WO2019095626A1 - 一种吸波贴片及其制备方法 - Google Patents

一种吸波贴片及其制备方法 Download PDF

Info

Publication number
WO2019095626A1
WO2019095626A1 PCT/CN2018/083688 CN2018083688W WO2019095626A1 WO 2019095626 A1 WO2019095626 A1 WO 2019095626A1 CN 2018083688 W CN2018083688 W CN 2018083688W WO 2019095626 A1 WO2019095626 A1 WO 2019095626A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron carbide
absorbing
preparation
parts
wave
Prior art date
Application number
PCT/CN2018/083688
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
南茜
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Publication of WO2019095626A1 publication Critical patent/WO2019095626A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols

Definitions

  • the invention relates to the field of absorbing materials, in particular to a absorbing patch and a preparation method thereof.
  • Electromagnetic absorption materials have been highly valued by people from all walks of life. They are used more and more in industrial and military applications, and are gradually being applied to various civil electronic and electrical equipment.
  • the present invention has studied a method for preparing an absorbing patch to provide an absorbing patch having good absorbing properties while also having good physicochemical stability.
  • the preparation method of the absorbing patch comprises: modifying the surface of the boron carbide to obtain modified boron carbide; and the butyl rubber, the modified boron carbide, the softening agent, the vulcanizing agent, The accelerator is mixed, kneaded to obtain a raw rubber; and the raw rubber is vulcanized to obtain an absorbing patch.
  • the step of modifying the surface of the boron carbide comprises: heating the boron carbide by heating at a temperature of 300 to 700 ° C for 2 to 4 hours, cooling at room temperature, and ball milling for 4 to 6 hours.
  • the step of mixing the butyl rubber, the modified boron carbide, the softener, the vulcanizing agent, and the accelerator includes: 90 to 110 parts of the butyl rubber, by mass parts, 20 to 60 parts of the modified boron carbide, 1 to 3 parts of the softener, 1 to 6 parts of the vulcanizing agent, and 0.5 to 3 parts of the accelerator are mixed.
  • the step of kneading includes mixing the butyl rubber, the modified boron carbide, the softener, and the vulcanizing agent, and then placing them in a plastic mixer, mixing After the smelting for 20 min to 30 min, the accelerator is added, and the mixture is further kneaded for 5 min to 20 min, and the lower sheet is cooled at room temperature to obtain a raw rubber.
  • the method of kneading includes a combination of one or more of a triangular bag, a pillow bag, and a thin punch.
  • the step of vulcanizing the raw rubber material comprises: placing the raw rubber material on a flat vulcanizing machine at a temperature of 160 ° C to 170 ° C and a pressure of 12 to 17 MPa for 20 min.
  • the absorbing patch was prepared by a 30-minute mold vulcanization treatment.
  • the absorbing patch has a thickness of 1 mm to 3 mm.
  • the butyl rubber is a combination of one or more of chlorobutyl rubber, bromobutyl rubber, and butyl rubber.
  • the softening agent is a combination of one or more of stearic acid, dibutyl phthalate, dioctyl phthalate, pine tar, and a resin.
  • the vulcanizing agent is a combination of one or more of zinc oxide, sulfur, and light magnesium oxide.
  • the promoter is one of 2-thiol benzothiazole, N, N'-tetramethyldithiobisthiocarbonylamine, and 2,2'-dithiodibenzothiazole. Combination of species or multiples.
  • the absorbing patch prepared by the above preparation method was prepared by the above preparation method.
  • the method for preparing the absorbing patch provided by the invention prepares a absorbing patch by mixing boron carbide and butyl rubber, and the absorbing patch prepared by the invention has good absorbing properties while having good absorbing properties. It also has excellent physical and chemical stability, meets the requirements of “thin, light, wide and strong” required by stealth technology, and can be widely used in aerospace stealth, electronic integrated circuits, electronic appliances and other high temperature and anti-interference devices. It can also be used to prevent absorbing darkrooms such as information leakage, medical detection, and absorbing detection.
  • FIG. 1 is a flow chart of a method of making an absorbing patch in accordance with an embodiment of the present invention.
  • the preparation method of the absorbing patch provided by the invention comprises the following steps:
  • the surface of the boron carbide is modified to obtain modified boron carbide.
  • boron carbide is heated and dried at a temperature of 300 to 700 ° C for 2 to 4 hours, and after cooling at room temperature, ball milling is carried out for 4 to 6 hours, wherein boron carbide having a B 4 C content of 91 to 94% is used. And the particle size of the boron carbide is 2.5 um.
  • the butyl rubber, the modified boron carbide, the softener, the vulcanizing agent, and the accelerator are mixed and kneaded to obtain a raw rubber.
  • 90 to 110 parts of butyl rubber, 20 to 60 parts of modified boron carbide, 1 to 3 parts of softener, and 1 to 6 parts of a vulcanizing agent are mixed in parts by mass, and placed in a double roll.
  • the type of plastic mixer by punching a triangle bag and a pillow bag for 15 to 25 times, tapping 15 to 25 times, mixing for 20 minutes to 30 minutes, adding 0.5 to 3 parts of accelerator, and mixing for 5 minutes to 20 minutes.
  • the sheet is then cooled at room temperature for 20 to 30 hours to obtain a raw rubber material, wherein the temperature of the roll of the plasticizer is 45 to 55 ° C during the kneading.
  • the butyl rubber is a combination of one or more of chlorobutyl rubber, bromobutyl rubber, and butyl rubber
  • the softening agent is stearic acid, dibutyl phthalate (DBP), ortho a combination of one or more of dioctyl phthalate (DOP), pine tar, and resin
  • the vulcanizing agent being a combination of one or more of zinc oxide, sulfur, and light magnesium oxide
  • the accelerator is 2 - one or more of thiol benzothiazole (MBT), N, N'-tetramethyldithiobisthiocarbonylamine (TMTD), 2,2'-dithiodibenzothiazole (DM) Combination of species.
  • boron carbide has excellent chemical and physical properties and electromagnetic properties such as high neutron absorption, wear resistance, high semiconductor conductivity, high hardness, high melting point, low density, and chemically high stability
  • boron carbide is selected as the boron carbide.
  • Absorbent for absorbing patches As a kind of synthetic rubber, butyl rubber has the advantages of good heat resistance, ozone resistance, aging resistance, chemical resistance, shock absorption and electrical insulation properties. Therefore, butyl rubber is selected as the base material.
  • the invention has been obtained through a large number of experiments.
  • the hardness of the Sauer A is gradually increased, the elongation at break is gradually decreased, and the tensile strength and the tear strength are first increased and then decreased.
  • the trend is to reach a maximum at 30% by weight of boron carbide, mainly because boron carbide acts as a reinforcing agent in the butyl rubber matrix, but excessive boron carbide breaks the toughness of the butyl rubber matrix.
  • the boron carbide content also affects the electrical resistivity of the boron carbide composite. When the boron carbide content is low (10wt%), the boron carbide composite has a higher electrical resistivity (10 7.04 ⁇ cm), when the boron carbide content is low.
  • the resistivity of the boron carbide composite decreases exponentially with the increase of boron carbide content.
  • the resistivity of the boron carbide composite reaches a minimum (10 1.84 ⁇ Cm), and the resistivity begins to increase with the increase of boron carbide content. Therefore, in this step, the mechanical properties and absorbing properties of the absorbing patch should be comprehensively considered, and the addition of boron carbide should be strictly controlled. the amount.
  • the amount of the vulcanizing agent increases, the dielectric constant, dielectric loss and electrical conductivity of the absorbing patch first increase and then decrease, so it is necessary to strictly control the amount of the vulcanizing agent.
  • the accelerator has a significant influence on the electrical properties of the absorbing patch composite because it contains nitrogen and sulfur.
  • the structurally asymmetric accelerator easily decomposes according to the ionic formula, thereby increasing the conductivity. Sex.
  • the hardness of the composite material is increased, so that its physical properties are degraded, and the softener acts to reduce the hardness without affecting the strength of the composite material, so it is necessary to join a certain amount of softener, wherein the stearic acid softener has a long linear aliphatic carbon-oxygen structure and has a certain polarity, therefore, the electrical conductivity is higher than other softeners, and in addition, stearic acid can not only The composite material softens and also has a certain improvement in the electrical conductivity of the composite material.
  • the raw rubber is vulcanized to obtain an absorbing patch.
  • the raw rubber material is placed on a flat vulcanizing machine at a temperature of 160 ° C to 170 ° C and a pressure of 12 to 17 MPa for 20 to 30 minutes to obtain a thickness of 1 mm to 3 mm and a size of 150 mm. ⁇ 150mm to 250mm ⁇ 250mm absorbing patch.
  • the absorbing patch prepared by the present invention has a density in the range of 1.5 to 2.2 (g/cm 3 ).
  • Test method The resistance R v of the composite material is measured by a high resistance meter, and the formula is adopted. ( ⁇ v is the volume resistivity, R v is the volume resistance, D is the diameter of the test electrode, and d is the thickness of the sample) The calculated absorbing patch resistivity.
  • the absorbing patch prepared by the present invention has a resistivity in the range of 3 ⁇ cm to 7 ⁇ cm.
  • Test method The tensile strength and elongation at break of the absorbing patch were tested using a tensile tester.
  • the absorbing patch prepared by the invention has a tensile strength of 5 to 10 MPa, a tensile elongation at break of 320% to 800%, and a Sauer hardness of 30 to 70 ⁇ .
  • Test method The test method is measured by the bow reflection method.
  • the test frequency is 2 to 18 GHz.
  • the vector network analyzer should be warmed up for 30 minutes.
  • the absorbing patch prepared by the present invention exhibits an absorption peak-to-peak value of -24 dB to -7 dB in the low frequency range of 3 to 12 GHz.
  • the method for preparing an absorbing patch comprises preparing a absorbing wave patch by mixing a certain proportion of butyl rubber, modified boron carbide, a softening agent, a vulcanizing agent and a promoter, followed by kneading and then vulcanizing.
  • the invention has the following advantages: (1) The addition amount of the boron carbide absorbent and the rubber can be flexibly adjusted, the operation is simple, and the thickness of the sheet can be controlled according to the thickness of the mold, thereby accurately preparing the suction of 1.5 mm, 2 mm, 3 mm and the like.
  • Wave patch (2) Base material butyl rubber is a good elastomer with high tensile strength, which effectively solves the problem of poor mechanical properties of the current wave absorbing sheet; (3)
  • the absorbing wave patch is light in weight.
  • the absorption peak is at a lower frequency position, and the reflectance reaches a peak value of less than -20 dB in the vicinity of the frequency of 3 to 7 GHz, solving the problem that the magnetic absorbent cannot solve. Therefore, the present invention prepares a absorbing patch having excellent absorbing property and excellent physicochemical stability by mixing boron carbide and butyl rubber, and conforms to the "thin and light" required for stealth technology. , wide, strong" requirements.
  • the absorbing patch prepared by the invention can be applied to equipments for high temperature and anti-interference such as aerospace stealth, electronic integrated circuits, electronic appliances, etc., and can also be used for anti-missing darkrooms such as information leakage, medical detection, and absorbing detection.
  • the boron carbide having a B 4 C content of 91 to 94% and a particle diameter of 2.5 ⁇ m was dried by heating at 300 ° C for 2 hours to remove organic impurities therein, and then cooled at room temperature for 4 hours to obtain modified boron carbide. .
  • 100 parts of butyl rubber, 0.5 parts of sulfur, 20 parts of modified boron carbide, 5 parts of zinc oxide, 1 part of stearic acid are mixed in parts by mass, and then placed in a two-roller open type plastic mixer.
  • the temperature of the roller of the plastic mixer is 55 ° C, and the triangle bag and the pillow bag are respectively used for 20 times, the thin pass is 20 times, the mixture is kneaded for 30 minutes, 1.5 parts of the accelerator MBT, one part of the accelerator TMTD are added, and the mixture is mixed.
  • the film was cooled, and then cooled at room temperature for 30 hours to obtain a mixed raw rubber material, and then the mixed raw rubber material was placed on a flat vulcanizing machine at a temperature of 170 ° C and a pressure of 15.5 MPa for 20 minutes. Vulcanization molding, and a absorbing patch having a thickness of 3 mm and a size of 200 mm ⁇ 200 mm was obtained.
  • the boron carbide having a B 4 C content of 91 to 94% and a particle diameter of 2.5 ⁇ m was dried by heating at 700 ° C for 4 hours to remove organic impurities therein, and then cooled at room temperature for 5 hours to obtain modified boron carbide. .
  • 100 parts by weight of butyl rubber, 0.5 parts of sulfur, 30 parts of modified boron carbide, 5 parts of zinc oxide, 2 parts of stearic acid are mixed in parts by mass, and then placed in a two-roller open type plastic mixer.
  • the temperature of the roller of the plastic mixer is 45 ° C
  • the triangle bag and the pillow bag are respectively used for 20 times
  • the thinning is performed 20 times
  • the mixture is kneaded for 30 minutes
  • 1.5 parts of the accelerator MBT, one part of the accelerator TMTD, and the mixture are mixed.
  • the film was cooled, and then cooled at room temperature for 20 hours to obtain a mixed raw rubber material, and then the mixed raw rubber material was placed on a flat vulcanizing machine at a temperature of 160 ° C and a pressure of 16 MPa for 20 minutes of compression molding. After molding, a absorbing patch having a thickness of 3 mm and a size of 200 mm ⁇ 200 mm was obtained.
  • the boron carbide having a B 4 C content of 91 to 94% and a particle diameter of 2.5 ⁇ m was dried by heating at a temperature of 500 ° C for 4 hours to remove organic impurities therein, and then cooled at room temperature for 6 hours to obtain a modified boron carbide. .
  • 100 parts by weight of butyl rubber, 0.5 parts of sulfur, 40 parts of modified boron carbide, 5 parts of zinc oxide, 3 parts of stearic acid are mixed in mass parts, and then placed in a two-roller open type plastic mixer.
  • the temperature of the roller of the plastic mixer is 50 °C
  • the triangle bag and the pillow bag are respectively used for 20 times
  • the thinning is performed 20 times
  • the mixture is kneaded for 30 minutes
  • 1.5 parts of the accelerator MBT, one part of the accelerator TMTD, and the mixture are mixed.
  • the film was cooled, and then cooled at room temperature for 25 hours to obtain a mixed raw rubber material, and then the mixed raw rubber material was placed on a flat vulcanizing machine at a temperature of 165 ° C and a pressure of 16 MPa for 20 minutes of compression molding. After molding, a absorbing patch having a thickness of 3 mm and a size of 200 mm ⁇ 200 mm was obtained.
  • the boron carbide having a B 4 C content of 91 to 94% and a particle diameter of 2.5 ⁇ m was dried by heating at 650 ° C for 2 hours to remove organic impurities therein, and then cooled at room temperature for 6 hours to obtain modified boron carbide. .
  • 110 parts of chlorobutyl rubber, 60 parts of modified boron carbide, 1 part of dibutyl phthalate, and 6 parts of sulfur are mixed, and then placed in a double-roller open type plastic mixer At this time, the temperature of the roller of the plastic mixer is 50 ° C.
  • the boron carbide having a B 4 C content of 91 to 94% and a particle diameter of 2.5 ⁇ m was dried by heating at 400 ° C for 4 hours to remove organic impurities therein, and then cooled at room temperature for 4 hours to obtain modified boron carbide. .
  • the boron carbide having a B 4 C content of 91 to 94% and a particle diameter of 2.5 ⁇ m was dried by heating at 350 ° C for 3 hours to remove organic impurities therein, and then cooled at room temperature for 5 hours to obtain modified boron carbide. .
  • the lower part was cooled and cooled at room temperature for 25 hours to obtain a mixed raw rubber material, and then the mixed raw rubber material was placed on a flat vulcanizing machine at a temperature of 165 ° C and a pressure of 14 MPa for 25 minutes of compression molding. After molding, a absorbing patch having a thickness of 2 mm and a size of 220 mm ⁇ 220 mm was obtained.
  • the invention provides a preparation method of a absorbing patch, which comprises mixing a certain proportion of butyl rubber and modified boron carbide, adding a suitable amount of vulcanizing agent, softening agent and accelerator, and then separately mixing Ripple and vulcanization are used to prepare the absorbing patch.
  • the absorbing patch of the invention has excellent absorbing properties and excellent mechanical properties, and the prepared absorbing patch has a tensile strength of 5 to 10 MPa and an elongation at break of 320% to 800%.
  • the hardness of Sauer is 30A ⁇ 70A, which solves the problem of poor mechanical properties of the current absorbing sheet; the thickness of the absorbing patch is 1 ⁇ 3mm, so that the absorbing patch reaches the requirement of "thin" and absorbs at the same time.
  • the patch material is light in weight; in addition, the absorption peak is at a lower frequency position, and the reflectance reaches a peak value of less than -20 dB around the frequency of 3 to 7 GHz, thereby solving the problem that the magnetic absorbent cannot solve, and therefore, the absorbing wave provided by the present invention
  • the patch fully meets the requirements of “thin, light, wide and strong” required by stealth technology, and can be widely used in aerospace stealth, electronic integrated circuits, electronic appliances and other high temperature and anti-interference devices, and can also be used for information leakage prevention. , medical testing, absorbing wave detection and other absorbing darkrooms. By mixing boron carbide and butyl rubber, a absorbing patch with good absorbing properties and excellent mechanical properties is prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明提供了一种吸波贴片及其制备方法,通过将一定比例的丁基橡胶、改性的碳化硼两者结合,再加入合适量的硫化剂、软化剂、促进剂,然后分别进行混炼和硫化来制备吸波贴片,本发明通过将碳化硼和丁基橡胶混合制备出了一种在具备良好吸波性能的同时也具有优良的力学性能的吸波贴片,解决了目前的吸波片材力学性能差的问题,而且吸波贴片质量轻,吸收峰处于较低频位置,解决了磁性吸收剂无法解决的问题,因此,本发明提供的吸波贴片完全符合隐身技术所需要的"薄、轻、宽、强"的要求,可以广泛地应用于航空航天隐身、电子集成电路、电子电器等耐高温防干扰的设备,也可用于防信息泄露、医疗检测、吸波检测等吸波暗室。

Description

一种吸波贴片及其制备方法 技术领域
本发明涉及吸波材料领域,具体而言,一种吸波贴片及其制备方法。
背景技术
随着现代科学技术的发展,各种电子、电气设备为社会生产提供了很高的效率,为人们的日常生活带来极大的便利。于此同时,电子、电气设备工作过程中产生的电磁辐射与干扰又会影响人们的生产和生活,导致人类生存空间的电磁环境日益恶化,成为继水源、大气和噪声之后的具有较大危害且不易防护的新污染源,它不仅影响正常通信,甚至直接威胁到人类的健康,成为社会和科学界关注的热点问题,因此,对减少电磁辐射危害的吸波材料的研究至关重要。电磁吸收材料受到了各界人士的高度重视,其在工业、军事的应用越来越多,同时也正逐渐应用于各种民用电子电气设备中。
日本横滨橡胶株式会社的Testo Soh等人将炭黑加入经环氧改性的聚氨酯橡胶中,制备了电介质型橡胶吸波贴片。Moon Suk Kim将球磨后的片状Fe 94-Si 5Cr 1与硅胶按照5:1的比例混合,结果表明,该橡胶在L波段和S波段具有较好的吸波效果。日本大同特殊钢株式会社最早采用FeCr系列电磁不锈钢扁平粉末与聚氨酯橡胶混合热压成薄片,制得柔性橡胶材料。为了满足微波通讯中波导阻抗匹配和调制放大中耦合器的需要,大同特殊钢株式会社研制了将Fe7Cr9Al软磁金属粉末(平均粒径15μm)加入聚氯乙烯中轧制成薄板,该材料可根据不同频率的需要调节合金粉末的填充率和板的厚度。接着,又研制成功多种耐热薄片(称为DPR-HT,-HTY,-HTZ),由金属粉末(FeSiAl)与橡胶混合,然后轧制成薄片,或直接液化成浆料涂在器件上,专门吸收电磁波,使用温度可达100℃以上。
虽然研究者们都制备出了吸收性能好的吸波材料,但这些吸波材料都有一个最大的缺点:材料样品厚,质量重且不耐高温,这限制了吸波材料在军事和 电子电气设备行业中的应用。
发明内容
针对相关技术中的问题,本发明研究了一种吸波贴片的制备方法,以提供一种在具备良好的吸波性能的同时也具有良好的物理化学稳定性的吸波贴片。
本发明提供的吸波贴片的制备方法,包括:对碳化硼的表面进行改性处理,得到改性的碳化硼;将丁基橡胶、所述改性的碳化硼、软化剂、硫化剂、促进剂混合,进行混炼,得到生胶料;以及对所述生胶料进行硫化处理,制得吸波贴片。
在上述制备方法中,所述对碳化硼的表面进行改性处理的步骤包括:在300~700℃的温度下将所述碳化硼加热干燥2~4h,常温冷却后,球磨4~6h。
在上述制备方法中,所述将丁基橡胶、所述改性的碳化硼、软化剂、硫化剂、促进剂混合的步骤包括:按质量份数,将90~110份所述丁基橡胶、20~60份所述改性的碳化硼、1~3份所述软化剂、1~6份所述硫化剂和0.5~3份所述促进剂混合。
在上述制备方法中,所述混炼的步骤包括:将所述丁基橡胶、所述改性的碳化硼、所述软化剂、所述硫化剂进行混合,然后置于塑炼机中,混炼20min~30min,加入所述促进剂,再混炼5min~20min,下片,并且在常温下冷却,得到生胶料。
在上述制备方法中,所述混炼的方式包括打三角包、打枕头包、打薄通中的一种或多种的组合。
在上述制备方法中,所述对所述生胶料进行硫化处理的步骤包括:将所述生胶料放在160℃~170℃的温度、12~17MPa的压力下的平板硫化机上经过20min~30min的模压硫化处理,制得所述吸波贴片。
在上述制备方法中,所述吸波贴片的厚度为1mm~3mm。
在上述制备方法中,所述丁基橡胶为氯化丁基橡胶、溴化丁基橡胶、丁基橡胶中的一种或多种的组合。
在上述制备方法中,所述软化剂为硬脂酸、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、松焦油、树脂中的一种或多种的组合。
在上述制备方法中,所述硫化剂为氧化锌、硫磺、轻质氧化镁中的一种或多种的组合。
在上述制备方法中,所述促进剂为2-硫醇基苯骈噻唑、N,N’-四甲基二硫双硫羰胺、2,2’-二硫代二苯并噻唑中的一种或多种的组合。
由上述制备方法制备的吸波贴片。
本发明提供的吸波贴片的制备方法,通过将碳化硼和丁基橡胶混合,制备出了一种吸波贴片,本发明所制备的吸波贴片在具备良好的吸波性能的同时也具有优良的物理化学稳定性,符合隐身技术所需要的“薄、轻、宽、强”的要求,可以广泛地应用于航空航天隐身、电子集成电路、电子电器等耐高温防干扰的设备,也可用于防信息泄露、医疗检测、吸波检测等吸波暗室。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的制备吸波贴片的方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的吸波贴片的制备方法,包括以下步骤:
对碳化硼表面进行改性处理,得到改性的碳化硼。在该步骤中,在300~700℃的温度下将碳化硼加热干燥2~4h,常温冷却后,球磨4~6h,其中,所使用的的是B 4C含量为91~94%的碳化硼,并且碳化硼的粒径为2.5um。在高温下对碳化硼进行加热处理,可以使其中的有机杂质分解挥发而除掉, 并且通过球磨将碳化硼的粉末颗粒细化,可以提高有机高分子材料丁基橡胶与无机材料碳化硼的相容性。
将丁基橡胶、改性的碳化硼、软化剂、硫化剂和促进剂混合,进行混炼,得到生胶料。在该步骤中,按质量份数,将90~110份丁基橡胶、20~60份改性的碳化硼、1~3份软化剂和1~6份硫化剂混合,置于双辊筒开放式的塑炼机中,通过分别打三角包、枕头包15~25次,打薄通15~25次,混炼20min~30min,加入0.5~3份促进剂,再混炼5min~20min,下片,然后在常温下冷却20~30h,得到生胶料,其中,在混炼期间,塑炼机的辊筒温度为45℃~55℃。其中,丁基橡胶为氯化丁基橡胶、溴化丁基橡胶、丁基橡胶中的一种或多种的组合,软化剂为硬脂酸、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二辛酯(DOP)、松焦油、树脂中的一种或多种的组合,硫化剂为氧化锌、硫磺、轻质氧化镁中的一种或多种的组合,促进剂为2-硫醇基苯骈噻唑(MBT)、N,N’-四甲基二硫双硫羰胺(TMTD)、2,2’-二硫代二苯并噻唑(DM)中的一种或多种的组合。在该步骤中,因为碳化硼具有高中子吸收、耐磨、高半导体导电性、高硬度、高熔点、低密度、化学上高稳定性等优良化学物理特性及电磁特性,因此,选择碳化硼作为吸波贴片的吸收剂。丁基橡胶作为合成橡胶的一种,具有耐热、耐臭氧、耐老化、耐化学药品和吸震、电绝缘性能等综合性能良好的优点,因此,选择丁基橡胶作为基体材料。此外,本发明通过大量的实验得到,随着碳化硼用量的增加,绍尔A硬度逐渐增大、拉断伸长率逐渐减小、拉伸强度和撕裂强度呈先增大后减小的趋势,且在碳化硼用量为30wt%时达到最大值,这主要是因为碳化硼在丁基橡胶基体中起到补强作用,但过量的碳化硼会破坏丁基橡胶基体的韧性。此外,碳化硼含量还会影响碳化硼复合材料的电阻率,当碳化硼含量较低(10wt%)时,碳化硼复合材料的电阻率较高(10 7.04Ω·cm),当碳化硼含量低于60wt%时,随着碳化硼含量的增加,碳化硼复合材料的电阻率呈指数级下降,当碳化硼含量达到60wt%的时候,碳化硼复合材料的电阻率达到最小值(10 1.84Ω·cm),再随着碳化硼含量的增加电阻率开始有了上升的趋势,因此,在该步骤中,应综合考虑吸波贴片的力学性能和吸波性能两方面,严格控制碳化硼的添加量。在该步骤中, 随着硫化剂用量的增加,吸波贴片的介电常数、介电损耗和电导率呈先上升后下降的趋势,因此还需要严格控制硫化剂的用量。在该步骤中,促进剂因为含有氮和硫,故对吸波贴片复合材料的电性能也有显著的影响,一般来说,结构不对称的促进剂,容易按照离子式进行分解,从而增加导电性。在该步骤中,因为随着碳化硼的大量添加,会造成复合材料的硬度上升,使得其物理性能下降,而软化剂的作用是在降低硬度的同时并不影响复合材料的强度,因此需要加入一定量的软化剂,其中,硬脂酸软化剂具有较长的直链脂肪族碳氧结构,具有一定极性,因此,导电性能比其他的软化剂要高,此外,硬脂酸不仅能对复合材料起到软化作用,还能对复合材料的导电性能有一定的提高。综上所述,在该步骤中,需要严格控制各个组分的用量,以制备出一种在具备良好吸波性能的同时也具有优良的物理化学稳定性的吸波贴片。
对生胶料进行硫化处理,制得吸波贴片。在该步骤中,将生胶料放在处于160℃~170℃的温度、12~17MPa的压力下的平板硫化机上经过20min~30min的模压硫化处理,制得厚度为1mm~3mm、尺寸为150mm×150mm~250mm×250mm的吸波贴片。
吸波贴片的性能测试:
(1)吸波贴片的密度(ρ):
测试方法:称量贴片的质量m,根据贴片尺寸求出贴片体积v,由公式ρ=m/v得出贴片的密度。
测试结果:本发明所制备的吸波贴片的密度在1.5~2.2(g/cm 3)的范围内。
(2)电阻率:
测试方法:利用高阻计测得复合材料的电阻R v,通过公式
Figure PCTCN2018083688-appb-000001
v为体积电阻率,R v为体积电阻,D为测试电极的直径,d为试样的厚度)计算出的吸波贴片电阻率。
测试结果:本发明所制备的吸波贴片的电阻率在3Ω·cm~7Ω·cm的范围内。
(3)力学性能:
测试方法:采用拉伸测试仪测试吸波贴片的拉伸强度和拉断伸长率。
测试结果:本发明所制备的吸波贴片的拉伸强度达到为5~10MPa,拉断伸长率为320%~800%,绍尔硬度为30A~70A。
(4)吸波性能:
测试方法:采用弓形反射法测量测试方法,测试频率为2~18GHz,测试开始前,矢量网络分析仪要开机预热稳定30min。
测试结果:本发明所制备的吸波贴片的在低频区间3~12GHz出现-24dB~-7dB的吸收峰峰值。
本发明提供的吸波贴片的制备方法,通过将一定比例的丁基橡胶、改性的碳化硼、软化剂、硫化剂和促进剂混合后进行混炼,然后硫化来制备吸波贴片。本发明具有以下优点:(1)可以灵活地调整碳化硼吸收剂和橡胶的添加量,操作简便,可以根据模具厚度控制片材厚度,从而准确的制备出1.5mm、2mm、3mm等厚的吸波贴片;(2)基体材料丁基橡胶是良好的弹性体,具有较高的拉伸强度,有效解决了目前吸波片材力学性能差的问题;(3)吸波贴片质量轻,吸收峰处于较低频位置,在频率为3~7GHz附近,反射率达到小于-20dB的峰值,解决了磁性吸收剂无法解决的问题。因此,本发明通过将碳化硼和丁基橡胶混合制备出了一种在具备良好吸波性能的同时也具有优良的物理化学稳定性的吸波贴片,符合隐身技术所需要的“薄、轻、宽、强”的要求。本发明所制备的吸波贴片可以应用于航空航天隐身,电子集成电路、电子电器等耐高温防干扰的设备,也可用于防信息泄露、医疗检测、吸波检测等吸波暗室。
实施例1
在300℃的温度下将B 4C含量为91~94%且粒径为2.5μm的碳化硼加热干燥2h,以除去其中的有机杂质,然后常温冷却后,球磨4h,得到改性的碳化硼。按质量份数,将100份丁基橡胶、0.5份硫磺、20份改性的碳化硼、5份氧化锌、1份硬脂酸混合,然后置于双辊筒开放式的塑炼机中,此时,塑炼机的辊筒温度为55℃,通过分别打三角包、枕头包20次,打 薄通20次,混炼30min,加入1.5份促进剂MBT、1份促进剂TMTD,再混炼8min后下片,然后在常温下冷却30h,得到混合好的生胶料,然后将混合好的生胶料放在处于170℃的温度、15.5Mpa的压力下的平板硫化机上经过20min的模压硫化成型,制得厚度为3mm、尺寸为200mm×200mm的吸波贴片。
对通过上述方法制备的吸波贴片进行性能测试,结果如下表1所示。
实施例2
在700℃的温度下将B 4C含量为91~94%且粒径为2.5μm的碳化硼加热干燥4h,以除去其中的有机杂质,然后常温冷却后,球磨5h,得到改性的碳化硼。按质量份数,将100份丁基橡胶、0.5份硫磺、30份改性的碳化硼、5份氧化锌、2份硬脂酸混合,然后置于双辊筒开放式的塑炼机中,此时,塑炼机的辊筒温度为45℃,通过分别打三角包、枕头包20次,打薄通20次,混炼30min,加入1.5份促进剂MBT、1份促进剂TMTD,再混炼8min后下片,然后在常温下冷却20h,得到混合好的生胶料,然后将混合好的生胶料放在处于160℃的温度、16Mpa的压力下的平板硫化机上经过20min的模压硫化成型,制得厚度为3mm、尺寸为200mm×200mm的吸波贴片。
对通过上述方法制备的吸波贴片进行性能测试,结果如下表1所示。
实施例3
在500℃的温度下将B 4C含量为91~94%且粒径为2.5μm的碳化硼加热干燥4h,以除去其中的有机杂质,然后常温冷却后,球磨6h,得到改性的碳化硼。按质量份数,将100份丁基橡胶、0.5份硫磺、40份改性的碳化硼、5份氧化锌、3份硬脂酸混合,然后置于双辊筒开放式的塑炼机中,此时,塑炼机的辊筒温度为50℃,通过分别打三角包、枕头包20次,打薄通20次,混炼30min,加入1.5份促进剂MBT、1份促进剂TMTD,再混炼8min后下片,然后在常温下冷却25h,得到混合好的生胶料,然后将混合好的生胶料放在处于165℃的温度、16Mpa的压力下的平板硫化机上 经过20min的模压硫化成型,制得厚度为3mm、尺寸为200mm×200mm的吸波贴片。
对通过上述方法制备的吸波贴片进行性能测试,结果如下表1所示。
实施例4
在650℃的温度下将B 4C含量为91~94%且粒径为2.5μm的碳化硼加热干燥2h,以除去其中的有机杂质,然后常温冷却后,球磨6h,得到改性的碳化硼。按质量份数,将110份氯化丁基橡胶、60份改性的碳化硼、1份邻苯二甲酸二丁酯、6份硫磺进行混合,然后置于双辊筒开放式的塑炼机中,此时,塑炼机的辊筒温度为50℃,通过分别打三角包、枕头包15次,打薄通25次,混炼20min,加入3份MBT,再混炼10min,下片,并且在常温下冷却30h,得到混合好的生胶料,然后将混合好的生胶料放在处于170℃的温度、12MPa的压力下的平板硫化机上经过30min的模压硫化成型,制得厚度为1mm、尺寸为150mm×150mm的吸波贴片。
对通过上述方法制备的吸波贴片进行性能测试,结果如下表1所示。
实施例5
在400℃的温度下将B 4C含量为91~94%且粒径为2.5μm的碳化硼加热干燥4h,以除去其中的有机杂质,然后常温冷却后,球磨4h,得到改性的碳化硼。按质量份数,将90份溴化丁基橡胶、20份改性的碳化硼、2份邻苯二甲酸二辛酯、1份树脂、0.5份硫磺、0.5份轻质氧化镁进行混合,然后置于双辊筒开放式的塑炼机中,此时,塑炼机的辊筒温度为45℃,通过分别打三角包、枕头包25次,打薄通15次,混炼30min,加入0.5份DM,再混炼20min,下片,并且在常温下冷却20h,得到混合好的生胶料,然后将混合好的生胶料放在处于160℃的温度、17MPa的压力下的平板硫化机上经过27min的模压硫化成型,制得厚度为1.5mm、尺寸为250mm×250mm的吸波贴片。
对通过上述方法制备的吸波贴片进行性能测试,结果如下表1所示。
实施例6
在350℃的温度下将B 4C含量为91~94%且粒径为2.5μm的碳化硼加热干燥3h,以除去其中的有机杂质,然后常温冷却后,球磨5h,得到改性的碳化硼。按质量份数,将100份丁基橡胶、50份改性的碳化硼、1份松焦油、1份硬脂酸、0.5份硫磺、3份轻质氧化镁进行混合,然后置于双辊筒开放式的塑炼机中,此时,塑炼机的辊筒温度为55℃,通过分别打三角包、枕头包25次,打薄通20次,混炼25min,加入2份TMTD,再混炼15min,下片,并且在常温下冷却25h,得到混合好的生胶料,然后将混合好的生胶料放在处于165℃的温度、14MPa的压力下的平板硫化机上经过25min的模压硫化成型,制得厚度为2mm、尺寸为220mm×220mm的吸波贴片。
对通过上述方法制备的吸波贴片进行性能测试,结果如下表1所示。
表1 实施例1~6制备的吸波贴片的性能测试结果
Figure PCTCN2018083688-appb-000002
由上表可以看出,随着碳化硼用量的增加,绍尔A硬度逐渐增大,拉断伸长率逐渐减小,拉伸强度呈先增大后减小的趋势,且在碳化硼用量为26.5wt%(实施例3)时达到最大值,而且,还可以看出,当改性的碳化硼含量低于60wt%的时候,随着碳化硼含量的增加,碳化硼复合材料的电阻率呈指数级下降。
本发明提供了一种吸波贴片的制备方法,通过将一定比例的丁基橡胶、改性的碳化硼两者混合,再加入合适量的硫化剂、软化剂、促进剂,然后分别进行混炼和硫化来制备吸波贴片。本发明的吸波贴片在具备良好吸波 性能的同时也具有优良的力学性能,所制备的吸波贴片的拉伸强度可达5~10MPa,拉断伸长率为320%~800%,绍尔硬度为30A~70A,解决了目前的吸波片材力学性能差的问题;吸波贴片的厚度为1~3mm,使吸波贴片达到了“薄”的要求,同时吸波贴片材料质量轻;此外,吸收峰处于较低频位置,反射率在频率为3~7GHz附近达到小于-20dB的峰值,解决了磁性吸收剂无法解决的问题,因此,本发明提供的吸波贴片完全符合隐身技术所需要的“薄、轻、宽、强”的要求,可以广泛地应用于航空航天隐身、电子集成电路、电子电器等耐高温防干扰的设备,也可用于防信息泄露、医疗检测、吸波检测等吸波暗室。通过将碳化硼和丁基橡胶混合制备出了一种在具备良好吸波性能的同时也具有优良的力学性能的吸波贴片,
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种吸波贴片的制备方法,其特征在于,包括:
    对碳化硼的表面进行改性处理,得到改性的碳化硼;
    将丁基橡胶、所述改性的碳化硼、软化剂、硫化剂和促进剂混合,进行混炼,得到生胶料;以及
    对所述生胶料进行硫化处理,制得吸波贴片。
  2. 根据权利要求1所述的制备方法,其特征在于,所述对碳化硼的表面进行改性处理的步骤包括:在300~700℃的温度下将所述碳化硼加热干燥2~4h,常温冷却后,球磨4~6h。
  3. 根据权利要求1所述的制备方法,其特征在于,所述将丁基橡胶、所述改性的碳化硼、软化剂、硫化剂、促进剂混合的步骤包括:按质量份数,将90~110份所述丁基橡胶、20~60份所述改性的碳化硼、1~3份所述软化剂、1~6份所述硫化剂和0.5~3份所述促进剂混合。
  4. 根据权利要求1所述的制备方法,其特征在于,所述混炼的步骤包括:将所述丁基橡胶、所述改性的碳化硼、所述软化剂、所述硫化剂进行混合,然后置于塑炼机中,混炼20min~30min,加入所述促进剂,再混炼5min~20min,下片,并且在常温下冷却,得到生胶料。
  5. 根据权利要求1所述的制备方法,其特征在于,所述混炼的方式包括打三角包、打枕头包、打薄通中的一种或多种的组合。
  6. 根据权利要求1所述的制备方法,其特征在于,所述对所述生胶料进行硫化处理的步骤包括:将所述生胶料放在160℃~170℃的温度、12~17MPa的压力下的平板硫化机上经过20min~30min的模压硫化处理,制得所述吸波贴片。
  7. 根据权利要求1所述的制备方法,其特征在于,所述吸波贴片的厚度为1mm~3mm。
  8. 根据权利要求1所述的制备方法,其特征在于,所述丁基橡胶为氯化丁基橡胶、溴化丁基橡胶、丁基橡胶中的一种或多种的组合。
  9. 根据权利要求1所述的制备方法,其特征在于,所述软化剂为硬脂 酸、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、松焦油、树脂中的一种或多种的组合。
  10. 根据权利要求1所述的制备方法,其特征在于,所述硫化剂为氧化锌、硫磺、轻质氧化镁中的一种或多种的组合。
  11. 根据权利要求1所述的制备方法,其特征在于,所述促进剂为2-硫醇基苯骈噻唑、N,N’-四甲基二硫双硫羰胺、2,2’-二硫代二苯并噻唑中的一种或多种的组合。
  12. 一种根据权利要求1~11任一项所述的制备方法制备的吸波贴片。
PCT/CN2018/083688 2017-11-15 2018-04-19 一种吸波贴片及其制备方法 WO2019095626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711130191.3 2017-11-15
CN201711130191.3A CN109776976A (zh) 2017-11-15 2017-11-15 一种吸波贴片及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095626A1 true WO2019095626A1 (zh) 2019-05-23

Family

ID=66493730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083688 WO2019095626A1 (zh) 2017-11-15 2018-04-19 一种吸波贴片及其制备方法

Country Status (2)

Country Link
CN (1) CN109776976A (zh)
WO (1) WO2019095626A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970733A (zh) * 2019-11-12 2020-04-07 航天科工武汉磁电有限责任公司 一种宽频强吸收耐高温型吸波贴片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042698A1 (de) * 2004-09-01 2006-05-24 Institut für Maschinen, Antriebe und elektronische Gerätetechnik gGmbH - IMG Werkstoff zur Hochfrequenzdämpfung und Schalldämmung sowie mit flammhemmenden Eigenschaften
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
CN102585507A (zh) * 2012-02-20 2012-07-18 深圳德邦界面材料有限公司 一种高性能硅基吸波材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115484A (zh) * 1993-07-30 1996-01-24 青岛橡胶制品六厂 快中子辐射的防护材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042698A1 (de) * 2004-09-01 2006-05-24 Institut für Maschinen, Antriebe und elektronische Gerätetechnik gGmbH - IMG Werkstoff zur Hochfrequenzdämpfung und Schalldämmung sowie mit flammhemmenden Eigenschaften
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
CN102585507A (zh) * 2012-02-20 2012-07-18 深圳德邦界面材料有限公司 一种高性能硅基吸波材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, CHANGHUA: "Research on Absorbing Characteristics of Boron Carbide Absorbing Materials. Chinese Master's Theses Full-text Database", ENGINEERING SCIENCE & TECHNOLOGY I, 15 July 2012 (2012-07-15), pages B21 - 23, B35-44, ISSN: 1674-0246 *
MENG, DECHUAN: "Investigation on Electrical Conductivity and Electromagnetic Shielding Effect of Boron Carbide Composite Material", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I, July 2012 (2012-07-01), pages B35 - 96, ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN109776976A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
Mondal et al. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix
CN110804313B (zh) 一种高电磁屏蔽橡胶组合物及其制备方法
JP4522689B2 (ja) 無機系補強剤配合ゴム組成物
Hernandez et al. Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber
WO2018095221A1 (zh) 一种通过不饱和羧酸盐补强的磁性橡胶及其制备方法
CN109082123A (zh) 石墨烯改性电磁屏蔽硅橡胶材料及其制备方法
WO2006064783A1 (ja) 比誘電率の制御方法、誘電体、携帯電話機及び人体ファントムモデル
CN109666299B (zh) 一种空间级抗静电密封材料及其制备方法与应用
CN107556627A (zh) 发泡石墨烯/橡胶复合材料及其制备方法和应用
Wu et al. Different Organic Peroxides that Cure Low‐k 1, 2‐PB/SBS/EPDM Composites for High‐Frequency Substrate
WO2019095626A1 (zh) 一种吸波贴片及其制备方法
CN113583254B (zh) 一种可交联型木质素及其制备方法与在橡胶复合材料中的应用
CN114133739B (zh) 一种硅橡胶吸波复合材料及其制备方法
CN103694581B (zh) 一种耐臭氧型绝缘胶板橡胶及制作方法
CN110240757A (zh) 三元乙丙橡胶柔性基中子屏蔽材料及其制备方法
Chen et al. The mechanical and thermal properties of natural rubber/zinc methacrylate composites by latex compounding techniques
Kruželák et al. Low frequency electromagnetic shielding efficiency of composites based on ethylene propylene diene monomer and multi‐walled carbon nanotubes
CN107245195A (zh) 一种发泡型电磁屏蔽橡胶及其制备方法和应用
JP2016014113A (ja) 更生タイヤ用クッションゴム及び更生タイヤ
Dong et al. Enhancements in damping properties and thermal conductivity of acrylonitrile‐butadiene rubber by using hindered phenol modified alumina
CN107974069A (zh) 一种碳纳米管基吸波超材料基材及其制备方法
Luangchuang et al. Characterization of barium titanate reinforced acrylonitrile butadiene rubber composites for flexible electronic applications: Influences of barium titanate content
CN108148289A (zh) 一种超材料基材及其制备方法
CN107325344B (zh) 一种耐盐雾腐蚀电磁屏蔽复合材料及其制备方法
CN102675705A (zh) 一种宽温域高阻尼橡胶组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879162

Country of ref document: EP

Kind code of ref document: A1