WO2019093217A1 - Polyethylene resin film - Google Patents

Polyethylene resin film Download PDF

Info

Publication number
WO2019093217A1
WO2019093217A1 PCT/JP2018/040649 JP2018040649W WO2019093217A1 WO 2019093217 A1 WO2019093217 A1 WO 2019093217A1 JP 2018040649 W JP2018040649 W JP 2018040649W WO 2019093217 A1 WO2019093217 A1 WO 2019093217A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene resin
film
particles
polyethylene
less
Prior art date
Application number
PCT/JP2018/040649
Other languages
French (fr)
Japanese (ja)
Inventor
大木 祐和
忠嗣 西
松田 明
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201880072163.7A priority Critical patent/CN111315805B/en
Priority to JP2019552750A priority patent/JP7200943B2/en
Priority to KR1020247010725A priority patent/KR20240045383A/en
Priority to KR1020207015312A priority patent/KR20200078598A/en
Publication of WO2019093217A1 publication Critical patent/WO2019093217A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a polyethylene resin film. More specifically, the present invention relates to a polyethylene resin film which is excellent in heat sealability, stable blocking resistance and stable slip property, and also excellent in appearance and scratch resistance.
  • the sealant film is generally used by laminating with a substrate film such as a biaxially oriented nylon film, a biaxially oriented ester film, a biaxially oriented polypropylene film or the like which is inferior in thermal adhesion to a sealant film at a low temperature .
  • a substrate film such as a biaxially oriented nylon film, a biaxially oriented ester film, a biaxially oriented polypropylene film or the like which is inferior in thermal adhesion to a sealant film at a low temperature .
  • a polyethylene-based resin inflation film suitable for a shopping bag has been reported in which particles made of a polyethylene resin having a very high molecular weight are added to a high density polyethylene resin (see, for example, Patent Document 3).
  • this method has problems such as too high tear strength, poor heat seal properties at low temperature, and poor transparency, and in addition, the addition of particles made of polyethylene resin makes the slipperiness unstable. there were.
  • An object of the present invention is to provide a polyethylene resin film which is excellent in heat sealability, stable blocking resistance, stable slipperiness, appearance and scratch resistance and in which particles are less likely to come off. Moreover, it aims at providing the laminated body using this polyethylene-type resin film, and also a package body.
  • the inventors of the present invention intensively studied, as a polyethylene resin film having a density not more than a specific range, contain particles made of a polyethylene resin and control the height of protrusions on the surface of the film. It has been found that the problems can be solved by the above, and the present invention has been solved.
  • the present invention comprises a polyethylene resin composition containing particles of a polyethylene resin and a polyethylene resin having a density of 940 kg / m 3 or less, and substantially free of inorganic particles and organic crosslinked particles,
  • the polyethylene-based resin film is characterized in that the maximum peak height of the surface on one side is 2 ⁇ m or more and 15 ⁇ m or less, and the particles other than the particles made of the polyethylene-based resin.
  • Another aspect is to contain particles made of a polyethylene resin, is substantially free of inorganic particles and organic cross-linked particles, a layer density of the polyethylene resin composition is 940 kg / m 3 or less at least
  • the polyethylene resin film is characterized in that it is on one side and the maximum maximum height of the surface of the layer is 2 ⁇ m or more and 15 ⁇ m or less.
  • the particles of the polyethylene resin have a viscosity average molecular weight of not less than 1.5 million and a melting point peak temperature by DSC of not more than 150.degree.
  • erucic acid amide and / or ethylene bis oleic acid amide.
  • the blocking value of the surface layers having the maximum peak height of 2 ⁇ m or more and 15 ⁇ m or less is 200 mN / 70 mm or less.
  • the laminated body containing the polyethylene-type resin film in any one of the above-mentioned, and another film is suitable.
  • Preferred is a packaging bag comprising a laminate as described above.
  • the present invention can provide a polyethylene resin film which is excellent in heat sealability, stable blocking resistance and stable slipperiness, and also excellent in appearance and scratch resistance. Moreover, the laminated body using this polyethylene-type resin film, and also a package can be provided.
  • the polyethylene-based resin film of the present invention is composed of a polyethylene-based resin composition, but mainly contains a polyethylene-based resin.
  • the polyethylene resin is a homopolymer of ethylene monomer, a copolymer of ethylene monomer and ⁇ -olefin, and a mixture thereof, and as ⁇ -olefin, propylene, butene-1, hexene Examples thereof include -1, 4-methylpentene-1, octene-1, and decene-1.
  • the density range of the polyethylene resin composition is preferably 900 ⁇ 940kg / m 3, more preferably 910 ⁇ 940kg / m 3, more preferably 910 ⁇ 935kg / m 3, especially 915 ⁇ 935kg / m 3
  • 915 to 925 kg / m 3 is particularly preferred.
  • a polyethylene resin composition having a density of less than 900 kg / m 3 is likely to have reduced blocking resistance.
  • a polyethylene-based resin composition having a density of greater than 940 kg / m 3 has a high heat seal initiation temperature, is difficult to form into a bag, and is inferior in transparency.
  • the present inventors found that when using a polyethylene resin composition whose density is greater than 940 kg / m 3 , it is difficult to obtain stable blocking resistance or stable slip property of the polyethylene resin film.
  • the For blocking resistance a sample obtained by superimposing measurement surfaces of a film is sized by 7 cm ⁇ 7 cm, temperature 50 ° C., pressure 440 kgf / cm 2 , and time 15 minutes in a heat press (Model: SA-303 manufactured by Tester Sangyo Co., Ltd.) Perform pressure treatment.
  • the sample blocked with this pressure treatment and the bar are attached to an autograph (Shimadzu model: UA-3122) so that the bar and the peeling surface are horizontal, and the bar has a speed (100 m
  • the force at which the blocking part is peeled off is measured four times per minute, and the average value is used as an index, but when using a polyethylene resin composition whose density is greater than 940 kg / m 3
  • the heat seal start temperature tends to be high. It is preferable that the variation of each measurement value of the four measurements be at the same level as when inorganic particles are used.
  • the melt flow rate (hereinafter sometimes referred to as MFR) of the polyethylene resin composition of the present invention is preferably about 2.5 to 4.5 g / min from the viewpoint of film forming property and the like.
  • MFR was measured in accordance with ASTM D1893-67.
  • the polyethylene resin is synthesized by a method known per se.
  • the polyethylene resin composition of the present invention preferably has a melting point of 85 ° C. or more, more preferably 100 ° C. or more, particularly preferably 110 ° C. or more, from the viewpoint of heat resistance and the like.
  • the polyethylene-based resin composition in the present invention may be a single system, but it is also possible to blend two or more types of polyethylene resins having different densities in the above density range.
  • the average density and the blending ratio can be estimated by GPC measurement or density measurement.
  • particles made of a polyethylene-based resin described below can be blended.
  • particles made of polyethylene resin in which case the particles made of a polyethylene resin preferably have a viscosity average molecular weight of not less than 1,500,000, and more preferably not less than 1,600,000. More than 1.7 million are more preferable. In addition, 2.5 million or less is preferable, 240 or less is more preferable, and 2.3 million or less is more preferable. With a viscosity average molecular weight in this range, the maximum peak height of the surface layer on at least one side can be 2 ⁇ m or more and 15 ⁇ m or less.
  • the viscosity average molecular weight of the particles made of polyethylene resin is less than 1.5 million, if the temperature at the time of melt mixing is higher than the melting point peak, due to decomposition by heat or shear or fusion / flocculation or partial compatibility with the base resin As a result of changes in particle shape, the formation of projections like conventional inorganic particles and organic cross-linked polymer beads can not be performed, and the function as an antiblocking agent is not sufficient, and the appearance such as transparency, film It affects mechanical strength or heat sealability.
  • the particles made of a polyethylene resin are homopolymers of ethylene monomers, copolymers of ethylene monomers and ⁇ -olefins, and mixtures thereof, and as ⁇ -olefins, propylene And butene-1, hexene-1, 4-methylpentene-1, octene-1, decene-1 and the like.
  • a density range of particles made of polyethylene resin is preferably 930 ⁇ 950kg / m 3, more preferably 935 ⁇ 945kg / m 3, more preferably 937 ⁇ 942kg / m 3.
  • Particles made of a polyethylene resin having a density of less than 930 kg / m 3 are soft and the shape of the particles is difficult to maintain during melt extrusion, and the blocking resistance tends to decrease.
  • particles made of a polyethylene resin having a density of more than 950 kg / m 3 are likely to have a drop in dropout resistance because the particles are hard and not only the scratch resistance is easily lowered but also the affinity to the base polyethylene resin is lowered. .
  • the average particle diameter of particles made of a polyethylene resin used in the present invention is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and still more preferably 5 ⁇ m or more.
  • the average particle diameter is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and still more preferably 10 ⁇ m or less.
  • the addition amount of the particles of the polyethylene resin of the present invention is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, still more preferably 0.4% by weight or more, based on the whole film. preferable. Moreover, 2 weight% or less is preferable, 1.5 weight% or less is more preferable, and 1.0 weight% or less is more preferable.
  • the addition amount of particles made of polyethylene resin is less than 0.1% by weight, it becomes difficult to set the maximum peak height of the surface layer on at least one side to 2 ⁇ m or more per designated area (0.2 mm 2 ), and anti-blocking It becomes difficult to obtain the sex and slippery.
  • the addition amount of particles made of polyethylene resin is more than 2% by weight, the number of projections on the surface is large, the transparency is poor, and the low temperature sealing property is easily deteriorated.
  • polyethylene resins other than the above-mentioned "particles composed of polyethylene resin” are homopolymers of ethylene monomers, or copolymers of ethylene monomers and ⁇ -olefins, and It is a mixture, and as the ⁇ -olefin, propylene, butene-1, hexene-1, 4-methylpentene-1, octene-1, decene-1 and the like can be exemplified.
  • the density range is preferably 900 ⁇ 940kg / m 3 of the polyethylene resin other than the particles made of a polyethylene resin, more preferably 910 ⁇ 940kg / m 3, more preferably 920 ⁇ 940kg / m 3, 920 ⁇ 935 kg / m 3 is particularly preferred, and 920 to 925 kg / m 3 is more particularly preferred.
  • a polyethylene resin having a density of less than 900 kg / m 3 is likely to have reduced blocking resistance.
  • a polyethylene resin having a density of greater than 940 kg / m 3 has a high heat sealing start temperature, is difficult to form into a bag, and is inferior in transparency.
  • the present inventors have found that when using a polyethylene resin having a density greater than 940 kg / m 3 , it is difficult to obtain stable blocking resistance or stable slip of the polyethylene resin film.
  • a sample obtained by superimposing measurement surfaces of a film is sized by 7 cm ⁇ 7 cm, temperature 50 ° C., pressure 440 kgf / cm 2 , and time 15 minutes in a heat press (Model: SA-303 manufactured by Tester Sangyo Co., Ltd.) Perform pressure treatment.
  • the sample blocked with this pressure treatment and the bar are attached to an autograph (Shimadzu model: UA-3122) so that the bar and the peeling surface are horizontal, and the bar has a speed (100 m
  • the force at which the blocking part is peeled off is measured four times per minute, and the average value is used as an index, but when using a polyethylene-based resin whose density is greater than 940 kg / m 3 , Not only the variation of each of the four measurements but also the tendency to increase the heat sealing start temperature was recognized. It is preferable that the variation of each measurement value of the four measurements be at the same level as when inorganic particles are used.
  • high-pressure low-density polyethylene is transparent, flexible, and excellent in tear strength and tensile strength on average.
  • LDPE low-density polyethylene
  • butene-1, hexene-1 octene-1 are copolymerized in small amounts, and there are many short molecular chains in the molecular chain, and linear short chain branched polyethylene (LLDPE), which has excellent sealing performance and physical strength.
  • a metallocene catalyst linear short-chain branched polyethylene (LLDPE) that exhibits extremely sharp molecular weight distribution, uniform comonomer distribution, and excellent tear, tensile, puncture strength, and pinhole resistance properties is selected according to its application. be able to.
  • the melt flow rate (hereinafter sometimes referred to as MFR) is 2.5 to 4.5 g / min from the viewpoint of film forming property etc. The degree is preferred.
  • MFR was measured in accordance with JIS-K7210.
  • the polyethylene resin is synthesized by a method known per se.
  • the polyethylene resin particles when using a resin having a MFR as low as 2.5 g / 10 min or less other than the polyethylene resin particles, the polyethylene resin particles may be used in the same manner as described for the density. Since the change in particle size is apt to occur due to the decrease in viscosity average molecular weight and the entanglement of molecular chains with polyethylene resin other than particles made of polyethylene resin, it is necessary to be careful about the extrusion conditions. In the case of high-speed film formation using a large-sized film forming machine, an MFR of about 3 to 4 g / 10 min is particularly preferable because of film forming property.
  • the melting point is preferably 85 ° C. or more, more preferably 100 ° C. or more, and particularly preferably 110 ° C. or more from the viewpoint of heat resistance and the like in the present invention.
  • the polyethylene-based resin other than the particles of the polyethylene-based resin in the present invention may be a single system, but two or more polyethylene resins different in density in the above-mentioned density range may be blended.
  • the average density and the blending ratio can be estimated by GPC measurement or density measurement.
  • additives such as an antioxidant, a neutralizing agent, an organic lubricant, a non-droplet and an antistatic agent are used in combination as long as the purpose and effect of the present invention are not impaired. Also good. Blending of these additives can be appropriately blended when blending and mixing the respective components of the polyethylene resin composition.
  • organic lubricant it is preferable to add an organic lubricant.
  • the lubricity and antiblocking effect of the laminated film are improved, and the handleability of the film is improved. As the reason, it is considered that the lubricant effect and the mold release effect are expressed by the organic lubricant bleeding out and being present on the film surface.
  • organic lubricant having a melting point higher than normal temperature include fatty acid amides and fatty acid esters. Specifically, oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, ethylene bis oleic acid amide and the like. These may be used alone, but it is preferable to use two or more kinds in combination because the lubricity and antiblocking effect can be maintained even under a severe environment.
  • the lower limit of the concentration of the organic lubricant amide in the layer containing particles made of polyethylene resin is preferably 200 ppm, more preferably 400 ppm. If it is less than the above, slipperiness may be deteriorated.
  • the upper limit of the organic lubricant amide concentration is preferably 2500 ppm, more preferably 2000 ppm. If it exceeds the above, it is too slippery, which is not preferable.
  • ethylene / vinyl acetate copolymer, ethylene / acrylic ester copolymer, etc. may be mixed and used as long as the purpose and effect of the present invention are not impaired.
  • the polyethylene resin film of the present invention is required to be substantially free of inorganic particles.
  • the inorganic particles referred to here are inorganic substances generally used as an antiblocking agent such as silica, talc, calcium carbonate, diatomaceous earth, zeolite and the like, and inorganic substances in the entire polyethylene resin film of the present invention not containing substantially It means that the proportion of the amount of particles is 0.2% by weight or less. More preferably, it is 0.1% by weight or less.
  • the polyethylene resin film of the present invention it is necessary to contain substantially no crosslinked organic particles.
  • the crosslinked organic particles referred to here are organic crosslinked particles represented by polymethyl acrylate resin etc., and the content of the crosslinked organic particles in the whole of the polyethylene resin film of the present invention that the content is not substantially contained is 0.2 It means that it is not more than% by weight. More preferably, it is 0.1% by weight or less.
  • the polyethylene resin film of the present invention for example, specific ones among polyethylene resins conventionally used as polyethylene resins other than particles consisting of polyethylene resin and particles consisting of polyethylene resin It is preferable to adopt a process of melt-kneading a polyethylene-based resin composition containing the following, a process of melt-extruding the melt-kneaded resin composition to form a molten resin composition sheet, and a process of cooling and solidifying the molten resin composition sheet.
  • the polyethylene resin film of the present invention may be a single layer or a laminate.
  • the thickness of the film in the case of a single layer is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 15 ⁇ m or more, and particularly preferably 20 ⁇ m or more. Moreover, 200 micrometers or less are preferable, 150 micrometers or less are more preferable, and 100 micrometers or less are especially preferable. If it is less than 3 ⁇ m, the effect of particles made of polyethylene resin is reduced, and the effect of blocking resistance and slipperiness is hard to be obtained.
  • the thickness of the layer containing particles made of a polyethylene resin in the case of lamination and the maximum peak height of at least one surface layer is 2 ⁇ m or more and 15 ⁇ m or less is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more, 15 micrometers or more are further preferable, and 20 micrometers or more are especially preferable. Moreover, 200 micrometers or less are preferable, 150 micrometers or less are more preferable, and 100 micrometers or less are especially preferable. If it is less than 3 ⁇ m, the effect of particles made of polyethylene resin is reduced, and the effect of blocking resistance and slipperiness is hard to be obtained. (Raw material mixing process)
  • any method may be used as long as they are uniformly mixed, and if using master batch, ribbon blender, The method of mixing using a Henschel mixer, a tumbler mixer etc., etc. are mentioned.
  • particles made of a polyethylene resin may be attached to a resin to which an additive is attached, or may be added directly to an extruder by side feed or the like.
  • particles made of polyethylene resin are directly mixed with linear low density polyethylene, homopolymer of ethylene monomer, or copolymer of ethylene monomer and ⁇ -olefin without using masterbatch.
  • high dispersibility can be obtained, and in terms of cost, direct attachment by the side feed method or the like is preferable.
  • the lower limit of the melt mixing temperature of the polyethylene resin composition is preferably 200 ° C., more preferably 210 ° C., and still more preferably 220 ° C. If the amount is less than the above, discharge may be unstable.
  • the upper limit of the resin melting temperature is preferably 260 ° C. When the amount exceeds the above range, decomposition of the resin proceeds, and as a result of recombination, the amount of a crosslinked organic substance generated as a result of recombination, so-called foreign matter such as gel, increases.
  • the above-mentioned antioxidant is contained in the polyethylene resin composition, melt extrusion at higher temperatures is possible, but it is preferable to set the temperature to 270 ° C. or less.
  • the melting point of the polyethylene resin particles used in the present invention is about 150 ° C. or less, and it is mixed with a polyethylene resin other than the polyethylene resin particles, and it is much lower than the temperature at the time of melt-kneading
  • the polyethylene resin film extruded from the T die without being dispersed at the molecular level in polyethylene resins other than particles consisting of polyethylene resins, and made of a polyethylene resin is obtained through the cooling process.
  • the particles are present in the polyethylene resin other than the particles made of the polyethylene resin while maintaining the particle size and shape before addition.
  • the filter medium used for high precision filtration of the molten resin is not particularly limited, but in the case of a filter medium of a stainless sintered body, in addition to foreign substances such as so-called gel, Si, Ti, Sb, Ge derived from additives such as catalyst It is excellent in the removal performance of the aggregate which has Cu as a main component, and is suitable. Moreover, it is preferable that the filtration precision is 200 micrometers or less.
  • the filtration accuracy as referred to herein means the following. The nominal filtration accuracy, and the ability to capture 60 to 98% of particles (in this case, 200 ⁇ m or more) larger than the indicated filtration accuracy.
  • the pressure increase during melt-kneading of the polyethylene resin composition is preferably smaller.
  • the method of measuring the amount of pressure increase was performed by the method described in the example.
  • the molten polyethylene-based resin composition sheet is melt extruded from, for example, a T-die, cast on a cooling roll, and solidified by cooling to obtain an unstretched sheet.
  • a cooling roll it is preferable to cast on a cooling roll. Since the particles made of polyethylene resin used in the present invention are originally hydrophobic resin, the hydrophobicity of the surface of the particles does not change even after melt-kneading and extruding steps, and the particles are seen as inorganic particles whose surface is hydrophobized Thermal degradation products at the lip of the T-shaped die, so-called "stain buildup" are extremely unlikely to occur.
  • T-die method melt-extruding a molten polyethylene-based resin composition sheet and forming the film into a film by a T-die method or an inflation method, but the T-die method is particularly preferable in that the melting temperature of the resin composition can be increased. desirable.
  • the lower limit of the cooling roll temperature is preferably 10 ° C. If it is less than the above, not only the effect of crystallization suppression may be saturated but also problems such as condensation may occur, which is not preferable.
  • the upper limit of the cooling roll temperature is preferably 70 ° C. or less. If the content exceeds the above range, crystallization proceeds and the transparency deteriorates, which is not preferable. When the temperature of the cooling roll is in the above range, it is preferable to lower the humidity of the environment around the cooling roll to prevent condensation.
  • the temperature of the cooling roll surface rises because the high temperature resin contacts the surface.
  • the cooling roll is cooled by flowing cooling water through the inside of the pipe, but a sufficient amount of cooling water is secured, the arrangement of the pipe is devised, maintenance is performed to prevent sludge from adhering to the pipe, etc. It is necessary to reduce the temperature difference in the width direction of the surface.
  • the thickness of the unstretched sheet is preferably in the range of 3 to 200 ⁇ m.
  • the polyethylene resin film of the present invention may have a multilayer structure.
  • one or two or more other layers can be provided in addition to the layer made of the polyethylene resin composition described above and having a maximum peak height of 2 ⁇ m or more and 15 ⁇ m or less on the surface.
  • a general multilayering apparatus multilayer feed block, static mixer, multilayer multi manifold, etc.
  • a method of laminating thermoplastic resins delivered from different flow paths using two or more extruders in multiple layers using a field block, static mixer, multi-manifold die or the like can be used.
  • a layer consisting of a polyethylene resin composition and having a maximum peak height of 3 ⁇ m or more and 15 ⁇ m or less on the surface is used as a seal layer (A layer), and the other layers are an intermediate layer (B layer) and laminate, respectively. It is good to set it as a layer (C layer) and to contain in this order.
  • the outermost layers are the A layer and the C layer, respectively.
  • Examples of the polyethylene-based resin used for the intermediate layer (B layer) and the laminate layer (C layer) include a mixture of one or more selected from ethylene / ⁇ -olefin copolymer and high pressure polyethylene.
  • the ethylene / ⁇ -olefin copolymer is a copolymer of ethylene and an ⁇ -olefin having 4 to 18 carbon atoms, and as the ⁇ -olefin, butene-1, hexene-1, 4-methylpentene-1, Octene-1, decene-1 and the like can be mentioned.
  • the films obtained from these polyethylene resins have excellent heat seal strength, hot tack, dirt sealability, impact resistance, and the polyethylene resins are not limited to the other properties to the extent that they do not impair the properties.
  • Resins such as ethylene / vinyl acetate copolymer, ethylene / acrylic acid ester copolymer and the like may be mixed and used.
  • the polyethylene resins used for the intermediate layer (B layer) and the laminate layer (C layer) may be the same or different.
  • particles made of polyethylene resin may or may not be added. However, it does not substantially contain inorganic particles and organic crosslinked particles.
  • the term "not substantially containing" means that the proportion of the amount of the crosslinked organic particles in the entire polyethylene resin film of the present invention is 0.2% by weight or less. More preferably, it is 0.1% by weight or less.
  • the average density of the polyethylene resin of each layer of the film is preferably sealant layer (A layer) ⁇ intermediate layer (B layer) ⁇ laminate layer (C layer).
  • sealant layer A layer
  • intermediate layer B layer
  • laminate layer C layer.
  • the incorporated organic lubricant is difficult to move to the dense layer, and is effective for maintaining the slipperiness of the sealant layer after lamination.
  • the lower limit of the density of the intermediate layer (B layer) and the laminate layer (C layer) is preferably 900 kg / m 3 , more preferably 920 kg / m 3 , and still more preferably 930 kg / m 3 . If it is less than the above, the body may be weak and difficult to process.
  • the upper limit of the density of the intermediate layer (B layer) and the laminate layer (C layer) is preferably 960 kg / m 3 , more preferably 940 kg / m 3 , and still more preferably 935 kg / m 3 .
  • the above-mentioned organic lubricant may be used in the middle layer (layer B) of the film of the present invention, and the lower limit of the organic lubricant is preferably 200 ppm, more preferably 400 ppm. If it is less than the above, slipperiness may be deteriorated.
  • the upper limit of the erucic acid amide concentration of the intermediate layer (B layer) is preferably 2000 ppm, more preferably 1500 ppm. If it exceeds the above, it may slip too much, which may cause winding deviation.
  • the recovered resin may be blended in an amount of 10 to 30% by mass in the intermediate layer (layer B) of the film of the present invention.
  • actinic ray treatment such as corona treatment on the surface of the laminate layer (C layer) of the polyethylene film described above.
  • the correspondence improves the laminate strength.
  • a layer comprising particles of a polyethylene resin is contained, and a layer having a maximum peak height of 2 ⁇ m or more and 15 ⁇ m or less of at least one surface layer is a seal layer (A layer), and the other layer is a laminate layer (C Layer) is good.
  • the maximum peak height of the surface layer of at least one side of the polyethylene resin film of the present invention is required to be 2 ⁇ m or more and 15 ⁇ m or less. When the maximum peak height Rz exceeds 15 ⁇ m, it is not preferable because appearance defects occur.
  • the measurement method is carried out by the method described in the examples.
  • the polyethylene resin film of the present invention preferably has a number of projections exceeding 15 ⁇ m (number / 0.2 mm 2 ) in the surface layer having a maximum peak height of 2 ⁇ m or more and 15 ⁇ m or less on the surface of 0 or less. The smaller the number, the poorer the appearance such as flicker and haze.
  • the measurement method is carried out by the method described in the examples.
  • the upper limit of the heat sealing start temperature of the polyethylene resin film laminated with the biaxially stretched nylon film (15 ⁇ m) is preferably 130 ° C., more preferably 120 ° C. m. If the above is exceeded, sealing may be difficult.
  • the lower limit of the ultimate heat seal strength at 120 ° C. of the polyethylene resin film laminated with biaxially stretched nylon film (15 ⁇ m) is preferably 30 N / 15 mm, more preferably 35 N / 15 mm. If it is less than the above, the bag may be easily torn after making the bag.
  • the upper limit of the heat seal strength at 120 ° C. of the polyethylene resin film laminated with biaxially oriented nylon film (15 ⁇ m) is preferably 70 N / 15 mm, more preferably 65 N / 15 mm. If the above is exceeded, it may be difficult to open the bag after making the bag.
  • the measurement method is carried out by the method described in the examples.
  • the lower limit of the blocking strength of the polyethylene resin film laminated with the biaxially stretched nylon film (15 ⁇ m) is preferably 0 mN / 20 mm, more preferably 10 mN / 20 mm, and still more preferably 15 mN / 20 mm.
  • the upper limit of the blocking strength is preferably 150 mN / 20 mm, more preferably 50 mN / 20 mm, and still more preferably 40 mN / 20 mm. If the above is exceeded, the slipperiness immediately after unrolling may deteriorate.
  • the measurement method is carried out by the method described in the examples.
  • the lower limit of the coefficient of static friction after lamination of the polyethylene resin film laminated with biaxially stretched nylon film (15 ⁇ m) is preferably 0.05, and more preferably 0.08. When it is less than the above, the film may slip too much during winding, which may cause winding deviation.
  • the upper limit of the coefficient of static friction after lamination is preferably 0.50, more preferably 0.4. When it exceeds the above, the opening property after bag making is bad, and the loss at the time of processing may increase.
  • the measurement method is carried out by the method described in the examples.
  • the lower limit of the haze of the polyethylene resin film of the present invention is preferably 3%, more preferably 4%, still more preferably 5%. If it is less than the above, there may be a small amount of antiblocking agent, which may cause blocking.
  • the upper limit of the haze is preferably 15%, more preferably 12%, and still more preferably 10%. If the above is exceeded, it may be difficult to view the contents.
  • the measurement method is carried out by the method described in the examples.
  • the polyethylene resin film of the present invention hardly feels flickering or has fine flickering but is uniform and not particularly concerned.
  • the measurement method is carried out by the method described in the examples.
  • non-powder type which has blocking resistance without applying conventional starch or the like powder to the film surface
  • inorganic particles having an average particle diameter of about 10 ⁇ m have been added.
  • the lower limit of the Young's modulus (MD) of the polyethylene resin film of the present invention is preferably 100 MPa, more preferably 200 MPa. If it is less than the above, the waist may be too weak to be processed easily.
  • the upper limit of Young's modulus (MD) is preferably 800 MPa, more preferably 600 MPa.
  • the lower limit of the Young's modulus (TD) of the polyethylene resin film of the present invention is preferably 100 MPa, more preferably 200 MPa. If it is less than the above, the waist may be too weak to be processed easily.
  • the upper limit of Young's modulus (TD) is preferably 1000 MPa, more preferably 600 MPa.
  • Average particle diameter of particles made of polyethylene resin The average particle size of the polyethylene resin particles before use was measured as follows. The particles are dispersed in ion exchange water stirred at a predetermined rotation speed (about 5000 rpm) using a high-speed stirrer, and the dispersion is added to isotone (saline) and further dispersed by an ultrasonic disperser, The particle size distribution was determined by the counter method and calculated as the volume average particle size.
  • melting point Using a differential scanning calorimeter (DSC) manufactured by SII, measurement was performed at a sample amount of 10 mg and a heating rate of 10 ° C./min. The melting endothermic peak temperature detected here was taken as the melting point.
  • DSC differential scanning calorimeter
  • Heat seal start temperature (° C) An adhesive for dry lamination made by Toyo Morton (TM569, CAT-10L) is applied to the corona surface of a nylon film (Toyobo's biaxially stretched nylon film: N1100, 15 ⁇ m) so that the solid content is 3 g / m 2 and 80 ° C. After the solvent was removed by evaporation in an oven, the corona-coated surface of the polyethylene resin film and the coated surface of the adhesive were laminated by nipping on a temperature control roll at 60 ° C. The laminated laminated film was aged at 40 ° C. for 2 days.
  • the prepared laminated sample was heat sealed at a seal pressure of 0.1 MPa, at a seal time of 0.5 seconds, at a seal temperature of 90 to 160 ° C. and a pitch of 10 ° C. and a width of 10 mm.
  • the heat-sealed sample is cut into strips so that the heat seal width is 15 mm, set in an autograph (Shimadzu model: UA-3122), and the seal surface is peeled at a speed of 200 mm / min.
  • the value was measured by n number 3, and heat seal strength and heat seal temperature were plotted at each temperature.
  • the heat seal temperature which becomes 4.9 N / 15 mm from the graph which tied between each plot with a straight line was read, and it was set as the heat seal start temperature.
  • the prepared laminated sample was heat sealed at a seal pressure of 0.1 MPa, at a seal time of 0.5 seconds, at a seal temperature of 120 to 190 ° C. and a pitch of 10 ° C. and a width of 10 mm.
  • the heat-sealed sample is cut into strips so that the heat seal width is 15 mm, set in an autograph (Shimadzu model: UA-3122), and the seal surface is peeled at a speed of 200 mm / min.
  • the value was measured by n number 3, and the heat seal strength with the highest average value was taken as the ultimate seal strength.
  • Blocking Strength A laminated film with a nylon film (biaxially stretched nylon film manufactured by Toyobo Co., Ltd .: N1100, 15 ⁇ m) was prepared as follows. Apply an adhesive for dry lamination (TM569, CAT-10L) made by Toyo Morton on the corona surface of nylon film so that the solid content is 3 g / m 2 and evaporate off the solvent in an oven at 80 ° C. The corona surface of the film and the coated surface of the adhesive were nipped and laminated on a 60 ° C. temperature control roll. The laminated laminated film was aged at 40 ° C. for 2 days.
  • a sample (10 cm ⁇ 15 cm) obtained by superposing measurement surfaces on each other is positioned 1 cm inside the length direction (15 cm) at the center of the sample width (10 cm)
  • a 7 cm ⁇ 7 cm aluminum plate (2 mm thick) is placed on top so as to be aligned, and subjected to pressure treatment at a temperature of 50 ° C. and a pressure of 440 kgf / cm 2 for 15 minutes.
  • a laminated film with a nylon film (biaxially stretched nylon film made by Toyobo Co., Ltd .: N1100, 15 ⁇ m) was produced as follows.
  • An adhesive for dry lamination made by Toyo Morton (TM569, CAT-10L) is applied to the corona surface of a nylon film so that the solid content is 3 g / m 2 and the solvent is removed by evaporation in an oven at 80 ° C.
  • the corona surface of the adhesive and the coated surface of the adhesive were nipped and laminated on a temperature control roll at 60.degree.
  • the laminated laminated film was aged at 40 ° C. for 2 days.
  • the static friction coefficient between the polyethylene resin film faces of the produced laminated film was measured in an environment of 23 ° C. and 65% RH in accordance with JIS-K7125.
  • Haze (%) [Td (diffuse transmittance%) / Tt (total light transmittance%)] x 100
  • a laminated film with a nylon film (biaxially stretched nylon film made by Toyobo Co., Ltd .: N1100, 15 ⁇ m) was produced as follows. Apply an adhesive for dry lamination (TM569, CAT-10L) made by Toyo Morton on the corona surface of nylon film so that the solid content is 3 g / m 2 and evaporate off the solvent in an oven at 80 ° C. The corona surface of the film and the coated surface of the adhesive were nipped and laminated on a 60 ° C. temperature control roll. The laminated laminated film was aged at 40 ° C. for 2 days.
  • the polyethylene-based resin film of the produced laminated film was pinched with a finger and rubbed ten times so that the polyethylene resin film surfaces of the laminated film overlap each other, and visually observed. Ease of scratching was classified by the following ⁇ , ⁇ , ⁇ , x. ⁇ : There is almost no damage. ⁇ : There are thin streaks of scratches but no whitening. Fair: fine streaks and partial whitening are observed. X: The rubbed part almost whitens.
  • Miperon XM 220 Ultra-high molecular weight polyethylene particles, manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , melting point 136 ° C., viscosity average molecular weight 2,000,000, Shore hardness 65 D, volume average particle diameter 30 ⁇ m, particles exceeding 30 ⁇ m Weight percentage of diameter 55%)
  • Miperon PM 220 modified product ultra high molecular weight polyethylene particles, manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , melting point 135 ° C., viscosity average molecular weight 1.8 million, Shore hardness 65 D, volume average particle diameter 10 ⁇ m, 25 ⁇ m Weight percentage of particle size exceeding 1% or less
  • KMP-130-10 spherical silica particles, manufactured by Shin-Etsu Silicon Co., Ltd., average particle diameter 10 ⁇ m
  • Dicalite WF diatomaceous earth, Grefco. Inc., product, processed to an average particle diameter of 5 ⁇ m by a pin mill crusher Use
  • Ethylene bis oleic acid amide using Sumitomo Chemical's ethylene bis oleic acid amide 2% master batch EMB11
  • Erucic acid amide using Sumitomo Chemical's Erucic acid amide 4% master batch EMB10
  • Examples 1 to 5 The resins and additives shown in Table 1 were used as raw materials for the seal layer, laminate layer, and intermediate layer, respectively melted at 240 ° C. using three extruders respectively, and filtered with a sintered filter having a filtration accuracy of 120 ⁇ m. After co-extrusion from a T-die into a sheet, melt extrusion so that the thickness ratio of the seal layer, intermediate layer, and laminate layer becomes 1: 3: 1, and after cooling and solidifying with a 30 ° C.
  • the surface of the laminate layer of the sheet was subjected to corona discharge treatment, and was wound into a roll at a speed of 150 m / min to obtain a polyethylene resin film having a thickness of 50 ⁇ m and a wet tension of 45 N / m on the surface of the laminate layer.
  • the polyethylene resin films obtained in Examples 1 to 5 are excellent in heat sealability, and the blocking resistance and the friction coefficient have small fluctuations in measured values between the measurement samples, and have stable blocking resistance and slipperiness. Moreover, the appearance and the scratch resistance were also excellent. And it was excellent also in film forming processability.
  • the surface of the laminate layer of the sheet was subjected to corona discharge treatment, and was wound into a roll at a speed of 150 m / min to obtain a polyethylene resin film having a thickness of 50 ⁇ m and a wet tension of 45 N / m on the surface of the laminate layer.
  • the film obtained in Comparative Example 1 was excellent in blocking resistance and slipperiness, slightly flickering, and inferior in scratch resistance and film forming processability.
  • the film obtained in Comparative Example 2 was excellent in blocking resistance and slipperiness, it had a flickering feeling and was inferior in appearance.
  • the film obtained in Comparative Example 3 was excellent in blocking resistance and transparency, it had a flickering feeling and the appearance was remarkably inferior.
  • the film obtained in Comparative Example 4 had melting unevenness on the surface, a flickering feeling, and the appearance was significantly inferior.
  • blocking resistance, slipperiness, and scratch resistance were also inferior.
  • the blocking resistance and the friction coefficient were not stable because the variation of the measured value between the measurement samples was large.
  • the present invention is not limited to the composition indicated in the above-mentioned example, but combines the composition indicated in each example suitably
  • the configuration can be changed as appropriate without departing from the scope of the present invention.
  • the polyethylene-based resin film according to the present invention is excellent in its properties, and can be suitably used as a film for a wide range of applications such as food packaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is a polyethylene resin film which has excellent heat sealability, blocking resistance, and slipperiness, and also has excellent appearance and scratch resistance. This polyethylene resin film is characterized by comprising a polyethylene resin composition that contains particles of a polyethylene resin, and a polyethylene resin having a density of 940 kg/m3 or less, but substantially does not contain inorganic particles or organic crosslinked particles, wherein the maximum peak height of at least one surface thereof is 2-15 μm.

Description

ポリエチレン系樹脂フィルムPolyethylene resin film
 本発明は、ポリエチレン系樹脂フィルムに関する。更に詳しくは、ヒートシール性及び安定した耐ブロッキング性と安定した滑り性に優れ、しかも外観と耐スクラッチ性にも優れるポリエチレン系樹脂フィルムに関するものである。 The present invention relates to a polyethylene resin film. More specifically, the present invention relates to a polyethylene resin film which is excellent in heat sealability, stable blocking resistance and stable slip property, and also excellent in appearance and scratch resistance.
 近年、利便性、省資源、環境に対する負荷低減などによりフィルムを用いた包装または容器が広い分野で使用されてきている。フィルムは従来の成形容器、成形物に比べ、軽量、廃棄処理が容易、低コストが利点である。 In recent years, packaging or containers using a film have been used in a wide field because of convenience, resource saving, environmental load reduction, and the like. The film is lighter in weight, easier to dispose of, and less expensive than conventional molded containers and moldings.
 シーラントフィルムは、通常、シーラントフィルムより低温熱接着性の劣る二軸延伸ナイロンフィルム、二軸延伸エステルフィルム、二軸延伸ポリプロピレンフィルム等の基材フィルムとラミネートして使用されるのが一般的である。これらの基材フィルムとラミネート加工後にロール状で保管すると、シーラントフィルムと基材フィルムとの間でブロッキングが生じて、製袋加工の前に、ラミネートフィルムを巻き戻しにくい場合があったり、製袋加工中の袋の内面となるシーラントフィルム同士でブロッキングが生じ、食品を充填しにくい場合があった。
 そこで、でんぷん等の粉をシーラントフィルムの表面にふりかけることで、前述のようなシーラントフィルムと基材とのブロッキングやシーラントフィルム同士のブロッキングを回避する方策が知られている。
 しかし、この方策ではフィルム加工装置周辺を汚染するばかりか、包装食品の外観を著しく悪化させる、あるいはシーラントフィルムに付着した粉末が食品とともに直接包装体内に混入したり、ヒートシール強度が低下するといった問題を生じていた。
The sealant film is generally used by laminating with a substrate film such as a biaxially oriented nylon film, a biaxially oriented ester film, a biaxially oriented polypropylene film or the like which is inferior in thermal adhesion to a sealant film at a low temperature . When these base films and the roll are stored after laminating, blocking may occur between the sealant film and the base film, and it may be difficult to unwind the laminated film before bag-making, In some cases, blocking occurs between the sealant films which form the inner surface of the bag being processed, making it difficult to fill the food.
Therefore, it is known to sprinkle the powder such as starch on the surface of the sealant film to avoid the blocking between the sealant film and the substrate as described above and the blocking between the sealant films.
However, this method not only contaminates the periphery of the film processing apparatus, the appearance of the packaged food is significantly deteriorated, or the powder adhering to the sealant film is mixed with the food directly into the package, and the heat seal strength is lowered. It had arose.
 そこでポリエチレン系樹脂にシリカなどの無機微粉末あるいは無機微粒子を用いたポリエチレン系フィルム報告されている。 Therefore, a polyethylene-based film using inorganic fine powder or inorganic fine particles such as silica as a polyethylene-based resin has been reported.
 しかし、この方策では、ポリエチレン系フィルムに添加されるアルミナやシリカなどの無機微粉末あるいは無機粒子を含むフィルム面同士を擦りあわせた時に傷が発生し易く、ラミネート機や製袋加工機などをシーラントフィルあるいは基材フィルムとの積層体が通過する際に、機械の一部との接触時に無機微粉末あるいは無機粒子が脱落しやすいという問題も有していた(例えば、特許文献1参照。)。 However, with this measure, scratches are likely to occur when the film surfaces containing inorganic fine powder or inorganic particles such as alumina or silica added to a polyethylene film are rubbed against each other, and the laminating machine, bag making machine, etc. There has also been a problem that when the laminate with the film or the base film passes, the inorganic fine powder or the inorganic particles easily fall off when in contact with a part of the machine (see, for example, Patent Document 1).
 さらに、アクリル系単量体とスチレン系単量体を主成分とする共重体からなる有機架橋粒子を用いたポリエチレン系樹脂フィルムが報告されている。(例えば、特許文献1参照。)。
 しかしながら、この方策では、傷つき易さは無機粒子ほど悪くはないものの十分とは言えない。また、耐ブロッキングや粒子の脱落の問題もいまだ残っていた。
Furthermore, a polyethylene resin film using an organic crosslinked particle consisting of a copolymer mainly composed of an acrylic monomer and a styrene monomer has been reported. (See, for example, Patent Document 1).
However, with this measure, the vulnerability is not as good as that of the inorganic particles, but not enough. In addition, problems of blocking resistance and particle detachment still remained.
 またさらに、ポリエチレン系樹脂フィルムの耐ブロッキング性を向上させるため、直鎖状低密度ポリエチレン樹脂に高密度ポリエチレン樹脂を添加したものが報告されている(例えば、特許文献2参照。)。 Furthermore, in order to improve the blocking resistance of a polyethylene-type resin film, what added the high density polyethylene resin to the linear low density polyethylene resin is reported (for example, refer patent document 2).
 しかしながらこれらの方策では、引張強度などの機械強度特性や透明性が悪化するなど問題があった上に、耐ブロッキング性も劣るものであった。 However, these measures have problems such as deterioration of mechanical strength characteristics such as tensile strength and transparency, and also inferior blocking resistance.
 またさらに、分子量が非常に高いポリエチレン樹脂からなる粒子を高密度ポリエチレン樹脂に添加した、ショッピングバッグに適したポリエチレン系樹脂インフレーションフィルムが報告されている(例えば、特許文献3参照。)。
 しかしながら、この方策では、引裂き強度が大きすぎたり、低温でのヒートシール特性、及び透明性に劣る上に、ポリエチレン樹脂からなる粒子を添加することにより、かえって滑り性が不安定になるという問題があった。
Furthermore, a polyethylene-based resin inflation film suitable for a shopping bag has been reported in which particles made of a polyethylene resin having a very high molecular weight are added to a high density polyethylene resin (see, for example, Patent Document 3).
However, this method has problems such as too high tear strength, poor heat seal properties at low temperature, and poor transparency, and in addition, the addition of particles made of polyethylene resin makes the slipperiness unstable. there were.
特開平10-86300号公報Japanese Patent Application Laid-Open No. 10-86300 特開平10-87909号公報Japanese Patent Application Laid-Open No. 10-87909 特開2008-88248号公報JP 2008-88248 A
 本発明は、ヒートシール性、安定した耐ブロッキング性、安定した滑り性、外観、及び耐スクラッチ性に優れ、しかも粒子の脱落が少ないポリエチレン系樹脂フィルムを提供することを目的とする。また、このポリエチレン系樹脂フィルムを用いた積層体、さらに包装体を提供することを目的とする。 An object of the present invention is to provide a polyethylene resin film which is excellent in heat sealability, stable blocking resistance, stable slipperiness, appearance and scratch resistance and in which particles are less likely to come off. Moreover, it aims at providing the laminated body using this polyethylene-type resin film, and also a package body.
 本発明者らはかかる実状に鑑み、鋭意検討した結果、密度が特定の範囲以下のポリエチレン系樹脂フィルム中にポリエチレン系樹脂からなる粒子を含有させ、そのフィルムの表表面の突起高さを制御することにより上記課題を解決できることを見出し、本発明を解決するに至った。 In view of such a situation, the inventors of the present invention intensively studied, as a polyethylene resin film having a density not more than a specific range, contain particles made of a polyethylene resin and control the height of protrusions on the surface of the film. It has been found that the problems can be solved by the above, and the present invention has been solved.
 すなわち本発明は、ポリエチレン系樹脂からなる粒子と、密度が940kg/m以下であるポリエチレン系樹脂を含有し、無機粒子及び有機架橋粒子を実質的に含有しないポリエチレン系樹脂組成物からなり、少なくとも片側の表面の最大山高さが2μm以上、15μm以下であり、前記ポリエチレン系樹脂からなる粒子以外のことを特徴とするポリエチレン系樹脂フィルムである。 That is, the present invention comprises a polyethylene resin composition containing particles of a polyethylene resin and a polyethylene resin having a density of 940 kg / m 3 or less, and substantially free of inorganic particles and organic crosslinked particles, The polyethylene-based resin film is characterized in that the maximum peak height of the surface on one side is 2 μm or more and 15 μm or less, and the particles other than the particles made of the polyethylene-based resin.
 また、別の態様は、ポリエチレン系樹脂からなる粒子を含有し、無機粒子及び有機架橋粒子を実質的に含有せず、密度が940kg/m以下であるポリエチレン系樹脂組成物からなる層を少なくとも片側に有し、かつその層の表面の最大の最大山高さが2μm以上、15μm以下であることを特徴とするポリエチレン系樹脂フィルムである。 Another aspect is to contain particles made of a polyethylene resin, is substantially free of inorganic particles and organic cross-linked particles, a layer density of the polyethylene resin composition is 940 kg / m 3 or less at least The polyethylene resin film is characterized in that it is on one side and the maximum maximum height of the surface of the layer is 2 μm or more and 15 μm or less.
 この場合において、前記ポリエチレン系樹脂からなる粒子の粘度平均分子量が150万以上あり、かつDSCによる融点ピーク温度が150℃以下であることが好適である。 In this case, it is preferable that the particles of the polyethylene resin have a viscosity average molecular weight of not less than 1.5 million and a melting point peak temperature by DSC of not more than 150.degree.
 また、この場合において、エルカ酸アミド及び又はエチレンビスオレイン酸アミドを含むことが好適である。 Also, in this case, it is preferable to include erucic acid amide and / or ethylene bis oleic acid amide.
 さらにまた、この場合において、前記最大山高さが2μm以上、15μm以下である表面層同士のブロッキング値が200mN/70mm以下であることが好適である。 Furthermore, in this case, it is preferable that the blocking value of the surface layers having the maximum peak height of 2 μm or more and 15 μm or less is 200 mN / 70 mm or less.
 前記のいずれかに記載のポリエチレン系樹脂フィルムとその他のフィルムを含む積層体が好適である。 The laminated body containing the polyethylene-type resin film in any one of the above-mentioned, and another film is suitable.
 前記に記載の積層体を含む包装袋が好適である。 Preferred is a packaging bag comprising a laminate as described above.
 本発明は、ヒートシール性、安定した耐ブロッキング性及び安定した滑り性に優れ、しかも外観と耐スクラッチ性も優れるポリエチレン系樹脂フィルムを提供することができる。また、このポリエチレン系樹脂フィルムを用いた積層体、さらに包装体を提供することができる。 The present invention can provide a polyethylene resin film which is excellent in heat sealability, stable blocking resistance and stable slipperiness, and also excellent in appearance and scratch resistance. Moreover, the laminated body using this polyethylene-type resin film, and also a package can be provided.
(ポリエチレン系樹脂フィルム)
 本発明のポリエチレン系樹脂フィルムは、ポリエチレン系樹脂組成物からなるが、ポリエチレン系樹脂を主に含有する。ポリエチレン系樹脂とは、エチレン単量体の単独重合体、またはエチレン単量体とα-オレフィンとの共重合体、並びにこれらの混合物であり、α-オレフィンとしては、プロピレン、ブテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、デセン-1等を例示することができる。
(Polyethylene resin film)
The polyethylene-based resin film of the present invention is composed of a polyethylene-based resin composition, but mainly contains a polyethylene-based resin. The polyethylene resin is a homopolymer of ethylene monomer, a copolymer of ethylene monomer and α-olefin, and a mixture thereof, and as α-olefin, propylene, butene-1, hexene Examples thereof include -1, 4-methylpentene-1, octene-1, and decene-1.
 本発明における、ポリエチレン系樹脂組成物の密度範囲は900~940kg/mが好ましく、910~940kg/mがより好ましく、910~935kg/mがさらに好ましく、915~935kg/mが特に好ましく、915~925kg/mが特に好ましい。密度が900kg/mより小さいポリエチレン樹脂組成物は、耐ブロッキングが低下しやすい。
 密度が940kg/mより大きいポリエチレン系樹脂組成物は、ヒートシール開始温度が高く、製袋加工が困難であり、透明性にも劣る。さらに重要なことは、密度が940kg/mより大きいポリエチレン系樹脂組成物を使用した場合、ポリエチレン系樹脂フィルムの安定した耐ブロッキング性あるいは安定した滑り性が得にくいことを本発明者らは見出した。
 耐ブロッキング性はフィルムの測定面同士を重ね合わせたサンプルを、ヒートプレス(テスター産業社製 形式:SA-303)において、大きさ7cm×7cm、温度50℃、圧力440kgf/cm、時間15分の加圧処理を行う。この加圧処理でブロッキングしたサンプルとバー(径6mm 材質:アルミ)をバーと剥離面は水平となるように、オートグラフ(島津製作所製 形式:UA-3122)へ装着し、バーが速度(100m/分)でブロッキング部を剥離する時の力を4回測定し、その平均をとった値を指標とするものであるが、密度が940kg/mより大きいポリエチレン系樹脂組成物を使用した場合は、4回測定のそれぞれの測定値で変動しやすいだけでなく、ヒートシール開始温度が高くなる傾向が認められた。4回測定のそれぞれの測定値の変動は無機粒子を使用した場合と同等のレベルであることが好ましい。
In the present invention, the density range of the polyethylene resin composition is preferably 900 ~ 940kg / m 3, more preferably 910 ~ 940kg / m 3, more preferably 910 ~ 935kg / m 3, especially 915 ~ 935kg / m 3 Preferably, 915 to 925 kg / m 3 is particularly preferred. A polyethylene resin composition having a density of less than 900 kg / m 3 is likely to have reduced blocking resistance.
A polyethylene-based resin composition having a density of greater than 940 kg / m 3 has a high heat seal initiation temperature, is difficult to form into a bag, and is inferior in transparency. More importantly, the present inventors found that when using a polyethylene resin composition whose density is greater than 940 kg / m 3 , it is difficult to obtain stable blocking resistance or stable slip property of the polyethylene resin film. The
For blocking resistance, a sample obtained by superimposing measurement surfaces of a film is sized by 7 cm × 7 cm, temperature 50 ° C., pressure 440 kgf / cm 2 , and time 15 minutes in a heat press (Model: SA-303 manufactured by Tester Sangyo Co., Ltd.) Perform pressure treatment. The sample blocked with this pressure treatment and the bar (diameter 6 mm material: aluminum) are attached to an autograph (Shimadzu model: UA-3122) so that the bar and the peeling surface are horizontal, and the bar has a speed (100 m The force at which the blocking part is peeled off is measured four times per minute, and the average value is used as an index, but when using a polyethylene resin composition whose density is greater than 940 kg / m 3 In addition to being easy to fluctuate in each measurement value of four measurements, it was recognized that the heat seal start temperature tends to be high. It is preferable that the variation of each measurement value of the four measurements be at the same level as when inorganic particles are used.
 本発明における、ポリエチレン系樹脂組成物としては、製膜性等の点から、メルトフローレート(以下、MFRと記すことがある。)は2.5~4.5g/分程度が好ましい。ここでMFRは、ASTM D1893-67に準拠して測定した。又該ポリエチレン系樹脂は、自体既知の方法で合成される。 The melt flow rate (hereinafter sometimes referred to as MFR) of the polyethylene resin composition of the present invention is preferably about 2.5 to 4.5 g / min from the viewpoint of film forming property and the like. Here, MFR was measured in accordance with ASTM D1893-67. The polyethylene resin is synthesized by a method known per se.
 本発明における、ポリエチレン系樹脂組成物のMFRが2.5g/10分以下のような低い樹脂組成物を使用する場合は、密度での説明と同様に耐ブロッキング性が変動しやすいだけでなく、ヒートシール開始温度が高くなる傾向が認められる為、押出条件には注意が必要である。大型の製膜機で高速製膜する場合はMFRは3~4g/10分程度が製膜性の為には特に好ましい。  In the case of using a resin composition having a low MFR of 2.5 g / 10 min or less in the present invention, not only blocking resistance tends to fluctuate as described in the density, but also As the heat seal start temperature tends to be high, it is necessary to be careful about the extrusion conditions. In the case of high-speed film formation using a large-sized film forming machine, an MFR of about 3 to 4 g / 10 min is particularly preferable because of film forming property.
 本発明における、ポリエチレン系樹脂組成物としては、耐熱性等の点から、融点は85℃以上が好ましく、100℃以上がより好ましく、特に110℃以上が好ましい。 The polyethylene resin composition of the present invention preferably has a melting point of 85 ° C. or more, more preferably 100 ° C. or more, particularly preferably 110 ° C. or more, from the viewpoint of heat resistance and the like.
 本発明おける、ポリエチレン系樹脂組成物は単一系であってもよいが、上記密度範囲の密度が異なるポリエチレン樹脂を2種以上配合することもでる。密度が異なるポリエチレン系樹脂を2種以上配合した場合、GPC測定や密度測定によりその平均密度、配合比を推測することができる。さらに下記で説明するポリエチレン系樹脂からなる粒子を配合することができる。 The polyethylene-based resin composition in the present invention may be a single system, but it is also possible to blend two or more types of polyethylene resins having different densities in the above density range. When two or more polyethylene resins having different densities are blended, the average density and the blending ratio can be estimated by GPC measurement or density measurement. Furthermore, particles made of a polyethylene-based resin described below can be blended.
(ポリエチレン系樹脂からなる粒子)
 本発明において、ポリエチレン系樹脂からなる粒子を使用するのが好ましく、この場合ポリエチレン系樹脂からなる粒子はその粘度平均分子量が150万以上であることが好ましく、160万以上であることがより好ましく、170万以上がさらに好ましい。また、250万以下が好ましく、240万以下であることがより好ましく、230万以下であることがさらに好ましい。
 この範囲の粘度平均分子量であれば少なくとも片側の表面層の最大山高さを2μm以上、15μm以下とすることができる。その理由は定かではないが、ポリエチレン系樹脂からなる粒子とポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂との分子量の差が非常大きいことから分子が混ざり合わず、溶融混合し、押出して得たフィルム中においてもポリエチレン系樹脂からなる粒子の形状を維持することが容易で、またポリエチレン系樹脂からなる粒子同士の融着や接着等による凝集も起こりにくいため、フィルム表面に無機の粒子と同様に粒径に見合った突起を形成することができると推定している。
 ポリエチレン系樹脂からなる粒子の粘度平均分子量が150万未満であると、溶融混合時の温度が融点ピークより高い場合、熱やせん断による分解または融着凝集やベース樹脂との部分的な相溶による粒経形状の変化が発生する為、従来の無機粒子や有機架橋ポリマービーズのような突起形成が出来なくなり、アンチブロッキング剤としての機能が十分でなくなるだけでなく、透明性などの外観、フィルムの機械的強度、あるいはヒートシール性に影響を及ぼす。
 また、粘度平均分子量が250万を超えると、溶融混合し、押出ししフィルムを形成する時に粒子形状を維持しやすくなるが、その場合は適したフィルム表面突起を形成するのが難しくなる傾向がある。
 さらに、これも驚くべきことであるが、粘度平均分子量が150万以上のポリエチレン系樹脂からなる粒子は凝集しにくいという性質があるにもかかわらず、それと混合される他のポリエチレン樹脂からは無機粒子よりも脱落しにくいという特徴をもつことがわかった。
 またポリエチレン系樹脂からなる粒子の粘度平均分子量が150万以上であると粒子自身が潤滑性を持ち、耐ブロッキングや滑り性の向上に寄与し、しかもポリエチレン系樹脂からなる粒子は軟らかいため、耐スクラッチ性も向上すると考えられる。
(Particle made of polyethylene resin)
In the present invention, it is preferable to use particles made of a polyethylene resin, in which case the particles made of a polyethylene resin preferably have a viscosity average molecular weight of not less than 1,500,000, and more preferably not less than 1,600,000. More than 1.7 million are more preferable. In addition, 2.5 million or less is preferable, 240 or less is more preferable, and 2.3 million or less is more preferable.
With a viscosity average molecular weight in this range, the maximum peak height of the surface layer on at least one side can be 2 μm or more and 15 μm or less. The reason is not clear, but the difference in molecular weight between the particles of polyethylene resin and the polyethylene resin other than the particles of polyethylene resin is so large that the molecules are not mixed, but they are obtained by melt mixing and extrusion. Even in the film, it is easy to maintain the shape of particles made of a polyethylene resin, and since aggregation due to fusion or adhesion of particles made of polyethylene resin does not easily occur, the film surface is the same as inorganic particles. It is estimated that projections corresponding to the particle size can be formed.
If the viscosity average molecular weight of the particles made of polyethylene resin is less than 1.5 million, if the temperature at the time of melt mixing is higher than the melting point peak, due to decomposition by heat or shear or fusion / flocculation or partial compatibility with the base resin As a result of changes in particle shape, the formation of projections like conventional inorganic particles and organic cross-linked polymer beads can not be performed, and the function as an antiblocking agent is not sufficient, and the appearance such as transparency, film It affects mechanical strength or heat sealability.
When the viscosity average molecular weight exceeds 2.5 million, the particle shape is easily maintained when melt-blended and extruded to form a film, but in that case, it tends to be difficult to form a suitable film surface protrusion. .
Furthermore, it is also surprising that, despite the property that particles made of polyethylene resin having a viscosity average molecular weight of 1.5 million or more do not easily aggregate, inorganic particles are mixed with other polyethylene resin mixed therewith It turned out that it has the characteristic of being hard to drop off more than.
When the viscosity average molecular weight of particles made of polyethylene resin is 1.5 million or more, the particles themselves have lubricity, which contributes to improvement in blocking resistance and slip resistance, and particles made of polyethylene resin are soft, so scratch resistance Sex is also considered to improve.
 本発明において、ポリエチレン系樹脂からなる粒子は、エチレン単量体の単独重合体、またはエチレン単量体とα-オレフィンとの共重合体、並びにこれらの混合物であり、α-オレフィンとしては、プロピレン、ブテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、デセン-1等を例示することができる。 In the present invention, the particles made of a polyethylene resin are homopolymers of ethylene monomers, copolymers of ethylene monomers and α-olefins, and mixtures thereof, and as α-olefins, propylene And butene-1, hexene-1, 4-methylpentene-1, octene-1, decene-1 and the like.
 本発明における、ポリエチレン系樹脂からなる粒子の密度範囲は930~950kg/mが好ましく、935~945kg/mがより好ましく、937~942kg/mがさらに好ましい。密度が930kg/mより小さいポリエチレン樹脂からなる粒子は、粒子が軟らかく、且つ溶融押出時に粒子の形状維持がしにくく耐ブロッキング性が低下しやすい。また、密度が950kg/mより大きいポリエチレン樹脂からなる粒子は、粒子が硬く耐スクラッチ性が低下しやすいだけでなくベースとなるポリエチレン樹脂との親和性が下がる為、耐脱落性が低下しやすい。 In the present invention, a density range of particles made of polyethylene resin is preferably 930 ~ 950kg / m 3, more preferably 935 ~ 945kg / m 3, more preferably 937 ~ 942kg / m 3. Particles made of a polyethylene resin having a density of less than 930 kg / m 3 are soft and the shape of the particles is difficult to maintain during melt extrusion, and the blocking resistance tends to decrease. Further, particles made of a polyethylene resin having a density of more than 950 kg / m 3 are likely to have a drop in dropout resistance because the particles are hard and not only the scratch resistance is easily lowered but also the affinity to the base polyethylene resin is lowered. .
 本発明で使用するポリエチレン系樹脂からなる粒子の平均粒子径が2μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。また平均粒径が20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。
 それに加えて、粒径が25μm以上の粒子を含まないことが好ましい。平均粒径が20μm以下であっても、粒径が25μm以上の粒子が1%以上含むとフィルム表面の最大山高さが15μmを超えやすくなる、そうするとフィルム表面を目視すると、後述するチラツキが発生する。
 また25μm以上の粒子は、欠点と同様となり品質が低下するという点でも好ましくない。
The average particle diameter of particles made of a polyethylene resin used in the present invention is preferably 2 μm or more, more preferably 3 μm or more, and still more preferably 5 μm or more. The average particle diameter is preferably 20 μm or less, more preferably 15 μm or less, and still more preferably 10 μm or less.
In addition, it is preferable not to contain particles having a particle size of 25 μm or more. Even if the average particle size is 20 μm or less, when 1% or more of particles having a particle size of 25 μm or more contains 1% or more, the maximum peak height of the film surface tends to exceed 15 μm. .
Also, particles of 25 μm or more are not preferable in that they are similar to defects and the quality is lowered.
 本発明のポリエチレン系樹脂からなる粒子の添加量としては、フィルム全体に対して0.1重量%以上であるのが好ましく、0.3重量%以上がより好ましく、0.4重量%以上がさらに好ましい。また、2重量%以下が好ましく、1.5重量%以下がより好ましく、1.0重量%以下がさらに好ましい。ポリエチレン系樹脂からなる粒子の添加量が0.1重量%未満であると少なくとも片側の表面層の最大山高さを指定面積(0.2mm)辺り2μm以上とすることが困難になり、アンチブロッキング性や滑り性が得られにくくなる。また、ポリエチレン系樹脂からなる粒子の添加量2重量%より多くなると表面の突起が多くなり、透明性が悪く、低温シール性も劣りやすい。 The addition amount of the particles of the polyethylene resin of the present invention is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, still more preferably 0.4% by weight or more, based on the whole film. preferable. Moreover, 2 weight% or less is preferable, 1.5 weight% or less is more preferable, and 1.0 weight% or less is more preferable. When the addition amount of particles made of polyethylene resin is less than 0.1% by weight, it becomes difficult to set the maximum peak height of the surface layer on at least one side to 2 μm or more per designated area (0.2 mm 2 ), and anti-blocking It becomes difficult to obtain the sex and slippery. In addition, when the addition amount of particles made of polyethylene resin is more than 2% by weight, the number of projections on the surface is large, the transparency is poor, and the low temperature sealing property is easily deteriorated.
(ポリエチレン系樹脂)
 本発明における、上述の「ポリエチレン系樹脂からなる粒子」以外のポリエチレン系樹脂とは、エチレン単量体の単独重合体、又はエチレン単量体とα-オレフィンとの共重合体、並びに及びこれらの混合物であり、α-オレフィンとしては、プロピレン、ブテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、デセン-1等を例示することができる。
(Polyethylene resin)
In the present invention, polyethylene resins other than the above-mentioned "particles composed of polyethylene resin" are homopolymers of ethylene monomers, or copolymers of ethylene monomers and α-olefins, and It is a mixture, and as the α-olefin, propylene, butene-1, hexene-1, 4-methylpentene-1, octene-1, decene-1 and the like can be exemplified.
 本発明における、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂の密度範囲は900~940kg/mが好ましく、910~940kg/mがより好ましく、920~940kg/mがさらに好ましく、920~935kg/mが特に好ましく、920~925kg/mがより特に好ましくい。密度が900kg/mより小さいポリエチレン系樹脂は、耐ブロッキングが低下しやすい。
 密度が940kg/mより大きいポリエチレン系樹脂は、ヒートシール開始温度が高く、製袋加工が困難であり、透明性にも劣る。さらに重要なことは、密度が940kg/mより大きいポリエチレン系樹脂を使用した場合、ポリエチレン系樹脂フィルムの安定した耐ブロッキング性あるいは安定した滑り性が得にくいことを本発明者らは見出した。
 耐ブロッキング性はフィルムの測定面同士を重ね合わせたサンプルを、ヒートプレス(テスター産業社製 形式:SA-303)において、大きさ7cm×7cm、温度50℃、圧力440kgf/cm、時間15分の加圧処理を行う。この加圧処理でブロッキングしたサンプルとバー(径6mm 材質:アルミ)をバーと剥離面は水平となるように、オートグラフ(島津製作所製 形式:UA-3122)へ装着し、バーが速度(100m/分)でブロッキング部を剥離する時の力を4回測定し、その平均をとった値を指標とするものであるが、密度が940kg/mより大きいポリエチレン系樹脂を使用した場合は、4回測定のそれぞれの測定値で変動しやすいだけでなく、ヒートシール開始温度が高くなる傾向が認められた。4回測定のそれぞれの測定値の変動は無機粒子を使用した場合と同等のレベルであることが好ましい。
 測定サンプル毎に測定値が変動しやすい理由については現在のところ定かではないが、密度の高いポリエチレン系樹脂と混合すると、ポリエチレン系樹脂からなる粒子の粘度平均分子量低下やポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂との分子鎖の絡み合い等による粒径変化が生じ、その結果形成される表面の突起がより不均一なものになることによるものと推察している。
In the present invention, the density range is preferably 900 ~ 940kg / m 3 of the polyethylene resin other than the particles made of a polyethylene resin, more preferably 910 ~ 940kg / m 3, more preferably 920 ~ 940kg / m 3, 920 ~ 935 kg / m 3 is particularly preferred, and 920 to 925 kg / m 3 is more particularly preferred. A polyethylene resin having a density of less than 900 kg / m 3 is likely to have reduced blocking resistance.
A polyethylene resin having a density of greater than 940 kg / m 3 has a high heat sealing start temperature, is difficult to form into a bag, and is inferior in transparency. More importantly, the present inventors have found that when using a polyethylene resin having a density greater than 940 kg / m 3 , it is difficult to obtain stable blocking resistance or stable slip of the polyethylene resin film.
For blocking resistance, a sample obtained by superimposing measurement surfaces of a film is sized by 7 cm × 7 cm, temperature 50 ° C., pressure 440 kgf / cm 2 , and time 15 minutes in a heat press (Model: SA-303 manufactured by Tester Sangyo Co., Ltd.) Perform pressure treatment. The sample blocked with this pressure treatment and the bar (diameter 6 mm material: aluminum) are attached to an autograph (Shimadzu model: UA-3122) so that the bar and the peeling surface are horizontal, and the bar has a speed (100 m The force at which the blocking part is peeled off is measured four times per minute, and the average value is used as an index, but when using a polyethylene-based resin whose density is greater than 940 kg / m 3 , Not only the variation of each of the four measurements but also the tendency to increase the heat sealing start temperature was recognized. It is preferable that the variation of each measurement value of the four measurements be at the same level as when inorganic particles are used.
The reason why the measured value is likely to fluctuate for each measurement sample is not clear at present, but when mixed with a high density polyethylene-based resin, the viscosity average molecular weight of particles composed of polyethylene-based resin decreases and other than particles composed of polyethylene-based resin It is inferred that the particle size change occurs due to the entanglement of molecular chains with the polyethylene resin of the above, and the projections on the surface formed as a result become more uneven.
 上述のような密度が900~940kg/mのポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂としては、透明で、柔軟性に富み、引裂き強度、引張強度に平均的に優れる 高圧法低密度ポリエチレン(LDPE)、ブテン-1・ヘキセン-1オクテン-1を少量共重合させ、分子鎖に短分子鎖を多く持ち、シール性能、物理的強度に優れた直鎖状短鎖分岐ポリエチレン(LLDPE)、非常にシャープな分子量分布を示し、コモノマーの分布も均一で、引裂・引張・突刺し強度・耐ピンホール特性に優れるメタロセン触媒直鎖状短鎖分岐ポリエチレン(LLDPE)をその用途に応じて選択することができる。 As polyethylene resins other than particles made of polyethylene resin having a density of 900 to 940 kg / m 3 as described above, high-pressure low-density polyethylene is transparent, flexible, and excellent in tear strength and tensile strength on average. (LDPE), butene-1, hexene-1 octene-1 are copolymerized in small amounts, and there are many short molecular chains in the molecular chain, and linear short chain branched polyethylene (LLDPE), which has excellent sealing performance and physical strength. A metallocene catalyst linear short-chain branched polyethylene (LLDPE) that exhibits extremely sharp molecular weight distribution, uniform comonomer distribution, and excellent tear, tensile, puncture strength, and pinhole resistance properties is selected according to its application. be able to.
 本発明における、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂としては、製膜性等の点から、メルトフローレート(以下、MFRと記すことがある。)は2.5~4.5g/分程度が好ましい。ここでMFRは、JIS-K7210に準拠して測定した。又該ポリエチレン系樹脂は、自体既知の方法で合成される。 In the present invention, as a polyethylene-based resin other than particles made of a polyethylene-based resin, the melt flow rate (hereinafter sometimes referred to as MFR) is 2.5 to 4.5 g / min from the viewpoint of film forming property etc. The degree is preferred. Here, MFR was measured in accordance with JIS-K7210. The polyethylene resin is synthesized by a method known per se.
 本発明における、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂のMFRが2.5g/10分以下のような低い樹脂を使用する場合は、密度での説明と同様にポリエチレン系樹脂からなる粒子の粘度平均分子量低下やポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂との分子鎖の絡み合い等による粒径変化が起こりやすくなる為、押出条件には注意が必要である。大型の製膜機で高速製膜する場合はMFRは3~4g/10分程度が製膜性の為には特に好ましい。  In the present invention, when using a resin having a MFR as low as 2.5 g / 10 min or less other than the polyethylene resin particles, the polyethylene resin particles may be used in the same manner as described for the density. Since the change in particle size is apt to occur due to the decrease in viscosity average molecular weight and the entanglement of molecular chains with polyethylene resin other than particles made of polyethylene resin, it is necessary to be careful about the extrusion conditions. In the case of high-speed film formation using a large-sized film forming machine, an MFR of about 3 to 4 g / 10 min is particularly preferable because of film forming property.
 本発明における、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂としては、耐熱性等の点から、融点は85℃以上が好ましく、100℃以上がより好ましく、特に110℃以上が好ましい。 From the viewpoint of heat resistance and the like, the melting point is preferably 85 ° C. or more, more preferably 100 ° C. or more, and particularly preferably 110 ° C. or more from the viewpoint of heat resistance and the like in the present invention.
 本発明おける、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂は単一系であってもよいが、上記密度範囲の密度が異なるポリエチレン樹脂を2種以上配合することもできる。密度が異なるポリエチレン系樹脂を2種以上配合した場合、GPC測定や密度測定によりその平均密度、配合比を推測することができる。 The polyethylene-based resin other than the particles of the polyethylene-based resin in the present invention may be a single system, but two or more polyethylene resins different in density in the above-mentioned density range may be blended. When two or more polyethylene resins having different densities are blended, the average density and the blending ratio can be estimated by GPC measurement or density measurement.
 本発明のポリエチレン系樹脂フィルムには、本発明の目的と効果を損なわない範囲において、公知の添加剤、例えば酸化防止剤、中和剤、有機滑剤、無滴剤、帯電防止剤を併用しても良い。これらの添加剤の配合は、ポリエチレン系樹脂組成物の各成分を配合、混合する時に適宜配合することができる。 To the polyethylene resin film of the present invention, known additives such as an antioxidant, a neutralizing agent, an organic lubricant, a non-droplet and an antistatic agent are used in combination as long as the purpose and effect of the present invention are not impaired. Also good. Blending of these additives can be appropriately blended when blending and mixing the respective components of the polyethylene resin composition.
 本発明においては、有機系潤滑剤を添加することが好ましい。積層フィルムの滑性やブロッキング防止効果が向上し、フィルムの取り扱い性がよくなる。その理由として、有機滑剤がブリードアウトし、フィルム表面に存在することで、滑剤効果や離型効果が発現したものと考える。更に、有機系潤滑剤は常温以上の融点を持つものを添加することが好ましい。有機滑剤は、脂肪酸アミド、脂肪酸エステルが挙げられる。具体的にはオレイン酸アミド、エルカ酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、エチレンビスオレイン酸アミドなどである。これらは単独で用いても構わないが、2種類以上を併用することで過酷な環境下においても滑性やブロッキング防止効果を維持することができるので好ましい。 In the present invention, it is preferable to add an organic lubricant. The lubricity and antiblocking effect of the laminated film are improved, and the handleability of the film is improved. As the reason, it is considered that the lubricant effect and the mold release effect are expressed by the organic lubricant bleeding out and being present on the film surface. Furthermore, it is preferable to add an organic lubricant having a melting point higher than normal temperature. Organic lubricants include fatty acid amides and fatty acid esters. Specifically, oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, ethylene bis oleic acid amide and the like. These may be used alone, but it is preferable to use two or more kinds in combination because the lubricity and antiblocking effect can be maintained even under a severe environment.
 ポリエチレン系樹脂からなる粒子を含む層における、有機系潤滑剤アミド濃度の下限は好ましくは200ppmであり、より好ましくは400ppmである。上記未満であると滑り性が悪化することがある。有機滑剤アミド濃度の上限は好ましくは2500ppmであり、より好ましくは2000ppmである。上記を超えると滑りすぎて好ましくない。
 また、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体等も本発明の目的と効果を損なわない範囲において混合して使用してもよい。
The lower limit of the concentration of the organic lubricant amide in the layer containing particles made of polyethylene resin is preferably 200 ppm, more preferably 400 ppm. If it is less than the above, slipperiness may be deteriorated. The upper limit of the organic lubricant amide concentration is preferably 2500 ppm, more preferably 2000 ppm. If it exceeds the above, it is too slippery, which is not preferable.
In addition, ethylene / vinyl acetate copolymer, ethylene / acrylic ester copolymer, etc. may be mixed and used as long as the purpose and effect of the present invention are not impaired.
 本発明のポリエチレン系樹脂フィルムにおいては、無機粒子を実質的に含有しないことが必要である。無機粒子を実質的に含有する場合は、耐スクラッチ性や粒子が脱落しないといったポリエチレン系樹脂からなる粒子の添加の効果が得られにくくなる。ここでいう無機粒子とはシリカ、タルク、炭酸カルシウム、珪藻土、ゼオライト等の一般的にアンチブロッキング剤として使用される無機物であり、実質的に含有しないとは本発明のポリエチレン系樹脂フィルム全体における無機粒子の量の割合が0.2重量%以下であることを意味する。より好ましくは0.1重量%以下である。 The polyethylene resin film of the present invention is required to be substantially free of inorganic particles. When the inorganic particles are substantially contained, it is difficult to obtain the effect of the addition of particles made of a polyethylene resin, such as scratch resistance and that the particles do not fall off. The inorganic particles referred to here are inorganic substances generally used as an antiblocking agent such as silica, talc, calcium carbonate, diatomaceous earth, zeolite and the like, and inorganic substances in the entire polyethylene resin film of the present invention not containing substantially It means that the proportion of the amount of particles is 0.2% by weight or less. More preferably, it is 0.1% by weight or less.
 本発明のポリエチレン系樹脂フィルムにおいては、架橋有機粒子を実質的に含有しないことが必要である。架橋有機粒子を実質的に含有する場合は、耐スクラッチ性や粒子が脱落しないといったポリエチレン樹脂からなる粒子の添加の効果が得られにくくなる。ここでいう架橋有機粒子とはポリメチルアクリレート樹脂等に代表される有機架橋粒子であり、実質的に含有しないとは本発明のポリエチレン系樹脂フィルム全体における架橋有機粒子の量の割合が0.2重量%以下であることを意味する。より好ましくは0.1重量%以下である。 In the polyethylene resin film of the present invention, it is necessary to contain substantially no crosslinked organic particles. When the crosslinked organic particles are substantially contained, it is difficult to obtain the effect of addition of particles made of a polyethylene resin, such as scratch resistance and that the particles do not fall off. The crosslinked organic particles referred to here are organic crosslinked particles represented by polymethyl acrylate resin etc., and the content of the crosslinked organic particles in the whole of the polyethylene resin film of the present invention that the content is not substantially contained is 0.2 It means that it is not more than% by weight. More preferably, it is 0.1% by weight or less.
(製膜方法)
 本発明のポリエチレン系樹脂フィルムの製造方法としては、例えば、ポリエチレン系樹脂からなる粒子、及びポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂として、従来から使用されているポリエチレン系樹脂の中でも特定のものを含むポリエチレン系樹脂組成物を溶融混練する工程、溶融混練した樹脂組成物を溶融押出しして溶融樹脂組成物シートとする工程、溶融樹脂組成物シートを冷却固化する工程を採用するのが好ましい。
 本発明のポリエチレン系樹脂フィルムは、単層でもよく、積層でもよい。積層の場合は、ポリエチレン系樹脂からなる粒子を含有し、少なくとも片側の表面層の最大山高さが2μm以上、15μm以下である層と異なる他の層を設けることができる。
 単層の場合のフィルムの厚みとしては3μm以上であることが好ましく、10μm以上がより好ましく、15μm以上がさらに好ましく、20μm以上が特に好ましい。また、200μm以下が好ましく、150μm以下がより好ましく、100μm以下が特に好ましい。3μm未満ではポリエチレン系樹脂からなる粒子の効果が低下し、耐ブロッキング性や滑り性の効果が出にくい。
 積層の場合のポリエチレン系樹脂からなる粒子を含有し、少なくとも片側の表面層の最大山高さが2μm以上、15μm以下である層の厚みとしては3μm以上であることが好ましく、10μm以上がより好ましく、15μm以上がさらに好ましく、20μm以上が特に好ましい。また、200μm以下が好ましく、150μm以下がより好ましく、100μm以下が特に好ましい。3μm未満ではポリエチレン系樹脂からなる粒子の効果が低下し、耐ブロッキング性や滑り性の効果が出にくい。
(原料混合工程)
(Film forming method)
As a method for producing the polyethylene resin film of the present invention, for example, specific ones among polyethylene resins conventionally used as polyethylene resins other than particles consisting of polyethylene resin and particles consisting of polyethylene resin It is preferable to adopt a process of melt-kneading a polyethylene-based resin composition containing the following, a process of melt-extruding the melt-kneaded resin composition to form a molten resin composition sheet, and a process of cooling and solidifying the molten resin composition sheet.
The polyethylene resin film of the present invention may be a single layer or a laminate. In the case of lamination, it is possible to provide another layer different from the layer containing particles made of a polyethylene resin and having a maximum peak height of at least one surface layer of 2 μm or more and 15 μm or less.
The thickness of the film in the case of a single layer is preferably 3 μm or more, more preferably 10 μm or more, further preferably 15 μm or more, and particularly preferably 20 μm or more. Moreover, 200 micrometers or less are preferable, 150 micrometers or less are more preferable, and 100 micrometers or less are especially preferable. If it is less than 3 μm, the effect of particles made of polyethylene resin is reduced, and the effect of blocking resistance and slipperiness is hard to be obtained.
The thickness of the layer containing particles made of a polyethylene resin in the case of lamination and the maximum peak height of at least one surface layer is 2 μm or more and 15 μm or less is preferably 3 μm or more, more preferably 10 μm or more, 15 micrometers or more are further preferable, and 20 micrometers or more are especially preferable. Moreover, 200 micrometers or less are preferable, 150 micrometers or less are more preferable, and 100 micrometers or less are especially preferable. If it is less than 3 μm, the effect of particles made of polyethylene resin is reduced, and the effect of blocking resistance and slipperiness is hard to be obtained.
(Raw material mixing process)
 ポリエチレン系樹脂からなる粒子と、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂を混合する場合、これらが均一に混合される方法であれば良く、マスターバッチを使用する場合であれば、リボンブレンダー、ヘンシェルミキサー、タンブラーミキサー等を用いて混合する方法等が挙げられる。直添であれば添着剤をつけたレジンにポリエチレン系樹脂からなる粒子を付着させても良いし、サイドフィードなどで直接押出機に添加しても良い。
 ポリエチレン系樹脂からなる粒子を高濃度で、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂と混合してなるマスターバッチ少量を、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂と混合して用いる方法は分散性もよく簡便である。ただし、ポリエチレン系樹脂からなる粒子をマスターバッチを使用せずに、直接直鎖状低密度ポリエチエン、エチレン単量体の単独重合体、またはエチレン単量体とα-オレフィンとの共重合体と混合する場合は高い分散性が得られる為、コスト的にはサイドフィード方式などによる直添が好ましい。
When mixing particles made of polyethylene resin and polyethylene resin other than particles made of polyethylene resin, any method may be used as long as they are uniformly mixed, and if using master batch, ribbon blender, The method of mixing using a Henschel mixer, a tumbler mixer etc., etc. are mentioned. In the case of direct addition, particles made of a polyethylene resin may be attached to a resin to which an additive is attached, or may be added directly to an extruder by side feed or the like.
A method of using a small amount of a masterbatch formed by mixing particles made of polyethylene resin at high concentration with polyethylene resin other than particles made of polyethylene resin and mixing it with polyethylene resin other than particles made of polyethylene resin The dispersibility is also good and simple. However, particles made of polyethylene resin are directly mixed with linear low density polyethylene, homopolymer of ethylene monomer, or copolymer of ethylene monomer and α-olefin without using masterbatch. In this case, high dispersibility can be obtained, and in terms of cost, direct attachment by the side feed method or the like is preferable.
(溶融混練工程)
 まず、フィルム原料として、ポリエチレン系樹脂からなる粒子と、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂の水分率が1000ppm未満となるように、乾燥あるいは熱風乾燥する。次いで、各原料を計量、混合して押し出し機に供給し、溶融混練する。
(Melt kneading process)
First, drying or hot-air drying is performed so that the moisture content of particles made of polyethylene resin and particles of polyethylene resin other than particles made of polyethylene resin becomes less than 1000 ppm as film raw materials. Subsequently, each raw material is measured, mixed, supplied to an extruder, and melt-kneaded.
 ポリエチレン系樹脂組成物の溶融混合温度の下限は好ましくは200℃であり、より好ましくは210℃であり、さらに好ましくは220℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは260℃である。上記を越えると樹脂の分解が進行し、再結合した結果として生成した架橋有機物、いわゆるゲルなどの異物の量が多くなってしまう。
 ポリエチレン系樹脂組成物に上述の酸化防止剤を含有する場合は、より高温での溶融押し出しが可能になるが、270℃以下にするのが好ましい。
The lower limit of the melt mixing temperature of the polyethylene resin composition is preferably 200 ° C., more preferably 210 ° C., and still more preferably 220 ° C. If the amount is less than the above, discharge may be unstable. The upper limit of the resin melting temperature is preferably 260 ° C. When the amount exceeds the above range, decomposition of the resin proceeds, and as a result of recombination, the amount of a crosslinked organic substance generated as a result of recombination, so-called foreign matter such as gel, increases.
When the above-mentioned antioxidant is contained in the polyethylene resin composition, melt extrusion at higher temperatures is possible, but it is preferable to set the temperature to 270 ° C. or less.
 本発明で使用するポリエチレン系樹脂からなる粒子の融点は150℃程度以下であり、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂と混合し、溶融混練時の温度よりもはるかに低いにもかかわらず、驚くべきことにポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂に分子レベルで分散することなく、Tダイスから押し出され、冷却工程を経て得られたポリエチレン系樹脂フィルムには、ポリエチレン系樹脂からなる粒子が、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂に添加前の粒経と形状を維持したまま存在する。 The melting point of the polyethylene resin particles used in the present invention is about 150 ° C. or less, and it is mixed with a polyethylene resin other than the polyethylene resin particles, and it is much lower than the temperature at the time of melt-kneading Surprisingly, the polyethylene resin film extruded from the T die without being dispersed at the molecular level in polyethylene resins other than particles consisting of polyethylene resins, and made of a polyethylene resin is obtained through the cooling process. The particles are present in the polyethylene resin other than the particles made of the polyethylene resin while maintaining the particle size and shape before addition.
(ろ過)
 溶融混練工程では、溶融したポリエチレン系樹脂組成物中に含まれる異物を除去するために高精度濾過を行うことができる。溶融樹脂の高精度濾過に用いられる濾材は、特に限定はされないが、ステンレス焼結体の濾材の場合、いわゆるゲルなどの異物に加え、触媒などの添加物に由来するSi、Ti、Sb、Ge、Cuを主成分とする凝集物の除去性能に優れ好適である。また、その濾過精度は200μm以下であることが好ましい。
 ここでいう濾過精度とは、下記を意味する。
公称濾過精度であり、表示濾過精度以上の大きさの粒子(ここでは200μm以上)を60~98%程度捕捉する性能。
(Filtration)
In the melt-kneading step, high-precision filtration can be performed to remove foreign substances contained in the molten polyethylene-based resin composition. The filter medium used for high precision filtration of the molten resin is not particularly limited, but in the case of a filter medium of a stainless sintered body, in addition to foreign substances such as so-called gel, Si, Ti, Sb, Ge derived from additives such as catalyst It is excellent in the removal performance of the aggregate which has Cu as a main component, and is suitable. Moreover, it is preferable that the filtration precision is 200 micrometers or less.
The filtration accuracy as referred to herein means the following.
The nominal filtration accuracy, and the ability to capture 60 to 98% of particles (in this case, 200 μm or more) larger than the indicated filtration accuracy.
(フィルター昇圧)
 ポリエチレン系樹脂組成物を溶融混練中の昇圧量は小さい方が好ましい。昇圧量の測定方法は実施例記載の方法で行った。
(Filter boost)
The pressure increase during melt-kneading of the polyethylene resin composition is preferably smaller. The method of measuring the amount of pressure increase was performed by the method described in the example.
(溶融押出し工程)
 次に、溶融したポリエチレン系樹脂組成物シートを例えばT型ダイスから溶融押出しし、冷却ロール上にキャスティングし、冷却固化して未延伸シートを得る。このための具体的な方法としては、冷却ロール上へキャストすることが好ましい。
 本発明で使用するポリエチレン系樹脂からなる粒子はもともと疎水性樹脂である為、溶融混練、押出工程を経てもその粒子の表面の疎水性が変わらず、表面を疎水化処理した無機粒子で見られるT型ダイスのリップでの熱劣化物、いわゆる目ヤニの堆積が極めて発生し難い。
 溶融したポリエチレン系樹脂組成物シートを溶融押出しして物をTダイ法やインフレーション法でフィルムにする方法等が挙げられるが樹脂組成物の溶融温度を高くすることができる点でTダイ法が特に望ましい。
(Melt extrusion process)
Next, the molten polyethylene-based resin composition sheet is melt extruded from, for example, a T-die, cast on a cooling roll, and solidified by cooling to obtain an unstretched sheet. As a specific method for this, it is preferable to cast on a cooling roll.
Since the particles made of polyethylene resin used in the present invention are originally hydrophobic resin, the hydrophobicity of the surface of the particles does not change even after melt-kneading and extruding steps, and the particles are seen as inorganic particles whose surface is hydrophobized Thermal degradation products at the lip of the T-shaped die, so-called "stain buildup" are extremely unlikely to occur.
There is a method of melt-extruding a molten polyethylene-based resin composition sheet and forming the film into a film by a T-die method or an inflation method, but the T-die method is particularly preferable in that the melting temperature of the resin composition can be increased. desirable.
(リップ汚れ)
 ポリエチレン系樹脂組成物をT型ダイスから溶融押出しする際のT型ダイスのリップ口の汚れは少ない方が好ましい。リップ汚れの測定方法は実施例記載の方法で行った。
(Rip dirt)
It is preferable that the contamination of the lip opening of the T-die when the polyethylene resin composition is melt-extruded from the T-die be as small as possible. The lip stain was measured by the method described in the examples.
(冷却固化工程)
 例えば、T型ダイスから溶融押出ししたポリエチレン系樹脂組成物の溶融シートを冷却ロール上にキャスティングし冷却を行うのが好ましい。冷却ロール温度の下限は好ましくは10℃である。上記未満であると結晶化抑制の効果が飽和することがあるだけでなく結露などの問題が発生し好ましくない。冷却ロール温度の上限は好ましくは70℃以下である。上記を越えると結晶化が進み透明性が悪くなる為好ましくない。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい、
 キャスティングでは、表面に高温の樹脂が接触するため冷却ロール表面の温度が上昇する。通常、冷却ロールは内部に配管を通して冷却水を流して冷却するが、充分な冷却水量を確保する、配管の配置を工夫する、配管にスラッジが付着しないようメンテナンスを行う、などして、冷却ロール表面の幅方向の温度差を少なくする必要がある。このとき、未延伸シートの厚みは3~200μmの範囲が好適である。
(Cooling and solidification process)
For example, it is preferable to cast and cool a molten sheet of a polyethylene resin composition melt-extruded from a T-die and onto a cooling roll. The lower limit of the cooling roll temperature is preferably 10 ° C. If it is less than the above, not only the effect of crystallization suppression may be saturated but also problems such as condensation may occur, which is not preferable. The upper limit of the cooling roll temperature is preferably 70 ° C. or less. If the content exceeds the above range, crystallization proceeds and the transparency deteriorates, which is not preferable. When the temperature of the cooling roll is in the above range, it is preferable to lower the humidity of the environment around the cooling roll to prevent condensation.
In the casting, the temperature of the cooling roll surface rises because the high temperature resin contacts the surface. Normally, the cooling roll is cooled by flowing cooling water through the inside of the pipe, but a sufficient amount of cooling water is secured, the arrangement of the pipe is devised, maintenance is performed to prevent sludge from adhering to the pipe, etc. It is necessary to reduce the temperature difference in the width direction of the surface. At this time, the thickness of the unstretched sheet is preferably in the range of 3 to 200 μm.
(多層構成)
 本発明のポリエチレン系樹脂フィルムは多層構成でもよい。多層の場合は、上述したポリエチレン系樹脂組成物からなり、表面の最大山高さが2μm以上、15μm以下である層に加えて、他の層を1層あるいは2層以上設けることができる。
 このように多層化する具体的な方法として、一般的な多層化装置(多層フィードブロック、スタティックミキサー、多層マルチマニホールドなど)を用いることができる。
 例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂をフィールドブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等を使用することができる。また、一台の押出機のみを用いて、押出機からT型ダイまでのメルトラインに上述の多層化装置を導入することも可能である。
(Multilayer configuration)
The polyethylene resin film of the present invention may have a multilayer structure. In the case of a multilayer, one or two or more other layers can be provided in addition to the layer made of the polyethylene resin composition described above and having a maximum peak height of 2 μm or more and 15 μm or less on the surface.
As a specific method of forming a multilayer in this manner, a general multilayering apparatus (multilayer feed block, static mixer, multilayer multi manifold, etc.) can be used.
For example, a method of laminating thermoplastic resins delivered from different flow paths using two or more extruders in multiple layers using a field block, static mixer, multi-manifold die or the like can be used. Moreover, it is also possible to introduce the above-mentioned multilayering apparatus into the melt line from an extruder to a T-die using only one extruder.
 3層構成の場合はポリエチレン系樹脂組成物からなり、表面の最大山高さが3μm以上、15μm以下である層をシール層(A層)とし、他の層をそれぞれ中間層(B層)、ラミネート層(C層)とし、この順序で含む構成とするのが良い。
最外層はそれぞれA層、C層である。
In the case of a three-layer construction, a layer consisting of a polyethylene resin composition and having a maximum peak height of 3 μm or more and 15 μm or less on the surface is used as a seal layer (A layer), and the other layers are an intermediate layer (B layer) and laminate, respectively. It is good to set it as a layer (C layer) and to contain in this order.
The outermost layers are the A layer and the C layer, respectively.
 中間層(B層)、ラミネート層(C層)使用するポリエチレン系樹脂としては、例えばエチレン・α-オレフィン共重合体、高圧法ポリエチレンから選ばれる1種又は2種以上を混合したものが挙げられる。上記エチレン・α-オレフィン共重合体は、エチレンと炭素数4~18のα-オレフィンとの共重合体であり、α-オレフィンとしてはブテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、デセン-1等が挙げられる。
 これらのポリエチレン系樹脂より得られるフィルムは、優れたヒートシール強度、ホットタック性、夾雑物シール性、耐衝撃性を有し、該ポリエチレン系樹脂は、これらの特性を阻害しない範囲で、他の樹脂、例えばエチレン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体等を混合して使用してもよい。
Examples of the polyethylene-based resin used for the intermediate layer (B layer) and the laminate layer (C layer) include a mixture of one or more selected from ethylene / α-olefin copolymer and high pressure polyethylene. . The ethylene / α-olefin copolymer is a copolymer of ethylene and an α-olefin having 4 to 18 carbon atoms, and as the α-olefin, butene-1, hexene-1, 4-methylpentene-1, Octene-1, decene-1 and the like can be mentioned.
The films obtained from these polyethylene resins have excellent heat seal strength, hot tack, dirt sealability, impact resistance, and the polyethylene resins are not limited to the other properties to the extent that they do not impair the properties. Resins such as ethylene / vinyl acetate copolymer, ethylene / acrylic acid ester copolymer and the like may be mixed and used.
 このとき、中間層(B層)、ラミネート層(C層)に使用するポリエチレン系樹脂は同じでも良いし、異なっていてもよい。また、ポリエチレン系樹脂からなる粒子を添加しても良いし、添加しなくても良い。しかし、無機粒子及び有機架橋粒子を実質的に含有しない。実質的に含有しないとは本発明のポリエチレン系樹脂フィルム全体における架橋有機粒子の量の割合が0.2重量%以下であることを意味する。より好ましくは0.1重量%以下である。 At this time, the polyethylene resins used for the intermediate layer (B layer) and the laminate layer (C layer) may be the same or different. In addition, particles made of polyethylene resin may or may not be added. However, it does not substantially contain inorganic particles and organic crosslinked particles. The term "not substantially containing" means that the proportion of the amount of the crosslinked organic particles in the entire polyethylene resin film of the present invention is 0.2% by weight or less. More preferably, it is 0.1% by weight or less.
 この場合において、前記フィルムの各層のポリエチレン樹脂の平均密度がシーラント層(A層)≦中間層(B層)≦ラミネート層(C層)であることが好ましい。配合されている有機滑剤は密度の高い層へは移動しにくいため、ラミネート後のシーラント層の滑り性を維持するために効果的である。 In this case, the average density of the polyethylene resin of each layer of the film is preferably sealant layer (A layer) ≦ intermediate layer (B layer) ≦ laminate layer (C layer). The incorporated organic lubricant is difficult to move to the dense layer, and is effective for maintaining the slipperiness of the sealant layer after lamination.
 このとき、中間層(B層)、及びラミネート層(C層)の密度の下限は好ましくは900kg/mであり、より好ましくは920kg/mであり、さらに好ましくは930kg/mである。
上記未満であると腰が弱く、加工しにくいことがある。
 中間層(B層)、及びラミネート層(C層)の密度の上限は好ましくは960kg/mであり、より好ましくは940kg/mであり、さらに好ましくは935kg/mである。
At this time, the lower limit of the density of the intermediate layer (B layer) and the laminate layer (C layer) is preferably 900 kg / m 3 , more preferably 920 kg / m 3 , and still more preferably 930 kg / m 3 .
If it is less than the above, the body may be weak and difficult to process.
The upper limit of the density of the intermediate layer (B layer) and the laminate layer (C layer) is preferably 960 kg / m 3 , more preferably 940 kg / m 3 , and still more preferably 935 kg / m 3 .
 本発明のフィルムの中間層(B層)に上述の有機滑剤を使用してもよく、有機滑剤の下限は好ましくは200ppmであり、より好ましくは400ppmである。上記未満であると滑り性が悪化することがある。
 中間層(B層)のエルカ酸アミド濃度の上限は好ましくは2000ppmであり、より好ましくは1500ppmである。上記を越えると滑りすぎて巻きズレの原因となることがある。
The above-mentioned organic lubricant may be used in the middle layer (layer B) of the film of the present invention, and the lower limit of the organic lubricant is preferably 200 ppm, more preferably 400 ppm. If it is less than the above, slipperiness may be deteriorated.
The upper limit of the erucic acid amide concentration of the intermediate layer (B layer) is preferably 2000 ppm, more preferably 1500 ppm. If it exceeds the above, it may slip too much, which may cause winding deviation.
 本発明のフィルムの中間層(B層)に回収樹脂を10~30質量%配合してもよい。 The recovered resin may be blended in an amount of 10 to 30% by mass in the intermediate layer (layer B) of the film of the present invention.
 本発明においては、以上に記述したポリエチレン系フィルムのラミネート層(C層)面にコロナ処理等の活性線処理を行うのが好ましい。該対応によりラミネート強度が向上する。 In the present invention, it is preferable to perform actinic ray treatment such as corona treatment on the surface of the laminate layer (C layer) of the polyethylene film described above. The correspondence improves the laminate strength.
 2層の場合はポリエチレン系樹脂からなる粒子を含有し、少なくとも片側の表面層の最大山高さが2μm以上、15μm以下である層をシール層(A層)とし、他の層をラミネート層(C層)とするのが良い。 In the case of two layers, a layer comprising particles of a polyethylene resin is contained, and a layer having a maximum peak height of 2 μm or more and 15 μm or less of at least one surface layer is a seal layer (A layer), and the other layer is a laminate layer (C Layer) is good.
(最大突起高さ)
 本発明ポリエチレン系樹脂フィルムの少なくとも片側の表面層の最大山高さが2μm以上、15μm以下であることが必要である。最大山高さRzが15μmを超える場合は外観不良を発生させる為好ましくない。測定方法は実施例に記載の方法で行う。
(Maximum projection height)
The maximum peak height of the surface layer of at least one side of the polyethylene resin film of the present invention is required to be 2 μm or more and 15 μm or less. When the maximum peak height Rz exceeds 15 μm, it is not preferable because appearance defects occur. The measurement method is carried out by the method described in the examples.
(15μ以上の突起の数)
 本発明のポリエチレン系樹脂フィルムは前記表面の最大山高さが2μm以上、15μm以下である表面層における15μmを超える突起の数(個/0.2mm)が0以下であるのが好ましい。この数が少ないほどチラツキ感やヘイズといった外観が劣る。測定方法は実施例に記載の方法で行う。
(Number of protrusions of 15μ or more)
The polyethylene resin film of the present invention preferably has a number of projections exceeding 15 μm (number / 0.2 mm 2 ) in the surface layer having a maximum peak height of 2 μm or more and 15 μm or less on the surface of 0 or less. The smaller the number, the poorer the appearance such as flicker and haze. The measurement method is carried out by the method described in the examples.
(ヒートシール開始温度)
 二軸延伸ナイロンフィルム(15μm)をラミネートしたポリエチレン系樹脂フィルムのヒートシール開始温度の上限は好ましくは130℃であり、より好ましくは120℃mである。上記を超えるとシール加工がしにくくなることがある。
(Heat sealing start temperature)
The upper limit of the heat sealing start temperature of the polyethylene resin film laminated with the biaxially stretched nylon film (15 μm) is preferably 130 ° C., more preferably 120 ° C. m. If the above is exceeded, sealing may be difficult.
(到達ヒートシール強度)
 二軸延伸ナイロンフィルム(15μm)をラミネートしたポリエチレン系樹脂フィルムの120℃における到達ヒートシール強度の下限は好ましくは30N/15mmであり、より好ましくは35N/15mmである。上記未満であると製袋後に袋が破れやすくなることがある。
 二軸延伸ナイロンフィルム(15μm)をラミネートしたポリエチレン系樹脂フィルムの120℃におけるヒートシール強度の上限は好ましくは70N/15mmであり、より好ましくは65N/15mmである。上記を越えると製袋後に袋が開封しにくくなることがある。測定方法は実施例に記載の方法で行う。
(Attainment heat seal strength)
The lower limit of the ultimate heat seal strength at 120 ° C. of the polyethylene resin film laminated with biaxially stretched nylon film (15 μm) is preferably 30 N / 15 mm, more preferably 35 N / 15 mm. If it is less than the above, the bag may be easily torn after making the bag.
The upper limit of the heat seal strength at 120 ° C. of the polyethylene resin film laminated with biaxially oriented nylon film (15 μm) is preferably 70 N / 15 mm, more preferably 65 N / 15 mm. If the above is exceeded, it may be difficult to open the bag after making the bag. The measurement method is carried out by the method described in the examples.
(ブロッキング強度)
 二軸延伸ナイロンフィルム(15μm)をラミネートしたポリエチレン系樹脂フィルムのブロッキング強度の下限は好ましくは0mN/20mmであり、より好ましくは10mN/20mmであり、さらに好ましくは15mN/20mmである。
 ブロッキング強度の上限は好ましくは150mN/20mmであり、より好ましくは50mN/20mmであり、さらに好ましくは40mN/20mmである。上記を超えると、巻き出し直後の滑り性が悪化することがある。測定方法は実施例に記載の方法で行う。
(Blocking strength)
The lower limit of the blocking strength of the polyethylene resin film laminated with the biaxially stretched nylon film (15 μm) is preferably 0 mN / 20 mm, more preferably 10 mN / 20 mm, and still more preferably 15 mN / 20 mm.
The upper limit of the blocking strength is preferably 150 mN / 20 mm, more preferably 50 mN / 20 mm, and still more preferably 40 mN / 20 mm. If the above is exceeded, the slipperiness immediately after unrolling may deteriorate. The measurement method is carried out by the method described in the examples.
(摩擦係数)
 二軸延伸ナイロンフィルム(15μm)をラミネートしたポリエチレン系樹脂フィルムのラミネート後の静摩擦係数の下限は好ましくは0.05であり、より好ましくは0.08である。上記未満であると巻取りの際にフィルムが滑りすぎて巻きズレの原因となることがある。
 ラミネート後の静摩擦係数の上限は好ましくは0.50であり、より好ましくは0.4である。上記を越えると製袋後の口開き性が悪く、加工時のロスが増加することがある。測定方法は実施例に記載の方法で行う。
(Coefficient of friction)
The lower limit of the coefficient of static friction after lamination of the polyethylene resin film laminated with biaxially stretched nylon film (15 μm) is preferably 0.05, and more preferably 0.08. When it is less than the above, the film may slip too much during winding, which may cause winding deviation.
The upper limit of the coefficient of static friction after lamination is preferably 0.50, more preferably 0.4. When it exceeds the above, the opening property after bag making is bad, and the loss at the time of processing may increase. The measurement method is carried out by the method described in the examples.
(ヘイズ)
 本発明のポリエチレン系樹脂フィルムのヘイズの下限は好ましくは3%であり、より好ましくは4%であり、さらに好ましくは5%である。上記未満であるとアンチブロッキング剤が少ない恐れがあり、ブロッキングの原因となることがある。
 ヘイズの上限は好ましくは15%であり、より好ましくは12%であり、さらに好ましくは10%である。上記を越えると内容物の視認がしにくいとなることがある。測定方法は実施例に記載の方法で行う。
(Haze)
The lower limit of the haze of the polyethylene resin film of the present invention is preferably 3%, more preferably 4%, still more preferably 5%. If it is less than the above, there may be a small amount of antiblocking agent, which may cause blocking.
The upper limit of the haze is preferably 15%, more preferably 12%, and still more preferably 10%. If the above is exceeded, it may be difficult to view the contents. The measurement method is carried out by the method described in the examples.
(チラツキ感)
 本発明のポリエチレン系樹脂フィルムは、ほとんどチラツキを感じないか、細かいチラツキはあるが均一で特に気にならないのが好ましい。測定方法は実施例に記載の方法で行う。
 従来のデンプンなどの粉をフィルム表面に振りかけずとも耐ブロッキング性を有する、いわゆるノンパウダータイプでは、従来は平均粒径が10μm程度の無機粒子を添加したものがあるが、チラツキ感が劣る。
(A feeling of flicker)
It is preferable that the polyethylene resin film of the present invention hardly feels flickering or has fine flickering but is uniform and not particularly concerned. The measurement method is carried out by the method described in the examples.
In the so-called non-powder type, which has blocking resistance without applying conventional starch or the like powder to the film surface, in the past, inorganic particles having an average particle diameter of about 10 μm have been added.
(耐スクラッチ性)
 二軸延伸ナイロンフィルム(15μm)をラミネートしたポリエチレン系樹脂フィルムは、そのシール面同士が重なるように指でつまんで10回こすった後も、傷がほとんどつかないか、細いスジ状の傷がつくが白化はしないのが好ましい。測定方法は実施例に記載の方法で行う。
 従来のデンプンなどの粉をフィルム表面に振りかけずとも耐ブロッキング性を有する、いわゆるノンパウダータイプでは、従来は平均粒径が10μm程度の無機粒子を添加したものがあるが、耐スクラッチ性が劣る。
(Scratch resistance)
A polyethylene resin film laminated with a biaxially stretched nylon film (15 μm) is scarcely scratched or has a thin streak-like scratch even after being pinched and rubbed ten times so that the sealing surfaces overlap each other However, it is preferable not to whiten. The measurement method is carried out by the method described in the examples.
In the so-called non-powder type, which has blocking resistance without dusting a conventional powder such as starch on the film surface, in the past, inorganic particles having an average particle diameter of about 10 μm are added, but scratch resistance is poor.
 本発明のポリエチレン系樹脂フィルムのヤング率(MD)の下限は好ましくは100MPaであり、より好ましくは200MPaである。上記未満であると腰が弱すぎて加工しにくいことがある。ヤング率(MD)の上限は好ましくは800MPaであり、より好ましくは600MPaである。 The lower limit of the Young's modulus (MD) of the polyethylene resin film of the present invention is preferably 100 MPa, more preferably 200 MPa. If it is less than the above, the waist may be too weak to be processed easily. The upper limit of Young's modulus (MD) is preferably 800 MPa, more preferably 600 MPa.
(ヤング率)
 本発明のポリエチレン系樹脂フィルムのヤング率(TD)の下限は好ましくは100MPaであり、より好ましくは200MPaである。上記未満であると腰が弱すぎて加工しにくいことがある。ヤング率(TD)の上限は好ましくは1000MPaであり、より好ましくは600MPaである。
(Young's modulus)
The lower limit of the Young's modulus (TD) of the polyethylene resin film of the present invention is preferably 100 MPa, more preferably 200 MPa. If it is less than the above, the waist may be too weak to be processed easily. The upper limit of Young's modulus (TD) is preferably 1000 MPa, more preferably 600 MPa.
 以下、実施例、および比較例によって本発明をさらに詳細に説明するが、本発明は、以下の実施例によって特に限定を受けるものではない。なお、本発明の詳細な説明および実施例中の各項目の測定値は、下記の方法で測定した。 Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not particularly limited by the following examples. In addition, the measured value of each item in the detailed description of this invention and the Example was measured by the following method.
 以下、本発明における実施の形態を詳細に説明する。
(1)ポリエチレン系樹脂からなる粒子の測定方法
 ポリエチレン系樹脂からなる粒子は加工前の原料樹脂の各物性を測定した。
 なお、フィルム成形したあとでも、デカンを溶媒として、ポリエチレン系樹脂からなる粒子以外のポリエチレンが完全に溶解する下限域の温度でフィルムを溶解させ、フィルターのろ過精度2μmのフィルターで残留物をろ過することや、デカン中で粒子を完全に溶融させた後、GPC等で分子量の高い部分を分離するなどの方法でポリエチレン系樹脂からなる粒子を分離し、測定することも可能である。
Hereinafter, embodiments of the present invention will be described in detail.
(1) Method of Measuring Particles of Polyethylene-Based Resin The particles of polyethylene-based resin were measured for each physical property of the raw material resin before processing.
Even after film forming, decane is used as a solvent to dissolve the film at the temperature of the lower limit where polyethylene other than particles consisting of polyethylene resin completely dissolves, and the residue is filtered with a filter with a filtration accuracy of 2 μm. It is also possible to separate and measure particles composed of a polyethylene resin by a method such as separating the high molecular weight part by GPC or the like after completely melting the particles in decane.
(2)ポリエチレン系樹脂からなる粒子の粘度平均分子量
 ASTM-D4020に準拠して測定した。
(2) Viscosity Average Molecular Weight of Particles Made of Polyethylene Resin Measured according to ASTM-D4020.
(3)ポリエチレン系樹脂からなる粒子の平均粒径 
 使用前のポリエチレン樹脂からなる粒子の平均粒子径は下記のようにして測定した。
 高速攪拌機を使用して所定の回転速度(約5000rpm)で攪拌したイオン交換水中に粒子を分散させ、その分散液をイソトン(生理食塩水)に加えて超音波分散機で更に分散した後に、コールカウンター法によって粒度分布を求め体積平均粒子径として算出した。
(3) Average particle diameter of particles made of polyethylene resin
The average particle size of the polyethylene resin particles before use was measured as follows.
The particles are dispersed in ion exchange water stirred at a predetermined rotation speed (about 5000 rpm) using a high-speed stirrer, and the dispersion is added to isotone (saline) and further dispersed by an ultrasonic disperser, The particle size distribution was determined by the counter method and calculated as the volume average particle size.
(4)ポリエチレン系樹脂からなる粒子の粒度分布 
 使用前のポリエチレン樹脂からなる粒子のうち25μm以上の粒子径のものの割合はコールカウンター法で求めた粒度分布から算出した。
(4) Particle size distribution of particles made of polyethylene resin
The ratio of particles having a particle diameter of 25 μm or more among particles made of polyethylene resin before use was calculated from the particle size distribution determined by the Coulter method.
(5)ポリエチレン系樹脂からなる粒子の融点 
 使用前のポリエチレン樹脂からなる粒子の融点はSII製示差走査型熱量計(DSC)を用い、サンプル量10mg、昇温速度10℃/分で測定した。ここで検知された融解吸熱ピーク温度を融点とした。
(5) Melting point of particles made of polyethylene resin
The melting point of the polyethylene resin particles before use was measured using a differential scanning calorimeter (DSC) manufactured by SII at a sample amount of 10 mg and a temperature rising rate of 10 ° C./min. The melting endothermic peak temperature detected here was taken as the melting point.
(6)ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂の密度、MFR、融点
 フィルム成形前の原料をそれぞれ下記の方法で測定した。
 なお、ポリエチレン系樹脂からなる粒子を含む層を形成する、ポリエチレン系樹脂からなる粒子以外のポリエチレン系樹脂は単層であれば全層、積層であれば層構成を電子顕微鏡等で確認した後、表面を表面層未満の厚みで削り取り上記(1)で得られたろ過した溶液から溶媒を除去したもので同様に測定出来る。積層から削り取る場合はPETフィルムなどにラミネートした後にカミソリ等で削りとることで比較的容易に行なうことが出来る。
(6) Density, MFR, and Melting Point of Polyethylene-Based Resin Other than Particles Made of Polyethylene-Based Resin Raw materials before film formation were measured by the following methods.
In addition, after forming the layer containing the particle which consists of polyethylene-type resin, polyethylene-type resin other than the particle which consists of polyethylene-type resin is all layers if it is single layer, and if layer structure is confirmed with an electron microscope if it is lamination, The surface can be scraped off with a thickness less than that of the surface layer, and the filtered solution obtained in the above (1) can be measured similarly by removing the solvent from the filtered solution. In the case of scraping from lamination, it can be relatively easily done by laminating with a PET film or the like and then shaving with a razor or the like.
(密度)
 JIS-K7112に従って密度勾配管法により測定した。
(density)
It measured by the density gradient tube method according to JIS-K7112.
(メルトフローレート:MFR)(g/10分)
 JIS-K7210に準拠し、温度190℃で測定した。  
(Melt flow rate: MFR) (g / 10 min)
It was measured at a temperature of 190 ° C. in accordance with JIS-K7210.
(融点)
 SII製示差走査型熱量計(DSC)を用い、サンプル量10mg、昇温速度10℃/分で測定した。ここで検知された融解吸熱ピーク温度を融点とした。
(Melting point)
Using a differential scanning calorimeter (DSC) manufactured by SII, measurement was performed at a sample amount of 10 mg and a heating rate of 10 ° C./min. The melting endothermic peak temperature detected here was taken as the melting point.
(7)無機粒子のフィルム中の含有量(重量%)
 無機粒子のフィルム中の含有量は加工前の原料樹脂組成物中の添加量から計算した。
 なお、フィルム成形したあとでも、デカンを溶媒として、ポリエチレン系樹脂からなる粒子以外のポリエチレンが完全に溶解する温度でフィルムを溶解させ、フィルターのろ過精度2μmのフィルターで残留物をろ過するなどの方法で無機粒子を分離し、測定することも可能である。
(7) Content of inorganic particles in film (% by weight)
The content of the inorganic particles in the film was calculated from the amount of addition in the raw material resin composition before processing.
In addition, even after film forming, using decane as a solvent, the film is dissolved at a temperature at which polyethylene other than particles made of polyethylene resin completely dissolves, and the residue is filtered with a filter with a filtration accuracy of 2 μm. It is also possible to separate and measure inorganic particles with
(8)フィルター昇圧(製膜加工性)
 シール層に使用する樹脂組成物をろ過精度120μmのナスロン焼結フィルターに230℃の樹脂温でトラウトン試験機を使用し、ろ過面積81π平方ミリに1kg/時間の吐出量で5時間放流した場合の昇圧量(ΔMPa)を基準(△)として、それぞれ下記◎、○、△、×に分類した。
◎:昇圧量が比較例1の90%以下である。
○:昇圧量が比較例1の95%以下である。
△:昇圧量が比較例1と同等である。
×:昇圧量が比較例1より高い。
(8) Filter pressure increase (film forming processability)
The resin composition used for the seal layer is discharged for 5 hours with a discharge area of 81 kg square hour with a filtration area of 81π square mm using a Nauron sintered filter with a filtration accuracy of 120 μm at a resin temperature of 230 ° C. It classified into following (double-circle), (circle), (triangle | delta), and x as a reference | standard ((triangle | delta)) for a pressure increase amount ((DELTA) MPa).
◎: The pressure increase amount is 90% or less of Comparative Example 1.
○: The pressure increase amount is 95% or less of Comparative Example 1.
Δ: The amount of pressure increase is equal to that of Comparative Example 1.
X: The boost amount is higher than that of Comparative Example 1.
(9)リップ汚れ(製膜加工性)
 シール層に使用する樹脂組成物を5時間押出機でストランドダイを利用し230℃で押出した場合のリップの汚れを目視で観察し、それを基準(△)として下記◎、○、△、×に分類した。
◎:ほとんどリップ汚れが確認出来ない。
○:リップ汚れがわずかにみられる。
△:リップ汚れが明らかに確認できる。
×:リップ汚れが成長しストランドに筋状のくぼみが生じた。
(9) Lip stain (film forming processability)
The dirt of the lip when the resin composition used for the sealing layer is extruded at 230 ° C. by using a strand die with an extruder for 5 hours is visually observed, and the following ◎, 、, Δ, × as a reference (Δ) Classified into
:: Almost no lip stain can be confirmed.
○: There is slight lip stain.
:: Lip stain can be clearly confirmed.
X: Lip stains grew to form streak-like depressions in the strand.
(10)最大突起高さ
 三次元表面粗さSRaは接触式表面粗さ(小坂研究所製・型式ET4000A)を用い、3cm×3cm四方のフィルム片から任意に測定面1mm×0.2mmの個所の表面粗さを測定し最大山高さRzを求めた。上記方法で測定したRzをn=3で測定し平均値を求めた。
(10) Maximum projection height Three-dimensional surface roughness SRa is a point of 1 mm × 0.2 mm on a measuring surface arbitrarily from a 3 cm × 3 cm square film piece using a contact type surface roughness (manufactured by Kosaka Laboratory, model ET4000A) Surface roughness was measured to determine the maximum peak height Rz. The average value was determined by measuring Rz measured by the above method at n = 3.
(11)15μm以上の突起数(個/0.2mm
 15μm以上の突起数は接触式表面粗さ(小坂研究所製・型式ET4000A)を用い、3cm×3cm四方のフィルム片から任意に測定面1mm×0.2mmの個所の表面粗さを測定し最大山高さRzが15μm以上の突起をマーキングし求めた。Rzが15μm以上に相当する突起数カウントしn=3測定値の平均から求めた。
(11) Number of protrusions of 15 μm or more (pieces / 0.2 mm 2 )
The maximum number of protrusions of 15 μm or more is the maximum by measuring the surface roughness of the measurement surface 1 mm × 0.2 mm arbitrarily from a 3 cm × 3 cm square film piece using a contact-type surface roughness (Kosaka Laboratory-made, model ET4000A) The protrusions having a height Rz of 15 μm or more were obtained by marking. The number of protrusions corresponding to Rz of 15 μm or more was counted and determined from the average of n = 3 measured values.
(12)ヒートシール開始温度(℃)
 ナイロンフィルム(東洋紡製二軸延伸ナイロンフィルム:N1100、15μm)のコロナ面に東洋モートン製ドライラミネート用接着剤(TM569、CAT-10L)を固形分が3g/mになるように塗布し80℃のオーブンで溶剤を揮発除去した後、ポリエチレン系樹脂フィルムのコロナ面と接着剤の塗布面とを60℃の温調ロール上でニップしラミネートした。ラミネートした積層フィルムは40℃で2日間エージングした。作成した積層サンプルにシール圧力0.1MPa、シール時間0.5秒、シール温度を90~160℃で10℃ピッチで10mm幅のヒートシールを行った。
 ヒートシールしたサンプルをヒートシール幅が15mmになるように短冊状にカットしてオートグラフ(島津製作所製 形式:UA-3122)にセットして200mm/分の速度でシール面を剥離した強度の最大値をn数3で測定し、各温度でのヒートシール強度とヒートシール温度をプロットした。各プロット間を直線で結んだグラフから4.9N/15mmとなるヒートシール温度を読み取りヒートシール開始温度とした。
(12) Heat seal start temperature (° C)
An adhesive for dry lamination made by Toyo Morton (TM569, CAT-10L) is applied to the corona surface of a nylon film (Toyobo's biaxially stretched nylon film: N1100, 15 μm) so that the solid content is 3 g / m 2 and 80 ° C. After the solvent was removed by evaporation in an oven, the corona-coated surface of the polyethylene resin film and the coated surface of the adhesive were laminated by nipping on a temperature control roll at 60 ° C. The laminated laminated film was aged at 40 ° C. for 2 days. The prepared laminated sample was heat sealed at a seal pressure of 0.1 MPa, at a seal time of 0.5 seconds, at a seal temperature of 90 to 160 ° C. and a pitch of 10 ° C. and a width of 10 mm.
The heat-sealed sample is cut into strips so that the heat seal width is 15 mm, set in an autograph (Shimadzu model: UA-3122), and the seal surface is peeled at a speed of 200 mm / min. The value was measured by n number 3, and heat seal strength and heat seal temperature were plotted at each temperature. The heat seal temperature which becomes 4.9 N / 15 mm from the graph which tied between each plot with a straight line was read, and it was set as the heat seal start temperature.
(13)到達ヒートシール強度(N/15mm)
 ナイロンフィルム(東洋紡製二軸延伸ナイロンフィルム:N1100、15μm)のコロナ面に東洋モートン製ドライラミネート用接着剤(TM569、CAT-10L)を固形分が3g/mになるように塗布し80℃のオーブンで溶剤を揮発除去した後、ポリエチレン系樹脂フィルムのコロナ面と接着剤の塗布面とを60℃の温調ロール上でニップしラミネートした。ラミネートした積層フィルムは40℃で2日間エージングした。作成した積層サンプルにシール圧力0.1MPa、シール時間0.5秒、シール温度を120~190℃で10℃ピッチで10mm幅のヒートシールを行った。
 ヒートシールしたサンプルをヒートシール幅が15mmになるように短冊状にカットしてオートグラフ(島津製作所製 形式:UA-3122)にセットして200mm/分の速度でシール面を剥離した強度の最大値をn数3で測定し、最も平均値の高いヒートシール強度を到達シール強度とした。
(13) Reached heat seal strength (N / 15 mm)
An adhesive for dry lamination made by Toyo Morton (TM569, CAT-10L) is applied to the corona surface of a nylon film (Toyobo's biaxially stretched nylon film: N1100, 15 μm) so that the solid content is 3 g / m 2 and 80 ° C. After the solvent was removed by evaporation in an oven, the corona-coated surface of the polyethylene resin film and the coated surface of the adhesive were laminated by nipping on a temperature control roll at 60 ° C. The laminated laminated film was aged at 40 ° C. for 2 days. The prepared laminated sample was heat sealed at a seal pressure of 0.1 MPa, at a seal time of 0.5 seconds, at a seal temperature of 120 to 190 ° C. and a pitch of 10 ° C. and a width of 10 mm.
The heat-sealed sample is cut into strips so that the heat seal width is 15 mm, set in an autograph (Shimadzu model: UA-3122), and the seal surface is peeled at a speed of 200 mm / min. The value was measured by n number 3, and the heat seal strength with the highest average value was taken as the ultimate seal strength.
(14)ブロッキング強度
 ナイロンフィルム(東洋紡製二軸延伸ナイロンフィルム:N1100、15μm)との積層フィルムを下記のようにして作成した。
ナイロンフィルムのコロナ面に東洋モートン製ドライラミネート用接着剤(TM569、CAT-10L)を固形分が3g/mになるように塗布し80℃のオーブンで溶剤を揮発除去した後、ポリエチレン系樹脂フィルムのコロナ面と接着剤の塗布面とを60℃の温調ロール上でニップしラミネートした。ラミネートした積層フィルムは40℃で2日間エージングした。
 測定面同士を重ね合わせたサンプル(10cm×15cm)を、ヒートプレス(テスター産業社製、形式:SA-303)において、サンプル幅(10cm)の中央で長さ方向(15cm)の内側1cmの位置に大きさ7cm×7cmのアルミ板(2mm厚)の端を合わせるように乗せ、温度50℃、圧力440kgf/cm、時間15分の加圧処理を行う。
 この加圧処理でブロッキングしたサンプルとバー(径6mm 材質:アルミ)をオートグラフ(島津製作所製 形式:UA-3122)へ装着し、バーが速度(100m/分)でブロッキング部を剥離する時の力を測定した。
 この場合、バーと剥離面は水平であることが前提である。同一サンプルにつき4回の測定をして平均値で表示した。
(14) Blocking Strength A laminated film with a nylon film (biaxially stretched nylon film manufactured by Toyobo Co., Ltd .: N1100, 15 μm) was prepared as follows.
Apply an adhesive for dry lamination (TM569, CAT-10L) made by Toyo Morton on the corona surface of nylon film so that the solid content is 3 g / m 2 and evaporate off the solvent in an oven at 80 ° C. The corona surface of the film and the coated surface of the adhesive were nipped and laminated on a 60 ° C. temperature control roll. The laminated laminated film was aged at 40 ° C. for 2 days.
In a heat press (manufactured by Tester Sangyo Co., Ltd., model: SA-303), a sample (10 cm × 15 cm) obtained by superposing measurement surfaces on each other is positioned 1 cm inside the length direction (15 cm) at the center of the sample width (10 cm) A 7 cm × 7 cm aluminum plate (2 mm thick) is placed on top so as to be aligned, and subjected to pressure treatment at a temperature of 50 ° C. and a pressure of 440 kgf / cm 2 for 15 minutes.
When the sample blocked with this pressure treatment and the bar (diameter 6 mm material: aluminum) are attached to an autograph (Model: UA-3122 manufactured by Shimadzu Corporation) and the bar peels off the blocking part at a speed (100 m / min) The force was measured.
In this case, it is premised that the bar and the peeling surface are horizontal. Four measurements were made on the same sample and displayed as an average value.
(15)静止摩擦係数 ナイロンフィルム(東洋紡製二軸延伸ナイロンフィルム:N1100、15μm)との積層フィルムを下記のようにして作成した。
ナイロンフィルムのコロナ面に東洋モートン製ドライラミネート用接着剤(TM569、CAT-10L)を固形分が3g/mなるように塗布し80℃のオーブンで溶剤を揮発除去した後、ポリエチレン系樹脂フィルムのコロナ面と接着剤の塗布面とを60℃の温調ロール上でニップしラミネートした。ラミネートした積層フィルムは40℃で2日間エージングした。作成した積層フィルムのポリエチレン系樹脂フィルム面同士の静止摩擦係数をJIS-K7125に準拠し、23℃65%RH環境下で測定した。
(15) Coefficient of static friction A laminated film with a nylon film (biaxially stretched nylon film made by Toyobo Co., Ltd .: N1100, 15 μm) was produced as follows.
An adhesive for dry lamination made by Toyo Morton (TM569, CAT-10L) is applied to the corona surface of a nylon film so that the solid content is 3 g / m 2 and the solvent is removed by evaporation in an oven at 80 ° C. The corona surface of the adhesive and the coated surface of the adhesive were nipped and laminated on a temperature control roll at 60.degree. The laminated laminated film was aged at 40 ° C. for 2 days. The static friction coefficient between the polyethylene resin film faces of the produced laminated film was measured in an environment of 23 ° C. and 65% RH in accordance with JIS-K7125.
(16)ヘイズ
 ポリエチレン系樹脂フィルムのみを(株)東洋精機製作所社製の直読ヘイズメーターを使用し、JIS-K7105に準拠し測定した。
 ヘイズ(%)=〔Td(拡散透過率%)/Tt(全光線透過率%)〕x 100
(16) Haze The polyethylene resin film only was measured using a direct reading haze meter manufactured by Toyo Seiki Seisakusho Co., Ltd. in accordance with JIS-K7105.
Haze (%) = [Td (diffuse transmittance%) / Tt (total light transmittance%)] x 100
(17)チラツキ感
 ポリエチレン系樹脂フィルムのみを目視で観察し、チラツキ感を下記◎、○、△、×に分類した。
◎:ほとんど輝点を感じない。
○:細かい輝点はあるが均一で特に気にならない。
△:部分的に輝点があり異物感を感じる。
×:全面に輝点があり透明性が損なわれる。
(17) Flickering Sense Only the polyethylene resin film was visually observed, and the flickering feel was classified into the following ◎, ○, △, x.
◎: Almost no bright spots.
○: There are fine bright spots but they are uniform and not particularly noticeable.
Δ: There are bright spots in part and feel of foreign matter.
X: There are bright spots on the entire surface and the transparency is impaired.
(18)耐スクラッチ性
 ナイロンフィルム(東洋紡製二軸延伸ナイロンフィルム:N1100、15μm)との積層フィルムを下記のようにして作成した。
ナイロンフィルムのコロナ面に東洋モートン製ドライラミネート用接着剤(TM569、CAT-10L)を固形分が3g/mになるように塗布し80℃のオーブンで溶剤を揮発除去した後、ポリエチレン系樹脂フィルムのコロナ面と接着剤の塗布面とを60℃の温調ロール上でニップしラミネートした。ラミネートした積層フィルムは40℃で2日間エージングした。作成した積層フィルムのポリエチレン系樹脂フィルム面同士が重なるように指でつまんで10回こすり、目視で観察し、傷のつきやすさを下記◎、○、△、×で分類した。
◎:傷がほとんどつかない。
○:細いスジ状の傷がつくが白化はしない。
△:細いスジ状の密集と部分的に白化が見られる。
×:こすった箇所がほぼ白化する。 
(18) Scratch resistance A laminated film with a nylon film (biaxially stretched nylon film made by Toyobo Co., Ltd .: N1100, 15 μm) was produced as follows.
Apply an adhesive for dry lamination (TM569, CAT-10L) made by Toyo Morton on the corona surface of nylon film so that the solid content is 3 g / m 2 and evaporate off the solvent in an oven at 80 ° C. The corona surface of the film and the coated surface of the adhesive were nipped and laminated on a 60 ° C. temperature control roll. The laminated laminated film was aged at 40 ° C. for 2 days. The polyethylene-based resin film of the produced laminated film was pinched with a finger and rubbed ten times so that the polyethylene resin film surfaces of the laminated film overlap each other, and visually observed. Ease of scratching was classified by the following ◎, 、, Δ, x.
◎: There is almost no damage.
○: There are thin streaks of scratches but no whitening.
Fair: fine streaks and partial whitening are observed.
X: The rubbed part almost whitens.
 次に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。
 実施例及び比較例では下記の原料を使用した。
(ポリエチレン系樹脂)
(1)0540F(メタロセン系直鎖状低密度ポリエチレン、宇部丸善ポリエチレン(株)社製、密度904kg/m、MFR4.0g/10min、融点111℃)
(2)FV402(メタロセン系直鎖状低密度ポリエチレン、住友化学(株)社製、密度913kg/m、MFR3.8g/10min、融点115℃)
(3)FV405(メタロセン系直鎖状低密度ポリエチレン、住友化学(株)社製、密度923kg/m、MFR3.8g/10min、融点118℃)
(4)FV407(メタロセン系直鎖状低密度ポリエチレン、住友化学(株)社製、密度930kg/m、MFR3.2gg/10min/10min、融点124℃)
(5)3540F(メタロセン系直鎖状低密度ポリエチレン、宇部丸善ポリエチレン(株)社製、密度931kg/m、MFR4.0g/10min、融点123℃)
(6)4540F(メタロセン系直鎖状低密度ポリエチレン、宇部丸善ポリエチレン(株)社製、密度944kg/m、MFR4.0g/10min、融点128℃)
(7)リュブマーLS3000(高分子量ポリエチレン、三井化学(株)社製、密度969kg/m、MFR14g/10min、熱変形温度(4.6Kg/cm)80℃)
Next, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited to the following examples.
The following raw materials were used in Examples and Comparative Examples.
(Polyethylene resin)
(1) 0540F (metallocene linear low density polyethylene, manufactured by Ube Maruzen Polyethylene Co., Ltd., density 904 kg / m 3 , MFR 4.0 g / 10 min, melting point 111 ° C.)
(2) FV 402 (metallocene linear low density polyethylene, manufactured by Sumitomo Chemical Co., Ltd., density 913 kg / m 3 , MFR 3.8 g / 10 min, melting point 115 ° C.)
(3) FV 405 (metallocene linear low density polyethylene, manufactured by Sumitomo Chemical Co., Ltd., density 923 kg / m 3 , MFR 3.8 g / 10 min, melting point 118 ° C.)
(4) FV 407 (metallocene linear low density polyethylene, manufactured by Sumitomo Chemical Co., Ltd., density 930 kg / m 3 , MFR 3.2 gg / 10 min / 10 min, melting point 124 ° C.)
(5) 3540 F (metallocene linear low density polyethylene, manufactured by Ube Maruzen Polyethylene Co., Ltd., density 931 kg / m 3 , MFR 4.0 g / 10 min, melting point 123 ° C.)
(6) 4540 F (metallocene linear low density polyethylene, manufactured by Ube Maruzen Polyethylene Co., Ltd., density 944 kg / m 3 , MFR 4.0 g / 10 min, melting point 128 ° C.)
(7) Lubbmer LS 3000 (high molecular weight polyethylene, manufactured by Mitsui Chemicals, Inc., density 969 kg / m 3 , MFR 14 g / 10 min, heat distortion temperature (4.6 kg / cm 2 ) 80 ° C.)
(ポリエチレン系樹脂からなる粒子)
(1)ミペロンXM220(超高分子量ポリエチレン粒子、三井化学(株)社製、密度940kg/m、融点136℃、粘度平均分子量200万、ショア硬度65D、体積平均粒径30μm、30μmを超える粒径の重量割合55%)
(2)ミペロンPM220改良品(超高分子量ポリエチレン粒子、三井化学(株)社製、密度940kg/m、融点135℃、粘度平均分子量180万、ショア硬度65D、体積平均粒径10μm、25μmを超える粒径の重量割合1%以下)
(Particle made of polyethylene resin)
(1) Miperon XM 220 (Ultra-high molecular weight polyethylene particles, manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , melting point 136 ° C., viscosity average molecular weight 2,000,000, Shore hardness 65 D, volume average particle diameter 30 μm, particles exceeding 30 μm Weight percentage of diameter 55%)
(2) Miperon PM 220 modified product (ultra high molecular weight polyethylene particles, manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , melting point 135 ° C., viscosity average molecular weight 1.8 million, Shore hardness 65 D, volume average particle diameter 10 μm, 25 μm Weight percentage of particle size exceeding 1% or less
(無機粒子)
(1)KMP-130-10(球状シリカ粒子、信越シリコン社製、平均粒径10μm)(2)ダイカライトWF(珪藻土、Grefco.Inc.,製、ピンミル粉砕機で平均粒径5μmに加工して使用)
(Inorganic particles)
(1) KMP-130-10 (spherical silica particles, manufactured by Shin-Etsu Silicon Co., Ltd., average particle diameter 10 μm) (2) Dicalite WF (diatomaceous earth, Grefco. Inc., product, processed to an average particle diameter of 5 μm by a pin mill crusher Use)
(有機滑剤)
 (1)エチレンビスオレイン酸アミド(住友化学製エチレンビスオレイン酸アミド2%マスターバッチEMB11を使用した)
 (2)エルカ酸アミド(住友化学製エルカ酸アミド4%マスターバッチEMB10を使用た)
(Organic lubricant)
(1) Ethylene bis oleic acid amide (using Sumitomo Chemical's ethylene bis oleic acid amide 2% master batch EMB11)
(2) Erucic acid amide (using Sumitomo Chemical's Erucic acid amide 4% master batch EMB10)
(実施例1~5)
 表1に示す樹脂、添加剤をシール層、ラミネート層、中間層用の原料として使用し、それぞれ3つの押し出し機を用いて、それぞれ240℃で溶融し、ろ過精度120μmの焼結フィルターでろ過した後、Tダイからシート状に共押し出しし、シール層、中間層、ラミネート層の厚み比率が1:3:1になるように溶融押出し、30℃の冷却ロールで冷却固化した後、得られたシートのラミネート層表面にコロナ放電処理を施した後、速度150m/分でロール状に巻取り、厚み50μm、ラミネート層表面の濡れ張力が45N/mのポリエチレン系樹脂フィルムを得た。
(Examples 1 to 5)
The resins and additives shown in Table 1 were used as raw materials for the seal layer, laminate layer, and intermediate layer, respectively melted at 240 ° C. using three extruders respectively, and filtered with a sintered filter having a filtration accuracy of 120 μm. After co-extrusion from a T-die into a sheet, melt extrusion so that the thickness ratio of the seal layer, intermediate layer, and laminate layer becomes 1: 3: 1, and after cooling and solidifying with a 30 ° C. cooling roll, obtained The surface of the laminate layer of the sheet was subjected to corona discharge treatment, and was wound into a roll at a speed of 150 m / min to obtain a polyethylene resin film having a thickness of 50 μm and a wet tension of 45 N / m on the surface of the laminate layer.
 実施例1~5で得られたポリエチレン系樹脂フィルムは、ヒートシール性に優れ、耐ブロッキング性と摩擦係数は測定サンプル間の測定値の変動が小さく、安定した耐ブロッキング性及び滑り性を有し、しかも外観と耐スクラッチ性も優れるものであった。しかも製膜加工性にも優れるものであった。 The polyethylene resin films obtained in Examples 1 to 5 are excellent in heat sealability, and the blocking resistance and the friction coefficient have small fluctuations in measured values between the measurement samples, and have stable blocking resistance and slipperiness. Moreover, the appearance and the scratch resistance were also excellent. And it was excellent also in film forming processability.
(比較例1~6)
 表2に示す樹脂、添加剤をシール層、ラミネート層、中間層用の原料として使用し、それぞれ3つの押し出し機を用いて、それぞれ240℃で溶融し、ろ過精度120μmの焼結フィルターでろ過した後、Tダイからシート状に共押し出しし、シール層、中間層、ラミネート層の厚み比率が1:3:1になるように溶融押出し、30℃の冷却ロールで冷却固化した後、得られたシートのラミネート層表面にコロナ放電処理を施した後、速度150m/分でロール状に巻取り、厚み50μm、ラミネート層表面の濡れ張力が45N/mのポリエチレン系樹脂フィルムを得た。
(Comparative Examples 1 to 6)
The resins and additives shown in Table 2 were used as raw materials for the seal layer, laminate layer, and intermediate layer, respectively melted at 240 ° C. using three extruders respectively, and filtered with a sintered filter having a filtration accuracy of 120 μm. After co-extrusion from a T-die into a sheet, melt extrusion so that the thickness ratio of the seal layer, intermediate layer, and laminate layer becomes 1: 3: 1, and after cooling and solidifying with a 30 ° C. cooling roll, obtained The surface of the laminate layer of the sheet was subjected to corona discharge treatment, and was wound into a roll at a speed of 150 m / min to obtain a polyethylene resin film having a thickness of 50 μm and a wet tension of 45 N / m on the surface of the laminate layer.
 比較例1で得られたフィルムは耐ブロッキング性と滑り性は優れていたもの、若干チラツキ感があり、耐スクラッチ性や製膜加工性が劣るものであった。
 (比較例2で得られたフィルムは耐ブロッキング性と滑り性は優れていたものの、チラツキ感があり、外観に劣るものであった。
 比較例3で得られたフィルムは耐ブロッキング性と透明性は優れていたものの、チラツキ感があり、外観が著しく劣るものであった。
 比較例4で得られたフィルムは表面に溶融ムラが発生し、チラツキ感もあり、外観が著しく劣るものであった。また、耐ブロッキング性、滑り性、耐スクラッチ性も劣るものであった。
 比較例5で得られたフィルムは耐ブロッキング性と摩擦係数は測定サンプル間の測定値の変動が大きく、安定するものではなかった。ポリエチレン系樹脂からなる粒子の粒径が安定せず変化していることが理由と推定している。
 比較例6で得られたフィルムは耐ブロッキング性は優れていたもののチラツキ感があり、外観が劣るものであった。また、耐スクラッチ性や製膜加工性が劣るものであった。
 結果を表1、表2に示す。
The film obtained in Comparative Example 1 was excellent in blocking resistance and slipperiness, slightly flickering, and inferior in scratch resistance and film forming processability.
(Although the film obtained in Comparative Example 2 was excellent in blocking resistance and slipperiness, it had a flickering feeling and was inferior in appearance.
Although the film obtained in Comparative Example 3 was excellent in blocking resistance and transparency, it had a flickering feeling and the appearance was remarkably inferior.
The film obtained in Comparative Example 4 had melting unevenness on the surface, a flickering feeling, and the appearance was significantly inferior. In addition, blocking resistance, slipperiness, and scratch resistance were also inferior.
In the film obtained in Comparative Example 5, the blocking resistance and the friction coefficient were not stable because the variation of the measured value between the measurement samples was large. It is presumed that the reason is that the particle size of the polyethylene resin particles is unstable and changes.
Although the film obtained in Comparative Example 6 was excellent in blocking resistance, it had a flickering feeling and was inferior in appearance. In addition, the scratch resistance and the film forming processability were inferior.
The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明のポリエチレン系樹脂フィルムについて、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 As mentioned above, although the polyethylene resin film of the present invention was explained based on a plurality of examples, the present invention is not limited to the composition indicated in the above-mentioned example, but combines the composition indicated in each example suitably The configuration can be changed as appropriate without departing from the scope of the present invention.
 本発明記載のポリエチレン系樹脂フィルムは、その特性に優れるため食品包装用等、広範囲な用途のフィルムに好適に使用できる。 The polyethylene-based resin film according to the present invention is excellent in its properties, and can be suitably used as a film for a wide range of applications such as food packaging.

Claims (7)

  1.  ポリエチレン系樹脂からなる粒子と、密度が940kg/m以下であるポリエチレン系樹脂を含有し、無機粒子及び有機架橋粒子を実質的に含有しないポリエチレン系樹脂組成物からなり、少なくとも片側の表面の最大山高さが2μm以上、15μm以下であることを特徴とするポリエチレン系樹脂フィルム。 A polyethylene resin composition containing particles of a polyethylene resin and a polyethylene resin having a density of 940 kg / m 3 or less, substantially free of inorganic particles and organic cross-linked particles, and having a maximum on at least one surface A polyethylene resin film having a peak height of 2 μm or more and 15 μm or less.
  2.  ポリエチレン系樹脂からなる粒子と、ポリエチレン系樹脂を含有し、無機粒子及び有機架橋粒子を実質的に含有せず、密度が940kg/m以下であるポリエチレン系樹脂組成物からなる層を少なくとも片側に有し、かつその層の表面の最大の最大山高さが2μm以上、15μm以下であることを特徴とするポリエチレン系樹脂フィルム。 A layer made of a polyethylene resin composition containing particles of a polyethylene resin and a polyethylene resin, containing substantially no inorganic particles and organic cross-linked particles, and having a density of 940 kg / m 3 or less And a polyethylene resin film characterized in that the maximum maximum height of the surface of the layer is 2 μm or more and 15 μm or less.
  3.  ポリエチレン系からなる粒子の粘度平均分子量が150万以上あり、かつDSCによる融点ピーク温度が150℃以下である請求項1又は2に記載のポリエチレン系樹脂フィルム。 The polyethylene resin film according to claim 1 or 2, wherein the viscosity average molecular weight of the polyethylene particles is 1.5 million or more, and the melting point peak temperature by DSC is 150 ° C or less.
  4.  エルカ酸アミド及び又はエチレンビスオレイン酸アミドを含む請求項1~3のいずれかに記載のポリエチレン系樹脂フィルム。 The polyethylene resin film according to any one of claims 1 to 3, which contains erucic acid amide and / or ethylene bis oleic acid amide.
  5.  前記最大山高さが2μm以上、15μm以下である表面層同士のブロッキング値が200mN/70mm以下である請求項1~4のいずれかに記載のポリエチレン系樹脂フィルム。 5. The polyethylene resin film according to any one of claims 1 to 4, wherein the blocking value between the surface layers having the maximum peak height of 2 μm or more and 15 μm or less is 200 mN / 70 mm or less.
  6.  請求項1~5のいずれかに記載のポリエチレン系樹脂フィルムとその他のフィルムを含む積層体。 A laminate comprising the polyethylene resin film according to any one of claims 1 to 5 and another film.
  7.  請求項6に記載の積層体を含む包装袋。 A packaging bag comprising the laminate according to claim 6.
PCT/JP2018/040649 2017-11-08 2018-11-01 Polyethylene resin film WO2019093217A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880072163.7A CN111315805B (en) 2017-11-08 2018-11-01 Polyethylene resin film
JP2019552750A JP7200943B2 (en) 2017-11-08 2018-11-01 polyethylene resin film
KR1020247010725A KR20240045383A (en) 2017-11-08 2018-11-01 Polyethylene resin film
KR1020207015312A KR20200078598A (en) 2017-11-08 2018-11-01 Polyethylene resin film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017215910 2017-11-08
JP2017-215910 2017-11-08
JP2018121038 2018-06-26
JP2018-121038 2018-06-26
JP2018-195094 2018-10-16
JP2018195094 2018-10-16

Publications (1)

Publication Number Publication Date
WO2019093217A1 true WO2019093217A1 (en) 2019-05-16

Family

ID=66438349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040649 WO2019093217A1 (en) 2017-11-08 2018-11-01 Polyethylene resin film

Country Status (5)

Country Link
JP (1) JP7200943B2 (en)
KR (2) KR20200078598A (en)
CN (1) CN111315805B (en)
TW (1) TWI822705B (en)
WO (1) WO2019093217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106187A (en) * 2019-12-26 2021-07-26 東洋紡株式会社 Polyolefin-based resin film and adhesive sheet using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095955A (en) * 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd Surface protection film
JP2008088248A (en) * 2006-09-29 2008-04-17 Tamapori Kk Resin composition for inflation molding, and molded film of the same
JP2011201983A (en) * 2010-03-25 2011-10-13 Nitto Denko Corp Substrate for surface-protecting sheet and surface-protecting sheet
JP2013245345A (en) * 2012-05-29 2013-12-09 Mitsui Chemicals Inc Olefinic polymer composition and film composed of the composition
US20140243466A1 (en) * 2013-02-28 2014-08-28 Sabic Innovative Plastics Ip B.V. Wear and friction properties of engineering thermoplastics with ultra-high molecular weight polyethylene
WO2015182448A1 (en) * 2014-05-30 2015-12-03 東レ株式会社 Reflective film and edge-lit backlight unit using same
WO2016042992A1 (en) * 2014-09-17 2016-03-24 東レ株式会社 Reflective film and edge-lit backlight unit using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201283B2 (en) 1996-09-10 2001-08-20 東洋紡績株式会社 Linear low density polyethylene composite film
JPH1087909A (en) 1996-09-20 1998-04-07 Sekisui Chem Co Ltd Sealant film for retort
WO2011027818A1 (en) * 2009-09-04 2011-03-10 住友精化株式会社 Polyolefin-based composite resin spherical particles, coating composition and coated object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095955A (en) * 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd Surface protection film
JP2008088248A (en) * 2006-09-29 2008-04-17 Tamapori Kk Resin composition for inflation molding, and molded film of the same
JP2011201983A (en) * 2010-03-25 2011-10-13 Nitto Denko Corp Substrate for surface-protecting sheet and surface-protecting sheet
JP2013245345A (en) * 2012-05-29 2013-12-09 Mitsui Chemicals Inc Olefinic polymer composition and film composed of the composition
US20140243466A1 (en) * 2013-02-28 2014-08-28 Sabic Innovative Plastics Ip B.V. Wear and friction properties of engineering thermoplastics with ultra-high molecular weight polyethylene
WO2015182448A1 (en) * 2014-05-30 2015-12-03 東レ株式会社 Reflective film and edge-lit backlight unit using same
WO2016042992A1 (en) * 2014-09-17 2016-03-24 東レ株式会社 Reflective film and edge-lit backlight unit using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106187A (en) * 2019-12-26 2021-07-26 東洋紡株式会社 Polyolefin-based resin film and adhesive sheet using the same

Also Published As

Publication number Publication date
JP7200943B2 (en) 2023-01-10
CN111315805A (en) 2020-06-19
CN111315805B (en) 2023-04-11
TWI822705B (en) 2023-11-21
JPWO2019093217A1 (en) 2020-12-10
KR20200078598A (en) 2020-07-01
KR20240045383A (en) 2024-04-05
TW201922871A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
KR102526027B1 (en) Polyethylene film
JP2024050552A (en) Polyethylene resin multilayer film, and vapor-deposited film, laminate, and packaging material using the same
JP2020192811A (en) Polyethylene film
WO2010016403A1 (en) Surface protection film
TW202043358A (en) Sealant film
JP4529100B2 (en) Surface protection film
JP2007045046A (en) Highly concealable heat sealable polyolefin foamed film
JP7200943B2 (en) polyethylene resin film
JP3132373B2 (en) Multilayer film
WO2023085049A1 (en) Laminated sealant film
JP2009061705A (en) Manufacturing process of polypropylene resin laminated non-oriented film
JP7331698B2 (en) Method for producing polyethylene resin film
JP3291969B2 (en) Polyethylene-based unstretched film, laminated film and bag
WO2020217931A1 (en) Polyethylene-based resin film
JP4591259B2 (en) Heat-sealable polyolefin foam film with good concealment
WO2024084928A1 (en) Laminated sealant film
JPH11268209A (en) Polyolefin film, and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207015312

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18875331

Country of ref document: EP

Kind code of ref document: A1