WO2019095591A1 - 一种用于无人机机载设备的散热系统 - Google Patents
一种用于无人机机载设备的散热系统 Download PDFInfo
- Publication number
- WO2019095591A1 WO2019095591A1 PCT/CN2018/078783 CN2018078783W WO2019095591A1 WO 2019095591 A1 WO2019095591 A1 WO 2019095591A1 CN 2018078783 W CN2018078783 W CN 2018078783W WO 2019095591 A1 WO2019095591 A1 WO 2019095591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- unmanned aerial
- heat dissipation
- aerial vehicle
- rotors
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 51
- 238000001816 cooling Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
Definitions
- the present invention relates to a drone, and more particularly to a heat dissipating system for an unmanned aerial vehicle.
- drone technology With the continuous development of drone technology, it is gradually being widely used in various fields, such as aerial photography and even logistics. At present, many drones have the function of high-altitude hovering and scheduled trajectory flight. At the same time, according to the application requirements, some drones are also equipped with lighting systems.
- the Chinese Patent Publication No. CN2063583U discloses a self-contained drone, comprising a main body, a multi-rotor disposed on the main body, and a lighting device connected to a lower side of the main body,
- the self-contained lighting drone further includes a liquid cooling device for dissipating heat from the lighting device, the liquid cooling device comprising a liquid cooling heat dissipating row disposed on the main body, and the exchange provided on the lighting device And a conduit connecting the exchange portion and the liquid cooling heat sink, respectively.
- the self-contained lighting drone has a simple structure, but in actual use, the liquid cooling device tends to have a large volume and quality in order to sufficiently dissipate the lighting device.
- UAVs need to be carried with a large liquid cooling device, which requires a large drone.
- the bulky drone is cumbersome, has low mobility, and has high energy consumption and low practicality.
- the present invention provides a heat dissipation system for an airborne device of a drone, which uses a rotor to form a heat dissipation area to dissipate heat from a host pendant, thereby reducing the quality of the drone, reducing the volume, and improving the maneuver.
- sexual purpose
- the diameter of the circle formed is L, the distance between O and P is 1, r is lL/2, and R is l+L/2.
- each rotor rotates along its center P to generate a downward wind, and after rotating the plurality of rotors together, a strong downward wind can be generated in the heat dissipation zone, thereby being able to
- the airborne equipment is used for heat dissipation, which eliminates the setting of the liquid cooling device, so that the small-sized drone can also drive the drone's airborne equipment to rise and fall while the airborne equipment of the drone is cooled, effectively improving the Maneuverability and practicality of man and machine.
- the present invention is further configured to further include a heat sink connected to the unmanned aerial equipment, the heat sink and the unmanned aerial equipment being located in the heat dissipation zone.
- the heat of the unmanned aerial vehicle is conducted to the heat sink, and the heat sink is placed in the heat dissipation zone, and the wind in the heat dissipation zone is blown onto the heat sink to dissipate the heat sink, thereby effectively improving the drone Heat dissipation efficiency of airborne equipment.
- the invention is further configured to further include a heat conducting member, one end of the heat conducting member being disposed in the heat dissipating region, and the other end being connected to the unmanned aerial device of the unheating region.
- the unmanned aerial equipment is placed outside the heat dissipation zone, and the generated heat is transferred to the heat conductive member, and the wind in the heat dissipation zone is blown onto the heat conductive member to dissipate heat and cool the heat conductive member, so that the drone machine
- the carrier device can dissipate heat.
- the invention is further configured to further include a heat sink, the heat conducting member being connected to the heat sink from an end of the unmanned aerial equipment.
- the heat sink is placed in the heat dissipation zone, and the wind in the heat dissipation zone is blown onto the heat sink, so that the heat sink can heat the heat conduction component more quickly, thereby further improving the heat dissipation efficiency of the airborne equipment of the drone.
- the present invention has the following beneficial effects:
- the utility model can effectively reduce the mass and volume of the drone, so that the effective heat dissipation of the unmanned aerial vehicle equipment can be realized on the small-sized unmanned aerial vehicle, so that the drone has strong maneuverability and practicability.
- Embodiment 1 is a schematic structural view of Embodiment 1;
- Figure 2 is a schematic view of the S range in the present invention.
- Embodiment 2 is a schematic structural view of Embodiment 2;
- Embodiment 4 is a schematic structural view of Embodiment 3.
- Fig. 5 is a schematic view showing the structure of the embodiment 4.
- Embodiment 1 A heat dissipation system for an unmanned aerial vehicle, as shown in FIG. 1, a four-rotor 3 is disposed on the drone. These four rotors 3 are located around the main body 1. Each of the rotors 3 rotates along its own center P (see Fig. 2) and blows downward to realize the movement of the main body 1. The centers P (see Fig. 2) of the four rotors 3 are located on the same circumference, and the center of the circumference is O (see Fig. 2). The diameter of the circle formed by the rotation of the rotor 3 is L (see Fig. 2). As shown in FIG. 2, the distance between O and P is 1.
- the drone onboard device 2 is a lighting device (such as an LED lamp) or a communication device (such as a signal transceiver). Place the drone onboard device 2 directly below the heat sink.
- the heat dissipation to the unmanned aerial vehicle 2 is achieved by the wind in the heat dissipation zone.
- Embodiment 2 As shown in FIG. 3, a heat dissipation system for an unmanned aerial vehicle is different from Embodiment 1 in that a heat sink 4 is further included.
- the heat sink 4 can be made of aluminum or copper.
- the heat sink 4 is fixedly connected to the drone onboard device 2.
- the heat sink 4 and the drone onboard device 2 are placed in the heat dissipation zone.
- the heat generated by the unmanned aerial vehicle 2 is quickly transmitted to the heat sink 4, and when the wind in the heat dissipation zone is blown onto the heat sink 4, the cooling of the heat sink 4 can be realized, thereby realizing the airborne equipment of the drone. 2 heat dissipation.
- the cooling of the unmanned aerial equipment 2 can also be achieved.
- Embodiment 3 As shown in FIG. 4, a heat dissipation system for an unmanned aerial vehicle is different from Embodiment 1 in that a heat conductive member 5 is further included.
- the heat conducting member 5 may be a heat pipe made of aluminum or copper.
- the unmanned aerial equipment is placed outside the heat dissipation area, and one end of the heat conductive member 5 is fixed on the airborne equipment of the drone, and the other end is placed in the heat dissipation area.
- heat is generated, and the heat is transferred to the heat-conducting member 5, and the heat in the heat-conducting member 5 is quickly dissipated through the wind in the heat-dissipating region, thereby realizing the cooling of the heat-conducting member 5, thereby achieving the Heat dissipation of man-machine airborne equipment.
- Embodiment 4 As shown in FIG. 5, a heat dissipation system for an unmanned aerial vehicle is different from Embodiment 1 in that it further includes a heat sink 4 and a heat conductive member 5.
- One end of the heat conducting member 5 is fixed to the unmanned aerial equipment, and the other end is fixedly connected to the heat sink 4.
- the unmanned aerial vehicle generates heat when it is in operation, and heat is transferred to the heat sink 4 through the heat conducting member 5.
- the heat conducting member 5 and the heat sink 4 can also be placed in the heat dissipating area at the same time to achieve simultaneous heat dissipation of the heat conducting member 5 and the heat sink 4.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明涉及无人机散热领域,公开了一种用于无人机机载设备的散热系统,包括多个分布于主机体四周的旋翼,多个所述旋翼之间形成用于无人机机载设备散热的散热区,所述散热区的范围面积为S=πR 2-πr 2,多个所述旋翼的中心为P且位于同一圆周上,所述圆周的圆心为O,所述旋翼旋转所形成圆的直径为L,O与P之间的距离为l,r为l-L/2,R为l+L/2。本发明具有以下优点和效果:本方案利用新机械结构,有效减少无人机质量和体积,有效提升无人机的机动性。
Description
本发明涉及一种无人机,更具体地说,它涉及一种用于无人机机载设备的散热系统。
随着无人机技术的不断发展,其逐渐被广泛地应用在各个领域,比如航拍,甚至是物流等等。目前,很多无人机已具备高空盘旋定位以及预定轨迹飞行功能,与此同时,根据应用需求,有些无人机上还配备有照明系统。
目前,公告号为CN2063583U的中国专利公开了一种自带照明无人机,包括主机体,设置于所述主机体上的多旋翼,以及连接于所述主机体下侧的照明装置,所述自带照明无人机还包括用于对所述照明装置进行散热的液冷装置,所述液冷装置包括设置于所述主机体上的液冷散热排,设置于所述照明装置上的交换部,以及分别连通所述交换部和所述液冷散热排的导管。
这种自带照明无人机结构简单,但在实际使用过程中,液冷装置为了能够对照明装置进行充分散热,液冷装置的体积、质量往往较大。无人机需要带上体积庞大的液冷装置飞行,就需要使用体积较大的无人机才能实现。在救援现场,体积庞大的无人机较为笨重,机动性较低,同时能耗较大,实用性较低。
发明内容
针对现有技术存在的不足,本发明在于提供一种用于无人机机载设备的散热系统,通过旋翼形成散热区对主机挂件进行散热,达到减少无人机质量,减小体积,提升机动性的目的。
为实现上述目的,本发明提供了如下技术方案:一种用于无人机机载设备的散热系统,包括多个分布于主机体四周的旋翼,多个所述旋翼之间形成用于无人机机载设备散热的散热区,所述散热区的范围面积为S=πR2-πr2,多个所述旋翼的中心为P且位于同一圆周上,所述圆周的圆心为O,所述旋翼旋转所形成圆的直径为L,O与P之间的距离为l,r为l-L/2,R为l+L/2。
通过采用上述技术方案,每个旋翼沿着自身的中心P旋转,产生向下的风,多个旋翼一起旋转后,即可在散热区中产生较强的向下的风,从而能够对无人机机载设备进行散热,免去了液冷装置的设置,使得体积较小的无人机也能够在对无人机机载设备散热的同时带动无人机机载设备起落,有效提 升了无人机的机动性和实用性。
本发明进一步设置为:还包括与无人机机载设备连接的散热片,所述散热片与无人机机载设备位于散热区中。
通过采用上述技术方案,无人机机载设备的热量传导到散热片上,散热片置于散热区中,散热区中的风吹到散热片上能够将散热片进行散热,能够有效提升对无人机机载设备的散热效率。
本发明进一步设置为:还包括导热件,所述导热件的一端置于散热区中,另一端与散热区外的无人机机载设备连接。
通过采用上述技术方案,无人机机载设备置于散热区外部,产生的热量传递到导热件上,散热区中的风吹到导热件上,对导热件散热、降温,使得无人机机载设备能够散热。
本发明进一步设置为:还包括散热片,所述导热件远离无人机机载设备的一端与所述散热片连接。
通过采用上述技术方案,将散热片置于散热区中,散热区中的风吹到散热片上,使散热片能够更快地对导热件实现散热,从而进一步提升无人机机载设备的散热效率。
综上所述,本发明具有以下有益效果:
旋翼旋转后,产生向下的风,带动无人机移动,多个旋翼转动,在散热区中的风即可实现对无人机机载设备的散热作用,从而免去了液冷装置的设置,有效减小无人机的质量和体积,从而在较小体积的无人机上也能够实现对无人机机载设备的有效散热,使无人机具有较强的机动性和实用性。
图1为实施例1的结构示意图;
图2为本发明中S范围示意图;
图3为实施例2的结构示意图;
图4为实施例3的结构示意图;
图5为实施例4的结构示意图。
附图标记:1、主机体;2、无人机机载设备;3、旋翼;4、散热片;5、导热件。
参照附图对本发明做进一步说明。
实施例1:一种用于无人机机载设备的散热系统,如图1所示,无人机上设置有四个旋翼3。这四个旋翼3位于主机体1的四周。每个旋翼3沿着自身的中心P(见图2)旋转,向下方吹风,实现主机体1的移动。此四个旋翼3的中心P(见图2)位于同一个圆周上,该圆周的圆心为O(见图2)。旋翼3旋转所形成的圆的直径为L(见图2)。如图2所示,O与P之间的距离为l。
图2所示的环形区域为本发明所述的散热区,其横截面积为S=πR
2-πr
2,其中,r为l-L/2,R为l+L/2。
如图1所示,无人机机载设备2为照明设备(如LED灯)或通信设备(如信号收发器)。将无人机机载设备2置于散热区的正下方位置。通过散热区中的风实现对无人机机载设备2的散热。
从而有效减小无人机的体积、质量,使无人机拥有较好的实用性和机动性。
实施例2:如图3所示,一种用于无人机机载设备的散热系统,与实施例1的区别之处在于还包括散热片4。
散热片4可以由铝或者铜制成。将散热片4与无人机机载设备2固定连接。并将散热片4与无人机机载设备2置于散热区中。无人机机载设备2产生的热量快速传导到散热片4上,散热区中的风吹到散热片4上时,即可实现对散热片4的降温,从而实现对无人机机载设备2的散热。
散热区中的风同时吹到散热片4与无人机机载设备2上时,同样可以实现对无人机机载设备2的降温。
实施例3:如图4所示,一种用于无人机机载设备的散热系统,与实施例1的区别之处在于还包括导热件5。
导热件5可以是由铝或者铜制成的导热管。将无人机机载设备置于散热区外部,将导热件5的一端固定在无人机机载设备上,另一端置于散热区中。无人机机载设备工作的过程中产生热量,热量传递到导热件5上,通过散热区中的风将导热件5上的热量迅速散去,实现对导热件5的降温,从而实现对无人机机载设备的散热。
实施例4:如图5所示,一种用于无人机机载设备的散热系统,与实施例1的区别之处在于还包括散热片4、导热件5。
将导热件5的一端固定在无人机机载设备上,另一端与散热片4固定连 接。无人机机载设备工作时产生热量,热量通过导热件5传递到散热片4上。
使用时,将无人机机载设备置于散热区外部,将散热片4置于散热区中。散热区中的风吹到散热片4上时,实现对散热片4的散热,使散热片4的温度降低。在无人机机载设备持续工作的过程中,热量可持续输送到散热片4上,并在散热区中散去,使无人机挂机不易因热量难以散去而发生故障。从而达到减小无人机重量和体积的同时,实现对无人机机载设备的散热作用,具有较高的机动性和实用性。
同时,也可以将导热件5和散热片4同时置于散热区中,实现对导热件5和散热片4的同时散热。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (4)
- 一种用于无人机机载设备的散热系统,包括多个分布于主机体(1)四周的旋翼(3),其特征是:多个所述旋翼(3)之间形成用于无人机机载设备(2)散热的散热区,所述散热区的范围面积为S=πR 2-πr 2,多个所述旋翼(3)的中心为P且位于同一圆周上,所述圆周的圆心为O,所述旋翼(3)旋转所形成圆的直径为L,O与P之间的距离为l,r为l-L/2,R为l+L/2。
- 根据权利要求1所述的一种用于无人机机载设备的散热系统,其特征是:还包括与无人机机载设备(2)连接的散热片(4),所述散热片(4)与无人机机载设备(2)位于散热区中。
- 根据权利要求1所述的一种用于无人机机载设备的散热系统,其特征是:还包括导热件(5),所述导热件(5)的一端置于散热区中,另一端与散热区外的无人机机载设备(2)连接。
- 根据权利要求3所述的一种用于无人机机载设备的散热系统,其特征是:还包括散热片(4),所述导热件(5)远离无人机机载设备(2)的一端与所述散热片(4)连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711157507.8A CN109819624A (zh) | 2017-11-20 | 2017-11-20 | 一种用于无人机机载设备的散热系统 |
CN201711157507.8 | 2017-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019095591A1 true WO2019095591A1 (zh) | 2019-05-23 |
Family
ID=66539313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/078783 WO2019095591A1 (zh) | 2017-11-20 | 2018-03-13 | 一种用于无人机机载设备的散热系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109819624A (zh) |
WO (1) | WO2019095591A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2529896A (en) * | 2014-09-05 | 2016-03-09 | Richard Nathan Hadder | Multirotor |
CN206149689U (zh) * | 2016-08-31 | 2017-05-03 | 零度智控(北京)智能科技有限公司 | 无人机散热结构及无人机 |
CN206384143U (zh) * | 2016-12-27 | 2017-08-08 | 昆山优尼电能运动科技有限公司 | 无人机散热系统 |
CN206644992U (zh) * | 2017-03-31 | 2017-11-17 | 湖南人文科技学院 | 一种散热性能优良的轻小型无人机 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101660464B1 (ko) * | 2015-09-04 | 2016-10-24 | 주식회사 그리폰 다이나믹스 | 방열부를 구비한 모터붐 |
CN106628216B (zh) * | 2016-12-01 | 2017-12-19 | 何小峰 | 一种照明无人机 |
CN106672225A (zh) * | 2016-12-27 | 2017-05-17 | 昆山优尼电能运动科技有限公司 | 无人机散热风路系统 |
CN206358377U (zh) * | 2017-01-09 | 2017-07-28 | 深圳市万景华科技有限公司 | 自带照明无人机 |
CN207652875U (zh) * | 2017-11-20 | 2018-07-24 | 浙江杭一电器有限公司 | 一种用于无人机机载设备的散热系统 |
-
2017
- 2017-11-20 CN CN201711157507.8A patent/CN109819624A/zh active Pending
-
2018
- 2018-03-13 WO PCT/CN2018/078783 patent/WO2019095591A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2529896A (en) * | 2014-09-05 | 2016-03-09 | Richard Nathan Hadder | Multirotor |
CN206149689U (zh) * | 2016-08-31 | 2017-05-03 | 零度智控(北京)智能科技有限公司 | 无人机散热结构及无人机 |
CN206384143U (zh) * | 2016-12-27 | 2017-08-08 | 昆山优尼电能运动科技有限公司 | 无人机散热系统 |
CN206644992U (zh) * | 2017-03-31 | 2017-11-17 | 湖南人文科技学院 | 一种散热性能优良的轻小型无人机 |
Also Published As
Publication number | Publication date |
---|---|
CN109819624A (zh) | 2019-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104477399B (zh) | 一种夜间搜救多旋翼无人机 | |
CN204236781U (zh) | 一种夜间搜救多旋翼无人机 | |
WO2017162001A1 (zh) | 色轮装置及投影仪 | |
WO2019184277A1 (zh) | 探照灯、云台组件和无人机 | |
CN201819059U (zh) | 一种可主动散热的led灯具 | |
WO2019095591A1 (zh) | 一种用于无人机机载设备的散热系统 | |
CN207652875U (zh) | 一种用于无人机机载设备的散热系统 | |
CN106352309B (zh) | 一种散热器及具有散热器的灯 | |
CN109263876A (zh) | 一种多旋翼无人机 | |
CN209037843U (zh) | 一种消防用便于侦测火情的无人机 | |
CN208198812U (zh) | 一种带有起落架的无人机 | |
CN207374677U (zh) | 一种农林植保无人机 | |
CN205578123U (zh) | 小型单旋翼无人直升机上的发动机混合冷却系统 | |
CN207120883U (zh) | 电调组件、动力系统及无人机 | |
CN207350210U (zh) | 一种基于多旋翼无人机的航行灯散热结构 | |
CN205749327U (zh) | 一种风机叶片探伤检测装置 | |
CN206319948U (zh) | 小型单旋翼无人直升机发动机散热结构 | |
CN106533021A (zh) | 一种轻量化工业机器人电机箱体 | |
CN209590513U (zh) | 高效散热的荧光粉轮装置 | |
WO2021196138A1 (zh) | 一种无人机机舱散热装置 | |
CN209455013U (zh) | 一种无人机避障装置及无人机 | |
CN208846251U (zh) | 一种led照明灯具 | |
CN207648487U (zh) | 一种基于超声波散热型led灯具 | |
CN207134605U (zh) | 一种用于消防搜救照明用激光手电的激光光源 | |
CN206904750U (zh) | 一种带有散热器的led泛光灯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18877907 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18877907 Country of ref document: EP Kind code of ref document: A1 |