WO2019095514A1 - 用于热冲压成形钢的镀层及其制造方法 - Google Patents

用于热冲压成形钢的镀层及其制造方法 Download PDF

Info

Publication number
WO2019095514A1
WO2019095514A1 PCT/CN2017/119191 CN2017119191W WO2019095514A1 WO 2019095514 A1 WO2019095514 A1 WO 2019095514A1 CN 2017119191 W CN2017119191 W CN 2017119191W WO 2019095514 A1 WO2019095514 A1 WO 2019095514A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
steel
coating
temperature
plating layer
Prior art date
Application number
PCT/CN2017/119191
Other languages
English (en)
French (fr)
Inventor
李建新
吝章国
熊自柳
孙力
刘宏强
周国平
齐长发
李建英
王学慧
罗扬
董伊康
王健
杨丽芳
Original Assignee
河钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河钢股份有限公司 filed Critical 河钢股份有限公司
Priority to EP17932567.5A priority Critical patent/EP3712293A4/en
Publication of WO2019095514A1 publication Critical patent/WO2019095514A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Definitions

  • the present disclosure relates to the field of surface treatment of metallic materials, and in particular to a coating for hot stamped steel and a method of manufacturing the same.
  • the coating for hot stamped steel mainly includes Al-Si plating, GI plating, GA plating, X-TEC plating, and Zn-Ni plating.
  • Al-Si coatings, GI coatings, and GA coatings have been commercially available, but commercial applications of X-TEC coatings and Zn-Ni coatings are rarely seen.
  • ArcelorMittal has developed steel plates with Al-Si coatings, which have good resistance to high temperature oxidation.
  • the Al-Si plating layer is sensitive to temperature and deformation rate, and is easily cracked when subjected to hot stamping, so that the corrosion resistance of the Al-Si plating layer is lowered when the substrate is exposed to the outside.
  • the Al-Si plating layer is easily adhered to the ceramic roll after being heated, so the ceramic roll needs to be cleaned frequently.
  • the Al-Si coating does not have sacrificial protection properties, and cracks are prone to corrosion. Therefore, in recent years, researchers have developed GI/GA hot stamping coating technology.
  • GI/GA alloying coatings which have good weldability and coating properties, and have good sacrificial properties.
  • the protective properties can effectively prevent the oxidative peeling and decarburization of the steel sheet during heating.
  • the GI/GA alloyed coating causes cracks to propagate into the substrate during hot stamping, thereby affecting the use of the steel sheet.
  • the heating temperature should not be lower than 905 ° C, and the narrow austenitizing window also limits the application of the steel sheet.
  • the plating layer is an electroplated Zn-10Ni layer and has excellent friction properties, but is expensive and has low productivity.
  • the present invention provides a coating for hot stamped steel, and the hot stamped steel having the coating is suitable for direct hot stamping and indirect hot stamping, thereby producing parts having a complicated shape.
  • the hot stamped steel products and hot stamped parts having the coating have good welding properties, and when they are heated to 900 ° C to 950 ° C, the oxidation weight gain rate of the coating is less than 0.0018 g / (cm 2 ⁇ h).
  • the coating does not fall off, cracks or cracks slightly, does not stick to the mold, or slightly sticks the mold. Therefore, the product having the plating after hot stamping has a good surface quality and good coating properties.
  • a plating layer for hot stamped steel may include: 5.0 wt% to 20.0 wt%, Ni 0.1 wt% to 10.0 wt%, and Ce 0 to 2.0 wt%, based on the total weight thereof. La 0 ⁇ 2.0wt%, Fe does not exceed 1.0wt%, the balance is Al and unavoidable impurities.
  • the plating layer may include: Si 6.0 wt% to 10.0 wt%, Ni 0.1 wt% to 0.3 wt%, Ce 0.5 wt% to 1.5 wt%, La 0 to 0.3, based on the total weight of the plating layer. Wt%, Fe does not exceed 0.3% by weight, and the balance is Al and unavoidable impurities.
  • a plating layer for hot stamped steel may include: 1.0% by weight to 15.0% by weight of Cu, 0.5% by weight to 10.0% by weight of Cu, and 0.1% by weight of Cr based on the total weight of the plating layer.
  • 1.0 wt%, Fe does not exceed 1.0 wt%, and the balance is Al and unavoidable impurities.
  • the plating layer may include: Si 7.0 wt% to 13.0 wt%, Cu 0.5 wt% to 1.5 wt%, Cr 0.1 wt% to 0.3 wt%, and Fe not more than 0.3 based on the total weight of the plating layer. Wt%, the balance is Al and unavoidable impurities.
  • a method of manufacturing a plating layer for hot stamped steel may include the following steps: hot dip plating: immersing a steel to be treated at a temperature of 600 ° C to 840 ° C at a temperature of 640 ° C - 800 ° C plating solution, and lasts 6s ⁇ 30s, wherein the composition of the plating solution can be: Si 5.0wt% ⁇ 20.0wt%, Ni 0.1wt% ⁇ 10.0wt%, Ce 0 ⁇ 2.0wt%, La 0 ⁇ 2.0 Wt%, Fe does not exceed 1.0wt%, the balance is Al and unavoidable impurities; post-plating cooling: the plated steel is cooled to 150 °C with nitrogen or air at a cooling rate of 6 ° C / s ⁇ 30 ° C / s Coating heat treatment: The cooled steel is heated to 800 ° C to 950 ° C under nitrogen protection, and kept for 2 min to 10 min, so
  • the steel to be treated at 700 ° C to 750 ° C may be immersed in a plating solution having a temperature of 720 ° C to 790 ° C for 10 s to 20 s.
  • the plated steel may have a cooling rate of 10 ° C / s to 15 ° C / s.
  • the cooled steel may be heated to 890 ° C to 925 ° C and held for 5 min to 8 min.
  • the steel to be treated may be subjected to a continuous annealing step prior to hot dip coating.
  • the continuous annealing step may employ a nitrogen-hydrogen mixed gas having an oxygen content of ⁇ 100 ppm, a dew point of -50 ° C to 20 ° C, and a hydrogen volume content of 3% to 25%.
  • a method of manufacturing a plating layer for hot stamped steel may include the following steps: hot dip plating: immersing a steel to be treated at a temperature of 580 ° C to 750 ° C at a temperature of 580 ° C - 750 ° C plating solution, and lasts 6s ⁇ 30s, wherein the composition of the plating solution is: Si 1.0wt% ⁇ 15.0wt%, Cu 0.5wt% ⁇ 10.0wt%, Cr 0.1wt% ⁇ 1.0wt%, Fe does not exceed 1.0wt%, the balance is Al and unavoidable impurities, wherein, in the hot dip plating process, the air knife is sprayed with an inert gas, the temperature of the inert gas is 20 ° C ⁇ 150 ° C, the thickness of the plating layer is controlled between 10 ⁇ m ⁇ 25 ⁇ m; Post-plating cooling: cooling the plated steel to ⁇ 150 °C with air cooling
  • the steel to be treated having a temperature of 620 ° C to 700 ° C may be immersed in a plating solution having a temperature of 620 ° C to 720 ° C, wherein the temperature of the inert gas may be
  • the thickness of the plating layer may be from 15 ⁇ m to 20 ⁇ m at 60 ° C to 100 ° C.
  • the cooling rate may be from 8 ° C / s to 10 ° C / s or from 8 ° C / s to 13 ° C / s.
  • the heat treatment temperature may be 750 ° C to 930 ° C.
  • the cleaning step is performed before the hot dip plating step, and the steel to be treated may be cleaned to a single-sided surface residue of ⁇ 50 mg/m 2 and a surface reflectance of ⁇ 90%.
  • a plating layer for hot stamped steel may include: 5.0 wt% to 20.0 wt%, Ni 0.1 wt% to 10.0 wt%, Cu 0.1 wt%, based on the total weight of the plating layer. 10.0 wt%, Ce 0 to 2.0 wt%, La 0 to 2.0 wt%, Cr 0.1 wt% to 1.0 wt%, Fe not more than 1.0 wt%, and the balance being Al and unavoidable impurities.
  • a method of manufacturing a plating layer for hot stamped steel includes the following steps: hot dip plating: immersing steel to be treated at a temperature of 550 ° C to 800 ° C at a temperature of 570 ° C to 850 °C plating solution, and lasts for 6s ⁇ 30s, wherein the composition of the plating solution is: Si 5.0wt% ⁇ 20.0wt%, Ni 0.1wt% ⁇ 10.0wt%, Cu 0.1wt% ⁇ 10.0wt%, Ce 0 ⁇ 2.0 Wt%, La 0 to 2.0 wt%, Cr 0.1 wt% to 1.0 wt%, Fe not more than 1.0 wt%, balance of Al and unavoidable impurities; post-plating cooling: using nitrogen or air at 4 ° C / s ⁇ The plated steel was cooled to 150 ° C at a cooling rate of 25 ° C / s; heat treatment of the plating layer:
  • the steel to be treated having a temperature of 680 ° C to 780 ° C may be immersed in a plating solution having a temperature of 700 ° C to 800 ° C for 10 s to 20 s.
  • the cooling rate may be from 8 ° C / s to 15 ° C / s; in the heat treatment of the plating layer, the heat treatment temperature may be from 750 ° C to 930 ° C.
  • the steel to be treated may undergo a continuous annealing step prior to hot dip coating.
  • the continuous annealing step may employ a nitrogen-hydrogen mixed gas having an oxygen content of ⁇ 80 ppm, a dew point of -50 ° C to 10 ° C, and a hydrogen volume content of 3% to 25%.
  • a washing step may be performed before the hot dip plating step, and the steel to be treated is washed to a single-sided surface residue of ⁇ 50 mg/m 2 and a surface reflectance of ⁇ 90%.
  • thermoformed steel having an Al-Si-Ni plating layer before heat treatment, according to an exemplary embodiment of the present invention.
  • thermoformed steel having an Al-Si-Ni-Cu plating layer before heat treatment, according to an exemplary embodiment of the present invention.
  • FIG. 3 is a scanning electron microscope image of a hot formed steel having an Al-Si-Ni plating layer after hot stamping, according to an exemplary embodiment of the present invention.
  • FIG. 4 is a scanning electron microscope image of a hot formed steel having an Al-Si-Ni-Cu plating layer after hot stamping, according to an exemplary embodiment of the present invention.
  • Hot stamped steel is mainly used for high-strength automotive parts, such as front and rear bumper bars, door sills, A-pillars, B-pillars, C-pillars, frames, exhaust pipes, etc., and potential applications include aerospace thermal corrosion resistance. Materials, materials such as high temperature resistant buildings.
  • the coating used for hot stamped steel is usually Al-Si coated, but the Al-Si coating produced under the existing conditions has low melting point, easy to produce liquid metal brittleness, easy to stick, affect the life of the furnace, and is not suitable for indirect heat. Problems such as a press forming process, and for this reason, the present invention proposes a plating layer for hot stamped steel having excellent high temperature oxidation resistance and a method for producing the same.
  • a high melting point such as CuAl 3 , Al 2 Ni 3 , Al 3 Ni, and Al x Si y Fe z can be formed by adding an element such as Ni or Cu to an Al—Si plating layer for hot stamped steel.
  • the coating of the alloy phase improves the high temperature oxidation resistance of the coating.
  • the plating layer according to the present invention can have better resistance to high temperature oxidation than the plating layer using the Al-Si alloy alone, and can solve the effect of effectively increasing the melting point of the plating layer.
  • the enrichment on the surface of the plating layer can be improved, and the high temperature oxidation resistance of the plating layer can be improved.
  • the test results show that the content of Cu and/or Ni on the surface of the coating can be up to 3 times the average content of Cu and/or Ni of the coating.
  • Ni and Cu have a higher melting point and are higher than the hot stamping forming temperature of steel, and therefore do not melt during heating and thermoforming, thereby improving the high temperature oxidation resistance of the coating.
  • the plating layer according to the present invention can form dense Al 2 O 3 on the surface of the plating layer. It has been found that the oxygen content on the surface of the coating is close to 50%, the ratio of alloying elements to oxygen atoms is close to 2:3, and the thickness of the dense oxide layer can reach 0.4 microns. The dense oxide layer prevents further penetration of oxygen atoms into the coating and substrate, thus ensuring good high temperature oxidation resistance and corrosion resistance of the coating.
  • the coating is the best choice for coatings for hot stamped steel due to its high temperature oxidation resistance, high temperature corrosion resistance and room temperature corrosion resistance.
  • the alloy phase formed of Al, Si, Ni, Cu, Fe it is possible to control the alloy phase formed of Al, Si, Ni, Cu, Fe to be uniformly distributed in the plating layer by using a reasonable process means, and to form a skeleton structure having a high melting point and high temperature corrosion resistance.
  • the skeleton structure can support the plating.
  • the interior of the framework structure consisting of a high-melting alloy phase is filled with an Al-Si phase (dissolving a small amount of Ni, Cu), which ensures a high-temperature-resistant phase with high melting point and a relatively low melting point but high thermoformability.
  • the interaction between the tissues balances the thermoformability with the high temperature oxidation resistance, so that an optimal microstructure can be formed.
  • a structure having a lower melting point but higher thermoformability may contain 96 wt% of Al and dissolve 1.77 wt% of Si and 1.32 wt% of Ni, the melting point of which is equivalent to the melting point of pure aluminum, but not Containing a brittle phase, it can exhibit good thermoforming properties and ensure that the coating does not completely break during hot stamping.
  • the plating layer according to the present invention may further contain a rare earth element.
  • the rare earth element in the plating layer can effectively refine the grain size, refine the aluminum phase (ie, Al-Si phase), and solidify alloys such as Cu and Ni, thereby further improving the thermoformability of the plating layer.
  • the rare earth element can also increase the distribution density of the alloy phase having a high melting point, thereby further improving the high temperature oxidation resistance of the plating layer.
  • the plating layer according to the present invention may further contain a Cr element which mainly improves corrosion resistance and high temperature oxidation resistance of the plating layer. Further, the plating layer according to the present invention may further contain a Fe element.
  • the Fe element is mainly dissolved in the plating solution by reacting the steel plate or the steel coil with the plating solution, and the Fe element reacts with the Si and Al phases in the plating layer to form an Al, Si, Fe alloy phase, thereby increasing the melting point of the plating layer.
  • the thermoformed steel may include: carbon (C) 0.19 wt% to 0.30 wt%, silicon (Si) 0.1 wt% to 0.8 wt%, manganese (Mn) 0.9, based on the total weight of the hot formed steel. Wwt% to 2.0wt%, chromium (Cr) 0.3wt% to 1.0wt%, titanium (Ti) 0.01wt% to 0.05wt%, niobium (Nb) ⁇ 0.05wt%, boron (B) 0.0015wt% to 0.003wt %, the rest are iron (Fe) and unavoidable impurities.
  • the thermoformed steel may be a steel sheet, a steel coil or a steel strip or the like.
  • the plating layer for hot stamped steel may be an Al-Si-Ni plating layer
  • the composition of the plating layer may include: 5.0 wt% to 20.0 wt% of silicon (by weight) based on the total weight of the plating layer ( Si), 0.1% by weight to 10.0% by weight of nickel (Ni), 0 to 2.0% by weight of cerium (Ce), 0 to 2.0% by weight of lanthanum (La) and not more than 1.0% by weight of iron (Fe), The amount is aluminum (Al) and unavoidable impurities.
  • the content of Si may be 6.0 wt% to 10 wt%, 7.0 wt% to 13.0 wt%, 10.0 wt% to 20.0 wt%, 8.0 wt% to 20.0 wt% or 16.0 wt% to 20.0 wt%.
  • the content of Ni may be 0.1 wt% to 0.3 wt%, 0.1 wt% to 1.5 wt%, 1.5 wt% to 3.0 wt%, 2.0 wt% to 5.0 wt%, 5.0 wt% to 8.0 wt% or 6.0 wt. % ⁇ 9.0wt%.
  • the content of Ce may be 0 to 0.5 wt%, 0.5 wt% to 1.5 wt%, or 0.1 wt% to 0.7 wt%.
  • the content of La may be 0 to 0.3 wt%, 0.3 wt% to 1.0 wt%, 0.5 wt% to 1.0 wt%, or 1.0 wt% to 2.0 wt%.
  • the content of Fe may be not more than 0.3% by weight, 0.3% by weight to 1.0% by weight, not more than 0.5% by weight or 0.5% by weight to 0.8% by weight.
  • the plating layer according to an exemplary embodiment of the present invention may not include Ce and La.
  • a method of manufacturing an Al-Si-Ni plating layer for hot stamping forming steel mainly includes hot dip plating, post-plating cooling, and plating heat treatment.
  • the production of hot stamped steel includes smelting, continuous casting, hot rolling, cold rolling, continuous hot dip plating, and the like.
  • Embodiments of the invention relate primarily to the compositional range and control mechanism of the coating.
  • the hot-rolled hot-formed steel coil or the cold-rolled hot-formed steel coil is subjected to annealing, hot-dip plating, and post-plating cooling to become a hot-formed steel product having a plating layer, which is then subjected to blanking, pre-forming, heat treatment, and hot stamping. Formed into a part product.
  • the preforming step can be omitted.
  • the hot dip plating process involves the temperature at which the steel sheet enters the plating solution, the temperature of the plating solution, the cooling method after plating, the cooling rate after plating, and the like.
  • the steel to be treated (thermoformed steel sheet or hot formed steel coil) having a temperature of 600 ° C to 840 ° C can be immersed in a plating bath having a temperature of 640 ° C to 800 ° C, and the hot dip time is 6 s to 30 s.
  • the plating solution may include the following components based on the total weight of the plating solution: Si 5.0 wt% to 20.0 wt%, Ni 0.1 wt% to 10.0 wt%, Ce 0 to 2.0 wt%, La 0 to 2.0 wt%, and Fe not more than 1.0. Wt%, the balance is Al and unavoidable impurities.
  • the temperature of the plating solution higher than the temperature of the steel to be treated by 0 ° C to 40 ° C, it is possible to effectively ensure that the oxide of the surface of the steel to be treated is completely reduced by the plating solution, thereby improving the plating layer and The bonding capacity of the steel to be treated.
  • the plated steel (hot formed steel subjected to hot dip coating) may be cooled to 150 ° C using nitrogen or air at a cooling rate of 6 ° C / s to 30 ° C / s. Therefore, it is possible to ensure uniform precipitation of the alloy phases Al 2 Ni 3 , Al 3 Ni, and Al x Si y Fe z in the plating solution.
  • the coating may be heat treated.
  • the cooled steel may be heated to 800 ° C to 950 ° C under a nitrogen atmosphere, and kept for 2 min to 10 min to obtain a plating layer for hot stamped steel.
  • the steel to be treated having a temperature of 700 ° C to 750 ° C may be immersed in a plating solution having a temperature of 720 ° C to 790 ° C for 10 s to 20 s. More preferably, in hot dip plating, the steel to be treated having a temperature of 700 ° C may be immersed in a plating solution having a temperature of 720 ° C for 12 s.
  • the air knife may be sprayed with an inert gas, the temperature of the inert gas may be 20 ° C to 150 ° C, and the thickness of the plating layer may be controlled to be 10 ⁇ m to 25 ⁇ m. Injecting with an inert gas can effectively control the formation of dense oxides on the surface of the coating, control the amount and distribution of dense oxides, and increase the high temperature oxidation resistance of the coating.
  • the plated steel in the post-plating cooling, may have a cooling rate of 10 ° C / s to 15 ° C / s, 12 ° C / s to 18 ° C / s or 20 ° C / s to 25 ° C / s.
  • the plated steel may have a cooling rate of 10 ° C/s, 15 ° C/s or 20 ° C/s during post-plating cooling.
  • the cooled steel can be heated to 890 ° C to 925 ° C for 5 min to 8 min. More preferably, in the heat treatment of the plating layer, the cooled steel may be heated to 890 ° C for 5 minutes.
  • the steel to be treated may be cleaned prior to hot dip coating.
  • the cleaning process is: alkali washing - alkali brushing - alkali washing - water brushing - electrolytic cleaning - rinsing - drying, thereby ensuring the residual surface of the steel to be treated after washing is ⁇ 50 mg / m 2 , surface reflectance ⁇ 90% .
  • the steel to be treated can be cleaned to a single-sided surface residue of ⁇ 40 mg/m 2 and the surface reflectance ⁇ 95%.
  • the steel to be treated may be continuously annealed with a nitrogen-hydrogen mixed gas, and since the oxygen is inevitably mixed, the oxygen content of the nitrogen-hydrogen mixed gas is controlled to be ⁇ 100 ppm.
  • the dew point is -50 ° C ⁇ 20 ° C, and the volume content of hydrogen is 3% to 25%.
  • the dew point of the nitrogen-hydrogen mixed gas may be -30 ° C to 10 ° C, -10 ° C to 10 ° C or 0 ° C to 10 ° C. More preferably, the dew point of the nitrogen-hydrogen mixed gas may be -20 ° C, -30 ° C or -10 ° C.
  • the hydrogen content of the nitrogen-hydrogen mixed gas may be 5 vol% to 8 vol%, or 8 vol% to 10 vol%. More preferably, the hydrogen content of the nitrogen-hydrogen mixed gas may be 3 vol%, 5 vol% or 8 vol%.
  • copper (Cu) may be selected instead of Ni to fabricate a plating layer for hot stamped steel.
  • the plating layer for hot stamped steel may also be an Al-Si-Cu plating layer.
  • the plating layer may include: 1.0% by weight to 15.0% by weight of Cu, 0.5% by weight to 10.0% by weight of Cu, 0.1% by weight to 1.0% by weight of chromium (Cr), and not more than 1.0% by weight of Fe, based on the total weight of the plating layer.
  • the amount is Al and inevitable impurities.
  • the content of Si may be 6.0 wt% to 10 wt%, 7.0 wt% to 13.0 wt%, 8.0 wt% to 13.0 wt%, or 5.0 wt% to 13.0 wt%.
  • the content of Cu may be 0.5 wt% to 1 wt%, 0.5 wt% to 1.5 wt%, 1.0 wt% to 5.0 wt%, or 5.0 wt% to 8.0 wt%.
  • the content of Cr may be from 0.1% by weight to 0.15% by weight, from 0.1% by weight to 0.3% by weight, or from 0.5% by weight to 1.0% by weight.
  • the content of Fe may be not more than 0.3% by weight, 0.3% by weight to 1.0% by weight, 0% to 0.5% by weight or 0.5% by weight to 0.8% by weight.
  • a method of manufacturing an Al-Si-Cu plating layer for hot stamped steel may mainly include hot dip plating, post plating cooling, and plating heat treatment.
  • the steel to be treated (thermoformed steel sheet or coil) having a temperature of 580 ° C to 750 ° C can be immersed in a bath having a temperature of 580 ° C to 750 ° C, and the hot soaking time is 6 s to 30 s.
  • the composition of the plating solution is: Si 1.0 wt% to 15.0 wt%, Cu 0.5 wt% to 10.0 wt%, Cr 0.1 wt% to 1.0 wt%, Fe not more than 1.0 wt%, and the balance is Al and inevitable impurities.
  • the air knife is sprayed with an inert gas
  • the inert gas temperature may be 20 ° C to 150 ° C
  • the plating thickness may be controlled to be 10 ⁇ m to 25 ⁇ m. Injecting with an inert gas can effectively control the formation of dense oxides on the surface of the coating, control the amount and distribution of dense oxides, and increase the high temperature oxidation resistance of the coating.
  • the plated parts may be cooled to ⁇ 150 ° C by air cooling, and then water-cooled to room temperature.
  • the air-cooling cooling rate is 5 ° C / s to 15 ° C / s, so that the alloy phase CuAl 3 and Al x Si y Fe z in the plating solution can be uniformly precipitated.
  • the coating may be heat treated.
  • the cooled plating plate hot-dip plating and hot-formed steel sheet or steel coil after cooling after plating
  • the coating may be heat-treated at a temperature of 700 ° C to 1000 ° C to obtain a steel for hot stamping forming.
  • Plating In the heat treatment of the plating layer for manufacturing the Al-Si-Cu plating layer, nitrogen protection is not required.
  • the steel to be treated having a temperature of 620 ° C to 700 ° C, 620 ° C to 750 ° C or 580 ° C to 700 ° C may be immersed in a temperature of 620 ° C to 720 ° C, 640 ° C to 750 ° C or A plating bath of 600 ° C to 700 ° C. More preferably, in hot dip plating, the steel to be treated having a temperature of 620 ° C may be immersed in a plating solution having a temperature of 620 ° C.
  • the temperature of the inert gas may be 20 ° C to 60 ° C, 60 ° C to 100 ° C or 80 ° C to 150 ° C, and the thickness of the plating layer may be 10 ⁇ m to 15 ⁇ m, 15 ⁇ m to 20 ⁇ m or 20 ⁇ m to 25 ⁇ m. . More preferably, in the hot dip plating process, the temperature of the inert gas may be 60 ° C, and the thickness of the plating layer may be 20 ⁇ m.
  • the cooling rate of the air cooling may be 5 ° C / s to 10 ° C / s, 8 ° C / s ⁇ 10 ° C / s, 8 ° C / s ⁇ 13 ° C / s or 10 ° C / s ⁇ 13 ° C / s. More preferably, in post-plating cooling, the cooling rate of air cooling may be 8 ° C / s.
  • the heat treatment temperature may be 750 ° C to 800 ° C, 750 ° C to 930 ° C or 800 ° C to 950 ° C.
  • the heat treatment temperature may be 930 °C.
  • the steel to be treated may be cleaned prior to hot dip coating.
  • the cleaning process is: alkaline washing - alkali brushing - alkali washing - water brushing - electrolytic cleaning - rinsing - drying. Therefore, it is ensured that the surface of the steel to be treated after washing is ⁇ 50 mg/m 2 and the surface reflectance is ⁇ 90%.
  • the steel to be treated can be cleaned to a single-sided surface residue of ⁇ 40 mg/m 2 and a surface reflectance of ⁇ 95%.
  • the steel to be treated may be subjected to continuous annealing before hot dip plating, so that internal oxidation of the steel to be treated can be effectively controlled to obtain a substrate having good coating properties.
  • the continuous annealing step may employ a nitrogen-hydrogen mixed gas having an oxygen content of ⁇ 100 ppm, a dew point of -50 ° C to 20 ° C, and a hydrogen volume content of 3% to 25%.
  • the dew point of the nitrogen-hydrogen mixed gas may be -30 ° C to 10 ° C or -10 ° C to 10 ° C.
  • the dew point of the nitrogen-hydrogen mixed gas may be -20 ° C, -30 ° C or -10 ° C.
  • the hydrogen content of the nitrogen-hydrogen mixed gas may be 5 vol% to 8 vol%, or 8 vol% to 10 vol%. More preferably, the hydrogen content of the nitrogen-hydrogen mixed gas may be 3 vol%, 5 vol% or 8 vol%.
  • Cu and Ni may be used to manufacture a plating layer for hot stamped steel.
  • the plating layer for hot stamped steel may also be an Al-Si-Ni-Cu plating layer.
  • the plating layer may include: Si 5.0 wt% to 20.0 wt%, Ni 0.1 wt% to 10.0 wt%, Cu 0.1 wt% to 10.0 wt%, Ce 0 to 2.0 wt%, La 0 to 2.0, based on the total weight of the plating layer. Wt%, Cr 0.1 wt% to 1.0 wt%, Fe not more than 1.0 wt%, the balance being Al and unavoidable impurities.
  • the content of Si may be 6.0 wt% to 10.0 wt%, 7.0 wt% to 13.0 wt%, 8.0 wt% to 13.0 wt%, or 10.0 wt% to 20.0 wt%.
  • Ni may be 0.1 wt% to 0.3 wt%, 0.1 wt% to 1.5 wt%, 1.5 wt% to 3.0 wt%, 2.0 wt% to 5.0 wt%, 5.0 wt% to 8.0 wt% or 6.0 wt%. 9.0 wt%.
  • the content of Ce may be 0 to 0.5 wt%, 0.5 wt% to 1.5 wt%, or 0.1 wt% to 0.7 wt%.
  • the content of La may be 0 to 0.3 wt%, 0.3 wt% to 1.0 wt%, 0.5 wt% to 1.0 wt%, or 1.0 wt% to 2.0 wt%.
  • the content of Cu may be 0.5 wt% to 1.0 wt%, 0.5 wt% to 1.5 wt%, 1.0 wt% to 5.0 wt%, or 5.0 wt% to 8.0 wt%.
  • the content of Cr may be from 0.1% by weight to 0.15% by weight, from 0.1% by weight to 0.3% by weight, or from 0.5% by weight to 1.0% by weight.
  • the Fe content may be 0 to 0.3 wt%, 0.3 wt% to 1.0 wt%, 0 to 0.5 wt%, or 0.5 wt% to 0.8 wt%.
  • a method of manufacturing a plating layer for hot stamped steel may mainly include hot dip plating, post plating cooling, and plating heat treatment.
  • the steel to be treated (thermoformed steel sheet or steel coil) having a temperature of 550 ° C to 800 ° C can be immersed in a plating bath having a temperature of 570 ° C to 850 ° C, and the hot leaching is continued for 6 s to 30 s.
  • the composition of the plating solution is: Si 5.0 wt% to 20.0 wt%, Ni 0.1 wt% to 10.0 wt%, Cu 0.1 wt% to 10.0 wt%, Ce 0 to 2.0 wt%, La 0 to 2.0 wt%, Cr 0.1 wt% to 1.0 wt%, Fe not more than 1.0 wt%, and the balance being Al and unavoidable impurities.
  • the plated steel can be cooled to 150 ° C by nitrogen or air, and the cooling rate is 4 ° C / s to 25 ° C / s, so that the alloy phase can be uniformly precipitated.
  • the coating is heat treated.
  • the cooled plated member may be heat-treated at a temperature of 700 ° C to 1000 ° C to obtain a plating layer for hot stamped steel.
  • the steel to be treated having a temperature of 680 ° C to 700 ° C, 650 ° C to 750 ° C or 680 ° C to 780 ° C may be immersed in a temperature of 700 ° C to 720 ° C, 680 ° C to 770 ° C or
  • the plating bath at 700 ° C to 800 ° C may have a heat immersion time of 15 s to 25 s, 15 s to 20 s or 10 s to 20 s.
  • the plated steel may have a cooling rate of 8 ° C / s to 15 ° C / s.
  • the heat treatment temperature may be 750 ° C to 800 ° C, 750 ° C to 930 ° C or 800 ° C to 950 ° C.
  • the heat treatment temperature may be 930 °C.
  • the steel to be treated may also undergo a continuous annealing step before hot dip plating, and the continuous annealing step may employ an oxygen content of ⁇ 80 ppm, a dew point of -50 ° C to 10 ° C, and a hydrogen volume content of 3%. ⁇ 25% nitrogen-hydrogen mixed gas.
  • the dew point of the nitrogen-hydrogen mixed gas may be -30 ° C to 10 ° C or -10 ° C to 10 ° C. More preferably, the dew point of the nitrogen-hydrogen mixed gas may be -20 ° C, -30 ° C or -10 ° C.
  • the hydrogen content of the nitrogen-hydrogen mixed gas may be 5 vol% to 8 vol%, or 8 vol% to 10 vol%. More preferably, the hydrogen content of the nitrogen-hydrogen mixed gas may be 3 vol%, 5 vol% or 8 vol%.
  • a washing step may be further performed before the hot dip plating step, and the steel to be treated may be cleaned to a single-sided surface residue of ⁇ 50 mg/m 2 and a surface reflectance of ⁇ 90%.
  • the steel to be treated can be cleaned to a single-sided surface residue of ⁇ 40 mg/m 2 and a surface reflectance of ⁇ 95%.
  • the process for producing a coating for hot stamped steel may be: steel sheet or coil (substrate) cleaning to be treated - continuous annealing - hot dip plating - post-plating cooling - plating heat treatment.
  • Examples 1 to 6 describe the plating composition and main process parameters for producing a plating layer containing Ni and the main properties of the resulting plating layer.
  • Each of Examples 1 to 6 was produced by using the plating liquid components in Table 1 in accordance with the main process parameters in Table 2.
  • the main properties of the resulting coating are shown in Table 3.
  • Example 1 91.1 8.2 0.1 0.2 0.2 0.2 Example 2 82.6 6.0 10.0 0.3 0.8 0.3 Example 3 87.7 10.0 1.0 0.5 0.2 0.6
  • Example 4 75.7 20.0 2.0 0.7 0.6 1.0
  • Example 5 83.4 11.0 3.0 1.5 0.7 0.4
  • Example 6 90.0 9.0 0.3 0.0 0.0 0.7
  • the coil temperature refers to the temperature at which the steel coil to be treated is immersed in the plating solution, that is, the steel coil to be treated at this temperature is immersed in the plating solution.
  • the Ni-containing plating layer produced according to the embodiment of the present invention can have good high-temperature oxidation resistance, tightly bonded to the steel coil, no crack on the surface of the plating layer, no detachment, and no sticking mold.
  • Examples 7 to 12 describe the bath composition and main process parameters for manufacturing a plating layer containing Cu and the main properties of the manufactured plating layer.
  • Each of Examples 7 to 12 was produced by using the plating solution in Table 4 in accordance with the main process parameters in Table 5.
  • the main properties of the manufactured coating are shown in Table 6.
  • the plating layer containing Cu may have good high temperature oxidation resistance, the plating layer has a small weight gain ratio, is tightly bonded to the substrate, has no crack on the surface of the plating layer, does not detach, does not stick to the mold, and has Good corrosion resistance.
  • Examples 13 to 18 describe the bath composition and main process parameters for producing a plating layer containing Cu and Ni and the main properties of the manufactured plating layer.
  • Each of Examples 13 to 18 was produced by using the plating solution in Table 7 in accordance with the main process parameters in Table 8.
  • the main properties of the manufactured coating are shown in Table 9.
  • Example Al Si Cu Ni Ce La Cr Fe 13 93.7 5 0.2 0.3 0.1 0.4 0.1 0.2 14 90.3 8 0.5 0.5 0 0 0.2 0.5 15 76 10 10 2 0.4 0.8 0.4 0.4 16 61.6 20 8 8 0.6 0.6 1 0.2 17 72.1 15 0.3 10 0.8 0.2 0.8 0.8 18 73.7 12 5 6 1 0.7 0.6 1
  • Fig. 1 is a scanning electron microscope image of a thermoformed steel having an Al-Si-Ni plating layer before heat treatment according to Example 3 of the present invention.
  • 2 is a scanning electron microscope image of a thermoformed steel having an Al-Si-Ni-Cu plating layer before heat treatment according to Example 14 of the present invention.
  • Fig. 3 is a scanning electron microscope image of a hot formed steel having an Al-Si-Ni plating layer after hot stamping according to Example 3 of the present invention.
  • 4 is a scanning electron microscope image of a hot formed steel having an Al-Si-Ni-Cu plating layer after hot stamping according to Example 14 of the present invention.
  • the alloy phase of the Al-Si-Ni coating is mainly strip-shaped, while the alloy phase of the Al-Si-Ni-Cu coating is mainly granular or massive, so it is related to Al- Compared with the microstructure of the Si-Ni plating layer, the uniformity of the Al-Si-Ni-Cu plating layer is improved, the stamping forming property of the plating layer is improved, and cracking is less likely to occur.
  • the composite addition of Cu and Ni improves the surface state of the coating, making the surface of the coating more continuous; at the same time, the bright white oxide layer on the surface of the coating is more uniform and dense, and the high temperature oxidation resistance of the coating is also improved.
  • the Al-Si-Ni-Cu coating after hot stamping inherits the better uniformity of the structure before hot stamping, and the entire coating almost becomes an alloy phase, so the oxidation resistance of the coating is obvious. improve.
  • the bonding portion of the plating layer and the hot-formed steel substrate also maintains the adhesion property, and the bonding portion between the plating layer and the thermoformed steel substrate preferably prevents the crack from expanding, and the surface oxide layer of the plating layer is more continuous and dense, showing good corrosion resistance.
  • the two elements Cu and Ni are mainly in the free state and the alloy state.
  • the Cu and Ni composite addition can further improve the high temperature oxidation resistance of the plating layer.
  • the composite addition of Cu and Ni makes the coating solidification process uniform, so the structure is more uniform, and the surface of the coating is smoother, showing the continuity and compactness of the oxide layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种用于热冲压成形钢的镀层,基于镀层的总重量镀层包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质;一种用于热冲压成形钢的镀层,基于镀层的总重量,镀层包括:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质;以及一种用于热冲压成形钢的镀层,基于镀层的总重量,镀层包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。还公开了用于热冲压成形钢的镀层的方法。

Description

用于热冲压成形钢的镀层及其制造方法 技术领域
本公开涉及金属材料表面处理领域,具体地,涉及一种用于热冲压成形钢的镀层及其制造方法。
背景技术
目前,用于热冲压成形钢的镀层主要包括Al-Si镀层、GI镀层、GA镀层、X-TEC镀层和Zn-Ni镀层。Al-Si镀层、GI镀层和GA镀层已经商业化应用,然而很少见到X-TEC镀层和Zn-Ni镀层的商业化应用。
安塞乐米塔尔公司已经开发出具有Al-Si镀层的钢板,Al-Si镀层具有较好的抗高温氧化性能。但是,Al-Si镀层对温度与变形速率敏感,在经受热冲压时容易开裂,从而当基板暴露在外面时,Al-Si镀层的耐腐蚀性会降低。另外,在加热过程中Al-Si镀层熔化后容易粘到陶瓷辊上,因此需要经常清理陶瓷辊。此外,Al-Si镀层不具备牺牲性保护性能,开裂处易发生腐蚀。因此,近几年研究人员开发出GI/GA热冲压镀层技术。
住友、蒂森、浦项、奥钢联、阿赛洛等公司已经开发出具有GI/GA合金化镀层的钢板,这种钢板具有良好的焊接性能和涂镀性能,并具有较好的牺牲性保护性能,从而能够有效防止加热过程中钢板的氧化起皮和脱碳。然而,GI/GA合金化镀层在热冲压过程中会使裂纹扩展到基板中,从而影响钢板的使用。此外,为了防止镀层中Zn的蒸发,加热温度不应低于905℃,较窄的奥氏体化窗口也限制了钢板的应用。为了适应热冲压钢对镀层关于切口保护性能和加热窗口的要求,德国蒂森公司开发了Gamma protect镀层技术。该镀层为电镀Zn-10Ni层,具有优秀的摩擦性能,但是价格高昂,生产率低。
发明内容
本发明提供了一种用于热冲压成形钢的镀层,具有该镀层的热冲压成形钢适合直接热冲压成形和间接热冲压成形工艺,因此可生产形状较复杂的零件。具有该镀层的热冲压成形钢产品及热冲压零件均具有良好的焊接性能, 当它们被加热到900℃~950℃时,该镀层的氧化增重速率小于0.0018g/(cm 2×h)。在热冲压过程中,该镀层不脱落、不开裂或轻微开裂、不粘模具或轻微粘模具。因此,热冲压后的具有该镀层的产品具有较好的表面质量和良好的涂镀性能。
根据本发明,可以解决现有的具有Al-Si镀层的产品的许多技术问题,诸如,镀层熔点低、易产生液态金属脆性、易粘辊、影响炉辊使用寿命、不适合间接热冲压成形工艺等。
根据本发明的示例性实施例,一种用于热冲压成形钢的镀层基于其总重量可以包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
根据本发明的示例性实施例,基于镀层的总重量,镀层可以包括:Si 6.0wt%~10.0wt%,Ni 0.1wt%~0.3wt%,Ce 0.5wt%~1.5wt%,La 0~0.3wt%,Fe不超过0.3wt%,余量为Al及不可避免的杂质。
根据本发明的示例性实施例,一种用于热冲压成形钢的镀层基于镀层的总重量可以包括:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
根据本发明的示例性实施例,基于镀层的总重量,镀层可以包括:Si 7.0wt%~13.0wt%,Cu 0.5wt%~1.5wt%,Cr 0.1wt%~0.3wt%,Fe不超过0.3wt%,余量为Al及不可避免的杂质。
根据本发明的示例性实施例,一种制造用于热冲压成形钢的镀层的方法可以包括以下步骤:热浸镀:将温度为600℃~840℃的待处理的钢浸入温度为640℃~800℃的镀液,并且持续6s~30s,其中,镀液的成分可以为:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质;镀后冷却:采用氮气或空气以6℃/s~30℃/s的冷却速率将镀后的钢冷却至150℃;镀层热处理:在氮气保护下将冷却后的钢加热至800℃~950℃,并且保温2min~10min,从而可以形成用于热冲压成形钢的镀层。
根据本发明的示例性实施例,在热浸镀步骤中,可以将700℃~750℃的待处理的钢浸入温度为720℃~790℃的镀液,并且持续10s~20s。在镀后冷却步骤中,镀后的钢的冷却速率可以为10℃/s~15℃/s。在镀层热处理步骤中,可以将冷却后的钢加热至890℃~925℃,并且保温5min~8min。
根据本发明的示例性实施例,可以将待处理的钢在热浸镀之前经历连续退火步骤。连续退火步骤可以采用氧含量≤100ppm、露点为-50℃~20℃、氢气体积含量为3%~25%的氮氢混合气体。
根据本发明的示例性实施例,一种制造用于热冲压成形钢的镀层的方法可以包括以下步骤:热浸镀:将温度为580℃~750℃的待处理的钢浸入温度为580℃~750℃的镀液,并且持续6s~30s,其中,镀液的成分为:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质,其中,在热浸镀过程中,气刀采用惰性气体喷吹,惰性气体的温度20℃~150℃,镀层的厚度控制在10μm~25μm;镀后冷却:采用风冷以5℃/s~15℃/s的冷却速率将镀后的钢冷却至≤150℃,然后水冷至室温;镀层热处理:在700℃~1000℃的温度下对冷却后的钢进行热处理,从而得到用于热冲压成形钢的镀层。
根据本发明的示例性实施例,在热浸镀步骤中,可以将温度为620℃~700℃的待处理的钢浸入温度为620℃~720℃的镀液,其中,惰性气体的温度可以为60℃~100℃,镀层的厚度可以为15μm~20μm。在镀后冷却步骤中,冷却速率可以为8℃/s~10℃/s或8℃/s~13℃/s。在镀层热处理步骤中,热处理的温度可以为750℃~930℃。
根据本发明的示例性实施例,在热浸镀步骤之前进行清洗步骤,可以将待处理的钢清洗至单面表面残留≤50mg/m 2,表面反射率≥90%。
根据本发明的示例性实施例,一种用于热冲压成形钢的镀层基于镀层的总重量可以包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
根据本发明的示例性实施例,一种制造用于热冲压成形钢的镀层的方法包括以下步骤:热浸镀:将温度为550℃~800℃的待处理的钢浸入温度为570℃~850℃的镀液,并且持续6s~30s,其中,镀液的成分为:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质;镀后冷却:采用氮气或空气以4℃/s~25℃/s的冷却速率将镀后的钢冷却至150℃;镀层热处理:在700℃~1000℃的温度下对冷却后的钢进行热处理,从而得到用于热冲压成形钢的镀层。
根据本发明的示例性实施例,在热浸镀步骤中,可以将温度为680℃~780℃的待处理的钢浸入温度为700℃~800℃的镀液,并且持续10s~20s。在镀后冷却步骤中,冷却速率可以为8℃/s~15℃/s;在镀层热处理中,热处理温度可以为750℃~930℃。
根据本发明的示例性实施例,待处理的钢在热浸镀之前可以经历连续退火步骤。连续退火步骤可以采用氧含量≤80ppm、露点为-50℃~10℃、氢气体积含量为3%~25%的氮氢混合气体。
根据本发明的示例性实施例,在热浸镀步骤之前可以进行清洗步骤,将待处理的钢清洗至单面表面残留≤50mg/m 2,表面反射率≥90%。
附图说明
图1是根据本发明的示例性实施例的具有Al-Si-Ni镀层的热成形钢在热处理前的扫描电子显微镜图像。
图2是根据本发明的示例性实施例的具有Al-Si-Ni-Cu镀层的热成形钢在热处理前的扫描电子显微镜图像。
图3是根据本发明的示例性实施例的具有Al-Si-Ni镀层的热成形钢在热冲压后的扫描电子显微镜图像。
图4是根据本发明的示例性实施例的具有Al-Si-Ni-Cu镀层的热成形钢在热冲压后的扫描电子显微镜图像。
具体实施方式
在下文中将参照实施例更充分地描述本发明构思。然而,本发明可以以许多不同形式实施并且不应该解释为受限于这里阐述的实施例。相反,提供这些实施例使得本公开将是彻底的和完整的,并且将本发明的范围充分地传达给本领域的技术人员。
热冲压成形钢主要用于高强度的汽车零件,例如汽车的前后防撞杠、门槛、A柱、B柱、C柱、框架、排气管等,潜在的应用产业包括航空航天耐热耐蚀材料,耐高温建筑等材料。用于热冲压成形钢的镀层通常采用Al-Si镀层,但是现有条件下生产的Al-Si镀层具有熔点低、易产生液态金属脆性、易粘辊、影响炉辊使用寿命、不适合间接热冲压成形工艺等问题,为此,本发明提出了一种具有优良的抗高温氧化性的用于热冲压成形钢的镀层及其制 造方法。
根据本发明,通过将Ni、Cu等元素添加到用于热冲压成形钢的Al-Si镀层中,可以形成具有CuAl 3、Al 2Ni 3、Al 3Ni以及Al xSi yFe z等高熔点的合金相的镀层,从而提高了镀层的抗高温氧化性能。与单纯利用Al-Si合金的镀层相比,根据本发明的镀层可以具有更好的抗高温氧化性,并且可以解决有效地提高镀层的熔点。
根据本发明,利用Ni和/或Cu的趋肤效应,可以提高其在镀层表面的富集,并且可以提高镀层的抗高温氧化性。测试结果表明,镀层表面的Cu和/或Ni的含量最高可达镀层的Cu和/或Ni平均含量的3倍。Ni和Cu的熔点较高,并且高于钢的热冲压成形温度,因此在加热及热成形过程中不会熔化,从而可以提高镀层的抗高温氧化性。
另外,根据本发明的镀层可以在镀层表面形成致密的Al 2O 3。经检测,镀层表面的氧含量接近50%,合金元素与氧原子的比例接近2:3,并且致密的氧化物层的厚度可以达到0.4微米。致密的氧化层可以阻止氧原子进一步渗入镀层和基板,从而保证了镀层的良好的抗高温氧化性和耐腐蚀性。镀层因其抗高温氧化性、耐高温腐蚀性和耐常温腐蚀性成为用于热冲压成形钢的镀层的最佳选择。
此外,根据本发明,通过利用合理的工艺手段可以控制由Al、Si、Ni、Cu、Fe形成的合金相在镀层中均匀分布,并且可以形成具有高熔点的耐高温腐蚀的骨架结构。骨架结构可以支撑镀层。由高熔点的合金相组成的骨架结构的内部充满了Al-Si相(溶解少量的Ni、Cu),保证了具有高熔点的抗高温氧化的相与具有相对较低熔点但是较高热成形性的组织之间的相互配合,使得热成形性与抗高温氧化性达到平衡,从而可以形成最佳的组织结构。
根据本发明的实施例,具有较低熔点但是较高热成形性的组织可以含有96wt%的Al,并溶解有1.77wt%的Si和1.32wt%的Ni,其熔点与纯铝熔点相当,但不含脆性相,因此可以表现良好的热成形性能,并且可以保证镀层在热冲压过程中不发生完全破裂。
另外,根据本发明的镀层还可以添加有稀土元素。镀层中的稀土元素可以有效地细化晶粒尺寸,细化铝相(即,Al-Si相),固熔Cu、Ni等合金,从而进一步提高镀层的热成形性。稀土元素还可以提高具有高熔点的合金相的分布密度,从而可以进一步提高镀层的抗高温氧化性。
根据本发明的镀层还可以添加Cr元素,Cr元素主要提高镀层耐腐蚀性和抗高温氧化性。另外,根据本发明的镀层还可以包含Fe元素。Fe元素主要由钢板或钢卷与镀液发生反应后溶解到镀液中,Fe元素在镀层中与Si、Al相反应可生成Al、Si、Fe合金相,从而提高镀层熔点。
在下文中,将根据本发明的示例性实施例详细地说明用于热冲压成形钢的镀层及其制造方法。
根据本发明的实施例,基于热成形钢的总重量,热成形钢可以包括:碳(C)0.19wt%~0.30wt%,硅(Si)0.1wt%~0.8wt%,锰(Mn)0.9wt%~2.0wt%,铬(Cr)0.3wt%~1.0wt%,钛(Ti)0.01wt%~0.05wt%,铌(Nb)≤0.05wt%,硼(B)0.0015wt%~0.003wt%,其余为铁(Fe)和不可避免的杂质。然而,本发明不限于此。根据本发明的实施例,热成形钢可以是钢板、钢卷或钢带等。
Al-Si-Ni镀层
根据本发明的一个实施例,用于热冲压成形钢的镀层可以是Al-Si-Ni镀层,基于镀层的总重量,镀层的成分按重量百分数可以包括:5.0wt%~20.0wt%的硅(Si)、0.1wt%~10.0wt%的镍(Ni)、0~2.0wt%的铈(Ce)、0~2.0wt%的镧(La)和不超过1.0wt%的铁(Fe),余量为铝(Al)及不可避免的杂质。
优选地,在用于热冲压成形钢的镀层中,Si的含量可以是6.0wt%~10wt%、7.0wt%~13.0wt%、10.0wt%~20.0wt%、8.0wt%~20.0wt%或16.0wt%~20.0wt%。优选地,Ni的含量可以是0.1wt%~0.3wt%、0.1wt%~1.5wt%、1.5wt%~3.0wt%、2.0wt%~5.0wt%、5.0wt%~8.0wt%或6.0wt%~9.0wt%。优选地,Ce的含量可以是0~0.5wt%、0.5wt%~1.5wt%或0.1wt%~0.7wt%。优选地,La的含量可以是0~0.3wt%、0.3wt%~1.0wt%、0.5wt%~1.0wt%或1.0wt%~2.0wt%。优选地,Fe的含量可以是不超过0.3wt%、0.3wt%~1.0wt%、不超过0.5wt%或0.5wt%~0.8wt%。
此外,虽然Ce和La能够细化镀层的组织结构,但会增加成本,从而给工业化带来一定的困难,因此,根据本发明的示例性实施例的镀层可以不包括Ce和La。
根据本发明,制造用于热冲压成形钢的Al-Si-Ni镀层的方法主要包括热浸镀、镀后冷却和镀层热处理。
这里,需要说明的是,热冲压成形钢的制造包括冶炼、连铸、热轧、冷 轧、连续热浸镀等。本发明的实施例主要涉及镀层的成分范围及控制机理。
根据本发明,热轧热成形钢卷或冷轧热成形钢卷经过退火、热浸镀、镀后冷却后成为具有镀层的热成形钢产品,然后再经过下料、预成形、热处理、热冲压成形成为零件产品。可选择地,可以省略预成形步骤。在本发明中,热浸镀工艺涉及钢板进入镀液的温度、镀液温度、镀后冷却方式、镀后冷却冷速等。
现在将详细地描述根据本发明的示例性实施例制造用于热冲压成形钢的镀层的方法的各个步骤。
在热浸镀中,可以将温度为600℃~840℃的待处理的钢(热成形钢板或热成形钢卷)浸入温度为640℃~800℃的镀液,热浸渡时间是6s~30s。基于镀液的总重量,镀液可以包括如下成分:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。根据优选的实施例,通过使镀液的温度比待处理的钢的温度高0℃~40℃,可以有效地保证通过镀液使待处理的钢的表面的氧化物完全还原,从而提高镀层与待处理的钢的结合能力。
在镀后冷却中,可以采用氮气或空气将镀后的钢(经历热浸镀后的热成形钢)冷却至150℃,冷却速率为6℃/s~30℃/s。因此,可以保证镀液中的合金相Al 2Ni 3、Al 3Ni以及Al xSi yFe z等均匀析出。
在镀后冷却步骤之后,可以对镀层进行热处理。在镀层热处理中,可以在氮气保护下将冷却后的钢加热至800℃~950℃,并且保温2min~10min,从而得到用于热冲压成形钢的镀层。
优选地,在热浸镀中,可以将温度为700℃~750℃的待处理的钢浸入温度为720℃~790℃的镀液并且持续10s~20s。更优选地,在热浸镀中,可以将温度为700℃的待处理的钢浸入温度为720℃的镀液并且持续12s。可选择地,在热浸镀过程中,气刀可以采用惰性气体喷吹,惰性气体的温度可以为20℃~150℃,镀层的厚度可以控制在10μm~25μm。用惰性气体进行喷吹可以有效控制镀层表面致密氧化物的生成,并控制致密氧化物的量和分布,增加镀层抗高温氧化性能。
优选地,在镀后冷却中,镀后的钢的冷却速率可以为10℃/s~15℃/s、12℃/s~18℃/s或20℃/s~25℃/s。在本发明的优选实施例中,在镀后冷却中,镀后的钢的冷却速率可以为10℃/s、15℃/s或20℃/s。
优选地,可以将冷却后的钢加热至890℃~925℃,保温5min~8min。更优选地,在镀层热处理中,可以将冷却后的钢加热至890℃,保温5min。
根据本发明的示例性实施例,在热浸镀之前,可以对待处理的钢进行清洗。清洗流程是:碱洗-碱刷洗-碱洗-水刷洗-电解清洗-漂洗-烘干,从而保证清洗后的待处理的钢的单面表面残留≤50mg/m 2,表面反射率≥90%。优选地,可以将待处理的钢清洗至单面表面残留物≤40mg/m 2,表面的反射率≥95%。
根据本发明的示例性实施例,在热浸镀之前,可以采用氮氢混合气体对待处理的钢进行连续退火,由于不可避免地会混入氧气,因此控制所述氮氢混合气体的氧含量≤100ppm,露点为-50℃~20℃,氢气体积含量为3%~25%。优选地,氮氢混合气体的露点可以是-30℃~10℃、-10℃~10℃或0℃~10℃。更优选地,氮氢混合气体的露点可以是-20℃、-30℃或-10℃。优选地,氮氢混合气体的氢气含量可以是5vol%~8vol%、或8vol%~10vol%。更优选地,氮氢混合气体的氢气含量可以是3vol%、5vol%或8vol%。
Al-Si-Cu镀层
根据本发明的另一示例性实施例,可以选择铜(Cu)替代Ni来制造用于热冲压成形钢的镀层。换言之,用于热冲压成形钢的镀层还可以是Al-Si-Cu镀层。基于镀层的总重量,所述镀层可以包括:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,铬(Cr)0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
优选地,在用于热冲压成形钢的镀层中,Si的含量可以是6.0wt%~10wt%、7.0wt%~13.0wt%、8.0wt%~13.0wt%或5.0wt%~13.0wt%。优选地,Cu的含量可以是0.5wt%~1wt%、0.5wt%~1.5wt%、1.0wt%~5.0wt%或5.0wt%~8.0wt%。优选地,Cr的含量可以是0.1wt%~0.15wt%、0.1wt%~0.3wt%或0.5wt%~1.0wt%。优选地,Fe的含量可以是不超过0.3wt%、0.3wt%~1.0wt%、0~0.5wt%或0.5wt%~0.8wt%。
根据本发明,制造用于热冲压成形钢的Al-Si-Cu镀层的方法可以主要包括热浸镀、镀后冷却和镀层热处理。
在热浸镀中,可以将温度为580℃~750℃的待处理的钢(热成形钢板或钢卷)浸入温度为580℃~750℃的镀液,热浸渡时间是6s~30s。基于镀液的总重量,镀液的成分为:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,Cr  0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。在热浸镀过程中,气刀采用惰性气体喷吹,惰性气体温度可以为20℃~150℃,镀层厚度可以控制在10μm~25μm。用惰性气体进行喷吹可以有效控制镀层表面致密氧化物的生成,并控制致密氧化物的量和分布,增加镀层的抗高温氧化性能。
在镀后冷却中,可以采用风冷将镀件(热浸镀后的热成形钢板或钢卷)冷却至≤150℃,然后水冷至室温。风冷的冷却速率为5℃/s~15℃/s,因此,可以保证镀液中的合金相CuAl 3和Al xSi yFe z等均匀析出。
在镀后冷却步骤之后,可以对镀层进行热处理。在镀层热处理中,可以在700℃~1000℃的温度下对冷却后的镀件(热浸镀并且镀后冷却后的热成形钢板或钢卷)进行热处理,从而得到用于热冲压成形钢的镀层。在制造Al-Si-Cu镀层的镀层热处理中,无需氮气保护。
优选地,在热浸镀中,可以将温度为620℃~700℃、620℃~750℃或580℃~700℃的待处理的钢浸入温度为620℃~720℃、640℃~750℃或600℃~700℃的镀液。更优选地,在热浸镀中,可以将温度为620℃的待处理的钢浸入温度为620℃的镀液。优选地,在热浸镀过程中,惰性气体的温度可以为20℃~60℃、60℃~100℃或80℃~150℃,镀层的厚度可以为10μm~15μm、15μm~20μm或20μm~25μm。更优选地,在热浸镀过程中,惰性气体的温度可以为60℃,镀层的厚度可以为20μm。
优选地,在镀后冷却中,风冷的冷却速率可以为5℃/s~10℃/s、8℃/s~10℃/s、8℃/s~13℃/s或10℃/s~13℃/s。更优选地,在镀后冷却中,风冷的冷却速率可以为8℃/s。
优选地,在镀层热处理中,热处理温度可以为750℃~800℃、750℃~930℃或800℃~950℃。优选地,在镀层热处理中,热处理温度可以为930℃。
根据本发明的示例性实施例,在热浸镀之前,可以对待处理的钢进行清洗。清洗流程是:碱洗-碱刷洗-碱洗-水刷洗-电解清洗-漂洗-烘干。从而保证清洗后的待处理的钢的单面表面残留≤50mg/m 2,表面反射率≥90%。优选地,可以将待处理的钢清洗至单面表面残留≤40mg/m 2,表面反射率≥95%。
根据本发明的示例性实施例,在热浸镀之前,还可以对待处理的钢进行连续退火,从而可以有效控制待处理的钢发生内氧化,得到涂镀性能良好的 基板。连续退火工序可以采用氮氢混合气体,所述氮氢混合气体的氧含量≤100ppm,露点为-50℃~20℃,氢气体积含量为3%~25%。优选地,氮氢混合气体的露点可以是-30℃~10℃或-10℃~10℃。更优选地,氮氢混合气体的露点可以是-20℃、-30℃或-10℃。优选地,氮氢混合气体的氢气含量可以是5vol%~8vol%、或8vol%~10vol%。更优选地,氮氢混合气体的氢气含量可以是3vol%、5vol%或8vol%。
Al-Si-Ni-Cu镀层
根据本发明的又一示例性实施例,可以使用Cu和Ni来制造用于热冲压成形钢的镀层。换言之,用于热冲压成形钢的镀层还可以是Al-Si-Ni-Cu镀层。基于镀层的总重量,所述镀层可以包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
优选地,在用于热冲压成形钢的镀层中,Si的含量可以是6.0wt%~10.0wt%、7.0wt%~13.0wt%、8.0wt%~13.0wt%或10.0wt%~20.0wt%。优选地,Ni可以是0.1wt%~0.3wt%、0.1wt%~1.5wt%、1.5wt%~3.0wt%、2.0wt%~5.0wt%、5.0wt%~8.0wt%或6.0wt%~9.0wt%。优选地,Ce的含量可以是0~0.5wt%、0.5wt%~1.5wt%或0.1wt%~0.7wt%。优选地,La的含量可以是0~0.3wt%、0.3wt%~1.0wt%、0.5wt%~1.0wt%或1.0wt%~2.0wt%。优选地,Cu的含量可以是0.5wt%~1.0wt%、0.5wt%~1.5wt%、1.0wt%~5.0wt%或5.0wt%~8.0wt%。优选地,Cr的含量可以是0.1wt%~0.15wt%、0.1wt%~0.3wt%或0.5wt%~1.0wt%。优选地,Fe的含量可以是0~0.3wt%、0.3wt%~1.0wt%、0~0.5wt%或0.5wt%~0.8wt%。
根据本发明,制造用于热冲压成形钢的镀层的方法可以主要包括热浸镀、镀后冷却和镀层热处理。
在热浸镀中,可以将温度为550℃~800℃的待处理的钢(热成形钢板或钢卷)浸入温度为570℃~850℃的镀液,,热浸渡持续6s~30s。基于镀液的总重量,镀液的成分为:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
在镀后冷却中,可以采用氮气或空气将镀后的钢冷却至150℃,冷却速率为4℃/s~25℃/s,因此可以保证合金相均匀析出。
在镀后冷却之后,对镀层进行热处理。在镀层热处理中,可以在700℃~1000℃的温度下对冷却后的镀件进行热处理,从而得到用于热冲压成形钢的镀层。
优选地,在热浸镀中,可以将温度为680℃~700℃、650℃~750℃或680℃~780℃的待处理的钢浸入温度为700℃~720℃、680℃~770℃或700℃~800℃的镀液,热浸渡时间可以为15s~25s、15s~20s或10s~20s。
优选地,在镀后冷却中,镀后的钢的冷却速率可以为8℃/s~15℃/s。
优选地,在镀层热处理中,热处理温度可以为750℃~800℃、750℃~930℃或800℃~950℃。优选地,在镀层热处理中,热处理温度可以为930℃。
根据本发明的示例性实施例,待处理的钢在热浸镀之前还可以经历连续退火步骤,连续退火步骤可以采用氧含量≤80ppm、露点为-50℃~10℃、氢气体积含量为3%~25%的氮氢混合气体。优选地,氮氢混合气体的露点可以是-30℃~10℃或-10℃~10℃。更优选地,氮氢混合气体的露点可以是-20℃、-30℃或-10℃。优选地,氮氢混合气体的氢气含量可以是5vol%~8vol%、或8vol%~10vol%。更优选地,氮氢混合气体的氢气含量可以是3vol%、5vol%或8vol%。
根据本发明的示例性实施例,在热浸镀步骤之前还可以进行清洗步骤,可以将待处理的钢清洗至单面表面残留≤50mg/m 2,表面反射率≥90%。优选地,可以将待处理的钢清洗至单面表面残留≤40mg/m 2,表面反射率≥95%。
优选地,制造用于热冲压成形钢的镀层的工艺流程可以是:待处理的钢板或钢卷(基板)清洗-连续退火-热浸镀-镀后冷却-镀层热处理。
下面的实施例1至实施例6描述了用于制造包含Ni的镀层的镀液成分和主要工艺参数以及所得镀层的主要性能。实施例1至实施例6分别采用表1中的镀液成分,按照表2中的主要工艺参数进行制造。所得镀层的主要性能如表3所示。
表1镀液成分(wt%)
  Al Si Ni Ce La Fe
实施例1 91.1 8.2 0.1 0.2 0.2 0.2
实施例2 82.6 6.0 10.0 0.3 0.8 0.3
实施例3 87.7 10.0 1.0 0.5 0.2 0.6
实施例4 75.7 20.0 2.0 0.7 0.6 1.0
实施例5 83.4 11.0 3.0 1.5 0.7 0.4
实施例6 90.0 9.0 0.3 0.0 0.0 0.7
表2 主要工艺参数
Figure PCTCN2017119191-appb-000001
在表2中,钢卷温度指的是待处理的钢卷浸入镀液时的温度,即此温度的待处理的钢卷浸入镀液。
表3 镀层的主要性能
Figure PCTCN2017119191-appb-000002
如上述,根据本发明的实施例制造的包含Ni的镀层可以具有良好的抗高温氧化性,与钢卷结合紧密、镀层表面无龟裂、不脱离、不粘模具。
下面的实施例7至实施例12描述了用于制造包含Cu的镀层的镀液成分和主要工艺参数以及制造的镀层的主要性能。实施例7至实施例12分别采用表4中的镀液,按照表5中的主要工艺参数进行制造。制造的镀层的主要性能如表6所示。
表4 镀液成分(wt%)
实施例 Al Si Cu Cr Fe
7 91.4 6 2 0.2 0.4
8 87.9 10 1.5 0.4 0.2
9 86.7 8 5 0.2 0.1
10 84 5 10 0.3 0.7
11 75.6 15 8 1 0.4
12 85.3 13 0.5 0.8 0.4
表5 主要工艺参数
Figure PCTCN2017119191-appb-000003
表6 镀层的主要性能指标
Figure PCTCN2017119191-appb-000004
根据上述的实施例7至实施例12,包含Cu的镀层可以具有良好的抗高温氧化性,镀层增重比例小、与基板结合紧密、镀层表面无龟裂、不脱离、不粘模具,并且具有良好的耐腐蚀性。
下面的实施例13至实施例18描述了用于制造包含Cu和Ni的镀层的镀液成分和主要工艺参数以及制造的镀层的主要性能。实施例13至实施例18分别采用表7中的镀液,按照表8中的主要工艺参数进行制造。制造的镀层的主要性能如表9所示。
表7 镀液成分(wt%)
实施例 Al Si Cu Ni Ce La Cr Fe
13 93.7 5 0.2 0.3 0.1 0.4 0.1 0.2
14 90.3 8 0.5 0.5 0 0 0.2 0.5
15 76 10 10 2 0.4 0.8 0.4 0.4
16 61.6 20 8 8 0.6 0.6 1 0.2
17 72.1 15 0.3 10 0.8 0.2 0.8 0.8
18 73.7 12 5 6 1 0.7 0.6 1
表8 主要工艺参数
Figure PCTCN2017119191-appb-000005
表9 镀层的主要性能指标
Figure PCTCN2017119191-appb-000006
下面将通过参照附图更清楚地描述本发明。图1是根据本发明的实施例3的具有Al-Si-Ni镀层的热成形钢在热处理前的扫描电子显微镜图像。图2是根据本发明的实施例14的具有Al-Si-Ni-Cu镀层的热成形钢在热处理前的扫描电子显微镜图像。图3是根据本发明的实施例3的具有Al-Si-Ni镀层的 热成形钢在热冲压后的扫描电子显微镜图像。图4是根据本发明的实施例14的具有Al-Si-Ni-Cu镀层的热成形钢在热冲压后的扫描电子显微镜图像。
对比分析图1和图2可以发现,Al-Si-Ni镀层的合金相以条状为主,而Al-Si-Ni-Cu镀层的合金相以颗粒状或块状为主,因此与Al-Si-Ni镀层的组织相比,Al-Si-Ni-Cu镀层的组织均匀性有所改善,镀层的冲压成形性能提高,并且不易发生破裂。另外,Cu和Ni复合添加改善了镀层表面状态,使得镀层表面更连续;同时镀层表层亮白色的氧化层也更加均匀致密,也改善了镀层抗高温氧化性。
对比分析图3和图4可以发现,热冲压后的Al-Si-Ni-Cu镀层遗传了热冲压前的更好的组织均匀性,整个镀层几乎整体成为合金相,因此镀层的抗氧化性能明显提高。并且,镀层与热成形钢基体的结合部位也保持了附着性能,镀层与热成形钢基体结合部位较好地阻止了裂纹的扩展,镀层表层氧化层更加连续致密,显示了良好的耐腐蚀性能。Cu和Ni这两种元素在镀层主要呈游离态和合金态,呈游离态时都可以在镀层表面聚集,并且能够相互无限固熔,而Cu和Ni的熔点都大大高于Al-Si镀层的熔点,并且由于Al-Si镀层本身也具有很高的耐高温氧化性能,因此Cu、Ni复合添加可以进一步提高镀层的耐高温氧化性能。Cu、Ni复合添加使得镀层凝固过程均匀进行,因此组织更加均匀,镀层表面也更加平滑而表现出氧化层的连续性和致密性。
虽然已经参照本发明的示例性实施例具体地示出并描述了本发明,但是本领域普通技术人员将理解,在不脱离如所附权利要求和它们的等同物所限定的本发明的精神和范围的情况下,可以在此做出形式和细节上的各种改变。应当仅仅在描述性的意义上而不是出于限制的目的来考虑实施例。因此,本发明的范围不是由本发明的具体实施方式来限定,而是由权利要求书来限定,该范围内的所有差异将被解释为包括在本发明中。

Claims (15)

  1. 一种用于热冲压成形钢的镀层,其特征在于,基于镀层的总重量,所述镀层包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
  2. 根据权利要求1所述的用于热冲压成形钢的镀层,其特征在于,基于镀层的总重量,所述镀层包括:Si 6.0wt%~10.0wt%,Ni 0.1wt%~0.3wt%,Ce 0.5wt%~1.5wt%,La 0wt%~0.3wt%,Fe不超过0.3wt%,余量为Al及不可避免的杂质。
  3. 一种用于热冲压成形钢的镀层,其特征在于,基于镀层的总重量,所述镀层包括:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
  4. 根据权利要求3所述的用于热冲压成形钢的镀层,其特征在于,基于镀层的总重量,所述镀层包括:Si 7.0wt%~13.0wt%,Cu 0.5wt%~1.5wt%,Cr 0.1wt%~0.3wt%,Fe不超过0.3wt%,余量为Al及不可避免的杂质。
  5. 一种制造用于热冲压成形钢的镀层的方法,其特征在于,所述方法包括以下步骤:
    热浸镀:将温度为600℃~840℃的待处理的钢浸入温度为640℃~800℃的镀液,并且持续6s~30s,其中,镀液的成分为:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质;
    镀后冷却:采用氮气或空气以6℃/s~30℃/s的冷却速率将镀后的钢冷却至150℃;
    镀层热处理:在氮气保护下将冷却后的钢加热至800℃~950℃,并且保温2min~10min,从而得到用于热冲压成形钢的镀层。
  6. 根据权利要求5所述的方法,其特征在于,在所述热浸镀步骤中,将温度为700℃~750℃的待处理的钢浸入温度为720℃~790℃的镀液,并且持续10s~20s;在所述镀后冷却步骤中,冷却速率为10℃/s~15℃/s;在所述镀层热处理步骤中,将冷却后的钢加热至890℃~925℃,并且保温5min~8min。
  7. 根据权利要求5所述的方法,其特征在于,所述待处理的钢在热浸镀之前经历连续退火步骤,所述连续退火步骤采用氧含量≤100ppm、露点为 -50℃~20℃、氢气体积含量为3%~25%的氮氢混合气体。
  8. 一种制造用于热冲压成形钢的镀层的方法,其特征在于,所述方法包括以下步骤:
    热浸镀:将温度为580℃~750℃的待处理的钢浸入温度为580℃~750℃的镀液,并且持续6s~30s,其中,镀液的成分为:Si 1.0wt%~15.0wt%,Cu 0.5wt%~10.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质,其中,在热浸镀过程中,气刀采用惰性气体喷吹,惰性气体的温度为20℃~150℃,镀层的厚度控制在10μm~25μm;
    镀后冷却:采用风冷以5℃/s~15℃/s的冷却速率将镀后的钢冷却至≤150℃,然后水冷至室温;
    镀层热处理:在700℃~1000℃的温度下对冷却后的钢进行热处理,从而得到用于热冲压成形钢的镀层。
  9. 根据权利要求8所述的方法,其特征在于,在所述热浸镀步骤中,将温度为620℃~700℃的待处理的钢浸入温度为620℃~720℃的镀液,其中,惰性气体的温度为60℃~100℃,镀层的厚度为15μm~20μm;在所述镀后冷却步骤中,冷却速率为8℃/s~10℃/s或8℃/s~13℃/s;在所述镀层热处理步骤中,热处理的温度为750℃~930℃。
  10. 根据权利要求8所述的方法,其特征在于,在所述热浸镀步骤之前进行清洗步骤,将待处理的钢清洗至单面表面残留≤50mg/m 2,表面反射率≥90%。
  11. 一种用于热冲压成形钢的镀层,其特征在于,基于镀层的总重量,所述镀层包括:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质。
  12. 一种制造用于热冲压成形钢的镀层的方法,其特征在于,所述方法包括以下步骤:
    热浸镀:将温度为550℃~800℃的待处理的钢浸入温度为570℃~850℃镀液,并且持续6s~30s,其中,镀液的成分为:Si 5.0wt%~20.0wt%,Ni 0.1wt%~10.0wt%,Cu 0.1wt%~10.0wt%,Ce 0~2.0wt%,La 0~2.0wt%,Cr 0.1wt%~1.0wt%,Fe不超过1.0wt%,余量为Al及不可避免的杂质;
    镀后冷却:采用氮气或空气以4℃/s~25℃/s的冷却速率将镀后的钢冷却 至150℃;
    镀层热处理:在700℃~1000℃的温度下对冷却后的钢进行热处理,从而得到用于热冲压成形钢的镀层。
  13. 根据权利要求12所述的方法,其特征在于,在所述热浸镀步骤中,将温度为680℃~780℃的待处理的钢浸入温度为700℃~800℃的镀液,并且持续10s~20s;在所述镀后冷却步骤中,冷却速率为8℃/s~15℃/s;在镀层热处理中,热处理温度为750℃~930℃。
  14. 根据权利要求12所述的方法,其特征在于,所述待处理的钢在热浸镀之前经历连续退火步骤,所述连续退火步骤采用氧含量≤80ppm、露点为-50℃~10℃、氢气体积含量为3%~25%的氮氢混合气体。
  15. 根据权利要求12所述的方法,其特征在于,在所述热浸镀步骤之前进行清洗步骤,将待处理的钢清洗至单面表面残留≤50mg/m 2,表面反射率≥90%。
PCT/CN2017/119191 2017-11-16 2017-12-28 用于热冲压成形钢的镀层及其制造方法 WO2019095514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17932567.5A EP3712293A4 (en) 2017-11-16 2017-12-28 COATING FOR HOT MOLD STEEL AND METHOD FOR MANUFACTURING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711137396.4 2017-11-16
CN201711137396.4A CN107904535A (zh) 2017-11-16 2017-11-16 用于热冲压成形钢的镀层及其制造方法

Publications (1)

Publication Number Publication Date
WO2019095514A1 true WO2019095514A1 (zh) 2019-05-23

Family

ID=61844352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119191 WO2019095514A1 (zh) 2017-11-16 2017-12-28 用于热冲压成形钢的镀层及其制造方法

Country Status (3)

Country Link
EP (1) EP3712293A4 (zh)
CN (1) CN107904535A (zh)
WO (1) WO2019095514A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642425B (zh) * 2018-04-17 2020-05-19 马钢(集团)控股有限公司 热冲压用Al-Si-Ti合金镀层钢板及其生产方法
WO2020162513A1 (ja) 2019-02-05 2020-08-13 日本製鉄株式会社 被覆鋼部材、被覆鋼板およびそれらの製造方法
CN112553522B (zh) * 2019-09-25 2022-07-15 上海梅山钢铁股份有限公司 一种折弯性能优良的冷轧热镀铝锌钢板及其制造方法
MX2022006553A (es) * 2019-12-20 2022-10-10 Autotech Eng Sl Proceso y linea de produccion para la formacion de objetos.
CN110965002B (zh) * 2019-12-31 2022-04-15 马鞍山钢铁股份有限公司 宽热成形加热工艺窗口的Mg-Al-Si合金体系涂覆钢板及其制备和热冲压成形工艺
CN111041370B (zh) * 2019-12-31 2021-06-22 马鞍山钢铁股份有限公司 宽热成形加热工艺窗口的Cr-Al-Si合金体系涂覆钢板及其制备和热冲压成形工艺
CN111020296B (zh) * 2019-12-31 2021-05-14 马鞍山钢铁股份有限公司 宽热成形加热工艺窗口的Ni-Al-Si合金体系涂覆钢板及其制备和热冲压成形工艺
US11926120B2 (en) 2020-05-13 2024-03-12 Nippon Steel Corporation Steel sheet for hot stamping
JP7269525B2 (ja) * 2020-05-13 2023-05-09 日本製鉄株式会社 ホットスタンプ用鋼板
CN111778467B (zh) * 2020-09-04 2020-11-24 育材堂(苏州)材料科技有限公司 带铝或铝合金预镀层的预镀层钢板、制造方法及热冲压成形构件
CN112680686A (zh) * 2020-11-26 2021-04-20 河钢股份有限公司 一种低成本高耐蚀铝合金镀层热冲压成形钢的生产方法
DE102022115400A1 (de) * 2022-06-21 2023-12-21 Thyssenkrupp Steel Europe Ag Blechformteil mit verbesserten Schweißeigenschaften

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952653A (zh) * 2014-04-18 2014-07-30 河北钢铁股份有限公司 热冲压成形钢用抗高温氧化镀层材料以及热浸渡工艺
CN104233149A (zh) * 2014-08-28 2014-12-24 河北钢铁股份有限公司 用于热冲压成形钢的抗高温氧化镀层材料及热浸镀方法
CN106282873A (zh) * 2015-05-13 2017-01-04 宝山钢铁股份有限公司 一种热冲压钢的合金镀层及其制备方法
CN107022702A (zh) * 2017-04-06 2017-08-08 河钢股份有限公司 用于热冲压成形的铝基镀层材料及其冶炼方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312005B1 (en) * 2008-07-11 2020-01-15 Nippon Steel Corporation Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet
CA2930636C (en) * 2013-12-12 2017-12-05 Nippon Steel & Sumitomo Metal Corporation Al-plated steel sheet used for hot pressing and method for manufacturing al-plated steel sheet used for hot pressing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952653A (zh) * 2014-04-18 2014-07-30 河北钢铁股份有限公司 热冲压成形钢用抗高温氧化镀层材料以及热浸渡工艺
CN104233149A (zh) * 2014-08-28 2014-12-24 河北钢铁股份有限公司 用于热冲压成形钢的抗高温氧化镀层材料及热浸镀方法
CN106282873A (zh) * 2015-05-13 2017-01-04 宝山钢铁股份有限公司 一种热冲压钢的合金镀层及其制备方法
CN107022702A (zh) * 2017-04-06 2017-08-08 河钢股份有限公司 用于热冲压成形的铝基镀层材料及其冶炼方法

Also Published As

Publication number Publication date
EP3712293A4 (en) 2021-09-15
CN107904535A (zh) 2018-04-13
EP3712293A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2019095514A1 (zh) 用于热冲压成形钢的镀层及其制造方法
JP5463906B2 (ja) ホットスタンプ用鋼板及びその製造方法
TWI458838B (zh) 熱壓印成形體、及熱壓印成形體之製造方法
JP4724780B2 (ja) 急速加熱ホットプレス用アルミめっき鋼板、その製造方法、及びこれを用いた急速加熱ホットプレス方法
EP2684985B1 (en) Process for producing hot-pressed member steel sheet
JP5444650B2 (ja) ホットプレス用めっき鋼板及びその製造方法
JP5825447B2 (ja) 熱間プレス成形部材の製造方法
JP5434537B2 (ja) 溶接性に優れた高Si含有合金化溶融めっき鋼板およびその製造方法
TWI507535B (zh) Alloyed molten galvanized steel sheet
CN104870679B (zh) 高锰热镀锌钢板及其制造方法
TW201303040A (zh) 材質穩定性、加工性以及鍍敷外觀優異之高強度熔融鍍鋅鋼板之製造方法
JP5488410B2 (ja) 熱処理用溶融亜鉛めっき鋼板およびその製造方法
US11377712B2 (en) Hot dipped high manganese steel and manufacturing method therefor
JP7241283B2 (ja) 耐食性及び溶接性に優れた熱間プレス用アルミニウム-鉄系めっき鋼板及びその製造方法
KR20200066239A (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
JP4940813B2 (ja) TS×Elの値が21000MPa・%以上である溶融亜鉛めっき鋼板の製造方法
JP6379717B2 (ja) ホットスタンプ用合金化溶融亜鉛めっき鋼材の製造方法
WO2023274281A1 (zh) 一种trip钢及其制备方法、冷轧钢板和热镀锌钢板
JP2003328099A (ja) 高強度溶融亜鉛めっき鋼板の製造方法
CN108642425A (zh) 热冲压用Al-Si-Ti合金镀层钢板及其生产方法
JP4975406B2 (ja) 高張力合金化溶融亜鉛めっき鋼板およびその製造方法
JP3896892B2 (ja) 歪み時効硬化特性に優れる溶融亜鉛めっき熱延鋼板の製造方法
TWI480386B (zh) Hot rolled steel sheet and method of manufacturing the same
KR20120041619A (ko) 도금성 및 밀착성이 우수한 용융아연 도금강판 및 그 제조방법
TW201942386A (zh) 合金化熔融鍍鋅鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017932567

Country of ref document: EP

Effective date: 20200616