WO2019095535A1 - 一种照明装置和汽车照明灯具 - Google Patents

一种照明装置和汽车照明灯具 Download PDF

Info

Publication number
WO2019095535A1
WO2019095535A1 PCT/CN2018/071443 CN2018071443W WO2019095535A1 WO 2019095535 A1 WO2019095535 A1 WO 2019095535A1 CN 2018071443 W CN2018071443 W CN 2018071443W WO 2019095535 A1 WO2019095535 A1 WO 2019095535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
conversion element
excitation light
wavelength conversion
laser
Prior art date
Application number
PCT/CN2018/071443
Other languages
English (en)
French (fr)
Inventor
徐梦梦
胡飞
常静
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019095535A1 publication Critical patent/WO2019095535A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters

Definitions

  • the present invention relates to the field of illumination, and in particular to a lighting device and an automotive lighting fixture.
  • LED lamps, xenon lamps and halogen lamps are the most widely used light sources.
  • these kinds of light sources have disadvantages such as insufficient brightness, long service life, and large beam divergence angle, resulting in insufficient illumination distance.
  • laser headlights have appeared on a few models. This kind of illumination has high brightness and long service life, and because of the small divergence angle of the laser beam, the emitted light beam can be concentrated and emitted in one direction, so that the distance of illumination is greatly increased.
  • the current laser headlights are mainly used as the high beam of the vehicle, and usually form a high beam system together with the LED light group, and are turned on when the vehicle reaches a certain speed.
  • the laser is not visible.
  • the main reason is that the divergence angle of the laser is small and it is difficult to spread to meet the requirements of the illumination range.
  • the heat generation concentration of the laser-excited phosphor is to be thermally stable enough to provide the brightness of the high beam or low beam separately.
  • Existing illuminant selection and design of optical path structures are difficult to achieve.
  • the existing laser headlights usually use a single-color blue laser to excite the yellow fluorescent material to obtain a white light source whose color coordinates conform to the automotive lighting standard.
  • the yellow fluorescent material is usually YAG:Ce, which has the following three forms: The fluorescent material of the carrier system - silica gel or epoxy resin as a binder, dispersing YAG:Ce phosphor powder therein; 2 fluorescent material of glass system - mixing glass powder and YAG:Ce phosphor powder uniformly, high temperature melting treatment The obtained fluorescent material, in which the glass is used as a binder and the phosphor is dispersed therein; 3 the porous luminescent ceramic-YAG:Ce fluorescent ceramic is used as a host material, and the pores are dispersed as a scattering center in the fluorescent ceramic. .
  • the above three forms of fluorescent materials have poor thermal conductivity. Under high-power laser excitation, the heat in the fluorescent material aggregates, which seriously affects the luminescent properties and lifetime of the luminescent materials.
  • Transparent luminescent ceramics have better thermal conductivity relative to the above three fluorescent materials and are used in the field of LED illumination.
  • the scattering center is absent in the transparent luminescent ceramic, and the laser light that has not been absorbed through the transparent luminescent ceramic still exits in the original propagation direction. Since the light emitted by the LED chip itself is Lambertian-distributed light, even a transparent light-emitting ceramic can obtain light with a large divergence angle, and thus the transparent light-emitting ceramic is completely suitable for LED illumination.
  • the combination of the laser and the transparent luminescent ceramic is different.
  • the present invention provides a lighting device with high brightness, good divergence effect and good safety performance, including: laser light source, Exciting light is emitted; a wavelength conversion device is disposed on the optical path of the excitation light for absorbing at least a portion of the excitation light, and emitting laser light and unabsorbed excitation light, the wavelength conversion device including the light conversion element
  • the light conversion element is a single crystal or a transparent ceramic, the light conversion element includes an incident surface, an exit surface, and a side surface; a diffuse mirror disposed on an optical axis of the light conversion element for reflecting the unrecognized
  • the absorbed excitation light expands its light divergence angle; the laser light emitted from the wavelength conversion device is combined with the excitation light emitted from the diffuse mirror to become the light emitted by the illumination device.
  • the light converting element is a YAG:Ce single crystal or a YAG:Ce transparent ceramic.
  • the light conversion element is capable of emitting yellow light under the excitation of blue light and combining it with blue light to become white light to meet the lighting requirements of white light.
  • the single crystal or transparent ceramic showed a pale yellow transparency by visual observation.
  • the side faces are polished faces having a roughness of less than 100 nm.
  • the wavelength conversion device includes a reflective layer disposed on at least one of the sides of the light converting element, the reflective layer being a specularly reflective layer or a diffuse reflective layer.
  • the reflective layer By providing the reflective layer on the side surface of the light conversion element, it is possible to ensure that the excitation light and the laser light in the light conversion element are not leaked from the side, and the light utilization efficiency is ensured.
  • the reflective layer is a diffuse reflection layer, the propagation angle of the laser light can also be changed, thereby improving the light extraction efficiency of the exit surface.
  • the wavelength conversion device includes a heat sink disposed on at least one of the sides.
  • the heat sink maintains thermal coupling with the light conversion element while avoiding optical coupling, improving heat dissipation of the light conversion element while avoiding loss of light at the interface between the heat sink and the light conversion element.
  • the wavelength conversion device includes the above-described arrangement as a reflective layer on the side, the heat sink may be disposed on the back side of the reflective layer.
  • the wavelength conversion device includes an optical grid disposed on an exit surface of the light conversion element, the optical grid being used to expand a beam cross-sectional area of the excitation light.
  • the technical solution makes the cross-sectional area of the excitation light emitted by the light conversion element large, and since the laser light in the light conversion element is emitted by the Lambertian light, the emission cross section covers the exit surface of the entire light conversion element, and the light beam that causes the excitation light The cross-sectional area is enlarged, which can facilitate the uniform mixing of the excitation light and the laser, thereby obtaining the uniform light of the color.
  • the optical grid includes at least one pair of the light splitting element and the light reflecting element, wherein the light splitting element partially transmits the excitation light, and the excitation light reflected by the light separating element is reflected again by the light reflecting element The excitation light transmitted by the light splitting element is emitted toward the same direction.
  • the propagation direction of each sub-beam is adjusted to face the same direction, thereby realizing the cross-sectional area of the enlarged beam.
  • the technical solution can expand the cross-sectional area of the excitation light to twice without excessively diffusing the divergence angle of the excitation light, so that the excitation light emitted by the wavelength conversion device can be more incident on the diffuse mirror.
  • the wavelength conversion device further includes a fluorescent material layer disposed on an exit surface of the light conversion element, the fluorescent material layer being a red phosphor layer encapsulated by an organic binder, and a red fluorescent color of the glass package Powder layer or red ceramic layer.
  • the technical solution adjusts the color temperature of the emitted light by providing a red fluorescent material layer on the exit surface of the light conversion element such that a part of the excitation light is emitted after the light conversion element is emitted, and then the red fluorescent material layer is excited to generate red fluorescence.
  • the excitation light is blue light
  • the light conversion element emits yellow light
  • the fluorescent material layer emits red light
  • the blue-yellow red light finally emits in an approximate Lambertian distribution, thereby obtaining white light with uniform mixing and high color rendering index.
  • the layer of phosphor material may also be disposed on the diffuse reflective surface of the diffuse mirror. Since both the light conversion element and the fluorescent material layer undergo light-to-light conversion, heat is generated, so the technical solution separates the two and can improve heat dissipation performance. Moreover, for the red phosphor layer of the silicone package and the red phosphor layer of the glass package, the diffuse reflection layer is more likely to adhere.
  • a cross-sectional area of the diffusing mirror perpendicular to an optical axis of the light converting element is no greater than an exit surface area of the light converting element. Since the light conversion element is a single crystal or a transparent ceramic, the portion of the excitation light that passes through the light conversion element while being unabsorbed still maintains a small divergence angle, and the beam cross-sectional area does not occur during the process from the exit surface of the light conversion element to the diffuse mirror. obviously increase.
  • the cross-sectional area of the diffusing mirror under the premise of receiving the unabsorbed excitation light, the amount of laser light incident on the diffusing mirror is reduced, thereby causing the exit surface of the light converting element to exit.
  • the approximate Lambertian distribution is directly emitted by the laser as much as possible, reducing the reflection of the diffuse mirror and reducing the optical loss.
  • the excitation light emitted by the laser light source is conducted through the optical fiber and then incident on the wavelength conversion device. This technical solution avoids the danger of laser leakage during transmission and also makes the design of the laser source position more free.
  • the illumination device further includes a reflective cover
  • the reflective cover includes a through hole through which at least a portion of the component of the wavelength conversion device passes, an exit surface of the light conversion element and the diffuse reflection
  • the mirror is located in the reflector, and the laser light emitted by the wavelength conversion device and the excitation light emitted by the diffuse mirror are reflected by the reflector and then emitted.
  • the present invention also provides an automotive lighting fixture comprising the lighting device of any of the above.
  • the present invention obtains a Lambertian laser beam at the exit end of the light conversion element by causing the excitation light of a small divergence angle emitted by the laser light source to be incident on the light conversion element whose material is single crystal or transparent ceramic.
  • the unabsorbed excitation light is transmitted through the light conversion element without being scattered, and is incident on the diffuse mirror disposed on the optical axis of the light conversion element, and the Lambertian excitation light is obtained at the exit end of the diffuse mirror.
  • the laser light at the exit end of the light conversion element has a similar light distribution to the excitation light at the exit end of the diffuse mirror, and the two combine to form a uniform outgoing light.
  • the technical scheme utilizes the excellent thermal conductivity and high-efficiency luminescence performance of the light conversion element of the single crystal or the transparent ceramic material, and at the same time, the laser leakage safety problem of the light conversion element of the single crystal or the transparent ceramic material is avoided by the diffusing mirror.
  • the problem of unevenness provides a laser illumination device with high brightness and good safety performance.
  • FIG. 1 is a schematic structural view of a first embodiment of a lighting device of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a lighting device of the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of a lighting device of the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment of the lighting device of the present invention.
  • a laser light source capable of generating a high power density is used as an excitation light source, and on the basis of this, a laser conversion light is wavelength-converted by a light conversion element whose material structure is single crystal or transparent ceramic, thereby While obtaining high-intensity laser light, it ensures good thermal conductivity and heat dissipation performance of the wavelength conversion device to obtain sustainable high-luminance light output.
  • the unabsorbed excitation light is directly emitted at a small divergence angle (due to the properties of the laser itself, this problem does not occur in the technical solution of the non-laser light source; This problem is also not encountered in the technical solution of the non-transparent wavelength conversion material.
  • the divergence angle of the partial excitation light is changed and de-cohered.
  • the exit surface of the light conversion element and the surface of the diffuse mirror are respectively the actual light-emitting surfaces of the laser light and the excitation light, and the light of the two light-emitting surfaces is mixed to obtain uniform light emission.
  • the inventive concept of the present invention is unique in that two excitation sources are used to obtain two "light sources” that emit approximately Lambertian light, and then the two "light sources” are combined to obtain a uniform light distribution and uniform color. The light is emitted.
  • the illumination device of the present invention primarily comprises three components: a laser source, a wavelength conversion device, and a diffuse mirror.
  • the excitation light emitted by the laser light source is incident on the incident surface of the light conversion element of the wavelength conversion device, wherein part of the excitation light is absorbed to generate the laser light, and part of the excitation light is not absorbed by the light conversion element, and is passed by the laser light and the unabsorbed excitation light.
  • the exit surface of the light conversion element is emitted.
  • the excitation light emitted from the light conversion element still maintains a small divergence angle propagation, and is incident on the diffuse mirror provided on the optical axis of the light conversion element, and after being reflected, the light divergence angle is enlarged. Then, the laser light emitted from the wavelength conversion device is combined with the excitation light emitted from the diffuse mirror to become the light emitted from the illumination device.
  • the laser source emits excitation light.
  • the laser source is a semiconductor laser source, such as a laser diode source.
  • the laser source can also be a light source composed of a laser diode array or a laser source.
  • the laser light source is characterized by a small light divergence angle and the laser is coherent and is not suitable for direct use in illumination.
  • the laser source is a blue light source, and the blue light can be used as excitation light to excite green, yellow or red light, and can also be used directly as part of the illumination light.
  • the laser light source may also be a violet light source or a near-ultraviolet light source. In this embodiment, if white light is to be obtained, it is also necessary to provide a wavelength conversion device that emits blue light.
  • the wavelength conversion device is disposed on the optical path of the excitation light for absorbing at least a portion of the excitation light and emitting the laser light and the unabsorbed excitation light.
  • the wavelength conversion device may be a combination of several components, wherein the wavelength conversion device includes a light conversion element that is responsible for absorbing the excitation light and exiting the laser.
  • the light conversion element is a single crystal or a transparent ceramic
  • the light conversion element includes an incident surface, an exit surface, and a side surface, wherein the side surface is a surface other than the incident surface and the exit surface.
  • the excitation light is incident from the incident surface of the light conversion element and exits from the exit surface of the light conversion element, and is reflected when the light encounters the side surface during propagation.
  • the light converting element is a rectangular parallelepiped, wherein the incident surface and the exit surface are opposite faces, the two faces having a smaller area and the remaining four faces being side faces.
  • the light converting element can also be a cube.
  • the light converting element may also be other prisms, such as a hexagonal prism, or may be a cylinder.
  • the light conversion element has a function of light-to-light conversion.
  • the light conversion element is YAG:Ce single crystal or YAG:Ce transparent ceramic, YAG:Ce is Ce-doped Y 3 Al 5 O 12 , capable of being in blue light
  • the yellow light is emitted under the excitation, and the luminous efficiency is high and the structure is stable.
  • the combination of yellow and blue light becomes white light to accommodate the lighting needs of white light.
  • the single crystal or transparent ceramic showed a pale yellow transparency by visual observation.
  • the YAG:Ce single crystal or the YAG:Ce transparent ceramic in the present invention is distinguished from the wavelength conversion structure in which the YAG:Ce phosphor particles are placed in a transparent carrier, wherein the transparent carrier comprises an organic binder such as a silica gel/resin.
  • the transparent carrier comprises an organic binder such as a silica gel/resin.
  • a transparent ceramic such as a primer, a glass, or the like, a transparent ceramic such as alumina, and YAG:Ce cannot appear in the form of phosphor particles.
  • the side surface is required to have a reflection function.
  • the side surface is a polished surface having a roughness of less than 100 nm.
  • the side surface is “almost smooth” by polishing the side surface, and then the light propagating inside the light conversion element reaches the side due to light conversion.
  • the refractive index difference between the element and the outside air causes the light to be totally reflected and continues to propagate inside the light conversion element.
  • the incident surface of the light conversion element of the wavelength conversion device is provided with an angle selection diaphragm, and the diaphragm can be selected only by the wavelength/angle of the excitation light transmitting only a small incident angle to prevent the light from being reflected back to the incident surface. .
  • the wavelength conversion device includes a reflective layer disposed on at least one side of the light conversion element, and the reflective layer may be a specular reflective layer such as an aluminum reflective layer, a silver reflective layer, a dielectric film reflective layer, or a diffuse
  • the reflective layer is, for example, an alumina reflective layer, a boron nitride reflective layer, or the like.
  • the wavelength conversion device further includes a heat sink disposed on at least one of the sides.
  • the heat sink maintains thermal coupling with the light conversion element while avoiding optical coupling, improving heat dissipation of the light conversion element while avoiding loss of light at the interface between the heat sink and the light conversion element.
  • the heat sink may be disposed on the back side of the reflective layer.
  • the reflective layer is a metal reflective layer
  • the heat sink may be a metal heat sink disposed on the back surface of the reflective layer.
  • the heat sink may be a ceramic heat sink such as an aluminum nitride ceramic substrate. sheet.
  • the laser light is emitted from the center of the light in the light conversion element, and has an approximately Lambertian distribution, so that at the exit of the light conversion element, the laser can fill the entire exit surface; and due to the transparent nature of the light conversion element, The unabsorbed excitation light hardly diffuses on the light exit surface compared to the light incident surface, and still leaves a small divergence angle, so that the spot of the excitation light on the exit surface of the light conversion element fails to fill the exit surface.
  • the wavelength conversion device includes an optical grid disposed on an exit surface of the light conversion element, the optical grid being used to expand a beam cross-sectional area of the excitation light to cause excitation light and laser light-receiving The spot size is close.
  • the optical grid includes at least one pair of the light splitting element and the light reflecting element, wherein the light splitting element partially transmits the excitation light, and the excitation light reflected by the light separating element is reflected again by the light reflecting element The excitation light transmitted by the light splitting element is emitted toward the same direction.
  • the propagation direction of each sub-beam is adjusted to face the same direction, thereby realizing the cross-sectional area of the enlarged beam.
  • the technical solution can expand the cross-sectional area of the excitation light to twice without excessively diffusing the divergence angle of the excitation light, so that the excitation light emitted by the wavelength conversion device can be more incident on the diffuse mirror.
  • the wavelength conversion device further includes a fluorescent material layer disposed on the exit surface of the light conversion element, the fluorescent material layer being a red phosphor layer encapsulated by an organic binder, a red phosphor layer of a glass package, or a red ceramic Floor.
  • the technical solution adjusts the color temperature of the emitted light by providing a red fluorescent material layer on the exit surface of the light conversion element such that a part of the excitation light is emitted after the light conversion element is emitted, and then the red fluorescent material layer is excited to generate red fluorescence.
  • the fluorescent material layer is not limited to the red fluorescent material layer, and the fluorescent material layer may also be a fluorescent material layer of other colors such as orange to suit other application scenarios.
  • the fluorescent material layer may be integrated with the light conversion element, for example, when the fluorescent material layer is a glass-based fluorescent material layer or a ceramic-based fluorescent material layer; the fluorescent material layer may also be connected to the light conversion element through a transparent optical adhesive.
  • the fluorescent material layer is not limited to being connected to the light converting element, and in other embodiments, the fluorescent material layer may also be separated from the light converting element.
  • the layer of fluorescent material is disposed on a diffusely reflective surface of the diffuse mirror. Since both the light conversion element and the fluorescent material layer undergo light-to-light conversion, heat is generated, so the technical solution separates the two and can improve heat dissipation performance. Moreover, for the red phosphor layer of the silicone package and the red phosphor layer of the glass package, the diffuse reflection layer is more likely to adhere.
  • the diffuse mirror on the one hand corresponds to the "light source” of the excitation light of the approximate Lambertian distribution and the laser "light source” of the exit surface of the light conversion element, and on the other hand acts as a safety guard to prevent high power density, coherence, The laser with a small divergence angle is directly emitted.
  • the diffuse mirror is disposed on the optical path of the excitation light emitted by the light conversion element.
  • the diffuse mirror is disposed on the optical axis of the light conversion element for reflecting the unabsorbed excitation light and expanding the light divergence angle thereof.
  • a light guiding mirror may be disposed between the light converting element and the diffusing mirror to make the position of the diffusing mirror more flexible.
  • the diffuse mirror includes a diffuse reflective layer, and in one embodiment, the diffusely reflective layer includes stacked white scattering particles that reflect/scatter visible light.
  • the white scattering particles may be, for example, a material such as alumina, titania, or boron nitride.
  • the white scattering particles can be bonded to a layer by an adhesive such as glass or silica gel.
  • the diffusely reflective layer is a dense structure and is thick enough to ensure that no excitation light exits the back side of the diffuse mirror.
  • the diffuse reflection layer may also be obtained by surface roughening a general reflective surface.
  • the roughening means may include conventional means such as etching, machining, and the like.
  • the back surface of the diffuse reflection layer of the diffuse mirror may further be provided with an opaque substrate to prevent direct emission of the excitation light when the diffuse reflection layer is detached or cracked, thereby further improving safety performance.
  • the diffuse mirror needs to prevent the direct leakage of the laser, the excessive diffuse mirror is not conducive to the illumination device, because more than the excitation light will illuminate the diffuse mirror, and some of the laser will inevitably illuminate the diffuse. On the mirror, we don't really want too much laser light to be incident on the diffuse mirror.
  • the cross-sectional area of the diffusing mirror perpendicular to the optical axis of the light converting element is no greater than the exit surface area of the light converting element.
  • the light conversion element is a single crystal or a transparent ceramic
  • the portion of the excitation light that passes through the light conversion element while being unabsorbed still maintains a small divergence angle, and the beam cross-sectional area does not occur during the process from the exit surface of the light conversion element to the diffuse mirror.
  • the cross-sectional area of the diffusing mirror under the premise of receiving the unabsorbed excitation light, the amount of laser light incident on the diffusing mirror is reduced, thereby causing the exit surface of the light converting element to exit.
  • the approximate Lambertian distribution is directly emitted by the laser as much as possible, reducing the reflection of the diffuse mirror and reducing the optical loss.
  • the excitation light emitted by the laser light source enters the wavelength conversion device.
  • the excitation light emitted by the laser light source is conducted through the optical fiber and then incident on the wavelength conversion device. This technical solution avoids the danger of laser leakage during transmission and also makes the design of the laser source position more free.
  • the light emitted by the laser source enters the wavelength conversion device through an optical element such as a lens or a mirror.
  • the illumination device further includes a reflective cover
  • the reflective cover includes a through hole through which at least a portion of the component of the wavelength conversion device passes, an exit surface of the light conversion element and the diffuse reflection
  • the mirror is located in the reflector, and the laser light emitted by the wavelength conversion device and the excitation light emitted by the diffuse mirror are reflected by the reflector and then emitted.
  • the inner surface of the reflector has a reflective layer that is capable of reflecting excitation light and laser light.
  • the reflector has a paraboloid shape, and the reflector has a focus, and the exit surface of the light conversion element and the diffuse reflection surface of the diffuse mirror are respectively disposed at two sides near the focus to make the two outgoing light After being reflected by the reflector, it is uniformly mixed.
  • the light converting element of the wavelength conversion device is partially located within the reflector, with the remainder of the light converting element being outside the reflector.
  • a surface of the light conversion element located outside the reflector may be provided with a heat sink for heat dissipation.
  • the through hole of the reflector is disposed near a position where the curvature of the reflector is maximized.
  • the reflector of the present embodiment can be obtained by punching a position where the curvature of the reflector prototype is the largest.
  • the reflecting cover may be not only in the shape of a bowl but also in the shape of a half of the bowl, for example, a shape in which the bowl is shaped into two halves.
  • the lighting device of the present invention can be applied to a vehicle lamp or other similar lighting environment, such as a lighting device for a carrier such as a ship or an airplane, and can also be applied to an application environment such as a searchlight.
  • the invention particularly protects an automotive lighting fixture comprising the lighting device.
  • the illumination device including the laser light source, the wavelength conversion device and the diffuse mirror can be directly inserted into the lamp cover of the automobile headlight of the halogen light source and the headlight of the LED light source, and the light distribution is similar to halogen.
  • the filament light distribution of the lamp can eliminate the need to design a new reflector to facilitate the upgrading of the car headlights.
  • FIG. 1 is a schematic structural view of a first embodiment of a lighting device according to the present invention.
  • the illumination device 100 includes a laser light source 101, a wavelength conversion device, a diffuse mirror 103, and a reflector 104, wherein the wavelength conversion device includes a light conversion element 102.
  • the laser light source 101 emits blue light and enters the light conversion element 102 composed of a YAG:Ce single crystal. Part of the laser excitation of the light conversion element 102 produces yellow light which is emitted from the exit surface of the light conversion element 102 in an approximate Lambertian distribution; the remaining portion of the blue laser light exits the exit surface of the light conversion element 102 and reaches the diffuse mirror 103. After being diffused, it is emitted from the diffuse mirror 103. Then, the laser yellow light emitted from the light conversion element 102 and the blue light emitted from the diffuse mirror 103 are reflected on the reflection surface of the reflection cover 104, and are combined to emit white light.
  • FIG. 2 is a schematic structural view of a second embodiment of a lighting device according to the present invention.
  • the illumination device 200 includes a laser light source 201, a wavelength conversion device, a diffuse mirror 203, and a reflector 204, wherein the wavelength conversion device includes a light conversion element 202.
  • the wavelength conversion device further includes a fluorescent material layer 205 disposed on the exit surface of the light conversion element 202.
  • FIG. 3 is a schematic structural view of a third embodiment of a lighting device according to the present invention.
  • the illumination device 300 includes a laser light source 301, a wavelength conversion device, a diffuse mirror 303, and a reflector 304, wherein the wavelength conversion device includes a light conversion element 302.
  • the wavelength conversion device further includes a heat sink 306 and an optical grid 307.
  • the heat sink 306 is disposed on the side of the light conversion element 302 to diverge the heat generated by the light conversion element 302.
  • the optical grid 307 is provided on the exit surface of the light conversion element 302, and expands the cross-sectional area of the excitation light. See the description section above for specific principles and technical solutions.
  • FIG. 4 is a schematic structural view of a fourth embodiment of a lighting device according to the present invention.
  • the illumination device 400 includes a laser source 401, a wavelength conversion device, a diffuse mirror 403, and a reflector 404, wherein the wavelength conversion device includes a light conversion element 402.
  • optical fiber 408 is further included in the embodiment for guiding the excitation light generated by the laser light source 401 to the incident surface of the light conversion element 402.
  • the laser light source 401 is not necessarily directly connected to the optical fiber, and may also be concentrated into the optical fiber through the convergence lens, and may also be other optical connection manners, which will not be described herein.
  • the embodiment of the drawings of the present invention includes a reflector
  • the reflector is not necessary for the illumination device.
  • the illumination device including the laser source, the wavelength conversion device, and the diffuse mirror can be directly replaced. Insert into the lampshade of the halogen lamp.
  • the laser light and the excitation light emitted by the light conversion element and the diffuse mirror can also be combined by other optical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种照明装置(100),包括:激光光源(101),用于出射激发光;波长转换装置,设置于激发光的光路上,用于吸收至少部分激发光,并出射受激光与未被吸收的激发光,波长转换装置包括光转换元件(102),光转换元件(102)为单晶或透明陶瓷,光转换元件(102)包括入射面、出射面和侧面;漫反射镜(103),设置在光转换元件(102)的光轴上,用于反射未被吸收的激发光,并扩大其光发散角;波长转换装置出射的受激光与漫反射镜(103)出射的激发光合光后成为照明装置(100)的出射光。本发明还保护了一种包括该照明装置的汽车照明灯具。

Description

一种照明装置和汽车照明灯具 技术领域
本发明涉及照明领域,特别是涉及一种照明装置和汽车照明灯具。
 
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
在现有的汽车照明技术中,LED灯、氙气灯和卤素灯是应用最为广泛的光源。然而,这几种光源分别有亮度不够大、使用寿命不够长、光束发散角较大导致照明距离不够远等缺点。作为新兴的照明技术,激光大灯已经出现在了少数车型上。这种照明方式的亮度高,使用寿命长,而且由于激光光束准直发散角小的特点,发出的光束可以比较集中的朝一个方向发射,使得照明的距离大大增长。然而,目前的激光大灯主要作为车辆的远光灯使用,而且通常与LED灯组共同构成远光灯系统,在车辆达到一定车速时才开启,因此,在近几年,还看不到激光大灯取代其他大灯的可能性。其主要原因,一是激光的发散角小,难以扩散至满足照射范围要求;二是激光激发荧光粉的产热集中,要获得热稳定的、足以单独提供远光灯或近光灯的亮度,现有的发光材料选择和光路结构的设计方案难以实现。
现有的激光大灯通常采用单色蓝激光激发黄色荧光材料来得到色坐标符合汽车照明标准的白光光源,已有技术中黄色荧光材料通常为YAG:Ce,具体有以下三种形式:①有机载体体系的荧光材料——硅胶或环氧树脂作为粘结剂,在其中分散YAG:Ce荧光粉;②玻璃体系的荧光材料——将玻璃粉和YAG:Ce荧光粉混合均匀后,高温熔融处理后得到的荧光材料,这种形式的荧光材料中,玻璃作为粘结剂,荧光粉分散在其中;③多孔发光陶瓷——YAG:Ce荧光陶瓷作为主体材料,气孔作为散射中心分散在荧光陶瓷中。以上三种形式的荧光材料导热性差,在大功率激光激发下,荧光材料中的热量聚集,严重影响发光材料的发光性能和寿命。
技术问题
透明发光陶瓷具有相对于上述三种荧光材料较好的导热性能,且被应用在LED照明领域。但与上述三种荧光材料不同的是,透明发光陶瓷中缺少散射中心,经过透明发光陶瓷而未被吸收的激光仍沿原来的传播方向出射。由于LED芯片本身的发光是朗伯分布的光,即使经过透明发光陶瓷,也能获得大发散角的光,因此透明发光陶瓷是完全适用于LED照明的。但是激光与透明发光陶瓷的结合则不同,发散角小的激光中,未被吸收的部分直接以小发散角出射,与受激光的光分布完全不同,将导致整个出射光分布不均匀。因此,长久以来,透明发光陶瓷被认为是不适用于高亮度激光远程激发照明的。
 
技术解决方案
针对上述现有技术的激光大灯由于发散角和热稳定问题而难以单独承担车辆照明的缺陷,本发明提供一种高亮度、发散效果好且安全性能好的照明装置,包括:激光光源,用于出射激发光;波长转换装置,设置于所述激发光的光路上,用于吸收至少部分所述激发光,并出射受激光与未被吸收的激发光,所述波长转换装置包括光转换元件,所述光转换元件为单晶或透明陶瓷,所述光转换元件包括入射面、出射面和侧面;漫反射镜,设置在所述光转换元件的光轴上,用于反射所述未被吸收的激发光,并扩大其光发散角;所述波长转换装置出射的受激光与所述漫反射镜出射的激发光合光后成为所述照明装置的出射光。
在一个实施方式中,所述光转换元件为YAG:Ce单晶或YAG:Ce透明陶瓷。该光转换元件能够在蓝光的激发下发出黄光,并与蓝光组合成为白光,以适应白光的照明需求。该单晶或透明陶瓷用肉眼观察呈现淡黄色透明。
在一个实施方式中,所述侧面为抛光面,所述侧面的粗糙度小于100nm。通过对侧面抛光使得侧面“几乎光滑”,那么在光转换元件内部传播的光到达侧面时,由于光转换元件与外界空气的折射率差,使得光发生全反射而继续在光转换元件内部传播。
在一个实施方式中,所述波长转换装置包括设置于所述光转换元件的至少一个所述侧面上的反射层,所述反射层为镜面反射层或者漫反射层。通过在光转换元件的侧面上设置反射层,能够保证光转换元件内的激发光和受激光不会从侧面泄漏,保证了光利用率。其中,当反射层为漫反射层时,还能够改变受激光的传播角度,从而提高出射面的光提取效率。
在一个实施方式中,所述波长转换装置包括设置于至少一个所述侧面的热沉。热沉与光转换元件保持热耦合的同时避免光耦合,改善了光转换元件的散热,同时避免了光在热沉与光转换元件的界面损失。当波长转换装置包括上述设置是侧面上的反射层时,热沉可以设置在反射层背面。
在一个实施方式中,所述波长转换装置包括设置于所述光转换元件的出射面的光学栅格,所述光学栅格用于扩大所述激发光的光束截面积。该技术方案使得由光转换元件出射的激发光的光束截面积变大,由于光转换元件中的受激光为朗伯光出射,出射截面覆盖整个光转换元件的出射面,通过使得激发光的光束截面积放大,能够有利于激发光与受激光混合均匀,从而得到颜色均匀的出射光。
在一个实施方式中,光学栅格包括至少一对分光元件和反光元件,其中所述分光元件部分透射部分反射所述激发光,经所述分光元件反射的激发光经反光元件再次反射后与经所述分光元件透射的激发光朝向相同方向出射。该技术方案通过将激发光分光后,再将各子光束的传播方向调节至朝向相同方向,从而实现扩大光束的截面积。该技术方案可以将激发光截面积扩大至两倍,而不会过多扩散激发光的发散角,使得波长转换装置出射的激发光能够更多的入射到漫反射镜。
在一个实施方式中,所述波长转换装置还包括设置于所述光转换元件的出射面的荧光材料层,所述荧光材料层为有机粘结剂封装的红色荧光粉层、玻璃封装的红色荧光粉层或者红光陶瓷层。该技术方案通过在光转换元件的出射面设置红色荧光材料层,使得部分激发光在光转换元件出射后再激发红色荧光材料层产生红色荧光,从而对出射光的色温进行调节。激发光为蓝光,光转换元件发出黄光,荧光材料层发出红光,蓝黄红光最终都呈近似朗伯分布出射,从而得到混合均匀、显色指数高的白光。
在一个实施方式中,荧光材料层还可以设置在漫反射镜的漫反射表面上。由于光转换元件与荧光材料层都发生光光转换,都会产生热量,因此该技术方案将两者分离,能够提高散热性能。而且,对于硅胶封装的红色荧光粉层和玻璃封装的红色荧光粉层,漫反射层更易于附着。
在一个实施方式中,所述漫反射镜的垂直于所述光转换元件的光轴的截面面积不大于所述光转换元件的出射面面积。由于光转换元件为单晶或透明陶瓷,激发光穿过光转换元件而未被吸收的部分仍保持小发散角,光束截面积不会在由光转换元件出射面到漫反射镜的过程中发生明显增加。该技术方案中,在满足接收未被吸收的激发光的前提下,通过设置漫反射镜的截面面积,减少了入射到漫反射镜的受激光的量,从而使得从光转换元件出射面出射的近似朗伯分布的受激光尽可能多的直接出射,减少了漫反射镜的反射,减少了光损耗。
在一个实施方式中,所述激光光源发出的激发光经光纤传导后入射至所述波长转换装置。该技术方案可避免激光在传输过程中泄漏的危险,还能够使得激光光源位置的设计更加自由。
在一个实施方式中,照明装置还包括反射罩,所述反射罩包括一通孔,所述波长转换装置的至少部分组件穿过所述通孔,所述光转换元件的出射面与所述漫反射镜位于所述反射罩内,由所述波长转换装置出射的受激光和由所述漫反射镜出射的激发光经所述反射罩反射后出射。
本发明还提供了一种汽车照明灯具,包括上述任一项所述的照明装置。
有益效果
与现有技术相比,本发明通过使激光光源发出的小发散角的激发光入射至材料为单晶或透明陶瓷的光转换元件,在光转换元件的出射端获得朗伯分布的受激光,同时未被吸收的激发光直接未经散射地透射过光转换元件,并入射到设置在光转换元件的光轴上的漫反射镜上,在漫反射镜的出射端获得朗伯分布的激发光,光转换元件出射端的受激光与漫反射镜出射端的激发光具有类似的光分布,两者合光后形成均匀的出射光。该技术方案利用了单晶或透明陶瓷材料的光转换元件的优良导热性能与高效发光性能,同时通过设置漫反射镜避免了单晶或透明陶瓷材料的光转换元件的激光泄漏安全问题与光混合不均匀问题,从而提供了亮度高、安全性能好的激光照明装置。
附图说明
图1为本发明的照明装置的实施例一的结构示意图;
图2为本发明的照明装置的实施例二的结构示意图;
图3为本发明的照明装置的实施例三的结构示意图;
图4为本发明的照明装置的实施例四的结构示意图。
本发明的实施方式
下面结合附图和实施方式对本发明实施例进行详细说明。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。此外,本发明实施例中各模块的组合仅用于说明本发明的精神,而不是用于限定本发明的具体范围。
本发明为获得高亮度的照明,采用能够产生高功率密度的激光光源作为激发光源,并在此基础上,采用材料结构为单晶或透明陶瓷的光转换元件对激光激发光进行波长转换,从而在获得高亮度受激光的同时,保证波长转换装置的良好导热和散热性能,以获得可持续的高亮度出光。在采用单晶或透明陶瓷的光转换元件时会产生未被吸收的激发光直接以小发散角出射的问题(由于激光本身的属性,在非激光光源的技术方案中不会有这个问题;在非透明波长转换材料的技术方案中也不会有这个问题),通过在光路上设置漫反射镜,将该部分激发光的发散角度改变,并消相干。由此,光转换元件的出射面与漫反射镜的表面分别成为受激光与激发光的实际发光面,这两个发光面的光混合后即可得到均匀的出射光。本发明的发明构思独特之处在于,通过一个激发光源,获得了两个出射近似朗伯分布光的“光源”,再将两“光源”的发光合光,得到一个光分布均匀、颜色均匀的出射光。
本发明的照明装置主要包括三个部件:激光光源、波长转换装置和漫反射镜。激光光源发出的激发光入射至波长转换装置的光转换元件的入射面,其中部分激发光被吸收而产生受激光,部分激发光未被光转换元件吸收,受激光与未被吸收的激发光通过光转换元件的出射面出射。由光转换元件出射的激发光仍保持小发散角传播,入射到设置在光转换元件的光轴上的漫反射镜,被反射后,其光发散角扩大。而后,波长转换装置出射的受激光与漫反射镜出射的激发光合光,成为照明装置的出射光。
<激光光源>
激光光源出射激发光,在本发明的一个实施方式中,激光光源为半导体激光光源,如激光二极管光源。激光光源还可以是激光二极管阵列组成的光源,或者是激光器光源。激光光源的特点是光发散角小,且激光具有相干性,不适于直接用于照明。
在本发明的一个实施方式中,激光光源为蓝光光源,蓝光能够作为激发光激发出绿光、黄光或红光的同时,还能够作为照明光的一部分直接使用。在本发明的其他实施方式中,激光光源还可以为紫光光源或者近紫外光光源,该实施方式中,如果要获得白光,还需要提供可发出蓝光的波长转换装置。
<波长转换装置>
波长转换装置设置在激发光的光路上,用于吸收至少部分激发光,并出射受激光与未被吸收的激发光。波长转换装置可以是若干元器件的组合,其中,波长转换装置包括光转换元件,光转换元件承担吸收激发光并出射受激光的主要功能。
在本发明中,光转换元件为单晶或者透明陶瓷,光转换元件包括入射面、出射面和侧面,其中侧面为除入射面和出射面之外的面。激发光从光转换元件的入射面入射,并从光转换元件的出射面出射,当光在传播过程中遇到侧面则被反射。
在本发明的一个实施方式中,光转换元件为长方体,其中入射面和出射面为相对的两个面,该两个面的面积较小,其余四个面为侧面。在其他实施方式中,光转换元件也可以为正方体。光转换元件还可以是其他棱柱,如六棱柱,或者可以是圆柱体。
光转换元件具有光光转换的功能,在一个实施方式中,光转换元件为YAG:Ce单晶或YAG:Ce透明陶瓷,YAG:Ce为Ce掺杂的Y 3Al 5O 12,能够在蓝光的激发下发出黄光,发光效率高、结构稳定。该黄光与蓝光组合成为白光,以适应白光的照明需求。该单晶或透明陶瓷用肉眼观察呈现淡黄色透明。需要注意的是,本发明中的YAG:Ce单晶或YAG:Ce透明陶瓷区别于将YAG:Ce荧光粉颗粒置于透明载体中的波长转换结构,其中的透明载体包括硅胶/树脂等有机粘接剂、玻璃等无极粘接剂、氧化铝等透明陶瓷,YAG:Ce不能以荧光粉颗粒的形式出现。
本发明中,光在光转换元件内部,遇到侧面被反射,要求侧面具有反射功能。在一个实施方式中,侧面为抛光面,其粗糙度小于100nm,在该技术方案下,通过对侧面抛光使得侧面“几乎光滑”,那么在光转换元件内部传播的光到达侧面时,由于光转换元件与外界空气的折射率差,使得光发生全反射而继续在光转换元件内部传播。
在一个实施方式中,波长转换装置的光转换元件的入射面设有角度选择膜片,可以选用仅透射小入射角的激发光的波长/角度选择膜片,以避免光线反射回入射面时出射。
在一个实施方式中,波长转换装置包括设置于光转换元件的至少一个侧面上的反射层,该反射层可以为镜面反射层如铝反射层、银反射层、电介质膜反射层,还可以是漫反射层如氧化铝反射层、氮化硼反射层等。通过在光转换元件的侧面上设置反射层,不必像全反射依赖入射角,能够保证光转换元件内的激发光和受激光不会从侧面泄漏,保证了光利用率。其中,当反射层为漫反射层时,还能够改变受激光的传播角度,从而提高出射面的光提取效率。
在一个实施方式中,波长转换装置还包括设置于至少一个所述侧面的热沉。热沉与光转换元件保持热耦合的同时避免光耦合,改善了光转换元件的散热,同时避免了光在热沉与光转换元件的界面损失。当波长转换装置包括上述设置在侧面上的反射层时,热沉可以设置在反射层背面。例如,当反射层为金属反射层时,热沉可以为设置在反射层背面的金属热沉,当反射层为氧化铝等漫反射层时,热沉可以为氮化铝陶瓷基板等陶瓷热沉片。
在光转换元件中,受激光从光转换元件内的发光中心发射,呈近似朗伯分布,因此在光转换元件的出口,受激光能够填充满整个出射面;而由于光转换元件的透明特性,未被吸收的激发光在光出射面相较于光入射面几乎未发生扩散,且仍保持一个小发散角出射,因此激发光在光转换元件的出射面的光斑未能填满出射面。即使激发光后续经过漫反射镜的扩散,也仅主要改变了发散角,光斑大小仍然几乎没有变化,使得受激光与激发光分别由两个不同大小的发光面出射而合光,不利于光的均匀混合。因此,在本发明的一个实施方式中,波长转换装置包括设置于光转换元件的出射面的光学栅格,该光学栅格用于扩大激发光的光束截面积,以使激发光与受激光的光斑大小接近。
在一个实施方式中,光学栅格包括至少一对分光元件和反光元件,其中所述分光元件部分透射部分反射所述激发光,经所述分光元件反射的激发光经反光元件再次反射后与经所述分光元件透射的激发光朝向相同方向出射。该技术方案通过将激发光分光后,再将各子光束的传播方向调节至朝向相同方向,从而实现扩大光束的截面积。该技术方案可以将激发光截面积扩大至两倍,而不会过多扩散激发光的发散角,使得波长转换装置出射的激发光能够更多的入射到漫反射镜。
在一个实施方式中,波长转换装置还包括设置于光转换元件的出射面的荧光材料层,荧光材料层为有机粘结剂封装的红色荧光粉层、玻璃封装的红色荧光粉层或者红光陶瓷层。该技术方案通过在光转换元件的出射面设置红色荧光材料层,使得部分激发光在光转换元件出射后再激发红色荧光材料层产生红色荧光,从而对出射光的色温进行调节。激发光为蓝光时,光转换元件发出黄光,荧光材料层发出红光,蓝黄红光最终都呈近似朗伯分布出射,从而得到混合均匀、显色指数高的白光。在其他实施方式中,荧光材料层不限于红色荧光材料层,荧光材料层还可以是橙色等其他颜色的荧光材料层,以适应其他应用场景。荧光材料层可以与光转换元件一体,例如当荧光材料层为玻璃基荧光材料层或者陶瓷基荧光材料层时;荧光材料层还可以通过透明光学胶与光转换元件连接。
当然,荧光材料层不限于与光转换元件连接,在其他实施方式中,荧光材料层还可以与光转换元件分离。在一个实施方式中,荧光材料层设置在漫反射镜的漫反射表面上。由于光转换元件与荧光材料层都发生光光转换,都会产生热量,因此该技术方案将两者分离,能够提高散热性能。而且,对于硅胶封装的红色荧光粉层和玻璃封装的红色荧光粉层,漫反射层更易于附着。
<漫反射镜>
漫反射镜一方面作为近似朗伯分布的激发光的“发光源”与光转换元件出射面的受激光“发光源”相对应,另一方面作为安全防护装置,防止高功率密度、相干性、小发散角的激光直接出射。
漫反射镜设置于光转换元件出射的激发光的光路上,在一个实施方式中,漫反射镜设置于光转换元件的光轴上,用于反射未被吸收的激发光并扩大其光发散角。在另一个实施方式中,也可以在光转换元件与漫反射镜之间设置一导光反射镜,以使漫反射镜的位置摆放更加灵活。
漫反射镜包括漫反射层,在一个实施方式中,漫反射层包括堆叠成层的白色散射颗粒,该白色散射颗粒可反射/散射可见光。白色散射颗粒可以例如是氧化铝、氧化钛、氮化硼等材料。该白色散射颗粒可通过玻璃、硅胶等粘接剂粘接成层。优选地,漫反射层为致密结构,并且厚度足以保证无激发光从漫反射镜背面出射。
在另一个实施方式中,漫反射层还可以是通过对一般的反射表面进行表面粗糙化而得到,粗糙化的手段例如可包括刻蚀、机加工等常规手段。
在一个实施方式中,漫反射镜的漫反射层背面还可进一步设置不透光的基板,以防止漫反射层脱落或龟裂时激发光直接出射,进一步提高安全性能。
虽然漫反射镜需要满足防止激光直接泄漏的作用,但是过大的漫反射镜不利于照明装置出光,这是因为不止激发光会照射到漫反射镜,部分受激光也会不可避免地照射到漫反射镜上,而我们实际是不希望太多受激光入射到漫反射镜上的。在一个实施方式中,漫反射镜的垂直于光转换元件的光轴的截面面积不大于光转换元件的出射面面积。由于光转换元件为单晶或透明陶瓷,激发光穿过光转换元件而未被吸收的部分仍保持小发散角,光束截面积不会在由光转换元件出射面到漫反射镜的过程中发生明显增加。该技术方案中,在满足接收未被吸收的激发光的前提下,通过设置漫反射镜的截面面积,减少了入射到漫反射镜的受激光的量,从而使得从光转换元件出射面出射的近似朗伯分布的受激光尽可能多的直接出射,减少了漫反射镜的反射,减少了光损耗。
以上描述了本发明的照明装置的关键部件。
激光光源发出的激发光进入波长转换装置的过程,在一个实施方式中,所述激光光源发出的激发光经光纤传导后入射至所述波长转换装置。该技术方案可避免激光在传输过程中泄漏的危险,还能够使得激光光源位置的设计更加自由。在另一个实施方式中,激光光源发出的光经过透镜、反射镜等光学元件进入波长转换装置。
在一个实施方式中,照明装置还包括反射罩,所述反射罩包括一通孔,所述波长转换装置的至少部分组件穿过所述通孔,所述光转换元件的出射面与所述漫反射镜位于所述反射罩内,由所述波长转换装置出射的受激光和由所述漫反射镜出射的激发光经所述反射罩反射后出射。反射罩的内表面有反射层,能够对激发光和受激光进行反射。
在一个实施方式中,反射罩为抛物面形,该反射罩具有一个焦点,光转换元件的出射面与漫反射镜的漫反射面分别设置在焦点附近的两侧位置,以使两者的出射光经反射罩反射后均匀混合。
在本发明的一个实施方式中,波长转换装置的光转换元件部分地位于反射罩内,光转换元件的剩余部分在反射罩外。位于反射罩外的光转换元件表面可以设置热沉进行散热。
在一个实施方式中,反射罩的通孔设置在反射罩的曲率最大的位置附近,例如可以通过对反射罩原型的曲率最大的位置进行打孔而得到本实施方式的反射罩。
在本发明中,反射罩不仅可以为碗形,还可以为碗的一半的形状,例如将碗形劈成对称的两半的形状。
本发明的照明装置可以应用到车灯或者其他类似的照明环境中,例如船舶、飞机等载具的照明灯,还可以应用到探照灯等应用环境中。本发明特别保护一种包含该照明装置的汽车照明灯具。
在一个实施方式中,包含激光光源、波长转换装置和漫反射镜的照明装置可以直接替换式地插入到卤素光源的汽车前灯、LED光源的汽车前灯的灯罩中,其光分布类似于卤素灯的灯丝光分布,可以不必额外设计新的反射罩,便于汽车前灯的升级换代。
下面参照具体实施例进一步描述。
请参见图1,图1为本发明的照明装置的实施例一的结构示意图。照明装置100包括激光光源101、波长转换装置、漫反射镜103和反射罩104,其中波长转换装置包括光转换元件102。
激光光源101发出蓝光,进入YAG:Ce单晶构成的光转换元件102。部分激光激发光转换元件102后产生黄光,该黄光从光转换元件102的出射面呈近似朗伯分布出射;剩余部分的蓝光激光由光转换元件102的出射面出射后到达漫反射镜103,被漫反射后从漫反射镜103出射。而后,光转换元件102出射的受激光黄光与漫反射镜103出射的蓝光在反射罩104的反射面被反射后合光成为白光出射。
请参见图2,图2为本发明的照明装置的实施例二的结构示意图。照明装置200包括激光光源201、波长转换装置、漫反射镜203和反射罩204,其中波长转换装置包括光转换元件202。
与实施例一的区别在于,本实施例中,波长转换装置还包括设置于光转换元件202的出射面的荧光材料层205。其作用和具体技术方案分支可参照上述部分描述。
请参见图3,图3为本发明的照明装置的实施例三的结构示意图。照明装置300包括激光光源301、波长转换装置、漫反射镜303和反射罩304,其中波长转换装置包括光转换元件302。
与实施例一的区别在于,本实施例中,波长转换装置还包括热沉306和光学栅格307。其中,热沉306设置在光转换元件302的侧面上,对光转换元件302产生的热量进行发散。光学栅格307设置在光转换元件302的出射面,对激发光的截面积进行扩大。具体原理和技术方案分支参见上述的描述部分。
请参见图4,图4为本发明的照明装置的实施例四的结构示意图。照明装置400包括激光光源401、波长转换装置、漫反射镜403和反射罩404,其中波长转换装置包括光转换元件402。
与实施例一的区别在于,本实施例中还包括光纤408,用于将激光光源401产生的激发光引导至光转换元件402的入射面。
可以理解,激光光源401不一定直接连接到光纤,也可以通过汇聚透镜汇聚进入光纤,还可以是其他光学连接方式,此处不再赘述。
虽然本发明的附图实施例中都包含了反射罩,但是反射罩并非照明装置所必须的,正如上述描述中所言,包含激光光源、波长转换装置和漫反射镜的照明装置可以直接替换式地插入到卤素灯的灯罩中。而且,光转换元件与漫反射镜发出的受激光与激发光也可以通过其他光学器件合光。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
 

Claims (11)

1、一种照明装置,其特征在于,包括:
激光光源,用于出射激发光;
波长转换装置,设置于所述激发光的光路上,用于吸收至少部分所述激发光,并出射受激光与未被吸收的激发光,所述波长转换装置包括光转换元件,所述光转换元件为单晶或透明陶瓷,所述光转换元件包括入射面、出射面和侧面;
漫反射镜,设置在所述光转换元件的光轴上,用于反射所述未被吸收的激发光,并扩大其光发散角;
所述波长转换装置出射的受激光与所述漫反射镜出射的激发光合光后成为所述照明装置的出射光。
2、根据权利要求1所述的照明装置,其特征在于,所述光转换元件为YAG:Ce单晶或YAG:Ce透明陶瓷。
3、根据权利要求1所述的照明装置,其特征在于,所述侧面为抛光面,所述侧面的粗糙度小于100nm。
4、根据权利要求1至3中任一项所述的照明装置,其特征在于,所述波长转换装置包括设置于所述光转换元件的至少一个所述侧面上的反射层,所述反射层为镜面反射层或者漫反射层。
5、根据权利要求1至3中任一项所述的照明装置,其特征在于,所述波长转换装置包括设置于至少一个所述侧面的热沉。
6、根据权利要求1至3中任一项所述的照明装置,其特征在于,所述波长转换装置包括设置于所述光转换元件的出射面的光学栅格,所述光学栅格用于扩大所述激发光的光束截面积。
7、根据权利要求1至3中任一项所述的照明装置,其特征在于,所述波长转换装置还包括设置于所述光转换元件的出射面的荧光材料层,所述荧光材料层为有机粘结剂封装的红色荧光粉层、玻璃封装的红色荧光粉层或者红光陶瓷层。
8、根据权利要求1所述的照明装置,其特征在于,所述漫反射镜的垂直于所述光转换元件的光轴的截面面积不大于所述光转换元件的出射面面积。
9、根据权利要求1所述的照明装置,其特征在于,所述激光光源发出的激发光经光纤传导后入射至所述波长转换装置。
10、根据权利要求1所述的照明装置,其特征在于,还包括反射罩,所述反射罩包括一通孔,所述波长转换装置的至少部分组件穿过所述通孔,所述光转换元件的出射面与所述漫反射镜位于所述反射罩内,由所述波长转换装置出射的受激光和由所述漫反射镜出射的激发光经所述反射罩反射后出射。
11、一种汽车照明灯具,包括如权利要求1至10中任一项所述的照明装置。
 
PCT/CN2018/071443 2017-11-17 2018-01-04 一种照明装置和汽车照明灯具 WO2019095535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711142170.3A CN109798489B (zh) 2017-11-17 2017-11-17 一种照明装置和汽车照明灯具
CN201711142170.3 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095535A1 true WO2019095535A1 (zh) 2019-05-23

Family

ID=66539267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071443 WO2019095535A1 (zh) 2017-11-17 2018-01-04 一种照明装置和汽车照明灯具

Country Status (2)

Country Link
CN (1) CN109798489B (zh)
WO (1) WO2019095535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114542999A (zh) * 2020-11-18 2022-05-27 杨毅 一种照明装置及一种灯具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901016A (zh) * 2011-07-25 2013-01-30 夏普株式会社 光源装置、照明装置、车辆用前照灯和车辆
CN103244889A (zh) * 2012-02-08 2013-08-14 夏普株式会社 光投射装置和在该光投射装置中使用的光导部件
US20140369065A1 (en) * 2011-07-25 2014-12-18 Sharp Kabushiki Kaisha Illumination device and vehicle headlight
CN105003843A (zh) * 2012-03-23 2015-10-28 深圳市绎立锐光科技开发有限公司 光源
CN106500061A (zh) * 2015-09-07 2017-03-15 台达电子工业股份有限公司 波长转换模块与应用其的光源模块

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834893B1 (ko) * 2009-04-09 2018-03-08 필립스 라이팅 홀딩 비.브이. 레이저 응용을 위한 램프
DE102010062463A1 (de) * 2010-12-06 2012-06-06 Osram Ag Leuchtvorrichtung
TW201438936A (zh) * 2013-04-03 2014-10-16 Hon Hai Prec Ind Co Ltd 車燈系統
JP5970661B2 (ja) * 2013-06-21 2016-08-17 パナソニックIpマネジメント株式会社 波長変換部材、光源、及び自動車用ヘッドランプ
CN104566230B (zh) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN104595852B (zh) * 2013-10-30 2016-08-24 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源系统及投影系统
CZ307024B6 (cs) * 2014-05-05 2017-11-22 Crytur, Spol.S R.O. Světelný zdroj
JP6413673B2 (ja) * 2014-11-13 2018-10-31 ウシオ電機株式会社 蛍光光源装置
DE102014223510A1 (de) * 2014-11-18 2016-05-19 Osram Gmbh Beleuchtungsvorrichtung mit Pumplichteinheit und Leuchtstoffelement
US10236658B2 (en) * 2015-02-16 2019-03-19 Alan Lenef Light source utilizing wavelength conversion
CN205579170U (zh) * 2016-03-21 2016-09-14 成都翔羽科技有限公司 一种基于卡塞格林光学结构的激光灯装置
CN106684216A (zh) * 2017-01-12 2017-05-17 中国科学院宁波材料技术与工程研究所 一种用于白光led的复合透明荧光陶瓷片及其制备方法
CN206515600U (zh) * 2017-01-22 2017-09-22 深圳市光峰光电技术有限公司 一种光转换元件、光源系统及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901016A (zh) * 2011-07-25 2013-01-30 夏普株式会社 光源装置、照明装置、车辆用前照灯和车辆
US20140369065A1 (en) * 2011-07-25 2014-12-18 Sharp Kabushiki Kaisha Illumination device and vehicle headlight
CN103244889A (zh) * 2012-02-08 2013-08-14 夏普株式会社 光投射装置和在该光投射装置中使用的光导部件
CN105003843A (zh) * 2012-03-23 2015-10-28 深圳市绎立锐光科技开发有限公司 光源
CN106500061A (zh) * 2015-09-07 2017-03-15 台达电子工业股份有限公司 波长转换模块与应用其的光源模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114542999A (zh) * 2020-11-18 2022-05-27 杨毅 一种照明装置及一种灯具

Also Published As

Publication number Publication date
CN109798489B (zh) 2021-11-12
CN109798489A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
JP5788194B2 (ja) 発光装置、照明装置、及び車両用前照灯
JP5336564B2 (ja) 発光装置、照明装置、車両用前照灯および車両
TWI449206B (zh) 具有成形波長轉換器之發光裝置
WO2017077739A1 (ja) 発光体、発光装置、照明装置、および発光体の製造方法
TWI449862B (zh) 平面發光二極體照明(二)
WO2013039418A1 (ru) Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером
JP6162537B2 (ja) 光源装置、照明装置、および、車両用灯具
JP2014517527A (ja) 熱伝導体を有する発光モジュール、ランプ及び照明器具
JP2015088283A (ja) 発光ユニットおよび照明装置
JP6192903B2 (ja) 光源装置、照明装置および車両用前照灯
CN103827576A (zh) 发光模组
WO2018137312A1 (zh) 一种荧光模块及相关光源
JP5840179B2 (ja) 発光装置
WO2019095535A1 (zh) 一种照明装置和汽车照明灯具
JP7416791B2 (ja) 照明光源及び車両用ライト
CN215264353U (zh) 波长转换装置以及光源系统
JP2012221633A (ja) 照明装置及び前照灯
CN111486406B (zh) 一种发光装置及应用其车灯
CN211716269U (zh) 一种激光照明装置
JP5842041B2 (ja) 発光装置
WO2020073732A1 (zh) 一种激光照明装置
CN211694744U (zh) 一种基于光纤导光的封装结构、光纤导光系统
CN102606900A (zh) 一种色温可调的白光led光源
CN110778926B (zh) 照明装置
WO2020019714A1 (zh) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878989

Country of ref document: EP

Kind code of ref document: A1