WO2019075935A1 - 光源系统及照明设备 - Google Patents

光源系统及照明设备 Download PDF

Info

Publication number
WO2019075935A1
WO2019075935A1 PCT/CN2018/071417 CN2018071417W WO2019075935A1 WO 2019075935 A1 WO2019075935 A1 WO 2019075935A1 CN 2018071417 W CN2018071417 W CN 2018071417W WO 2019075935 A1 WO2019075935 A1 WO 2019075935A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source system
light source
compensating
laser
Prior art date
Application number
PCT/CN2018/071417
Other languages
English (en)
French (fr)
Inventor
陈彬
胡飞
郭祖强
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to US16/756,977 priority Critical patent/US11248773B2/en
Publication of WO2019075935A1 publication Critical patent/WO2019075935A1/zh
Priority to US17/569,710 priority patent/US11592159B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0263Diffusing elements; Afocal elements characterised by the diffusing properties with positional variation of the diffusing properties, e.g. gradient or patterned diffuser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to the field of lighting technologies, and in particular, to a light source system and a lighting device thereof.
  • a laser beam as excitation light to be incident on a wavelength conversion device
  • a part of the excitation light is absorbed by the wavelength conversion material to emit a laser light, which is emitted together with the remaining unabsorbed excitation light to form a lighting device.
  • the outgoing beam is a part of the excitation light.
  • a wavelength conversion material is evenly distributed on the wavelength conversion device to generate a laser-receiving light path. Since the laser light intensity is Gaussian, the intensity of the light near the center of the spot is large, and the excitation light of the wavelength conversion material is low in laser conversion efficiency. On the other hand, the laser light intensity of the edge is low.
  • the excitation light of the wavelength conversion material is highly efficient by laser conversion. This causes the excited laser light intensity distribution to be different from the incident excitation light intensity distribution ratio, resulting in uneven color mixing in different regions, and even a significant deviation in the color of the center and edge of the final exit light region.
  • the present invention provides a light source system including a light emitting module for emitting first light along a first optical path and second light along a second optical path; a conversion device for receiving the first light to emit a laser light different from the color of the first light; compensating means for guiding the second light and adjusting a luminous intensity distribution of the second light,
  • the second light emitted by the compensation device is substantially the same as the light intensity distribution of the received laser light; and the second light emitted by the light source system is generated by the laser light and the second light emitted by the compensation device.
  • the ratio of the second light emitted by the compensating device to the total luminous intensity of the laser beam on the optical path after the light combining position and the light combining position is x, and the compensation device is emitted.
  • the ratio of the luminous intensity of the second light at an arbitrary position of the beam section to the luminous intensity of the laser received at the corresponding position is in the range of 0.8x to 1.2x.
  • the compensating device comprises a compensating element for adjusting the luminous intensity distribution of the beam, the outgoing beam of the compensating element having a reduced overall luminous intensity compared to the incident beam, wherein the exiting beam of the compensating element The closer the center of the beam is to the distance, the more the luminous intensity is reduced.
  • the compensating element comprises an angle diffuser for diffusing a beam of a central portion of the incident beam to the edge; or the compensating element comprises a filter plated with a graded metal absorbing film, the filter The sheet is gradually reduced in density from the center to the edge; or the compensating element comprises a dielectric film filter plated with a graded transmittance, the filter having a center-to-edge, transmittance to the beam gradually increase.
  • the compensation device further comprises a scattering element for decohering the second light.
  • the compensating device is further provided with a second collecting lens group on the second optical path between the compensating element and the scattering element, the second light passing through the compensating element in turn,
  • the second collecting lens group is then concentrated to the scattering element, the scattering element scatters the second light and then reflects to the second collecting lens group, and then collimates the second collecting lens group from the compensating element Exit.
  • the wavelength conversion device includes a phosphor layer, a reflective layer, and a substrate that are sequentially stacked, the thickness of the phosphor layer decreasing from the center to the edge.
  • the fluorescent layer includes a plane and a curved surface disposed opposite to each other, and the plane or the curved surface is a contact surface of the fluorescent layer and the reflective layer.
  • the light source system further includes a light combining and combining device, wherein the light combining and combining device is configured to divide the light emitted by the light emitting module into a first light that is emitted along the first light path and a second light that is emitted along the second light path. Dim light, and directing the first light to the wavelength conversion device to direct the second light to the compensation device, the beam splitting device further for using the laser beam and the compensation device The emitted second light is combined and the third light is emitted.
  • the light combining and combining device is configured to divide the light emitted by the light emitting module into a first light that is emitted along the first light path and a second light that is emitted along the second light path. Dim light, and directing the first light to the wavelength conversion device to direct the second light to the compensation device, the beam splitting device further for using the laser beam and the compensation device The emitted second light is combined and the third light is emitted.
  • the light source system further includes a first collection lens group, the first collection lens group being disposed on a first optical path adjacent to the wavelength conversion device for adjusting the wavelength conversion device to be exposed
  • the spot diameter of the laser is such that the light spot is completely coincident with the second photosynthetic light emitted by the compensation device.
  • the invention further provides a lighting apparatus comprising the light source system of any of the above.
  • the light source system and the illumination device provided by the present invention include a compensation device for adjusting the second light emission intensity distribution, wherein the second light emitted by the compensation device is caused by changing the luminous intensity distribution of the second light
  • the illuminating intensity distribution of the laser light is substantially the same, such that the illuminating intensity distribution of the first light and the second light in the third light obtained by combining the laser light and the second light is substantially the same, so that the color of the light beam formed by the third light evenly distributed.
  • FIG. 1 is a schematic structural diagram of a light source system according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of the wavelength conversion device shown in FIG. 1.
  • FIG. 3 is a schematic structural view of a third embodiment of the wavelength conversion device shown in FIG. 1.
  • FIG. 4 is a schematic structural view of a fourth embodiment of the wavelength conversion device shown in FIG. 1.
  • FIG. 5 is a schematic structural view of the light combining and combining device shown in FIG. 1.
  • FIG. 6 is a schematic structural diagram of a light source system according to a modified embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a light source system 100 according to a preferred embodiment of the present invention.
  • the light source system 100 can be applied to lighting devices, particularly devices such as stage lights or searchlights.
  • the light source system 100 includes a light emitting module 110, a light combining and combining device 120, a first collecting lens group 130, a wavelength converting device 140, a compensating device 150, and a relay lens 160.
  • the light emitting module 110 is configured to emit excitation light;
  • the optical splitting device 120 is configured to divide the excitation light into a first light that is emitted along the first optical path L1 and a second light that is emitted along the second optical path L2;
  • the device 140 is configured to receive the first light and perform wavelength conversion on the first light to emit a laser beam different from the color of the first light;
  • the first collecting lens group 130 is disposed on the beam splitting device 120 and
  • the first optical path L1 between the wavelength conversion devices 140 is used to at least converge the light beams emitted from the optical splitting device 120 to the wavelength conversion device 140.
  • the first light is emitted from the optical combining device 120 and sequentially passes through the first collecting lens.
  • the group 130 is condensed to the wavelength conversion device 140, and the wavelength conversion device 140 generates and reflects the received laser light.
  • the laser light in the form of Lambertian light is collimated by the first collection lens group 130 and then incident on the optical splitting device 120.
  • the compensation device 150 is used.
  • the second light is guided, and the light intensity distribution of the second light is adjusted, and the second light emitted by the compensation device 150 and the received light intensity distribution are substantially the same; the optical splitting device 120 is further used
  • the third light emitted by the light source system 100 is generated by combining the second light emitted by the laser and the compensation device 150.
  • the ratio of the luminous intensity distributions of the first light and the second light in the third light is substantially the same, such that the third light is a uniform color of light.
  • the luminous intensity is simply referred to as light intensity, and is the luminous flux in a unit solid angle along the optical path direction, and can be measured by an apparatus such as an illuminometer.
  • the "luminous intensity distribution is substantially the same" as used in the present invention means that the light beam intensity distribution in the solid angle of the beam is substantially the same, or the surface distribution of the luminous intensity on the beam cross section is substantially the same, and may be equivalent.
  • the illuminance distribution is approximately the same for a given beam cross section.
  • the luminous intensity distribution of the two beams is substantially the same, and the luminous intensities of the two beams are not required to be equal, as long as the luminous intensities of the two beams at the corresponding positions are in an equal relationship.
  • beam one and beam two there are beam one and beam two, beam one includes optional area A and area B, beam two includes area A' and area B', and area A' (B') of beam two corresponds to area A of beam one (B ). If the ratio of the luminous intensity of the region A to the luminous intensity of the region B is a:b, and the ratio of the luminous intensity of the region A' to the luminous intensity of the region B' is also a:b, the luminous intensity distribution of the beam 1 and the beam 2 is considered to be the same.
  • the area A'(B') of the beam two corresponds to the area A(B) of the beam one, and the area A'(B') of the beam 2 is exactly the area of the beam one after the beam is combined with the beam A (B) coincides.
  • the ratio of the second light emitted by the compensating device to the total luminous intensity of the laser beam after the light combining position and the light combining position is x, and the second light emitted by the compensating device is at any position of the beam cross section.
  • the ratio of the luminous intensity to the intensity of the laser light at the corresponding position is in the range of 0.8x to 1.2x.
  • the ratio of the illuminating intensity of the second light emitted by the compensating device at any position of the beam cross section to the illuminating intensity of the laser at the corresponding position is in the range of 0.9x to 1.1x.
  • the ratio of the illuminating intensity of the second light emitted by the compensating device at any position of the beam cross section to the illuminating intensity of the laser at the corresponding position is in the range of 0.95x to 1.05x. Within this range, the third light emitted by the light source system appears as a uniform color of light within the perceptible range of the human eye.
  • the ratio of the illuminating intensity of the second light emitted by the compensating device at any position of the beam cross section to the illuminating intensity of the laser at the corresponding position is x, so that the color of the third light is absolutely Uniform and single, but the actual error accuracy is difficult to do this, and can only be close to making the ratio close to x.
  • the light emitting module 110 may be a blue light source and emit a blue laser. It is to be understood that the light emitting module 110 is not limited to the blue light source. In other embodiments of the present invention, the light emitting module 110 may also be an ultraviolet light source, a violet light source, a red light source, or a green light source.
  • the illuminant in the illuminating module 110 is a blue laser (such as a blue laser diode) for emitting blue laser light as excitation light. It can be understood that the illuminant can include one, two or more laser arrays. Since the stage lamp requires high output optical power, the actual use of the laser array is more, and the number of lasers can be selected according to actual needs.
  • the excitation light is a laser, and the luminescence intensity is Gaussian, the luminescence intensity near the center of the spot is large, the brightness is bright, the illuminating intensity of the edge area of the spot is small, and the brightness is dark. It can be understood that the excitation light can also be the light emitted by the high-brightness LED, but it is still necessary to satisfy the characteristic of the Gaussian distribution on the light distribution.
  • the light emitting module 110 is an entire integrated light source module, and is divided into a first light and a second light by the light splitting and combining device 120. Specifically, the excitation light emitted by the light emitting module 110 is incident on the optical splitting device 120 along the same optical path, and is divided into two beams.
  • the splitting process may be splitting according to the polarization state (requires the light emitting module 110 to emit at least two polarization states.
  • the light may be split according to wavelength (requires the light emitting module 110 to emit light of at least two wavelengths), or may be split according to the refractive reflection characteristic of the excitation light according to the medium interface.
  • FIG. 5 is a schematic structural diagram of the optical splitting device 120 shown in FIG.
  • the optical splitting device 120 guides the excitation light emitted from the light emitting module 110, and divides the excitation light into first light transmitted along the first optical path L1 and second light transmitted along the second optical path L2.
  • the optical splitting device 120 includes a first region 121 and a second region 122.
  • the first region 121 is located in a central region of the optical splitting device 120 for transmitting a portion of the excitation light to obtain the first light transmitted along the first optical path L1, and also for reflecting the received laser light;
  • the ring 220 is disposed on the outer edge of the first region 121 for reflecting another portion of the excitation light to obtain the second light transmitted along the second optical path L2, and is also for reflecting the received laser light.
  • the first region 121 on the optical splitting device 120 is part of a region illuminated by the excitation light.
  • the first region 121 is provided with a blue anti-yellow dichroic film for transmitting blue excitation light, and the reflection is received by a laser (such as red, green or yellow);
  • the second region is provided with an anti-blue anti-yellow dichroic film, Reflecting blue excitation light, reflected by laser (such as red, green or yellow).
  • the first region 121 of the optical splitting device 120 is a region illuminated by the excitation light, and the first region 121 is provided with a transparent dielectric sheet.
  • the dielectric sheet refracts a portion of the incident excitation light, and the refracted excitation light emerges from the dielectric sheet to form a first light transmitted along the first optical path L1, and another portion of the excitation light is reflected to obtain a second optical path.
  • the sheet of media may be a transparent glass sheet.
  • the second region 122 is provided with a reflective film or a blue anti-yellow dichroic film for reflecting the laser light.
  • the excitation light includes excitation light of a first polarization state and excitation light of a second polarization state.
  • two sets of illuminants are disposed in the illuminating module 110, wherein one set of illuminants emits first polarized state excitation light, and the other set of illuminants emits second polarization state excitation light.
  • the first region 121 of the optical splitting device 120 is a region where the excitation light is irradiated.
  • the first region 121 is provided with a polarizing plate, and the polarization is performed by using different polarization states of the excitation light.
  • the polarizing plate transmits the excitation light of the first polarization state to obtain the first light, and reflects the excitation light of the second polarization state to obtain the second light.
  • the optical splitting device 120 is a wavelength splitting polarizer, so that no sub-regional processing is required on the optical splitting device 120.
  • the wavelength splitting polarizing plate has the characteristics of wavelength splitting and polarization splitting simultaneously. Specifically, the wavelength splitting polarizer transmits the blue excitation light of the first polarization state, and reflects the blue laser light and the blue excitation light of the second polarization state.
  • the light emitting module may also be a combination of two relatively independent light emitting units, wherein one light emitting unit is used to emit the first light and the other light emitting unit is used to emit the second light.
  • the splitting function of the optical splitting device may not be necessary, and only the second light emitted by the compensating device is combined with the laser light. Even in another modified embodiment, the optical splitting device is unnecessary. The light source system omits the splitting and combining device.
  • the light emitting module includes at least two light emitting units, wherein the first light emitted by the first light emitting unit is incident on the wavelength conversion device along the first light path, and the second light emitted by the second light emitting unit is incident on the compensation device along the second light path. Then, the second photosynthetic light emitted by the laser and the compensating device emitted from the wavelength conversion device obtains the third light.
  • the wavelength conversion device 140 is provided with a wavelength converting material for wavelength conversion of the first light.
  • the wavelength conversion device 140 is a fixed reflective yellow phosphor sheet, and the yellow phosphor powder is evenly distributed with a wavelength conversion material yellow phosphor.
  • the blue first light is irradiated onto the phosphor sheet to excite the yellow phosphor to produce a yellow fluorescence in the form of a Lambertian light, or a yellow laser.
  • the wavelength conversion device 140 is a fluorescent color wheel that periodically rotates under the driving of the driving unit, and the color wheel rotates at a high speed with the driving unit as an axis, thereby avoiding heat at the same position of the wavelength converting material. accumulation.
  • the fluorescent color wheel can be a monochromatic fluorescent color wheel.
  • the color wheel includes at least a first section and a second section.
  • the first section is provided with a red phosphor or a yellow phosphor
  • the second section is provided with a green phosphor.
  • the fluorescent color wheel may be provided with more than two segmented regions to generate laser light of more than two colors; or the fluorescent color wheel may be provided with phosphors of other colors to generate Other colors are affected by the laser.
  • the intensity of the light beam incident on the wavelength conversion device increases, the intensity of the laser light emitted by the wavelength conversion material gradually increases, and the heat generated by the wavelength conversion material gradually increases; but when the incident light beam reaches a certain luminous intensity, the wavelength conversion material The generated heat is difficult to effectively diverge, causing the temperature to rise to affect the activity and stability of the wavelength converting material, so that the light conversion efficiency of the wavelength converting material is lowered.
  • the illumination intensity near the first light center incident to the wavelength conversion device 140 is large and the edge position illumination intensity is small, the light conversion efficiency at the center of the wavelength conversion device 140 is relatively low, and the edge is The light conversion efficiency is relatively high, and the ratio of the intensity distribution of the laser light emitted by the wavelength conversion device 140 and the first light incident to the wavelength conversion device 140 is different, which is specifically represented by the laser light intensity distribution with respect to the first light.
  • the brightness near the center is low, while the brightness in the edge area is high. If the laser is directly combined with the second photosynthetic light that adjusts the light distribution by the uncompensated device, a spot/beam with a high central color temperature and a low edge color temperature will be obtained.
  • the compensation device 150 is disposed on the optical path of the second light to adjust the luminous intensity distribution of the second light.
  • the compensating device 150 includes a compensating element 151, a second collecting lens group 152, and a scattering element 153.
  • the compensating element 151 is for adjusting the luminous intensity distribution of the incident second light.
  • the outgoing light beam of the compensating element 151 has a lower overall luminous intensity than the incident light beam (due to the inevitable loss of light passing through the optical element), wherein the closer the light beam of the compensating element 151 is to the center of the light beam, the more the luminous intensity is weakened. many.
  • the compensating element 151 includes an angular diffusion sheet for diffusing the light beam of the second light center portion to the edge.
  • the light intensity of the beam center is reduced, and the light beam edge is illuminated.
  • the increase in intensity is also in the case of "the closer the position of the center of the beam is, the more the luminous intensity is weakened", except that the value at which the intensity of the edge position is weakened is a negative number.
  • the compensating element 151 includes a filter plated with a graded metal absorbing film that has a progressive decrease in the absorptivity of the beam from the center to the edge.
  • the compensating element 151 includes a dielectric film filter plated with a graded transmittance that gradually increases the transmittance of the beam from the center-to-edge.
  • the scattering element 153 is used for scattering and decohering the second light to reduce the possibility of laser speckle phenomenon and improve the uniformity of the second light.
  • the scattering element 153 scatters the second light without changing its luminous intensity distribution.
  • the scattering element 153 is a reflective scattering powder sheet.
  • the second collecting lens group 152 is disposed on the second optical path L2 between the compensating element 151 and the scattering element 153.
  • the second light emitted from the compensating element 151 is sequentially concentrated by the second collecting lens group 152, scattered by the scattering element 153, and then reflected, and the second collecting lens group 152 is collimated and then incident on the compensating element 151 again.
  • the compensating element 151 adjusts the optical power distribution of the second light twice, so that the weakened optical power near the center is more, so that the second light emitted by the compensating device 150 and the received laser light intensity distribution Roughly the same.
  • the first collecting lens group 130 and the second collecting lens group 152 respectively adjust beam diameters of the second light emitted by the laser and the compensation device 150, so that the received laser light and the second light are irradiated to the combined light
  • the spots on device 120 are completely coincident. Therefore, the laser beam and the second light having the same spot size and the same luminous intensity distribution are combined on the spectroscopic unit 120 to obtain a third light emitted from the light source device, and the third light has different color light (blue The ratio of the luminous intensity distribution of the second light to the yellow laser is substantially the same, and the spot color of the third light is uniform.
  • the color coordinates of any point on the spot formed by the third light are all in the same seventh-order MacAdam ellipse. In another embodiment, the color coordinates of any position on the spot formed by the third light are all located in the same fourth-order MacAdam ellipse, and the technical solution fully satisfies the requirements of the color of light in illumination.
  • the second light emitted by the compensating device reduces the luminous intensity at the center position
  • the light conversion efficiency at the center of the wavelength conversion device is also lower relative to the edge, but the third light is still a bright center and a dark edge.
  • the third light passes through the relay lens 160 and exits from the light exit of the light source system 100.
  • the relay lens 160 is a convex lens.
  • relay lens 160 can be a series of lens groups.
  • a relay lens is not necessary, and the light source system can also omit the relay lens.
  • FIG. 6 is a schematic structural diagram of a light source system according to a modified embodiment of the present invention.
  • the light source system 600 includes a light emitting module 610, a light combining and combining device 620, a first collecting lens group 630, a wavelength converting device 640, and a compensating device 650.
  • the light emitting module 610 includes a first first light emitting unit 611 and a second light emitting unit 612.
  • the first light emitting unit 611 emits the first light along the first light path L1
  • the second light emitting unit 612 emits the second light along the second light path L2. Light.
  • the wavelength conversion device 640 is configured to receive the first light, and perform wavelength conversion on the first light to emit a laser light different from the first light color; the first collecting lens group 630 is disposed on the beam splitting and combining device The first optical path L1 between the 620 and the wavelength conversion device 640 is used to at least converge the light beam emitted from the optical splitting device 620 to the wavelength conversion device 640; the compensation device 650 is configured to guide the second light and adjust the The illuminating intensity distribution of the second light, the second light emitted by the compensating device 650 is substantially the same as the illuminating intensity distribution of the received laser light; the optical combining 620 is used to combine the second light emitted by the laser and the compensating device 650 The third light emitted by the light source system 600 is generated after the light.
  • the ratio of the luminous intensity distributions of the first light and the second light in the third light is substantially the same, such that the third light is a uniform color of light.
  • This embodiment differs from the embodiment shown in FIG. 1 mainly in the following points.
  • the light emitting module of this embodiment includes two relatively independent light emitting units, each of which independently emits the first light and the second light. Therefore, it is possible to more easily set the properties of the first light and the second light to make them different in polarization state or wavelength.
  • the compensating device 650 of the present embodiment includes a scattering element 653, a second collecting lens group 652 and a compensating element 651.
  • the second light emitted by the second light emitting unit 612 is scattered and de-cohered by the scattering element 653, and transmitted through the second collecting lens group 652.
  • the compensation element 651 is reached.
  • This embodiment uses a transmission rather than a reflection mode to make the control of the light distribution easier, avoiding the technical complexity of compensating the two functions of the element, but sacrificing the compactness of the embodiment of Fig. 1.
  • the compensating element can also be placed on the optical path before the scattering element.
  • FIG. 2 is a schematic structural diagram of a second embodiment of the wavelength conversion device 240 shown in FIG. 1 .
  • the wavelength conversion device 240 includes a fluorescent layer 241, a reflective layer 243, a solder layer 244, and a substrate 245 which are sequentially stacked.
  • the material of the reflective layer 243 includes a metal, which may be silver, gold or platinum.
  • the solder layer 244 is used to fix the reflective layer 243 including metal to the substrate 245.
  • the solder layer 244 includes solder materials such as solder, cans, or silver.
  • the substrate 245 includes a highly thermally conductive metal material such as copper or aluminum.
  • the reflective layer may also be a diffuse reflective layer comprising white scattering particles, such as an alumina reflective layer, an aluminum nitride reflective layer, etc., the solder layer may also be optional, and the substrate may also be sapphire or aluminum nitride.
  • High thermal conductivity substrate such as ceramic.
  • the fluorescent layer 241 is provided with a phosphor for wavelength-converting the incident first light and generating the received laser light.
  • the thickness of the fluorescent layer 241 decreases from the center to the edge.
  • the fluorescent layer 241 includes a plane and a curved surface which are oppositely disposed, and the plane is a contact surface of the fluorescent layer 241 and the reflective layer 243.
  • the first light emitting intensity is Gaussian, and a light beam near a center having a high light-emitting intensity is irradiated to a central portion having a large thickness of the fluorescent layer 241, and the light-emitting intensity is low.
  • the edge beam is irradiated to the adjacent edge region where the thickness of the phosphor layer 241 is small. Due to the strong photoluminescence effect of the central region where the incident light intensity is high, the heat generation is high, and under the influence of heat, the light conversion efficiency of the central region is lowered; and the photoluminescence effect of the edge region with low incident light intensity is low. Weak, low heat production, and relatively high light conversion efficiency in the edge region.
  • the center of the phosphor layer is thick and the edge is thin, and the total amount of laser light generated by the phosphor layer in the edge region is reduced. Even if the light conversion efficiency of the edge region is high, the laser light in the edge region is not excessive. This technical solution can attenuate the problem of uneven color of light emitted by the wavelength conversion device at the source.
  • the uniform color of the outgoing light can be obtained independently of the compensation means of Figures 1 and 6.
  • the technical solution improves the thickness of the phosphor layer of the wavelength conversion device in different regions by modifying the wavelength conversion device shown in FIG. 2, so that the wavelength conversion device directly emits the laser light and the unabsorbed excitation light, thereby obtaining a uniform color. Lighting light.
  • the technical solution includes a light emitting module for emitting excitation light, and a wavelength conversion device that receives the excitation light and converts part of the excitation light into a laser light different from the color of the excitation light, where the laser light and the excitation light are not
  • the portion absorbed by the wavelength conversion device is emitted as the outgoing light of the wavelength conversion device to form the outgoing light of the light source system.
  • the wavelength conversion device comprises a phosphor layer, a reflective layer and a substrate which are sequentially stacked, wherein the thickness of the phosphor layer exhibits a thin central thin edge, corresponding to a high intensity of the incident excitation light and an edge luminous intensity. low.
  • the center of the fluorescent layer is strong in photoluminescence, high in luminous efficiency, and low in luminous efficiency, and the emitted laser light is reduced.
  • the edge of the fluorescent layer has high luminous efficiency due to weak photoluminescence effect and low temperature, but the remaining thickness is thin. More excitation light.
  • the ratio of the excitation light to the laser-receiving at the center and the edge of the phosphor layer can be kept substantially the same (for example, 5% floating above and below the average ratio value), so that the color of the combined light can be kept uniform.
  • FIG. 3 is a schematic structural diagram of a third embodiment of the wavelength conversion device 340 shown in FIG. 1 .
  • the wavelength conversion device 340 provided in the present embodiment is different from the wavelength conversion device 240 in that the reflective layer 343 in the wavelength conversion device 340 may be a sintered layer of white scattering particles and glass frit, and the solder layer 244 is omitted. The volume of the wavelength conversion device 340 is reduced. Other structures are the same as those of the wavelength conversion device 240, and will not be described again.
  • FIG. 4 is a schematic structural diagram of a fourth embodiment of the wavelength conversion device 140 shown in FIG. 1 .
  • the wavelength conversion device 440 provided in the present embodiment is different from the wavelength conversion device 340 in that the arc surface of the fluorescent layer 441 is the contact surface of the fluorescent layer and the reflective layer 443, which further reduces the volume of the wavelength conversion device 440.
  • Other structures are the same and will not be described.
  • the technical solution of the wavelength conversion device of Fig. 4 can also be applied independently to the "additional technical solution" in the above paragraph. In addition to adjusting the thickness of the fluorescent layer by the thickness of the fluorescent layer, the technical solution adjusts the thickness of the reflective layer.
  • the thermal conductivity of the reflective layer is generally poor, the thicker the reflective layer is, the more difficult it is to dissipate heat, which in turn causes the luminous efficiency of the fluorescent layer in the region to decrease. Therefore, by setting the center of the reflective layer to be thin and the edge thick, the thickness of the edge region of the reflective layer is increased, and the luminous efficiency of the fluorescent layer at the edge position is lowered, so that the luminous efficiency of the center of the fluorescent layer and the edge region are closer, thereby enabling the emission. The intensity of the laser light is reduced at the edge position, and finally the effect of uniform color of the combined light is achieved.
  • the light source system of the present invention is mainly applied to lighting equipment such as stage lights, searchlights, etc., and the light source system of the present invention has different requirements for output beams than the light sources in the projection display apparatus.
  • the light source system of the present invention allows for the emission of a beam/spot with uneven brightness distribution, and generally, at the same power (which can be considered as the electrical power of the light source system), we hope that the exit light of the light source system can be illuminated as far as possible, thus the beam
  • the power density distribution is roughly Gaussian, that is, the luminous intensity at the center of the beam is large, and the luminous intensity at the edge of the beam is relatively small, so that the energy can be concentrated as much as possible, thereby illuminating as far as possible.
  • the illumination source within the projection display device generally desires a uniform distribution of the luminous intensity of the beam, so that a uniform spot can be modulated into an image by the light modulator, and for image display, a beam of non-uniform distribution of luminous intensity It will be shading after being modulated into an image. Therefore, the light source system of the present invention cannot be compared or replaced with a light source module applied to a projection display system, and both have significant application environment differences.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光源系统(100,600)及照明设备,光源系统(100,600)包括发光模块(110,610)、波长转换装置(140,240,340,440,640)及补偿装置(150,650),其中,发光模块(110,610)用于出射沿第一光路(L1)的第一光及沿第二光路(L2)的第二光;波长转换装置(140,240,340,440,640),用于接收第一光,以出射与第一光颜色不同的受激光;补偿装置(150,650),用于引导第二光,并调节第二光的发光强度分布,补偿装置(150,650)出射的第二光与受激光的发光强度分布大致相同;受激光与补偿装置(150,650)出射的第二光合光后产生光源系统(100,600)出射的第三光,第三光中的第一光与第二光的发光强度分布大致相同,照明光斑颜色均匀。

Description

光源系统及照明设备 技术领域
本发明涉及照明技术领域,尤其涉及一种光源系统及其照明设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
随着对舞台灯等特种照明的亮度需求的不断提高,集成的LED照明光源遇到瓶颈,无法在提高灯具总亮度的同时保持一个可接受的体积大小。因此,有研发人员转而寻求其他技术途径解决光源亮度与体积的兼容问题。特别地,激光激发远程荧光体技术在该类照明装置上的应用越来越受到重视。
通常地,通过将作为激发光的激光光束引导入射至波长转换装置,使得部分激发光被波长转换材料吸收而发出受激光,该受激光与剩余的未被吸收的激发光一同出射而形成照明装置的出射光束。
产生受激光的光路上,波长转换装置上均匀分布有波长转换材料。由于激光发光强度呈高斯分布,光斑中心附近的发光强度较大,受热效应等因素的影响,该位置波长转换材料的激发光-受激光转换效率低;另一方面,边缘的激光发光强度低,波长转换材料的激发光-受激光转换效率高。这导致所激发的受激光发光强度分布与入射的激发光发光强度分布比例不一样,导致不同区域产生颜色混和不均匀的现象,甚至会出现最终出射光区域中心和边缘的颜色发生明显的偏差。
发明内容
为解决现有技术中舞台灯光斑颜色不均匀的技术问题,本发明提供一种光源系统,包括发光模块,用于出射沿第一光路的第一光及沿 第二光路的第二光;波长转换装置,用于接收所述第一光,以出射与所述第一光颜色不同的受激光;补偿装置,用于引导所述第二光,并调节所述第二光的发光强度分布,所述补偿装置出射的第二光与所述受激光的发光强度分布大致相同;所述受激光与所述补偿装置出射的第二光合光后产生所述光源系统出射的第三光。
在一个实施方式中,设所述补偿装置最后出射的第二光与所述受激光在合光位置及合光位置之后的光路上的总发光强度的比值为x,则所述补偿装置出射的第二光在光束截面任意位置的发光强度与所述受激光在对应位置的发光强度的比值在0.8x~1.2x的范围内。
在一个实施方式中,所述补偿装置包括用于调整光束发光强度分布的补偿元件,所述补偿元件的出射光束与入射光束相比,整体发光强度降低,其中,所述补偿元件的出射光束中,距离的光束中心位置越近,其发光强度减小的越多。
在一个实施方式中,所述补偿元件包括角度扩散片,用于将入射光束中心部分的光束扩散到边缘;或者,所述补偿元件包括镀有渐变金属吸收膜的滤光片,所述滤光片由中心向边缘,对光束的吸收率逐渐降低;或者,所述补偿元件包括镀有渐变透过率的介质膜滤光片,所述滤光片由中心向边缘,对光束的透过率逐渐增加。
在一个实施方式中,所述补偿装置还包括用于对所述第二光消相干的散射元件。
在一个实施方式中,所述补偿装置在所述补偿元件与所述散射元件之间的第二光路上还设置有第二收集透镜组,所述第二光依次经过所述补偿元件、所述第二收集透镜组后会聚至所述散射元件,所述散射元件将第二光散射后反射至所述第二收集透镜组,而后经过所述第二收集透镜组准直后自所述补偿元件出射。
在一个实施方式中,所述波长转换装置包括依次层叠设置的荧光层、反射层及基板,所述荧光层的厚度由中心向边缘递减。
在一个实施方式中,所述荧光层包括相对设置的一平面及一弧面,所述平面或所述弧面为所述荧光层与所述反射层的接触面。
在一个实施方式中,所述光源系统还包括分光合光装置,所述分光合光装置用于将发光模块发出的光分为沿第一光路出射的第一光及沿第二光路出射的第二光,并引导所述第一光入射至所述波长转换装置,引导所述第二光入射至所述补偿装置,所述分光合光装置还用于将所述受激光与所述补偿装置出射的第二光进行合光后出射所述第三光。
在一个实施方式中,所述光源系统还包括第一收集透镜组,所述第一收集透镜组设置于第一光路上邻近所述波长转换装置的位置,用于调整所述波长转换装置出射受激光的光斑直径,使得所述受激光与所述补偿装置出射的第二光合光时光斑完全重合。
本发明还要求提供了一种照明设备,包括如上任意一项所述的光源系统。
本发明提供的光源系统及照明设备,包括用于调整所述第二光发光强度分布的补偿装置,通过改变第二光的发光强度分布,使得所述补偿装置最后出射的第二光与所述受激光的发光强度分布大致相同,从而使得受激光与第二光进行合光后得到的第三光中的第一光与第二光的发光强度分布大致相同,使得第三光形成的光束颜色分布均匀。
附图说明
图1为本发明一较佳实施例提供的光源系统结构示意图。
图2为如图1所示的波长转换装置的第二实施方式的结构示意图。
图3为如图1所示的波长转换装置的第三实施方式的结构示意图。
图4为如图1所示的波长转换装置的第四实施方式的结构示意图。
图5为如图1所示的分光合光装置的结构示意图。
图6为本发明一变形实施例提供的光源系统结构示意图。
主要元件符号说明
光源系统 100,600
发光模块 110,610
分光合光装置 120,620
第一收集透镜组 130,630
波长转换装置 140、240、340、440,640
荧光层 241、341、441
反射层 243、343、443
焊接层 244
基板 245
补偿装置 150,650
补偿元件 151,651
第二收集透镜组 152,652
散射元件 153,653
中继透镜 160
第一光路 L1
第二光路 L2
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图1,为本发明一较佳实施例提供的光源系统100结构示意图。光源系统100能够应用于照明设备,特别是舞台灯或探照灯等装置。光源系统100包括发光模块110、分光合光装置120、第一收集透镜组130、波长转换装置140、补偿装置150及中继透镜160。其中,发光模块110用于出射激发光;分光合光装置120用于将所述激发光分为沿第一光路L1出射的第一光,及沿第二光路L2出射的第二光;波长转换装置140用于接收所述第一光,并对所述第一光进行波长转换,以出射与所述第一光颜色不同的受激光;第一收集透镜组130设置于分光合光装置120及波长转换装置140之间的第一光路L1上,至少用于对自分光合光装置120出射至波长转换装置140的光束进行会聚,第一光自分光合光装置120出射后,依次经过第一收集透镜组130会聚至波长转换装置140,波长转换装置140产生并反射所述受激 光,朗伯光形式的受激光经过第一收集透镜组130准直后入射至分光合光装置120;补偿装置150用于引导所述第二光,并调节所述第二光的发光强度分布,补偿装置150出射的第二光与所述受激光的发光强度分布大致相同;分光合光装置120还用于将所述受激光与补偿装置150出射的第二光进行合光后产生该光源系统100出射的第三光。第三光中第一光与第二光的发光强度分布比例大致相同,从而使得第三光为一束颜色均匀的光。
发光强度简称光强,为沿光路方向的单位立体角内的光通量,可以用照度计等设备进行测量。本发明所述的“发光强度分布大致相同”是指光束在光束立体角内发光强度大小分布大致相同,或者可以等效为在光束横截面上的发光强度的面分布大致相同,也可以等效为在一指定光束横截面上的照度分布大致相同。两光束的发光强度分布大致相同并不要求两光束的发光强度相等,只要两光束在相对应的位置的发光强度呈等比关系即可。
例如,有光束一和光束二,光束一包括任选的区域A和区域B,光束二包括区域A’和区域B’,光束二的区域A’(B’)对应光束一的区域A(B)。若区域A的发光强度与区域B的发光强度比值为a:b,而区域A’的发光强度与区域B’的发光强度比值也为a:b,则认为光束一与光束二的发光强度分布相同。其中,“光束二的区域A’(B’)对应光束一的区域A(B)”是指光束一与光束二合光后,光束二的区域A’(B’)恰好与光束一的区域A(B)重合。
本发明所述的“大致相同”是指在误差范围内相同。优选地,设补偿装置最后出射的第二光与受激光在合光位置及合光位置之后的光路上的总发光强度的比值为x,则补偿装置最后出射的第二光在光束截面任意位置的发光强度与所述受激光在对应位置的发光强度的比值在0.8x~1.2x的范围内。在本发明的一个优选的实施方式中,补偿装置最后出射的第二光在光束截面任意位置的发光强度与所述受激光在对应位置的发光强度的比值在0.9x~1.1x的范围内。在本发明的一个优选的实施方式中,补偿装置最后出射的第二光在光束截面任意位置 的发光强度与所述受激光在对应位置的发光强度的比值在0.95x~1.05x的范围内,在该范围内,光源系统出射的第三光在人眼可察觉范围内表现为均一颜色的光。可以理解,在最理想的情况下,补偿装置最后出射的第二光在光束截面任意位置的发光强度与所述受激光在对应位置的发光强度的比值都是x,使得第三光的颜色绝对均匀单一,但实际的误差精度难以做到这一点,只能趋近于使得比值接近x。
在本实施例中,发光模块110可以为蓝光光源,发出蓝色激光。可以理解的是,发光模块110不限于蓝色光源,在本发明的其他实施方式中,发光模块110也可以是紫外光源、紫光光源、红光光源或绿光光源等。本实施例中,发光模块110中的发光体为蓝色激光器(如蓝光激光二极管),用于发出蓝色激光作为激发光。可以理解,发光体可以包括一个、两个或多个激光器阵列,由于舞台灯要求出射光功率高,实际使用的激光器阵列的情况较多,具体其激光器的数量可以依据实际需要选择。
所述激发光为激光,发光强度呈高斯分布,光斑中心附近的发光强度较大,亮度较亮,光斑边缘区域的发光强度较小,亮度较暗。可以理解,所述激发光也可以为高亮度LED发出的光,但仍需在光分布上满足近似高斯分布的特性。
在本实施例中,发光模块110为一整个集成的光源模组,通过分光合光装置120分成第一光和第二光。具体地,发光模块110发出的激发光沿同相同光路入射至分光合光装置120,被分为两束光,该分光过程可以为依照偏振态分光(要求发光模块110发出至少两种偏振态的光),也可以是依照波长分光(要求发光模块110发出至少两种波长的光),还可以是依照介质界面对激发光的折射反射特性分光。
请结合图1进一步参阅图5,图5为如图1所示的分光合光装置120的结构示意图。分光合光装置120引导发光模块110出射的激发光,并将所述激发光分为沿第一光路L1传输的第一光,及沿第二光路L2传输的第二光。分光合光装置120包括包括第一区域121及第 二区域122。本实施例中,第一区域121位于分光合光装置120的中心区域,用于透射一部分激发光以得到沿第一光路L1传输的第一光,还用于反射所述受激光;第二区域122环设于第一区域121的外缘,用于反射另一部分激发光以得到沿第二光路L2传输的第二光,还用于反射所述受激光。
在一种实施方式中,分光合光装置120上的第一区域121为所述激发光照射的区域的一部分。第一区域121设置有透蓝反黄二向色膜,用于透射蓝色激发光,反射受激光(比如红色、绿色或黄色);第二区域设置有反蓝反黄二向色膜,用于反射蓝色激发光,反射受激光(比如红色、绿色或黄色)。
在一种实施方式中,分光合光装置120的第一区域121为所述激发光照射的区域,第一区域121设置有透明介质片。所述介质片将入射的一部分激发光进行折射,折射后的激发光从所述介质片出射后形成沿第一光路L1传输的第一光,并将另一部分激发光反射以得到沿第二光路L2传输的第二光。所述介质片可以是透明玻璃片。第二区域122设置反射膜或透蓝反黄二向色膜,用于反射受激光。
在一种实施方式中,所述激发光包括第一偏振态的激发光及第二偏振态的激发光。对应地,发光模块110中设置有两组发光体,其中一组发光体出射第一偏振态激发光,另外一组发光体出射第二偏振态激发光。
分光合光装置120的第一区域121为所述激发光照射的区域。第一区域121设置有偏振片,利用所述激发光的偏振态不同来进行分光。所述偏振片透射第一偏振态的激发光以得到第一光,并反射第二偏振态的激发光以得到第二光。
在其他实施方式中,分光合光装置120为波长分光偏振片,从而不需要在分光合光装置120上分区域处理。所述波长分光偏振片同时具有波长分光及偏振态分光的特征。具体地,所述波长分光偏振片透射第一偏振态的蓝色激发光,反射黄色受激光及第二偏振态的蓝色激发光。
可以理解,在本发明的其他实施方式中,发光模块也可以为两个相对独立的发光单元的组合,其中一个发光单元用于出射第一光,另一个发光单元用于出射第二光。在该实施方式中,分光合光装置的分光功能可以不必要,仅用于补偿装置出射的第二光与受激光合光,甚至在另一个变形实施方式中,分光合光装置是非必需的,光源系统省略了分光合光装置。具体地,发光模块包括至少两个发光单元,其中第一发光单元发出的第一光沿第一光路入射至波长转换装置,第二发光单元发出的第二光沿第二光路入射至补偿装置,而后波长转换装置出射的受激光与补偿装置出射的第二光合光得到第三光。
波长转换装置140设置有波长转换材料,用于对第一光进行波长转换。在本实施例中,波长转换装置140为固定的反射式黄色荧光粉片,所述黄色荧光粉片上均匀分布有波长转换材料黄色荧光粉。蓝色第一光照射至荧光粉片上激发黄色荧光粉产生朗伯光形式的黄色荧光,或称为黄色受激光。
在一个实施方式中,波长转换装置140为在驱动单元的驱动下周期性转动的荧光色轮,所述色轮以所述驱动单元为轴心高速旋转,从而避免热量在波长转换材料的同一位置积累。该荧光色轮可以为单色的荧光色轮。
在一个实施方式中,所述色轮上至少包括第一区段及第二区段。所述第一区段设置有红色荧光粉或黄色荧光粉,所述第二区段设置有绿色荧光粉。可以理解的是,在其他实施方式中,荧光色轮可以设置有两个以上的分段区域,以产生多于两种颜色的受激光;或者荧光色轮可以设置有其他颜色的荧光粉以产生其他颜色的受激光。
随着入射至波长转换装置的光束发光强度的上升,波长转换材料出射的受激光发光强度逐渐上升,同时波长转换材料产生的热量逐渐增加;但当入射光束达到一定发光强度后,波长转换材料所产生的热量难以有效发散,导致温度上升至影响波长转换材料的活性和稳定性,使得波长转换材料的光转换效率降低。
在本发明的应用场景下,由于入射到波长转换装置140的第一光 中心附近发光强度较大而边缘位置发光强度较小,使得波长转换装置140中心的光转换效率相对较低,而边缘的光转换效率相对较高,导致波长转换装置140出射的受激光与入射至波长转换装置140的第一光的发光强度分布比例不同,具体表现为:相对于第一光的发光强度分布,受激光中心附近亮度偏低,而边缘区域亮度偏高。若将该受激光直接与未经补偿装置调节光分布的第二光合光,将得到一个中心色温高而边缘色温低的光斑/光束。
本发明为得到颜色均匀的光斑/光束,在第二光的光路上设置补偿装置150,对第二光的发光强度分布进行调节。
如图1所示,补偿装置150包括补偿元件151、第二收集透镜组152及散射元件153。
补偿元件151用于调整入射第二光的发光强度分布。补偿元件151的出射光束与入射光束相比,整体发光强度降低(由于光经过光学元件必然产生损失),其中,补偿元件151的出射光束中,距离光束中心位置越近,其发光强度减弱的越多。
具体地,在一个实施方式中,补偿元件151包括角度扩散片,用于将的第二光中心部分的光束扩散到边缘,该实施方式中,光束中心的发光强度减小,而光束边缘的发光强度增加,同样属于“距离光束中心位置越近,其发光强度减弱的越多”的情形,只不过边缘位置发光强度减弱的数值为负数。在一种实施方式中,补偿元件151包括镀有渐变金属吸收膜的滤光片,该滤光片由中心向边缘,对光束的吸收率逐渐降低。在一种实施方式中,补偿元件151包括镀有渐变透过率的介质膜滤光片,该滤光片由中心向边缘,对光束的透过率逐渐增加。
散射元件153用于对第二光进行散射消相干,以减小出现激光散斑现象的可能性,提高第二光的出光均匀度。散射元件153对第二光进行散射而不改变其发光强度分布。本实施例中,散射元件153为反射式散射粉片。
第二收集透镜组152设置于补偿元件151及散射元件153之间的第二光路L2上。补偿元件151出射的第二光依次经过第二收集透镜 组152会聚、散射元件153散射后反射、第二收集透镜组152准直后再次入射至补偿元件151。
在补偿装置150中补偿元件151两次对第二光的光功率分布进行调整,从而其中心附近的减弱的光功率更多,使得补偿装置150出射的第二光与所述受激光发光强度分布大致相同。
另外,第一收集透镜组130与第二收集透镜组152分别调整所述受激光与补偿装置150出射的第二光的光束直径,使得所述受激光与所述第二光照射至分光合光装置120上的光斑完全重合。从而光斑大小相同、发光强度分布大致相同的受激光与第二光在分光合光装置120上进行合光后得到从光源装置出射的第三光,所述第三光中不同颜色光(蓝色第二光与黄色受激光)的发光强度分布比例大致相同,所述第三光的光斑颜色均匀。在一个实施方式中,第三光形成的光斑上的任意位置点的色坐标都位于同一个七阶麦克亚当椭圆中。在另一个实施方式中,第三光形成的光斑上的任意位置点的色坐标都位于同一个四阶麦克亚当椭圆中,该技术方案充分满足了人们在照明中对光颜色的要求。
在本实施例中,虽然补偿装置出射的第二光降低了中心位置的发光强度,波长转换装置中心的光转换效率也相对于边缘较低,但第三光仍然是一个中心亮、边缘暗的近似高斯分布的光束。
所述第三光经过中继透镜160后从所述光源系统100的出光口出射。本实施例中,中继透镜160为凸透镜。在其他实施方式中,中继透镜160可以为一系列的透镜组。当然,中继透镜并非必需的,光源系统也可以省略中继透镜。
请参见图6,图6为本发明一变形实施例提供的光源系统结构示意图。光源系统600包括发光模块610、分光合光装置620、第一收集透镜组630、波长转换装置640及补偿装置650。其中,发光模块610包括独立的第一发光单元611和第二发光单元612,第一发光单元611沿第一光路L1出射的第一光,第二发光单元612沿第二光路L2出射的第二光。波长转换装置640用于接收所述第一光,并对所述第一光 进行波长转换,以出射与所述第一光颜色不同的受激光;第一收集透镜组630设置于分光合光装置620及波长转换装置640之间的第一光路L1上,至少用于对自分光合光装置620出射至波长转换装置640的光束进行会聚;补偿装置650用于引导所述第二光,并调节所述第二光的发光强度分布,补偿装置650出射的第二光与受激光的发光强度分布大致相同;分光合光装置620用于将所述受激光与补偿装置650出射的第二光进行合光后产生该光源系统600出射的第三光。第三光中第一光与第二光的发光强度分布比例大致相同,从而使得第三光为一束颜色均匀的光。
本实施例与图1所示的实施例主要有以下不同。
本实施例的发光模块包括两个相对独立的发光单元,各自独立的出射第一光和第二光。因此,可以更加便捷的设置第一光与第二光的属性,以使其在偏振态或波长等方面具有差异性。
本实施例的补偿装置650包括散射元件653、第二收集透镜组652和补偿元件651,第二发光单元612发出的第二光经散射元件653散射消相干后透射,经第二收集透镜组652准直后到达补偿元件651。本实施例采用透射而非反射的方式,使得对光分布的控制更加容易,避免了补偿元件两次作用的技术复杂度,但牺牲了图1实施例的结构紧凑性。如同图1实施例中的第二收集透镜组152非必需,本实施例中的第二收集透镜组652也是非必需的。在一个实施方式中,补偿元件也可以设置在散射元件之前的光路上。
请结合图1进一步参阅图2,为如图1所示的波长转换装置240的第二实施方式的结构示意图。波长转换装置240包括依次层叠设置的荧光层241、反射层243、焊接层244及基板245。
反射层243材料包括金属,可以是银、金或铂金等。焊接层244用于将包括金属的反射层243固定于基板245上。焊接层244包括焊锡、筒或银等焊接材料。基板245包括铜或铝等高导热金属材料。在其他实施方式中,反射层也可以是包含白色散射颗粒的漫反射层,如氧化铝反射层、氮化铝反射层等,焊接层也可以是非必需的,基板也 可以是蓝宝石、氮化铝陶瓷等高导热基板。
本实施方式中,荧光层241设置有荧光粉,用于对入射第一光进行波长转换并产生所述受激光。荧光层241厚度由中心向边缘递减。荧光层241包括相对设置的一平面及一弧面,所述平面为荧光层241与反射层243的接触面。
所述第一光照射在荧光层241上时,所述第一光发光强度呈高斯分布,其发光强度高的中心附近光束照射至荧光层241的厚度较大的中心区域,其发光强度低的边缘光束照射至荧光层241的厚度较小的邻近边缘区域。由于入射光发光强度高的中心区域的光致发光效应强,使得其产热多,在热量的影响下,中心区域的光转换效率降低;而入射光发光强度低的边缘区域的光致发光效应弱,产热少,边缘区域的光转换效率相对较高。本实施例通过设置使得荧光层中心厚、边缘薄,减少了边缘区域荧光层产生的受激光总量,即使边缘区域的光转换效率较高,也不会导致边缘区域的受激光过多。该技术方案可以在源头上减弱波长转换装置发出的光颜色不均匀的问题。
在本发明中的一个额外技术方案中,可以不依赖于图1、图6的补偿装置而获得颜色均匀的出射光。该技术方案通过对图2所示的波长转换装置进行改良,调节波长转换装置的荧光层在不同区域的厚度,使得波长转换装置直接出射受激光与未被吸收的激发光,从而获得颜色均匀的照明光。
具体地,该技术方案中,包括发光模块,用于出射激发光;波长转换装置,接收激发光,并将部分激发光转换为不同于激发光颜色的受激光,该受激光与激发光中未被波长转换装置吸收的部分一同作为波长转换装置的出射光出射,形成光源系统的出射光。
在该技术方案中,波长转换装置包括依次叠置的荧光层、反射层和基板,其中,荧光层的厚度呈现中心厚边缘薄的特征,对应于入射的激发光中心发光强度高、边缘发光强度低。荧光层中心由于光致发光效应强、温度高而发光效率低,出射的受激光减少;而荧光层边缘由于光致发光效应弱、温度低而发光效率高,但由于其厚度薄,使得 剩余的激发光较多。此消彼长的作用下,使得荧光层中心及边缘位置的激发光与受激光的比例能够保持大致相同(例如在平均比例值上下5%浮动),从而使得合光出射光的颜色能够保持均匀。
请参阅图3,为如图1所示的波长转换装置340的第三实施方式的结构示意图。本实施方式中提供的波长转换装置340与波长转换装置240相比,区别在于,波长转换装置340中的反射层343可以是白色散射颗粒与玻璃粉的烧结层,并省略了焊接层244,减小了波长转换装置340的体积。其他结构与波长转换装置240相同,不做赘述。
请参阅图4,为如图1所示的波长转换装置140的第四实施方式的结构示意图。本实施方式中提供的波长转换装置440与波长转换装置340相比,区别在于,荧光层441的弧面为荧光层与反射层443的接触面,进一步减小了波长转换装置440的体积。其他结构相同,不做赘述。图4的波长转换装置的技术方案同样可以独立地运用到上述段落中的“额外技术方案”中。该技术方案除了利用荧光层的厚度调节受激光的发光强度分布,还利用了反射层的厚度对其进行调节。具体地,由于反射层的导热性能一般不佳,导致反射层越厚的位置热量越难以发散,进而导致该区域的荧光层发光效率下降。因此,通过设置使反射层中心薄、边缘厚,增加了反射层边缘区域的厚度,降低了边缘位置的荧光层的发光效率,使得荧光层中心与边缘区域的发光效率更加的接近,从而使得出射的受激光的发光强度在边缘位置有所降低,最终实现合光出射光颜色均匀的效果。
本发明的光源系统主要应用于照明设备,如舞台灯、探照灯等,与投影显示设备内的光源相比,本发明的光源系统对输出光束的要求不同。本发明的光源系统允许出射亮度分布不均匀的光束/光斑,而且通常地,在相同的功率下(可认为是光源系统的电功率),我们希望光源系统的出射光能够照射地尽量远,因此光束的功率密度分布大致呈高斯分布,即光束中心的发光强度大,而光束边缘的发光强度相对较小,这样可以使能量尽可能的集中,从而照射到尽可能远的位置。与此不同的是,投影显示设备内的照明光源通常希望光束的发光强度分 布均匀,从而能够将均匀的光斑通过光调制器调制成图像,对于图像显示而言,一个发光强度非均匀分布的光束在被调制成图像后将会是明暗失真的。因此,本发明的光源系统并不能与应用到投影显示系统中的光源模块相类比或相互替换,二者具有显著的应用环境差异性。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种光源系统,其特征在于,包括
    发光模块,用于出射沿第一光路的第一光及沿第二光路的第二光;
    波长转换装置,用于接收所述第一光,以出射与所述第一光颜色不同的受激光;
    补偿装置,用于引导所述第二光,并调节所述第二光的发光强度分布,所述补偿装置出射的第二光与所述受激光的发光强度分布大致相同;
    所述受激光与所述补偿装置出射的第二光合光后产生所述光源系统出射的第三光。
  2. 如权利要求1所述的光源系统,其特征在于,设所述补偿装置最后出射的第二光与所述受激光在合光位置及合光位置之后的光路上的总发光强度的比值为x,则所述补偿装置出射的第二光在光束截面任意位置的发光强度与所述受激光在对应位置的发光强度的比值在0.8x~1.2x的范围内。
  3. 如权利要求1或2所述的光源系统,其特征在于,所述补偿装置包括用于调整光束发光强度分布的补偿元件,所述补偿元件的出射光束与入射光束相比,整体发光强度降低,其中,所述补偿元件的出射光束中,距离的光束中心位置越近,其发光强度减小的越多。
  4. 如权利要求3所述的光源系统,其特征在于,所述补偿元件包括角度扩散片,用于将入射光束中心部分的光束扩散到边缘;
    或者,所述补偿元件包括镀有渐变金属吸收膜的滤光片,所述滤光片由中心向边缘,对光束的吸收率逐渐降低;
    或者,所述补偿元件包括镀有渐变透过率的介质膜滤光片,所述滤光片由中心向边缘,对光束的透过率逐渐增加。
  5. 如权利要求3所述的光源系统,其特征在于,所述补偿装置还包括用于对所述第二光消相干的散射元件。
  6. 如权利要求5所述的光源系统,其特征在于,所述补偿装置在所述补偿元件与所述散射元件之间的第二光路上还设置有第二收集透镜组,所述第二光依次经过所述补偿元件、所述第二收集透镜组后会聚至所述散射元件,所述散射元件将第二光散射后反射至所述第二收集透镜组,而后经过所述第二收集透镜组准直后自所述补偿元件出射。
  7. 如权利要求1、2、4、5或6中任一项所述的光源系统,其特征在于,所述波长转换装置包括依次层叠设置的荧光层、反射层及基板,所述荧光层的厚度由中心向边缘递减。
  8. 如权利要求7所述的光源系统,其特征在于,所述荧光层包括相对设置的一平面及一弧面,所述平面或所述弧面为所述荧光层与所述反射层的接触面。
  9. 如权利要求1所述的光源系统,其特征在于,所述光源系统还包括分光合光装置,所述分光合光装置用于将所述发光模块发出的光分为沿第一光路出射的第一光及沿第二光路出射的第二光,并引导所述第一光入射至所述波长转换装置,引导所述第二光入射至所述补偿装置,所述分光合光装置还用于将所述受激光与所述补偿装置出射的第二光进行合光后出射所述第三光。
  10. 如权利要求1所述的光源系统,其特征在于,所述光源系统还包括第一收集透镜组,所述第一收集透镜组设置于第一光路上邻近所述波长转换装置的位置,用于调整所述波长转换装置出射受激光的光斑直径,使得所述受激光与所述补偿装置出射的第二光合光时光斑完全重合。
  11. 一种照明设备,其特征在于,包括如权利要求1-10任意一项所述的光源系统。
PCT/CN2018/071417 2017-10-18 2018-01-04 光源系统及照明设备 WO2019075935A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/756,977 US11248773B2 (en) 2017-10-18 2018-01-04 Light source system and lighting apparatus
US17/569,710 US11592159B2 (en) 2017-10-18 2022-01-06 Light source system and lighting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710972375.8A CN109681790A (zh) 2017-10-18 2017-10-18 光源系统及照明设备
CN201710972375.8 2017-10-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/756,977 A-371-Of-International US11248773B2 (en) 2017-10-18 2018-01-04 Light source system and lighting apparatus
US17/569,710 Continuation US11592159B2 (en) 2017-10-18 2022-01-06 Light source system and lighting apparatus

Publications (1)

Publication Number Publication Date
WO2019075935A1 true WO2019075935A1 (zh) 2019-04-25

Family

ID=66173519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071417 WO2019075935A1 (zh) 2017-10-18 2018-01-04 光源系统及照明设备

Country Status (3)

Country Link
US (2) US11248773B2 (zh)
CN (3) CN118167945A (zh)
WO (1) WO2019075935A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019121507B4 (de) * 2019-08-09 2021-04-22 Schott Ag Beleuchtungseinrichtung mit Lichtkonversionselement
CN112443818B (zh) * 2019-08-30 2023-04-28 深圳市中光工业技术研究院 光源系统及照明装置
CN111766712B (zh) * 2020-07-23 2022-02-01 深圳市锐思华创技术有限公司 一种高亮度宽色域低光斑的激光扫描投影模组
CN113623611B (zh) * 2021-07-19 2023-06-02 山西汉威激光科技股份有限公司 汽车尾部投影智能大灯光源光路结构
CN114114699B (zh) * 2021-11-05 2024-04-12 深圳市大族数控科技股份有限公司 光束整形装置、系统和方法
CN113966024B (zh) * 2021-12-21 2022-03-18 广州光联电子科技有限公司 一种激光调节方法、装置和激光系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201307187Y (zh) * 2008-11-28 2009-09-09 安徽宏实光机电高科有限公司 基于非均匀滤光技术的色选机ccd光照弧线校正系统
CN101771108A (zh) * 2008-12-31 2010-07-07 佰鸿工业股份有限公司 半导体发光元件及其制法
JP2010225791A (ja) * 2009-03-23 2010-10-07 Stanley Electric Co Ltd 半導体発光装置
CN203258507U (zh) * 2013-03-18 2013-10-30 深圳市绎立锐光科技开发有限公司 一种发光装置及舞台灯系统
CN103486451A (zh) * 2012-06-11 2014-01-01 欧司朗股份有限公司 发光装置及包括该发光装置的照明装置
CN105122133A (zh) * 2013-06-04 2015-12-02 Nec显示器解决方案株式会社 照明光学系统和投影仪
CN106385739A (zh) * 2016-10-09 2017-02-08 超视界激光科技(苏州)有限公司 激光光源模组和光源系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064912A1 (fr) * 1998-06-05 1999-12-16 Seiko Epson Corporation Source lumineuse et dispositif d'affichage
US8098375B2 (en) * 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
JP2011221504A (ja) * 2010-03-26 2011-11-04 Panasonic Corp 照明装置及びそれを用いた投写型画像表示装置
CN103913936B (zh) * 2012-12-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
EP2998641B1 (en) * 2013-05-17 2023-07-05 YLX Incorporated Light-emitting device and stage lamp system
TWI503578B (zh) * 2014-06-13 2015-10-11 Coretronic Corp 光源模組與投影裝置
CN104460008B (zh) * 2014-11-29 2017-06-06 杨毅 发光装置
JP6489831B2 (ja) * 2015-01-07 2019-03-27 スタンレー電気株式会社 波長変換体及びその製造方法並びに当該波長変換体を用いた照明装置
CN205644002U (zh) * 2016-04-06 2016-10-12 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN106195929A (zh) * 2016-09-03 2016-12-07 超视界激光科技(苏州)有限公司 激光光源模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201307187Y (zh) * 2008-11-28 2009-09-09 安徽宏实光机电高科有限公司 基于非均匀滤光技术的色选机ccd光照弧线校正系统
CN101771108A (zh) * 2008-12-31 2010-07-07 佰鸿工业股份有限公司 半导体发光元件及其制法
JP2010225791A (ja) * 2009-03-23 2010-10-07 Stanley Electric Co Ltd 半導体発光装置
CN103486451A (zh) * 2012-06-11 2014-01-01 欧司朗股份有限公司 发光装置及包括该发光装置的照明装置
CN203258507U (zh) * 2013-03-18 2013-10-30 深圳市绎立锐光科技开发有限公司 一种发光装置及舞台灯系统
CN105122133A (zh) * 2013-06-04 2015-12-02 Nec显示器解决方案株式会社 照明光学系统和投影仪
CN106385739A (zh) * 2016-10-09 2017-02-08 超视界激光科技(苏州)有限公司 激光光源模组和光源系统

Also Published As

Publication number Publication date
CN118167945A (zh) 2024-06-11
US11248773B2 (en) 2022-02-15
US20210131642A1 (en) 2021-05-06
CN109681790A (zh) 2019-04-26
US20220186910A1 (en) 2022-06-16
US11592159B2 (en) 2023-02-28
CN118242571A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
US11592159B2 (en) Light source system and lighting apparatus
US20170030541A1 (en) Light source device, lighting device, vehicular headlight, and vehicle
TWI493275B (zh) 一種發光裝置及投影系統
EP2940524B1 (en) Light-emitting device and related projection system
US20130329448A1 (en) Lighting apparatus with phosphor element
US10527237B2 (en) Illumination apparatus
TWM552112U (zh) 光源裝置及投影系統
CN107272312A (zh) 发光装置及相关投影系统与照明系统
WO2020078188A1 (zh) 光源系统及显示设备
CN110658669A (zh) 光源装置
CN110389486B (zh) 光源装置及显示设备
CN107193177B (zh) 一种光源系统及其投影装置
CN110471245A (zh) 光源系统、投影设备及照明设备
CN112034651A (zh) 一种多基色激光列阵侧入式液晶显示器匀光面光源
TWI720144B (zh) 光源裝置
CN111552144A (zh) 激光光源及照明设备
CN106950785B (zh) 一种光源装置及照明装置
WO2021184842A1 (zh) 照明装置
CN207636891U (zh) 一种基于上转换发光材料的白光源
CN210165215U (zh) 一种激光照明光源
WO2021027212A1 (zh) 一种激光照明光源
TWI680307B (zh) 白光光源系統
CN111240026A (zh) 一种激光照明装置
CN214222794U (zh) 发光装置和一种灯具
CN111022942B (zh) 一种激光照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869009

Country of ref document: EP

Kind code of ref document: A1