103178163B (zh) 一种硅基埋栅薄膜太阳能电池的制作方法
CN202210533U (zh) 基于n型硅片的背接触异质结太阳电池结构
KR101306390B1 (ko) 태양전지 및 이의 제조방법
CN202996849U (zh) 一种全铝背场晶体硅电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877647

Country of ref document: EP

Kind code of ref document: A1