WO2019095444A1 - 用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用 - Google Patents

用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用 Download PDF

Info

Publication number
WO2019095444A1
WO2019095444A1 PCT/CN2017/114214 CN2017114214W WO2019095444A1 WO 2019095444 A1 WO2019095444 A1 WO 2019095444A1 CN 2017114214 W CN2017114214 W CN 2017114214W WO 2019095444 A1 WO2019095444 A1 WO 2019095444A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
kno
nano
heat storage
heat transfer
Prior art date
Application number
PCT/CN2017/114214
Other languages
English (en)
French (fr)
Inventor
曾智勇
崔小敏
徐慧芬
聂海宁
Original Assignee
青海爱能森新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青海爱能森新材料科技有限公司 filed Critical 青海爱能森新材料科技有限公司
Publication of WO2019095444A1 publication Critical patent/WO2019095444A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a heat transfer heat storage medium, in particular to a heat transfer and heat storage molten salt for a clean energy boiler, a preparation method and application thereof.
  • the nitrate molten salt system for heat transfer and heat storage medium mainly includes binary Solar Salt molten salt and ternary Hitec molten salt system.
  • the binary nitrate system has stable performance, no combustion, no explosion hazard, but its melting point is high, the working temperature range is narrow, the cold start process of the unit is complicated, the heat consumption is large, and the system maintenance cost is high.
  • the existing ternary nitrate system has a relatively low melting point, the upper limit use temperature is also low, and inert gas protection is required during use.
  • the nitrate system has the disadvantages of less latent heat of fusion and low thermal conductivity.
  • the invention provides a novel heat transfer and heat storage medium, based on molten salt, designs and formulates a novel low melting point, low cost composite molten salt, and designs a related preparation process, the composite melting
  • the salt can be used as a heat transfer and heat storage medium in a medium-high temperature clean energy boiler.
  • the composite molten salt has low vapor pressure, low corrosivity to metal, low risk, and can realize effective heat transfer and heat storage functions.
  • a heat transfer and heat storage molten salt for a clean energy boiler characterized in that KNO 3 , NaNO 2 and Ca(NO 3 ) 2 ⁇ 4H 2 O are used as raw materials, and are prepared by the following preparation steps:
  • the composite molten salt is placed in a muffle furnace at 200-250 ° C for 8-12 hours to remove the crystal water in Ca(NO3) 2 ⁇ 4H 2 O; after the water of crystallization is evaporated, the temperature is further increased to 350 ° C, thoroughly Remove the water from the molten salt, and after cooling, obtain a solid Uniform system composite molten salt;
  • the weight percentages of the three monomer molten salts of KNO 3 , NaNO 2 and Ca(NO 3 ) 2 ⁇ 4H 2 O in the prepared molten salt are as follows:
  • KNO 3 20-50%; NaNO 2 : 5-30%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 30-60%;
  • the weight percentage of each raw material component is: KNO 3 : 20-45%; NaNO 2 : 5-20%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 40-60%,
  • KNO 3 20-30%; NaNO 2 : 12-19%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 56-60%;
  • weight percentage of each raw material component is as follows:
  • KNO 3 20%; NaNO 2 : 20%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 60%;
  • the weight percentage of each raw material component is: KNO 3 : 30-36%; NaNO 2 : 9-20%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 48-56%.
  • weight percentage of each raw material component is as follows:
  • the weight percentage of each raw material component is: KNO 3 : 35-45%; NaNO 2 : 5-18%; Ca (NO 3 ) 2 ⁇ 4H 2 O: 40-60%;
  • weight percentage of each raw material component is as follows:
  • KNO 3 42%; NaNO 2 : 18%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 40%;
  • KNO 3 45%; NaNO 2 : 5%; Ca(NO 3 ) 2 ⁇ 4H 2 O: 50%.
  • the temperature-increasing heating from 50 ° C for 24-36 hours means heating and stirring at 50 ° C for 8-12 hours, heating at 80 ° C for 8-12 hours, heating at 120 ° C and stirring for 8-12 hours.
  • the three monomer molten salts of KNO 3 , NaNO 2 and Ca(NO 3 ) 2 ⁇ 4H 2 O are monomer molten salts subjected to recrystallization purification treatment.
  • the experimental data show that the molten salt of the present invention obtained by recombining the recrystallized and purified monomeric nitric acid molten salt has a markedly improved thermal stability as compared with the molten salt of the industrial pure grade monomeric nitrate molten salt.
  • the composite molten salt is placed in a muffle furnace at 200-250 ° C for 8-12 hours to remove the crystal water in Ca(NO 3 ) 2 ⁇ 4H 2 O; after the water of crystallization is evaporated, the temperature is further increased to 350. At °C, the water in the molten salt is completely removed, and after cooling, a solid homogeneous composite molten salt is obtained.
  • the heat transfer and heat storage molten salt according to any of the above uses as a heat storage medium for a clean energy boiler.
  • the heat transfer and heat storage molten salt according to any one of the above uses as a solar thermal power generation heat storage medium.
  • the invention adopts calcium nitrate, potassium nitrate and sodium nitrite as raw materials, and improves the compounding ratio and processing technology thereof, and obtains a series of composite molten salt having a melting point as low as 90 ° C and a decomposition temperature of up to 600 ° C by heating and compounding, and Both thermal conductivity and specific heat capacity are ideal.
  • the obtained composite molten salt has low melting point, good thermal stability, saturated vapor pressure of less than 2 atmospheres, good heat transfer and heat storage performance, and is particularly suitable as a heat transfer and heat storage medium in a clean energy boiler, and can also be used for solar light. Thermal power generation and other heat and heat storage areas.
  • the preparation process is simple, and the monomer used is cheap, so that the cost of the composite molten salt is low.
  • molten salt has many aspects in its preparation and use:
  • the molten salt provided by the present invention is relatively low in raw material cost because lithium nitrate is not contained therein; and the molten salt of the present invention is heated incrementally from 50 degrees Celsius.
  • the preparation method not only can completely remove water molecules, but also makes the obtained composite molten salt more stable. In addition, it does not contain chloride ions, and further ensures the advantage of less corrosive to the system; the above characteristics make the molten salt of the invention Whether it is prepared or used, the operating cost can be greatly reduced.
  • the system of the molten salt of the present invention has a low vapor pressure of not higher than 2 atm, which improves the reliability of the solar thermal power generation system.
  • the molten salt of the present invention stably operates in a temperature range of 150-550 degrees Celsius, and the viscosity is not more than 5.5 cp, and the viscosity is low, which can ensure good heat transfer efficiency, power generation efficiency, and reduced pipe plugging.
  • the safety and stability of the entire system is improved and the life is increased.
  • the present invention provides a low-cost clean energy medium with significantly improved comprehensive performance, which is particularly suitable as a heat transfer and heat storage medium in a clean energy boiler, and can also be used in the field of solar thermal power generation and other heat and heat storage.
  • Figure 1 is a mixed nitrate DTA curve of the number 14 of the present invention.
  • Figure 2 is a mixed nitrate TG curve of the number 14 of the present invention.
  • Ca(NO 3 ) 2 ⁇ 4H 2 O, KNO 3 , NaNO 2 industrial grade, can be purchased by general chemical companies.
  • the composite molten salt is placed in a muffle furnace at 200-250 ° C for 8-12 hours to remove the crystal water in Ca(NO 3 ) 2 ⁇ 4H 2 O; after the water of crystallization is evaporated, the temperature is further increased to 350. °C, the water in the molten salt is completely removed, and after cooling, a solid homogeneous system composite molten salt is obtained.
  • the %wt of calcium nitrate indicates the ratio of Ca(NO 3 ) 2 in the finally obtained low-temperature molten salt.
  • the raw material of molten salt is Ca(NO 3 ) 2 ⁇ 4H 2 O, according to the specific gravity of Ca(NO 3 ) 2 Calculate and weigh Ca(NO 3 ) 2 ⁇ 4H 2 O.
  • Test instrument using a saturated vapor pressure tester, each molten salt was taken in three parts for testing, and the test results were averaged. The test results are shown in Table 3 - Table 7.
  • Test instrument using a rotary rheometer (passing protective gas), each molten salt is tested in triplicate, and the test results are taken at 300 ° C and / or 400 ° C average, the results are shown in Table 3 - Table 7
  • the present invention provides that the molten salt has a wide temperature range of use, the melting point is reduced to below about 130 degrees Celsius, and the decomposition temperature is substantially higher than 580 degrees Celsius; this can correspondingly increase the molten salt.
  • the power generation efficiency; specific heat capacity, thermal conductivity and viscosity are significantly better than the commonly used molten salt in the prior art.
  • the saturated vapor pressure measurement results are on average 1.5-1.8 atmospheres, which has low stability requirements for the system and is therefore safer and more reliable.
  • the viscosity is low, the heat transfer efficiency is high, the power generation efficiency is high, the pipeline blockage is reduced, the safety and stability of the entire system is improved, and the life is increased.
  • the thermal conductivity is higher than that of the conventional molten salt, the heat storage capacity is improved, the specific heat capacity and the operating temperature range are better than the conventional molten salt, the heat storage capacity is increased compared with the conventional molten salt, the same amount of the heat storage molten salt, and the heat storage amount of the molten salt of the present invention is used.
  • Example 1-25 The only difference from Examples 1-25 is that the four molten salt monomers after recrystallization purification are used.
  • the test result data is similar to Table 1-3.
  • the upper limit temperature is significantly increased: an average increase of 20-30 degrees Celsius, and the upper limit use temperature is almost averaged to 620-640 degrees Celsius.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用,涉及清洁能源技术,由KNO3、NaNO2和Ca(NO3)2·4H2O为原料制成,各原料成分的重量百分比为:KNO3:20-50%;NaNO2:5-30%;Ca(NO3)2·4H2O:30-60%。该复合熔盐具有熔点低、热稳定好,饱和蒸气压低于2个大气压,可有效传热和蓄热。

Description

用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用 技术领域
本发明涉及一种传热蓄热介质,尤其涉及用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用。
背景技术
目前,在工业蓄能和太阳能高温热利用领域,用于传热蓄热介质的硝酸熔盐体系主要包括二元的Solar Salt熔盐和三元Hitec熔盐体系。在这两种熔融盐体系中,二元硝酸盐体系性能稳定,不燃烧,无爆炸危险,但是其熔点偏高,工作温度范围窄,机组冷态启动过程复杂,耗热量大,系统维护费用高。现有三元硝酸盐体系虽然熔点相对低,但上限使用温度也较低,且在使用过程中需进行惰性气体保护。硝酸盐体系存在熔融潜热较小和导热系数低等缺点。
现有的技术中人们尝试向硝酸熔盐体系中加入其它的成分来解决上述问题,但是改善后的硝酸熔盐体系的上限温度提高的同时,其下限工作温度也被提高,导致云遮时保温维护成本增大。丁静等发明了一种四元熔盐,即在三元熔盐体系基础上加入LiNO3,其最佳使用温度范围为250-550℃。这个系统的上限工作温度与三元硝酸熔盐体系相比有所提高,达到550℃,但其下限工作温度也被提高。因此有必要开发和改进现有硝酸盐体系。
发明内容
本发明提供了一种全新的传热储热介质,以熔盐为基础,设计配方,发明了一种新型的低熔点、低成本的复合熔盐,并设计了相关的制备工艺,该复合熔盐可以作为中高温清洁能源锅炉中的传热、蓄热介质,该复合熔盐蒸汽压低、对金属的腐蚀性小,危险性低,可实现有效的传热及蓄热功能。本发明请求保护的技术方案如下:
一种用于清洁能源锅炉的传热蓄热熔盐,其特征在于是以KNO3、NaNO2和Ca(NO3)2·4H2O为原料,经如下制备步骤制成:
(1)将三种原料KNO3、NaNO2和Ca(NO3)2·4H2O放入刚玉坩埚内,混合搅拌;
(2)将混合后的熔盐置于烘箱中,从50℃开始温度递增地加热24-36小时,最后在150℃加热并搅拌直至复合熔盐成为均一溶液体系;
(3)将复合熔盐置于200-250℃马弗炉,保温8-12小时,除去Ca(NO3)2·4H2O中的结晶水;待结晶水蒸发去除后,继续升温至350℃,彻底除去熔盐中的水分,冷却后,得到固体 的均一体系复合熔盐;
制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐的重量百分比如下:
KNO3:20-50%;NaNO2:5-30%;Ca(NO3)2·4H2O:30-60%;
优选地,各原料成分的重量百分比为:KNO3:20-45%;NaNO2:5-20%;Ca(NO3)2·4H2O:40-60%,
进一步优选为KNO3:20-30%;NaNO2:12-19%;Ca(NO3)2·4H2O:56-60%;
进一步地,各原料成分的重量百分比如下:
KNO3:20%;NaNO2:20%;Ca(NO3)2·4H2O:60%;
KNO3:23%;NaNO2:18%;Ca(NO3)2·4H2O:59%;
KNO3:25%;NaNO2:19%;Ca(NO3)2·4H2O:56%
KNO3:27%;NaNO2:16%;Ca(NO3)2·4H2O:57%;或
KNO3:30%;NaNO2:12%;Ca(NO3)2·4H2O:58%。
优选地,各原料成分的重量百分比如为:KNO3:30-36%;NaNO2:9-20%;Ca(NO3)2·4H2O:48-56%。
进一步地,各原料成分的重量质百分比如下:
KNO3:32%;NaNO2:20%;Ca(NO3)2·4H2O:48%;
KNO3:36%;NaNO2:13%;Ca(NO3)2·4H2O:51%;
KNO3:35%;NaNO2:9%;Ca(NO3)2·4H2O:56%;或
KNO3:30%;NaNO2:15%;Ca(NO3)2·4H2O:55%。
优选地,各原料成分的重量百分比为:KNO3:35-45%;NaNO2:5-18%;Ca(NO3)2·4H2O:40-60%;
进一步地,各原料成分的重量百分比如为:
KNO3:35%;NaNO2:5%;Ca(NO3)2·4H2O:60%
KNO3:36%;NaNO2:10%;Ca(NO3)2·4H2O:54%
KNO3:38%;NaNO2:17%;Ca(NO3)2·4H2O:45%
KNO3:42%;NaNO2:18%;Ca(NO3)2·4H2O:40%;或
KNO3:45%;NaNO2:5%;Ca(NO3)2·4H2O:50%。
优选地,所述从50℃开始温度递增地加热24-36小时指在50℃加热并搅拌8-12小时、80℃加热并搅拌8-12小时、120℃加热并搅拌8-12小时。
优选地,所述KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐是经过重结晶提纯处理的单体 熔盐。实验数据显示,经过重结晶提纯处理的单体硝酸熔盐复合而得的本发明熔盐,相较于直接采用工业纯级的单体硝酸熔盐复合的熔盐,其热稳定性显著提高。
上述传热蓄热熔盐的制备工艺,其特征在于包括以下步骤:各原料成分的重量质百分比如下:
(1)将三种原料KNO3、NaNO2和Ca(NO3)2·4H2O放入刚玉坩埚内,混合搅拌;
(2)将混合后的熔盐置于烘箱中,从50℃开始温度递增地加热24-36小时,最后在150℃加热并搅拌直至复合熔盐成为均一溶液体系;
(3)将复合熔盐置于200-250℃马弗炉,保温8-12小时,除去Ca(NO3)2·4H2O中的结晶水;待结晶水蒸发去除后,继续升温至350℃,彻底除去熔盐中的水分,冷却后,得到固体的均一体系复合熔盐。
上述任一所述的传热蓄热熔盐作为清洁能源锅炉储热传热介质的用途。
上述任一所述的传热蓄热熔盐作为太阳能光热发电储热传热介质的用途。
本发明采用硝酸钙、硝酸钾、亚硝酸钠作为原料,通过对其配比和加工工艺进行了改进,加热复合得到一系列熔点低至90℃、分解温度可达600℃的复合熔盐,且导热系数和比热容都比较理想。所得复合熔盐熔点低、热稳定性好、饱和蒸气压低于2个大气压、有良好的传热和储热性能,特别适合作为清洁能源锅炉中的传热及蓄热介质,也可用于太阳能光热发电及其它传热蓄热领域。其制备工艺简单,采用的单体价格便宜使得复合熔盐成本低。
具体地:通过调整原料的各自比重以及制备工艺,获得一系列在熔点低至90℃,分解温度温度可高达600℃,且导热系数可达0.62W/(m·K),比热容可达1.90KJ/(kg·K)。该熔盐在制备和使用中,具有多方面的有点:
一方面,相对于目前光热电站建设和运行的高成本消耗,使用本发明提供的熔盐,由于其中不含硝酸锂,原料成本比较低;而且本发明的熔盐采用从50摄氏度开始递增加热的方式制备,不仅仅能够彻底去除水分子,而且使得所得的复合熔盐更为稳定,此外,不含氯离子,也更进一步保障其对系统腐蚀性小的优点;以上特点使发明的熔盐,无论是制备还是使用,都可以大幅度降低使用运行成本。
第二方面,经测试发现本发明的熔盐的系统蒸汽压低,不高于2个大气压,使得太阳能热发电系统的可靠性得到提高。
第三方面,发现本发明的熔盐在150-550摄氏度温度范围内稳定运行,而且粘度最高不超过5.5cp,粘度低,可以确保具有良好的传热效率,发电效率,管路堵塞减小,整个系统的安全稳定性提高,寿命增加。
因此,本发明提供了一种综合性能显著改进的低成本清洁能源介质,特别适合作为清洁能源锅炉中的传热及蓄热介质,也可用于太阳能光热发电及其它传热蓄热领域。
附图说明
图1是本发明所述编号14的混合硝酸盐DTA曲线;
图2是本发明所述编号14的混合硝酸盐TG曲线。
具体实施方式
实验材料:
Ca(NO3)2·4H2O、KNO3、NaNO2工业纯级,一般化学用品公司可以购买到。
重结晶提纯的Ca(NO3)2·4H2O、KNO3、NaNO2单体盐:制备工艺如下:
各种工业纯级的单体盐经低温(50-100摄氏度)缓慢溶解单品盐溶液,通过吸附树脂进行吸附,再通过压滤机压滤,再将单品盐溶液进行冷却后重结晶,用纯净水对重结晶后的单品盐进行洗涤,再将洗涤后的单品盐放入电加热反应釜内,加入纯净水后加热,将电加热反应釜内的单品盐溶液置于冷却器中冷却结晶,将结晶后的单品盐通过离心机脱水,再用纯净水对脱水后的单品盐进行洗涤,洗涤后单品盐再次通过离心机脱水,然后干燥,得到高纯度的单品盐。
实施例1-25.本发明复合熔盐的制备和检测
步骤1.制备本复合熔盐:
(1)按照表1-1的复合熔盐的组成称取KNO3、NaNO2和Ca(NO3)2·4H2O的比例称取所需的Ca(NO3)2·4H2O放入刚玉坩埚内,混合搅拌;
(2)将混合后的熔盐置于烘箱中,50℃加热并搅拌12小时、80℃加热并搅拌10小时、120℃加热并搅拌8小时、150℃加热并搅拌直至复合熔盐成为均一溶液体系;
(3)将复合熔盐置于200-250℃马弗炉,保温8-12小时,除去Ca(NO3)2·4H2O中的结晶水;待结晶水蒸发去除后,继续升温至350℃,彻底除去熔盐中的水分,冷却后,得到固体均一体系复合熔盐。
表1复合熔盐的原料配比
Figure PCTCN2017114214-appb-000001
注:其中硝酸钙%wt表示最终所得的低温熔盐中Ca(NO3)2的比例,熔盐的原料为Ca(NO3)2·4H2O,根据Ca(NO3)2的比重来计算并其称取Ca(NO3)2·4H2O的用量,比如1号熔盐中,每100g低温熔盐中含有50g Ca(NO3)2,由于Ca(NO3)2在Ca(NO3)2·4H2O中的含 量约为70%,因此,Ca(NO3)2·4H2O的用量为50/0.7=71.4g。
步骤2.测导热系数
方法:采用液体导热系数测试仪进行(在氮气气氛下进行测试),每种熔盐取三份进行测试,测试结果取300℃下的平均值,测试结果见表3-表7:
步骤3.测比热容
方法:采用通用的差示热量扫描仪DSC进行(在常压下进行扫描),每种熔盐取三份进行测试,测试结果取300℃和/或400℃下的平均值,测试结果见表3-表7:
步骤4.测定熔点
方法:采用通用的差示热量扫描仪DSC进行(在常压下进行扫描),每种熔盐取三份进行测试,测试结果取平均值,测试结果见表3-表7:
步骤5.测定分解温度
方法:采用通用的热重分析仪TGA进行(在常压下进行扫描),每种熔盐取三份进行测试,测试结果取平均值,测试结果见表3-表7:
步骤6饱和蒸汽压
测试仪器:采用饱和蒸汽压测定仪,每种熔盐取三份进行测试,测试结果取平均值,测试结果见表3-表7。
步骤7.测粘度
测试仪器:采用旋转流变仪进行(通入保护气体),每种熔盐取三份进行测试,测试结果取300℃和/或400℃下平均值,结果见表3-表7
表2现有技术中常用熔盐测试结果
Figure PCTCN2017114214-appb-000002
表3实施例1-5低温熔盐的物性测试结果
Figure PCTCN2017114214-appb-000003
表4实施例6-10低温熔盐的物性测试结果
Figure PCTCN2017114214-appb-000004
表5实施例11-15低温熔盐的物性测试结果
Figure PCTCN2017114214-appb-000005
表6实施例16-20低温熔盐的物性测试结果
Figure PCTCN2017114214-appb-000006
表7实施例21-25低温熔盐的物性测试结果
Figure PCTCN2017114214-appb-000007
从表2至表7可以看出,本发明提供熔盐具有较宽的使用温度范围,熔点降低到都在130摄氏度左右以下,而分解温度基本都高于580摄氏度;这相应地能够提高熔盐的发电效率;比热容,导热系数和黏度都显著优于现有技术中常用熔盐。
饱和蒸气压测定结果平均在1.5-1.8个大气压,这对系统的稳定性要求低,因此更安全可靠。
粘度低,传热效率高,发电效率高,管路堵塞减小,整个系统的安全稳定性提高,寿命增加。
导热系数较常规熔盐增加,储热能力提高,比热容和使用温度范围较常规熔盐好,储热能力较常规熔盐增加,同等量的储热熔盐,采用本发明的熔盐的储热量显著高于常规Hitec熔盐,进而降低了建设储热系统的成本。
实施例1-25的平行实施例:
与实施例1-25的区别仅在于采用重结晶提纯之后的四种熔盐单体。测试结果数据与表1-3显示相近。但是上限温度显著提高:平均提高20-30摄氏度,上限使用温度平均几乎提到到620-640摄氏度。

Claims (12)

  1. 一种用于清洁能源锅炉的传热蓄热熔盐,其特征在于是以KNO3、NaNO2和Ca(NO3)2·4H2O为原料,经如下制备步骤制成:
    (1)将三种原料KNO3、NaNO2和Ca(NO3)2·4H2O放入刚玉坩埚内,混合搅拌;
    (2)将混合后的熔盐置于烘箱中,从50℃开始温度递增地加热24-36小时,最后在150℃加热并搅拌直至复合熔盐成为均一溶液体系;
    (3)将复合熔盐置于200-250℃马弗炉,保温8-12小时,除去Ca(NO3)2·4H2O中的结晶水;待结晶水蒸发去除后,继续升温至350℃,彻底除去熔盐中的水分,冷却后,得到固体的均一体系复合熔盐;
    制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐的重量百分比如下:
    KNO3:20-50%;NaNO2:5-30%;Ca(NO3)2·4H2O:30-60%。
  2. 根据权利要求1所述的传热蓄热熔盐,其特征在于:制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐重量百分比为:
    KNO3:20-45%;NaNO2:5-20%;Ca(NO3)2·4H2O:40-60%,
    进一步优选为KNO3:20-30%;NaNO2:12-19%;Ca(NO3)2·4H2O:56-60%。
  3. 根据权利要求2所述的传热蓄热熔盐,其特征在于:制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐的重量百分比为:
    KNO3:20%;NaNO2:20%;Ca(NO3)2·4H2O:60%;
    KNO3:23%;NaNO2:18%;Ca(NO3)2·4H2O:59%;
    KNO3:25%;NaNO2:19%;Ca(NO3)2·4H2O:56%
    KNO3:27%;NaNO2:16%;Ca(NO3)2·4H2O:57%;或
    KNO3:30%;NaNO2:12%;Ca(NO3)2·4H2O:58%。
  4. 根据权利要求1所述的传热蓄热熔盐,其特征在于:制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐的重量质百分比为:KNO3:30-36%;NaNO2:9-20%;Ca(NO3)2·4H2O:48-56%。
  5. 根据权利要求4所述的传热蓄热熔盐,其特征在于:制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐的重量百分比为:
    KNO3:32%;NaNO2:20%;Ca(NO3)2·4H2O:48%;
    KNO3:36%;NaNO2:13%;Ca(NO3)2·4H2O:51%;
    KNO3:35%;NaNO2:9%;Ca(NO3)2·4H2O:56%;或
    KNO3:30%;NaNO2:15%;Ca(NO3)2·4H2O:55%。
  6. 根据权利要求1所述的传热蓄热熔盐,其特征在于:制成的熔盐中KNO3、NaNO2和 Ca(NO3)2·4H2O三种单体熔盐的重量百分比为:KNO3:35-45%;NaNO2:5-18%;Ca(NO3)2·4H2O:40-60%;
  7. 根据权利要求6所述的传热蓄热熔盐,其特征在于:制成的熔盐中KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐的重量百分比为:
    KNO3:35%;NaNO2:5%;Ca(NO3)2·4H2O:60%
    KNO3:36%;NaNO2:10%;Ca(NO3)2·4H2O:54%
    KNO3:38%;NaNO2:17%;Ca(NO3)2·4H2O:45%
    KNO3:42%;NaNO2:18%;Ca(NO3)2·4H2O:40%;或
    KNO3:45%;NaNO2:5%;Ca(NO3)2·4H2O:50%。
  8. 根据权利要求1-7任一所述的传热蓄热熔盐,所述从50℃开始温度递增地加热24-36小时指在50℃加热并搅拌8-12小时、80℃加热并搅拌8-12小时、120℃加热并搅拌8-12小时。
  9. 根据权利要求1-8任一所述的传热蓄热熔盐,所述KNO3、NaNO2和Ca(NO3)2·4H2O三种单体熔盐是经过重结晶提纯处理的单体熔盐。
  10. 权利要求1-9任一所述的传热蓄热熔盐的制备工艺,其特征在于包括以下步骤:各原料成分的重量百分比如下:
    (1)将三种原料KNO3、NaNO2和Ca(NO3)2·4H2O放入刚玉坩埚内,混合搅拌;
    (2)将混合后的熔盐置于烘箱中,从50℃开始温度递增地加热24-36小时,最后在150℃加热并搅拌直至复合熔盐成为均一溶液体系;
    (3)将复合熔盐置于200-250℃马弗炉,保温8-12小时,除去Ca(NO3)2·4H2O中的结晶水;待结晶水蒸发去除后,继续升温至350℃,彻底除去熔盐中的水分,冷却后,得到固体的均一体系复合熔盐;
  11. 权利要求1-9任一所述的传热蓄热熔盐作为清洁能源锅炉储热传热介质的用途。
  12. 权利要求1-9任一所述的传热蓄热熔盐作为太阳能光热发电储热传热介质的用途。
PCT/CN2017/114214 2017-11-15 2017-12-01 用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用 WO2019095444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711127770.2A CN109777364A (zh) 2017-11-15 2017-11-15 用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用
CN201711127770.2 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019095444A1 true WO2019095444A1 (zh) 2019-05-23

Family

ID=66493695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114214 WO2019095444A1 (zh) 2017-11-15 2017-12-01 用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN109777364A (zh)
WO (1) WO2019095444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914293B2 (en) 2018-06-20 2021-02-09 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
RU2790484C1 (ru) * 2022-05-24 2023-02-21 Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет" Способ получения теплоаккумулирующего материала на основе тригидрата двойной соли нитратов кальция-калия (варианты)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074040A (zh) * 2013-01-01 2013-05-01 北京工业大学 低熔点混合熔盐传热蓄热介质
CN104474969A (zh) * 2014-12-04 2015-04-01 交城县金兰化工有限公司 含硝酸钾的高温熔盐塔式造粒方法
WO2015076525A1 (ko) * 2013-11-19 2015-05-28 한국에너지기술연구원 6성분계를 포함하는 열저장 물질
CN105131911A (zh) * 2015-09-21 2015-12-09 上海交通大学 相变蓄热介质及其制备及应用
CN105199678A (zh) * 2015-10-30 2015-12-30 百吉瑞(天津)新能源有限公司 一种混合熔盐传热蓄热工质及其应用
CN106433565A (zh) * 2016-09-09 2017-02-22 青海盐湖工业股份有限公司 一种混合熔盐及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071205A1 (en) * 2006-12-13 2008-06-19 Solar Millennium Ag Multinary salt system for storing and transferring thermal energy
CN104479646B (zh) * 2014-11-19 2017-04-12 东方电气集团东方锅炉股份有限公司 一种五元硝酸熔盐传热蓄热介质及其制备方法
CN105567176A (zh) * 2016-02-18 2016-05-11 百吉瑞(天津)新能源有限公司 一种混合熔盐传热蓄热工质、制备方法及其应用
CN107057656A (zh) * 2016-02-18 2017-08-18 百吉瑞(天津)新能源有限公司 一种混合熔盐传热蓄热工质、制备方法及其应用
CN106867470A (zh) * 2016-12-13 2017-06-20 上海铂拓能源科技有限公司 一种四元混合熔盐储热材料及其制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074040A (zh) * 2013-01-01 2013-05-01 北京工业大学 低熔点混合熔盐传热蓄热介质
WO2015076525A1 (ko) * 2013-11-19 2015-05-28 한국에너지기술연구원 6성분계를 포함하는 열저장 물질
CN104474969A (zh) * 2014-12-04 2015-04-01 交城县金兰化工有限公司 含硝酸钾的高温熔盐塔式造粒方法
CN105131911A (zh) * 2015-09-21 2015-12-09 上海交通大学 相变蓄热介质及其制备及应用
CN105199678A (zh) * 2015-10-30 2015-12-30 百吉瑞(天津)新能源有限公司 一种混合熔盐传热蓄热工质及其应用
CN106433565A (zh) * 2016-09-09 2017-02-22 青海盐湖工业股份有限公司 一种混合熔盐及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914293B2 (en) 2018-06-20 2021-02-09 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11225951B2 (en) 2018-06-20 2022-01-18 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11692530B2 (en) 2018-06-20 2023-07-04 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
RU2790484C1 (ru) * 2022-05-24 2023-02-21 Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет" Способ получения теплоаккумулирующего материала на основе тригидрата двойной соли нитратов кальция-калия (варианты)

Also Published As

Publication number Publication date
CN109777364A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2018006820A1 (zh) 低熔点传热蓄热熔盐、制备方法及其应用
CN103881662A (zh) 一种三元硝酸纳米熔盐传热蓄热介质及其制备方法与应用
TW200529247A (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
CN108728048B (zh) 一种三元共熔氯化盐传热蓄热材料及其制备方法和应用
WO2014114220A1 (zh) 一种纳米熔盐传热蓄热介质及其制备方法与应用
CN103911119B (zh) 石英砂复合三元硝酸熔盐传热蓄热介质及其制备方法
WO2016011905A1 (zh) 银掺杂石墨烯复合纸及其制备方法
CN104109508B (zh) 一种硝酸盐体系熔盐储热材料及其制备方法
CN103923618B (zh) 石英砂复合多元硝酸熔盐传热蓄热介质及制备方法
CN108034409A (zh) 一种无机相变储能材料
WO2019095444A1 (zh) 用于清洁能源锅炉的传热蓄热熔盐、制备方法及其应用
Ma et al. Preparation and properties of stearic acid–acetanilide eutectic mixture/expanded graphite composite phase‐change material for thermal energy storage
Enda et al. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials
CN103058857A (zh) 一种歧化松香钾皂的制备方法
CN103965838B (zh) 一种高温相变储热材料及其制备方法
CN103897668B (zh) 一种基于碳酸盐的高温传热材料及其制备方法
CN114574169B (zh) 一种二氧化钒-氮化硼相变导热复合材料及其制备方法和应用
JP5923619B2 (ja) 蓄熱システム、発電システム
CN109852351A (zh) 低熔点熔盐传热蓄热介质及其制备方法和应用
WO2014117663A1 (zh) 石英砂/石墨复合熔盐传热蓄热介质及其制备方法
Zhai et al. Preparation of Multi nitrate molten salt and its properties tests
Zhang et al. Preparation and Heat Transfer/thermal Storage Properties of High-temperature Molten Nitrate Salts
TWI473764B (zh) 熔鹽組合物
CN110305637A (zh) 二元混合硝酸盐传热蓄热工质
CN110066517A (zh) 大比热容导热片、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17932244

Country of ref document: EP

Kind code of ref document: A1