WO2020073732A1 - 一种激光照明装置 - Google Patents

一种激光照明装置 Download PDF

Info

Publication number
WO2020073732A1
WO2020073732A1 PCT/CN2019/100474 CN2019100474W WO2020073732A1 WO 2020073732 A1 WO2020073732 A1 WO 2020073732A1 CN 2019100474 W CN2019100474 W CN 2019100474W WO 2020073732 A1 WO2020073732 A1 WO 2020073732A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
end surface
laser
lighting device
Prior art date
Application number
PCT/CN2019/100474
Other languages
English (en)
French (fr)
Inventor
徐梦梦
胡飞
张贤鹏
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2020073732A1 publication Critical patent/WO2020073732A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources

Definitions

  • the invention relates to the technical field of lighting, in particular to a laser lighting device.
  • LED light source has the advantages of energy saving and environmental protection, long service life, small size, light weight, solid structure, low working voltage, etc. It is known as the fourth generation light source after incandescent lamps, fluorescent lamps, and high-intensity gas lamps, but LEDs currently exist Problems such as low brightness and sudden drop in efficiency.
  • the laser fluorescent light source that is, the laser diode as the excitation light source and the excitation fluorescent material as the light source has the advantages of high electro-optic conversion efficiency, high brightness, inefficient dip phenomenon, and small size, etc., and has attracted more and more attention.
  • the commonly used laser fluorescent light source scheme uses a blue laser as the excitation light source to excite the wavelength conversion material to obtain the emitted light of a specific wavelength. Because the laser spot area is small and the excitation light power density is too high, it is easy to cause local overheating of the fluorescent conversion material, which in turn causes problems such as low luminous efficiency.
  • the current common solution is to make the wavelength conversion material rotate or vibrate, so that the excitation light power density is reduced and the heat is dispersed.
  • this technical solution increases driving components and has reliability and other problems.
  • the inventors set the wavelength conversion material in the cavity, and illuminate the wavelength conversion material by diffusing the excitation light into a large area spot uniformly, thereby achieving high brightness illumination light Shot out.
  • the brightness and color of the exiting light near the edge are significantly different from the exiting light near the center of the exit surface, resulting in uneven distribution of the overall color and illuminance of the exiting light.
  • the present invention provides a laser lighting device with uniform emission light color and uniform illuminance, including: a laser light source for emitting excitation light; wavelength conversion The device includes a wavelength conversion material for absorbing excitation light and emitting laser light.
  • the wavelength conversion device includes a solid light guide including a first end face and a second end face oppositely arranged, and a first surface and A second surface, the first end surface and the second end surface are connected by a first surface, the first end surface is a light incident surface, the first surface is a light exit surface, and the second end surface is provided with diffuse reflection Structure, the excitation light enters the interior of the wavelength conversion device through the first end surface, and the received laser light exits from the interior of the wavelength conversion device through the first surface; the first surface reaches the first The angle between the two end faces is obtuse.
  • the present invention includes the following beneficial effects: Most of the laser excitation light incident through the first end face of the solid light guide of the wavelength conversion device reaches the second end face provided with the diffuse reflection structure, under the action of the diffuse reflection structure , The laser light is reflected and scattered as light exiting in various directions.
  • the incident angle of the excitation light from the second end surface on the first surface is opposite
  • the original scheme that is, the scheme where the second end face is perpendicular to the first surface
  • the angle between the first surface and the second end surface is between 104 ° and 116.6 °.
  • the first surface is a polished surface. This technical solution facilitates the total reflection of light from the second end surface when exiting the first surface.
  • the wavelength conversion device includes a wavelength conversion layer including a wavelength conversion material, the wavelength conversion layer being disposed on the second surface of the solid light guide.
  • the solid light guide contains a wavelength conversion material inside.
  • the solid light guide is a fluorescent single crystal.
  • the wavelength conversion device further includes a second reflective structure provided on the second surface.
  • the wavelength conversion device includes a wavelength conversion layer including a wavelength conversion material, the wavelength conversion layer is disposed on a first surface of the solid light guide, and the wavelength conversion device further includes a wavelength conversion layer The second reflective structure on the surface.
  • the first end face is parallel to the second end face.
  • the wavelength conversion device includes a scattering structure, which is disposed on the first surface.
  • the wavelength conversion device further includes a second wavelength conversion layer disposed on the first surface, and the refractive index of the second wavelength conversion layer is less than the refractive index of the solid light guide.
  • it further includes a filter film, which is disposed on the first end surface, the filter film transmits excitation light with an incident angle no greater than a preset angle, and reflects laser light and the incident angle is greater than a preset angle Excitation light.
  • FIG. 1 is a schematic structural diagram of a laser lighting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a laser lighting device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a laser lighting device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a laser lighting device according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a laser lighting device according to Embodiment 5 of the present invention.
  • 6 is a simulation result of the illuminance distribution of the exit surface of the laser lighting device when the angle between the first surface and the second end surface is different.
  • FIG. 1 is a schematic structural diagram of a laser lighting device according to Embodiment 1 of the present invention.
  • the laser lighting device 10 includes a laser light source 110 and a wavelength conversion device 120.
  • the laser light source 110 is used to emit excitation light.
  • the wavelength conversion device 120 includes a wavelength conversion material for absorbing excitation light and emitting laser light.
  • the wavelength conversion device 120 in the present invention includes a solid light guide 121 and a wavelength conversion layer 122.
  • the solid light guide 121 includes a first end surface 121a and a second end surface 121b that are oppositely disposed, and a first surface 121c and a second surface 121d that are oppositely disposed, and the first end surface 121a and the second end surface 121b are connected by the first surface 121c.
  • the first end surface 121a is the light incident surface of the solid light guide. Excitation light enters the solid light guide 121 from the first end surface 121a and enters the interior of the wavelength conversion device 120. Most of the light passes through the solid light guide 121 and reaches the second end surface 121b .
  • the second end surface 121b is provided with a diffuse reflection structure 123. After the excitation light is diffusely reflected by the diffuse reflection structure 123, part of the light directly exits the first surface 121c, and part of the light exits the wavelength conversion layer 12 provided on the second surface 121d .
  • the wavelength conversion layer 122 After the light incident on the wavelength conversion layer 122 is absorbed, the wavelength conversion layer 122 emits the received laser light, and the received laser light is emitted through the first surface 121c to form a part of the emitted light. That is, the first surface 121c is the light exit surface of the solid light guide 121, and the received laser light exits from the inside of the wavelength conversion device 120 through the first surface 121c.
  • the angle between the first surface 121c and the second end surface 121b is an obtuse angle, and when the light diffusely reflected by the diffuse reflection structure 123 directly enters the first surface 121c, the incident angle increases, so that the first surface 121c occurs The area of total reflection is increased, and the light transmittance of the edge area of the first surface 121c near the second end surface 121b is reduced, thereby avoiding unevenness of the illumination and color of the edge.
  • the first surface 121c of the solid light guide 121 is a polished surface, and the surface roughness is less than 400 nm, preferably less than 100 nm, to avoid the total reflection failure caused by the uneven surface.
  • the wavelength conversion layer 122 contains a wavelength conversion material, and the solid light guide 121 does not contain a wavelength conversion material, and only plays the role of light transmission.
  • sapphire is preferred, which has both light transmission and thermal conductivity.
  • the wavelength conversion layer 122 is an actual passive light emitting source, and the light emitted from it is transmitted through the solid light guide 121 and exits from the first surface 121c.
  • the laser light source may be a semiconductor laser light source, such as a laser diode, or a single laser diode light source, or a light source array of multiple laser diodes.
  • the laser light source is a combination of a plurality of laser light emitting elements, it may be a light source in the same wavelength range or a combination of multiple light sources with different wavelengths.
  • the wavelength conversion layer may be a layered structure in which phosphors are bonded with an organic binder such as silica gel or epoxy resin, or a layered structure in which phosphors are bonded after softening / melting of glass frit, or It is a layered structure after co-sintering of ceramic material and phosphor, and it can also be a fluorescent single crystal.
  • the laser light source is a blue laser light source
  • the wavelength conversion material of the wavelength conversion layer 122 is yellow phosphor, that is, the wavelength conversion layer 122 is a yellow phosphor layer
  • the wavelength conversion layer 122 emits light after absorbing blue excitation light
  • Yellow light is subject to laser light. Yellow light can be combined with blue light to form white light exit.
  • the present invention does not limit the spectrum of the light source and the wavelength conversion material. Other light sources and wavelength conversion materials in other spectral ranges may also be used. Multiple wavelength conversion materials may be provided in one wavelength conversion layer at the same time.
  • the wavelength conversion device can emit mixed light of excitation light and received laser light, and in other technical solutions, it can also emit only received laser light, which is not limited here.
  • the diffuse reflection structure 123 in this embodiment is a diffuse reflection layer formed by white scattering particles and a binder, and is disposed outside the second end surface 121b.
  • the diffuse reflection structure can also be achieved by roughening the surface of the second end surface, and then coating a reflective film layer (such as a metal reflective film), and other types of known diffuse reflection layers can also be used. Repeat again.
  • the diffuse reflection structure of the present invention preferably has a reflectance to visible light greater than 90%.
  • a filter film 124 is additionally provided on the first end surface 121a, and the filter film 124 transmits the excitation light with an incident angle not greater than 5 °. And reflect the laser light and the excitation light with an incident angle greater than 5 °. Due to the good collimation of the laser light source and the small divergence angle of the beam, this type of filter film can improve the light utilization rate of the wavelength conversion device without significantly affecting the transmittance of the excitation light. It can be understood that the present invention does not limit the preset angle characteristics of the filter film, and the preset angle may be other angles other than 5 °, which needs to be designed according to the size of the solid light guide 121.
  • the filter film 124 can also be replaced with a simple wavelength filter that transmits the excitation light and reflects the received laser light.
  • the filter film is not a necessary structure of the laser lighting device of the present invention, and the film may not be provided to save costs.
  • a heat sink 125 is additionally provided on the side of the wavelength conversion device 120 of the present invention near the second surface 121d of the solid light guide 121. Specifically, the heat sink 125 is provided on the side of the wavelength conversion layer 122 away from the solid light guide 121 for heat conduction and cooling of the wavelength conversion layer 122. It can be understood that the heat sink 125 is not a necessary structure of the laser lighting device of the present invention.
  • the inventor conducted an optical mode experiment. Specifically, using blue light as the laser light source and yellow light as the wavelength conversion layer for the received laser light, taking the solid sapphire light guide as an example, taking a size of 7 ⁇ 7 ⁇ 8 (where 8 is the length along the direction of incident light), set the The angle between the first surface 121c and the second end surface 121b is (a) 90 °, (b) 104 °, (c) 110.6 ° and (d) 116.6 °, and the illuminance distribution of the light exit surface 121c is measured, as shown in FIG. 6
  • the results shown (the drawings in the specification are grayscale patterns, which cannot express the color properties of light, and are described in text). From left to right are the simulation results of (a), (b), (c), (d).
  • the illuminance distribution on the light exit surface is very uneven, especially near the second end surface 121b where there are many blue light components and high illuminance.
  • the included angle increases to 104 °, the area with excessive blue light decreases and the illuminance decreases; when the included angle further increases to 110.6 °, the illuminance distribution of the entire light exit surface is uniform; the included angle is further increased to 116.6 °, it is found that the position of the light exit surface away from the second end surface 121b has abnormal illumination, the blue light component increases, and the illumination increases. This is because the increase in the angle will conduct more excitation light to the first surface 121c near the first end surface 121a After changing the angle through the first end surface 121a, it is advantageous to exit from the first surface 121c.
  • the angle between the first surface 121c and the second end surface 121b of this embodiment should be set between 104 ° and 116.6 ° to ensure the illuminance and color uniformity of the exit surface.
  • the inventor found that by changing the simulation parameters of the solid light guide and conducting many experiments, in various embodiments, the angle between the first surface and the second end surface should not be too large. 104 ° ⁇ 116.6 ° Accepted results.
  • FIG. 2 is a schematic structural diagram of a laser lighting device according to Embodiment 2 of the present invention.
  • the laser lighting device 20 includes a laser light source 210 and a wavelength conversion device 220.
  • the difference from the first embodiment is that the solid light guide 221 of the wavelength conversion device 220 in this embodiment contains a wavelength conversion material.
  • the solid light guide 221 in this embodiment is a fluorescent single crystal, which has both light-transmitting light guide and light conversion functions.
  • the fluorescent single crystal may be Ce: YAG single crystal, and the light transmission performance is good.
  • the diffuse reflection structure 223 where the excitation light incident from the first end surface 221a reaches the second end surface 221b is scattered and reflected.
  • the first surface 221c is a polished surface.
  • the excitation light from the diffuse reflection structure 223 is mostly in the first due to the obtuse angle structure design
  • the surface 221c is totally reflected.
  • This embodiment does not include the wavelength conversion layer in Embodiment 1, which is equivalent to combining the solid light guide of Embodiment 1 and the wavelength conversion layer into one.
  • the second surface 221d of the solid light guide 221 in this embodiment is a light reflection surface (preferably a diffuse reflection surface) to prevent light incident on the second surface 221d from directly exiting the wavelength conversion device.
  • it may further include a second reflective structure provided on the second surface, and the second reflective structure may be an independent reflective structure, such as a diffuse reflective layer in which white scattering particles are bonded.
  • the filter film 224 provided on the first end surface 221a of this embodiment is a regional coating film, which includes a coating region 224a, which transmits excitation light and reflects Receiving laser light, the area other than the coating area 224a of the filter film 224 is a reflection area, and the excitation light and the received laser light are reflected.
  • the filter film can also be replaced with a perforated reflective sheet, and the excitation light is incident from the small hole of the reflective sheet.
  • the wavelength conversion device 220 in this embodiment also includes a heat sink 225, and the surface of the heat sink 225 in contact with the solid light guide 221 may also be provided as a reflective surface.
  • FIG. 3 is a schematic structural diagram of a laser lighting device according to a third embodiment of the present invention.
  • the laser lighting device 30 includes a laser light source 310 and a wavelength conversion device 320.
  • the difference from the embodiment shown in FIG. 1 is that the wavelength conversion layer 322 in this embodiment is provided on the first surface 321c of the solid light guide 321, and the wavelength conversion device 320 further includes a second reflection structure provided on the second surface 321d 326.
  • the wavelength conversion layer 322 is disposed on the light exit surface. After the excitation light incident on the solid light guide 321 from the first end surface 321a is reflected by the diffuse reflection structure of the second end surface 321b, part of the light reaches the second surface 321d.
  • the reflective structure 326, and the second reflective structure 326 is preferably a diffuse reflection layer. After the excitation light is scattered and reflected by the diffuse reflection layer, the spot area is greatly increased relative to the incident spot area of the first end surface 321a to form uniform excitation light, and then from The first surface 321c exits and exits after the light conversion effect of the wavelength conversion layer 322.
  • the structure of the solid light guide 321 in Embodiment 3 refers to the description in Embodiment 1, and is not repeated here.
  • FIG. 4 is a schematic structural diagram of a laser lighting device according to Embodiment 4 of the present invention.
  • the laser lighting device 40 includes a laser light source 410 and a wavelength conversion device 420.
  • This embodiment differs from Embodiment 1 only in that the wavelength conversion device 420 of this embodiment further includes a second wavelength conversion layer 427 disposed on the first surface 421c of the solid light guide 421, wherein the second wavelength conversion layer The refractive index of 427 is less than the refractive index of the solid light guide.
  • the wavelength conversion layer 422 is a yellow phosphor layer
  • the second wavelength conversion layer 427 is a red phosphor layer, which can improve the ratio of red light in the emitted light. It can be understood that, in other embodiments of the present invention, a combination of other wavelength conversion layers and a second wavelength conversion layer may also be used to achieve the effects of adjusting the color temperature and color rendering index of the emitted light.
  • the first end surface 421a, the second end surface 421b, the first surface 421c, the second surface 421d, the wavelength conversion layer 422, the heat sink 425, the filter film 424, the diffuse reflection structure 423, etc. of the solid light guide in this embodiment please refer to the description of the corresponding devices in the first, second, and third embodiments, which will not be repeated here.
  • the combination of the solid light guide 421 and the wavelength conversion layer 422 of the fourth embodiment is replaced with the fluorescent crystal as in the second embodiment.
  • the second wavelength conversion layer provided on the first surface can also be replaced with a scattering element (such as a film containing scattering particles or a film with prisms or other uneven microstructures,
  • a scattering element such as a film containing scattering particles or a film with prisms or other uneven microstructures
  • the scattering particles or microstructures in the entire scattering element may be of one type or multiple types, and the spatial distribution of the scattering particles or microstructures may be uniform or non-uniform
  • the first surface of the scattering element and the solid light guide is preferably Optical contact.
  • FIG. 5 is a schematic structural diagram of a laser lighting device according to Embodiment 5 of the present invention.
  • the laser lighting device 50 includes a laser light source 510 and a wavelength conversion device 520.
  • first end surface 521a and the second end surface 521b of the solid light guide 521 of this embodiment are parallel.
  • first end surface 521a, the second end surface 521b, the first surface 521c, the second surface 521d, the wavelength conversion layer 522, the heat sink 525, the diffuse reflection structure 523, etc. of the solid light guide in this embodiment please refer to the above The description of the corresponding device in the embodiment will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种激光照明装置(10),包括:出射激发光的激光光源(110);包含波长转换材料的波长转换装置(120),波长转换装置(120)包括实心光导(121),实心光导(121)包括相对设置的第一端面(121a)和第二端面(121b),及相对设置的第一表面(121c)和第二表面(121d),第一端面(121a)与第二端面(121b)通过第一表面(121c)连接,第一端面(121a)为光入射面,第一表面(121c)为光出射面,第二端面(121b)设有漫反射结构(123),激发光经第一端面(121a)进入波长转换装置(120)的内部,受激光通过第一表面(121c)从波长转换装置(120)的内部出射;第一表面(121c)到第二端面(121b)的夹角为钝角。通过该角度设计,使得第二端面(121b)漫反射的激发光在第一表面(121c)的入射角增大,扩大了全反射的区域,使得从第一表面(121c)的靠近第二端面(121b)的位置直接出射的激发光大大减少,减轻或消除了出射光的边缘照度/颜色不均匀问题。

Description

一种激光照明装置 技术领域
本发明涉及照明技术领域,特别是涉及一种激光照明装置。
背景技术
LED光源具有节能环保、使用寿命长、体积小、重量轻、结构坚固、工作电压低等优点,被誉为是继白炽灯、荧光灯、高强度气体灯之后的第四代光源,但目前LED存在亮度较低、效率骤降等问题。
激光荧光光源,即激光二极管作为激发光源激发荧光材料作为光源具有电光转换效率高、亮度高、无效率骤降现象和体积小等优势,受到越来越多的关注。目前常用的激光荧光光源方案采用蓝色激光作为激发光源,激发波长转换材料,得到特定波长的出射光。由于激光光斑面积小,激发光功率密度过高,容易造成荧光转换材料局部过热,进而带来发光效率较低等问题。针对这一问题,目前常用的解决方法是使波长转换材料转动或振动,从而使得激发光功率密度降低、热量分散,但该技术方案增加了驱动部件,存在可靠性等方面的问题。
为了解决激光荧光光源的热量过于集中的问题,本发明人将波长转换材料设置在腔体内,通过将激发光均匀扩散为较大面积的光斑,照射在波长转换材料上,从而实现高亮度照明光出射。然而,在实际实验中发现,靠近边缘位置的出射光的亮度和颜色与靠近出射面中心位置的出射光具有较大差异,导致出射光整体颜色和照度分布不均匀。
发明内容
针对上述现有技术的激光荧光光源出射光颜色和照度分布不均匀的缺陷,本发明提供一种出射光颜色均匀、照度均匀的激光照明装置,包括:激光光源,用于出射激发光;波长转换装置,包含波长转换材料,用于吸收激发光并出射受激光,所述波长转换装置包括实心光导,所述实心光导包括相对设置的第一端面和第二端面,以及相对设置的第一表 面和第二表面,所述第一端面与所述第二端面通过第一表面连接,所述第一端面为光入射面,所述第一表面为光出射面,所述第二端面设有漫反射结构,所述激发光经所述第一端面进入所述波长转换装置的内部,所述受激光通过所述第一表面从所述波长转换装置的内部出射;所述第一表面到所述第二端面的夹角为钝角。
与现有技术相比,本发明包括如下有益效果:经波长转换装置的实心光导的第一端面入射的激光激发光大部分到达了设有漫反射结构的第二端面,在漫反射结构的作用下,激光被反射散射为朝向各个方向出射的光,通过将作为光出射面的第一表面与第二端面的夹角设置为钝角,使得来自第二端面的激发光在第一表面的入射角相对于原方案(即第二端面与第一表面垂直的方案)整体均增大,扩大了发生全反射的区域,使得从第一表面的靠近第二端面的位置直接出射的激发光大大减少,减轻或消除了出射光的边缘照度/颜色不均匀问题。
该技术方案通过将“钝角的光学设计”与“漫反射结构”相结合,从而解决了技术问题,两者缺一不可。假若没有漫反射结构,而是采用镜面反射结构,那么激发光直接被反射到了第二表面,则根本不会有激发光直接从第二端面到达第一表面,而且未经漫反射结构改变角分布的激发光会集中于第二表面的一个小面积区域,造成光学损伤;假若没有钝角的光学设计增大从第二端面到第一表面的光入射角,则会在第一表面靠近第二端面的边缘直接出射较多的激发光,导致该位置颜色和照度与整体出射光相比不均匀。
在一个实施方式中,所述第一表面到所述第二端面的夹角在104°~116.6°之间。
在一个实施方式中,所述第一表面为抛光面。该技术方案有利于来自第二端面的光在第一表面出射时发生全反射。
在一个实施方式中,所述波长转换装置包括包含波长转换材料的波长转换层,所述波长转换层设置在所述实心光导的第二表面。
在一个实施方式中,所述实心光导内部包含波长转换材料。
在一个实施方式中,所述实心光导为荧光单晶。
在一个实施方式中,所述波长转换装置还包括设置在所述第二表面 的第二反射结构。
在一个实施方式中,所述波长转换装置包括包含波长转换材料的波长转换层,所述波长转换层设置在所述实心光导的第一表面,所述波长转换装置还包括设置在所述第二表面的第二反射结构。
在一个实施方式中,所述第一端面与所述第二端面平行。
在一个实施方式中,所述波长转换装置包括散射结构,设置在所述第一表面。
在一个实施方式中,所述波长转换装置还包括第二波长转换层,设置在所述第一表面,所述第二波长转换层的折射率小于所述实心光导的折射率。
在一个实施方式中,还包括滤光膜片,设置于所述第一端面,所述滤光膜片透射入射角不大于预设角度的激发光,并反射受激光和入射角大于预设角度的激发光。
附图说明
图1为本发明实施例一的激光照明装置的结构示意图;
图2为本发明实施例二的激光照明装置的结构示意图;
图3为本发明实施例三的激光照明装置的结构示意图;
图4为本发明实施例四的激光照明装置的结构示意图;
图5为本发明实施例五的激光照明装置的结构示意图;
图6为第一表面与第二端面的夹角取不同角度时激光照明装置出射面的照度分布模拟结果。
具体实施方式
下面结合附图和实施方式对本发明实施例进行详细说明。
请参见图1,为本发明实施例一的激光照明装置的结构示意图。激光照明装置10包括激光光源110和波长转换装置120。
其中激光光源110用于出射激发光。波长转换装置120包含用于吸收激发光并出射受激光的波长转换材料。
具体地,本发明中的波长转换装置120包括实心光导121和波长转换层122。其中,实心光导121包括相对设置的第一端面121a和第二端面121b,以及相对设置的第一表面121c和第二表面121d,第一端面121a 与第二端面121b通过第一表面121c连接。
第一端面121a为实心光导的光入射面,激发光从第一端面121a入射至实心光导121,进入波长转换装置120的内部,其中的大部分光穿过实心光导121,并到达第二端面121b。第二端面121b设有漫反射结构123,激发光被漫反射结构123漫反射后,其中的部分光直接向第一表面121c出射,另外部分光向设置在第二表面121d的波长转换层12出射。入射到波长转换层122的光被吸收后,波长转换层122发出受激光,该受激光通过第一表面121c出射,形成出射光的一部分。也即,第一表面121c为实心光导121的光出射面,受激光通过第一表面121c从波长转换装置120的内部出射。
在本发明中,第一表面121c到第二端面121b的夹角为钝角,被漫反射结构123漫反射的光直接入射到第一表面121c时入射角增大,从而使得在第一表面121c发生全反射的区域增大,并减小了靠近第二端面121b的第一表面121c边缘区域的光透射率,从而避免了边缘的照度和颜色的不均匀。
在本实施例中,实心光导121的第一表面121c为抛光面,表面粗糙度小于400nm,优选地小于100nm,以避免表面凹凸不平造成全反射失效。
在本实施例一中,波长转换层122含有波长转换材料,而实心光导121不含有波长转换材料,只承担光传导的作用,在本发明中优选为蓝宝石,兼具透光性与导热性。对于波长转换装置120而言,波长转换层122为实际的被动发光源,其发出的光经过实心光导121传导后从第一表面121c出射。
本发明中,激光光源可以为半导体激光光源,例如激光二极管,既可以是单颗激光二极管光源,也可以是多颗激光二极管的光源阵列。当激光光源为多个激光发光元件的组合时,可以为相同波长范围的光源,也可以为多种不同波长的光源的组合。
在本发明中,波长转换层可以为硅胶或环氧树脂等有机粘结剂粘结荧光粉成层的结构,也可以为玻璃粉通过软化/熔融后粘结荧光粉成层的结构,还可以为陶瓷材料与荧光粉共烧结后成层的结构,还可以为荧光 单晶。
在本实施例中,具体地,激光光源为蓝光激光光源,波长转换层122的波长转换材料为黄色荧光粉,即波长转换层122为黄色荧光粉层,波长转换层122吸收蓝光激发光后发出黄光受激光。黄光可以与蓝光组合后形成白光出射。可以理解,本发明对光源、波长转换材料的光谱不做限制,也可以采用其他光谱范围的光源和波长转换材料,也可以在一个波长转换层中同时设置多种波长转换材料。波长转换装置在一些技术方案中可以出射激发光与受激光的混合光,在另一些技术方案中也可以只出射受激光,此处不做限制。
本实施例中的漫反射结构123为白色散射颗粒与粘结剂形成的漫反射层,设置在第二端面121b的外面。在其他实施方式中,漫反射结构也可以通过将第二端面的表面粗糙化,然后涂覆反射膜层(如金属反射膜)实现,还可以利用其他类型的已知漫反射层,此处不再赘述。本发明的漫反射结构优选对可见光的反射率大于90%。
为防止未被吸收的激发光从光入射面反向出射,本实施例在第一端面121a额外设置了滤光膜片124,该滤光膜片124透射入射角不大于5°的激发光,并反射受激光以及入射角大于5°的激发光。由于激光光源的准直性很好,光束的发散角很小,该类型的滤光膜片可以在不对激发光的透射率造成明显影响的情况下,提高波长转换装置的光利用率。可以理解,本发明对滤光膜片的预设角度特征不做限制,预设角度也可以为5°以外的其他角度,需根据实心光导121的尺寸进行设计。
在本实施例的变形实施例中,滤光膜片124也可以替换为简单的波长滤光片,透射激发光并反射受激光。
可以理解,滤光膜片并非本发明的激光照明装置的必要结构,也可以不设置该膜片以节约成本。
在本发明的波长转换装置120的靠近实心光导121的第二表面121d的一侧额外设置有热沉125。具体地,热沉125设置在波长转换层122的远离实心光导121的一侧,用于对波长转换层122进行热传导和冷却。可以理解,热沉125并非本发明的激光照明装置的必要结构。
进一步地,为了研究第一表面121c与第二端面121b的夹角对波长 转换装置120的出射光的影响,发明人进行了光学模式实验。具体地,以蓝光为激光光源,以黄光为波长转换层的出射受激光,以蓝宝石实心光导为例,取7×7×8的尺寸(其中8为沿入射光方向的长度),设置第一表面121c与第二端面121b的夹角为(a)90°、(b)104°、(c)110.6°和(d)116.6°,测量光出射面121c的照度分布,得到如图6所示的结果(说明书附图为灰度图案,无法表现出光的颜色属性,以文字进行描述)。从左到右依次为(a)、(b)、(c)、(d)的模拟结果。
可以看出,当第一表面121c与第二端面121b垂直设置时,出光面照度分布很不均匀,尤其是靠近第二端面121b的位置蓝光成分多、照度大。当夹角增大到104°时,蓝光过多的区域减小且照度减小;夹角进一步增大到110.6°时,整个光出射面的照度分布均匀;再进一步将夹角增大至116.6°,发现光出射面远离第二端面121b的位置出现照度异常,蓝光成分增加、照度增大,这是由于角度的增大将激发光更多的传导至第一表面121c靠近第一端面121a的位置,通过第一端面121a改变角度后有利于从第一表面121c出射。
因此,本实施例的第一表面121c到第二端面121b的夹角应设置在104°~116.6°之间,以确保出射面的照度和颜色均匀性。发明人通过改变实心光导的模拟参数,进行多次实验后发现,在各种实施方式中,第一表面与第二端面的夹角都不宜太大,104°~116.6°能够取得较为理想、可接受的结果。
请参见图2,为本发明实施例二的激光照明装置的结构示意图。激光照明装置20包括激光光源210和波长转换装置220。与实施例一的不同之处在于,本实施例中的波长转换装置220的实心光导221内部包含波长转换材料。
具体地,本实施例中的实心光导221为荧光单晶,兼具透光导光和光转换功能。当激光光源为蓝光光源时,荧光单晶可以为Ce:YAG单晶,透光性能良好。
本实施例中的实心光导211的第一端面221a、第二端面221b、第一表面221c和第二表面221d可以参照实施例一的描述。从第一端面221a入射的激发光到达第二端面221b的漫反射结构223被散射反射,第一 表面221c为抛光面,来自漫反射结构223的激发光由于钝角的结构设计而大部分在第一表面221c发生全反射。
本实施例中不包括实施例一中的波长转换层,相当于实施例一的实心光导与波长转换层合并为一个。
此外,本实施例中的实心光导221的第二表面221d为光反射面(优选地为漫反射面),以防止入射至第二表面221d的光直接从波长转换装置中出射。
在本实施例的变形实施例中,还可以包括设置在第二表面的第二反射结构,该第二反射结构可以为独立的反射结构,如白色散射颗粒粘结成层的漫反射层。
本实施例相对实施例一的另一不同之处在于,本实施例在第一端面221a设置的滤光膜片224为一个区域镀膜片,其包括一镀膜区域224a,该区域透射激发光并反射受激光,滤光膜片224的镀膜区域224a以外的区域为反射区域,反射激发光和受激光。
在本实施例的变形实施例中,滤光膜片还可以替换为带孔的反射片,激发光从反射片的小孔入射。
本实施例中的波长转换装置220也包括一热沉225,该热沉225与实心光导221接触的表面也可以设置为反射面。
本实施例二的其他器件的描述可以参照上述实施例一的描述,此处不再赘述。
请参见图3,为本发明实施例三的激光照明装置的结构示意图。激光照明装置30包括激光光源310和波长转换装置320。与图1所示实施例不同之处在于,本实施例中的波长转换层322设置在实心光导321的第一表面321c,而且波长转换装置320还包括设置在第二表面321d的第二反射结构326。
本实施例中的波长转换层322设置在光出射面,从第一端面321a入射到实心光导321的激发光经第二端面321b的漫反射结构反射后,部分光到达第二表面321d的第二反射结构326,第二反射结构326优选为漫反射层,激发光被漫反射层散射、反射后,光斑面积相对于第一端面321a的入射光斑面积大大增大,形成均匀的激发光,然后从第一表面 321c出射,经波长转换层322的光转换作用后出射。
实施例三中的实心光导321的结构参照实施例一中的描述,此处不再赘述。
请参见图4,为本发明实施例四的激光照明装置的结构示意图。激光照明装置40包括激光光源410和波长转换装置420。
本实施例相对于实施例一的不同之处仅在于,本实施例的波长转换装置420还包括第二波长转换层427,设置在在实心光导421的第一表面421c,其中第二波长转换层427的折射率小于实心光导的折射率。
本实施例中,波长转换层422为黄色荧光粉层,而第二波长转换层427为红色荧光粉层,能够改善出射光中的红光的比例。可以理解,在本发明的其他实施方式中,也可以采用其他的波长转换层与第二波长转换层的组合,实现调节出射光色温、显色指数的效果。
本实施例中的实心光导的第一端面421a、第二端面421b、第一表面421c、第二表面421d、波长转换层422、热沉425、滤光膜片424、漫反射结构423等的其他描述,请参照实施例一、二、三中对应器件的描述,此处不再赘述。
在实施例四的一个变形实施例中,将实施例四的实心光导421与波长转换层422的组合替换为如实施例二中的荧光晶体。
在本发明实施例四的变形实施例中,还可以将设置在第一表面的第二波长转换层替换为散射元件(如包含散射颗粒的薄膜或具有棱镜或其他凹凸不平的微结构的薄膜,整个散射元件中的散射颗粒或微结构可以为一种类型或多种类型,散射颗粒或微结构的空间分布可以为均匀的或不均匀的),该散射元件与实心光导的第一表面优选为光学接触。该技术方案提高了出射光的均匀性和光提取效率。
请参见图5,为本发明实施例五的激光照明装置的结构示意图。激光照明装置50包括激光光源510和波长转换装置520。
与上述各实施例不同之处在于,本实施例的实心光导521的第一端面521a与第二端面521b平行。
本实施例中的实心光导的第一端面521a、第二端面521b、第一表面521c、第二表面521d、波长转换层522、热沉525、漫反射结构523等 的其他描述,请参照上述各实施例中对应器件的描述,此处不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种激光照明装置,其特征在于,包括:
    激光光源,用于出射激发光;
    波长转换装置,包含波长转换材料,用于吸收激发光并出射受激光,所述波长转换装置包括实心光导,所述实心光导包括相对设置的第一端面和第二端面,以及相对设置的第一表面和第二表面,所述第一端面与所述第二端面通过第一表面连接,所述第一端面为光入射面,所述第一表面为光出射面,所述第二端面设有漫反射结构,所述激发光经所述第一端面进入所述波长转换装置的内部,所述受激光通过所述第一表面从所述波长转换装置的内部出射;
    所述第一表面到所述第二端面的夹角为钝角。
  2. 根据权利要求1所述的激光照明装置,其特征在于,所述第一表面到所述第二端面的夹角在104°~116.6°之间。
  3. 根据权利要求1所述的激光照明装置,其特征在于,所述第一表面为抛光面。
  4. 根据权利要求1~3任一项所述的激光照明装置,其特征在于,所述波长转换装置包括包含波长转换材料的波长转换层,所述波长转换层设置在所述实心光导的第二表面。
  5. 根据权利要求1~3任一项所述的激光照明装置,其特征在于,所述实心光导内部包含波长转换材料。
  6. 根据权利要求5所述的激光照明装置,其特征在于,所述实心光导为荧光单晶。
  7. 根据权利要求5所述的激光照明装置,其特征在于,所述波长转换装置还包括设置在所述第二表面的第二反射结构。
  8. 根据权利要求1~3任一项所述的激光照明装置,其特征在于,所述波长转换装置包括包含波长转换材料的波长转换层,所述波长转换层设置在所述实心光导的第一表面,所述波长转换装置还包括设置在所述第二表面的第二反射结构。
  9. 根据权利要求1~3任一项所述的激光照明装置,其特征在于, 所述第一端面与所述第二端面平行。
  10. 根据权利要求1~3任一项所述的激光照明装置,其特征在于,所述波长转换装置包括散射结构,设置在所述第一表面。
  11. 根据权利要求1~3任一项所述的激光照明装置,其特征在于,所述波长转换装置还包括第二波长转换层,设置在所述第一表面,所述第二波长转换层的折射率小于所述实心光导的折射率。
  12. 根据权利要求1~3任一项所述的激光照明装置,其特征在于,还包括滤光膜片,设置于所述第一端面,所述滤光膜片透射入射角不大于预设角度的激发光,并反射受激光和入射角大于预设角度的激发光。
PCT/CN2019/100474 2018-10-09 2019-08-14 一种激光照明装置 WO2020073732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811172358.7 2018-10-09
CN201811172358 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020073732A1 true WO2020073732A1 (zh) 2020-04-16

Family

ID=70165097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100474 WO2020073732A1 (zh) 2018-10-09 2019-08-14 一种激光照明装置

Country Status (2)

Country Link
CN (1) CN111022942B (zh)
WO (1) WO2020073732A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216100B (zh) * 2021-11-19 2024-10-18 广州旭福光电科技有限公司 一种透过式激光照明模组及匀光方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296347A (ja) * 2003-03-27 2004-10-21 Toto Ltd 面発光装置
JP2010251231A (ja) * 2009-04-20 2010-11-04 Masahisa Shigematsu 面発光体用導光板
JP2013182730A (ja) * 2012-02-29 2013-09-12 Sharp Corp 照明モジュールおよびそれを備えた照明装置
CN104075251A (zh) * 2013-03-25 2014-10-01 东芝照明技术株式会社 固体照明装置
CN104075153A (zh) * 2013-03-25 2014-10-01 东芝照明技术株式会社 固体照明装置
JP2017068923A (ja) * 2015-09-28 2017-04-06 株式会社小糸製作所 光源モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205359B2 (ja) * 2002-04-08 2009-01-07 ダイセル化学工業株式会社 面光源装置および液晶表示装置
DE10241566A1 (de) * 2002-09-07 2004-03-25 Dr.-Ing. Willing Gmbh Lichtleitkörper zur Umlenkung von Lichtverteilungen
US7969532B2 (en) * 2005-11-15 2011-06-28 Panasonic Corporation Surface illuminator and liquid crystal display using same
ES2787826T3 (es) * 2011-04-28 2020-10-19 L E S S Ltd Aparatos de guía de ondas para sistemas de iluminación
JP5812520B2 (ja) * 2013-03-28 2015-11-17 ウシオ電機株式会社 蛍光光源装置
CN205002051U (zh) * 2015-10-07 2016-01-27 杨毅 波长转换装置、发光装置和灯具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296347A (ja) * 2003-03-27 2004-10-21 Toto Ltd 面発光装置
JP2010251231A (ja) * 2009-04-20 2010-11-04 Masahisa Shigematsu 面発光体用導光板
JP2013182730A (ja) * 2012-02-29 2013-09-12 Sharp Corp 照明モジュールおよびそれを備えた照明装置
CN104075251A (zh) * 2013-03-25 2014-10-01 东芝照明技术株式会社 固体照明装置
CN104075153A (zh) * 2013-03-25 2014-10-01 东芝照明技术株式会社 固体照明装置
JP2017068923A (ja) * 2015-09-28 2017-04-06 株式会社小糸製作所 光源モジュール

Also Published As

Publication number Publication date
CN111022942B (zh) 2023-07-21
CN111022942A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN101539270B (zh) 具有发射角度选择特性的光波长转换方法
WO2010001604A1 (ja) 照明装置
CN105190163A (zh) 光源装置以及车辆用灯具
WO2019075935A1 (zh) 光源系统及照明设备
US8919978B2 (en) Lighting device
CN105738994A (zh) 波长转换装置及相关照明装置、荧光色轮和投影装置
TW201331513A (zh) 平面發光二極體照明(二)
CN108361566A (zh) 一种光源装置
WO2020073732A1 (zh) 一种激光照明装置
JP7187683B2 (ja) 照明装置及び車両用ライト
WO2020114199A1 (zh) 一种照明光源及车灯
TW201522843A (zh) 光源模組
US10429034B2 (en) Light-emitting device with light guide for two way illumination
WO2020156294A1 (zh) 一种发光装置及应用其车灯
WO2018045604A1 (zh) 一种新型激光与led混色光源系统
CN114135801A (zh) 一种反射式波长转换装置以及一种灯具
WO2019144546A1 (zh) 光源系统及照明装置
CN109798489B (zh) 一种照明装置和汽车照明灯具
WO2019214218A1 (zh) 光源以及照明装置
CN113551203A (zh) 透射式波长转换装置及其发光装置
TW201506300A (zh) 光源模組
CN110778926B (zh) 照明装置
CN211694744U (zh) 一种基于光纤导光的封装结构、光纤导光系统
TWM404326U (en) Improved lamp structure with uniform light emission
CN110906272B (zh) 一种光源装置及车灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871344

Country of ref document: EP

Kind code of ref document: A1