WO2016042992A1 - Reflective film and edge-lit backlight unit using same - Google Patents

Reflective film and edge-lit backlight unit using same Download PDF

Info

Publication number
WO2016042992A1
WO2016042992A1 PCT/JP2015/073964 JP2015073964W WO2016042992A1 WO 2016042992 A1 WO2016042992 A1 WO 2016042992A1 JP 2015073964 W JP2015073964 W JP 2015073964W WO 2016042992 A1 WO2016042992 A1 WO 2016042992A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
reflective film
mass
layer
resin layer
Prior art date
Application number
PCT/JP2015/073964
Other languages
French (fr)
Japanese (ja)
Inventor
田中正太郎
若原隆一
塚村裕介
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015542499A priority Critical patent/JP6641627B2/en
Publication of WO2016042992A1 publication Critical patent/WO2016042992A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a reflective film used for a backlight of a liquid crystal display device or the like, and more particularly to a reflective film suitable for an edge light type backlight unit.
  • the liquid crystal display device generally employs a backlight system that emits light by illuminating the liquid crystal layer from the back.
  • a backlight system that emits light by illuminating the liquid crystal layer from the back.
  • an edge light type and a direct type are known.
  • a resin layer containing particles (hereinafter also referred to as a bead layer, a particle-containing layer or a coating layer) is laminated on at least one surface of a white film, and the surface is projected by particles.
  • a reflective film in which a portion (projection) is formed is known.
  • Patent Document 1 a resin layer that defines particle coverage, the number of particles stacked, the height of protrusions, the number of protruding particles, and the like has been proposed (for example, Patent Document 1). ⁇ 4).
  • the inventors of the present invention have noticed that polyethylene particles have relatively low hardness and relatively little deterioration (discoloration, etc.) due to heat, and have started to develop a reflective film that takes advantage of these characteristics.
  • an object of the present invention is to stick to a member (for example, a light guide plate) that comes into contact with a reflective film, taking advantage of the properties of polyethylene particles (the properties of relatively low hardness and relatively little deterioration (discoloration) against heat). At the same time, it is possible to suppress damage (scratch scratches and contamination) of the contact member (for example, light guide plate) and contamination of the contact member (for example, light guide plate) due to heat, and heat resistance (small discoloration due to heat). ) Is to provide a good reflective film.
  • a reflective film comprising a resin layer containing polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more on at least one surface of a base film.
  • the reflective film according to [1] wherein the density of the polyethylene particles is 942 kg / m 3 or more.
  • damage to the contact member for example, the light guide plate
  • contamination of the contact member for example, the light guide plate
  • a reflective film having good heat resistance small discoloration due to heat
  • the member (contact member) that comes into contact with the reflective film is not particularly limited, and the contact member can be appropriately selected depending on the use and purpose of use of the reflective film.
  • the reflective film of the present invention is particularly suitable for an edge light type backlight unit, and the backlight unit is disposed so that the reflective film and the light guide plate are in contact with each other.
  • a light guide plate is used as an example of a contact member. The effects of the present invention will be described.
  • White spot unevenness (a phenomenon in which a spot that is brightly visible in a dotted shape occurs) may occur due to sticking between the reflective film and the light guide plate, but sticking to the light guide plate by using the reflective film of the present invention. Sticking is suppressed, and as a result, the occurrence of uneven white spots is suppressed.
  • a light guide plate may be damaged when a reflective film and a light guide plate contact, damage to a light guide plate is suppressed by using a reflective film of the present invention.
  • the damage to the light guide plate includes, for example, scratching the light guide plate, or particles in the resin layer of the reflective film being shaved and transferred to the light guide plate to contaminate the light guide plate.
  • the backlight unit of the liquid crystal display device may become hot when the liquid crystal display device is turned on.
  • conventional polyethylene particles are used as particles to be included in the resin layer, the polyethylene particles melt and contaminate the light guide plate.
  • the reflective film of the present invention such contamination of the light guide plate by heat is suppressed.
  • the reflective film of the present invention has good heat resistance (discoloration due to heat) by using polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more.
  • the reflective film of the present invention is characterized by having a resin layer containing polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more on at least one surface of a base film.
  • polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more may be referred to as polyethylene particles according to the present invention.
  • the resin layer surface has convex portions formed of the polyethylene particles.
  • the convex portions as described above on the surface of the resin layer because sticking between the reflective film and the light guide plate is suppressed, and as a result, occurrence of white spot unevenness is suppressed.
  • FIG. 1 is an image of a surface photograph taken by a scanning electron microscope on the surface of a resin layer as an example of a reflective film according to the present invention. It can be clearly confirmed that convex portions due to particles are present on the surface of the resin layer of the reflective film 100.
  • symbol 1 is the film
  • symbol 2 is a particle
  • symbol 3 contains the resin layer containing the particle
  • symbol 4 has each shown the base film.
  • the convex portions by the particles on the surface of the resin layer may be formed such that only a part of the particles protrudes from the surface (FIG. 2A), or more than half of the particles may protrude from the surface (FIG. 2B). ).
  • the convex portion may be formed of individual particles as shown in FIGS. 2A and 2B, or the convex portion may be formed in a state where a plurality of particles are aggregated or aggregated (FIG. 2C).
  • the convexity may be formed by arranging the particles on the surface of the resin layer in a planar manner with almost no gap (FIG. 3A), and further, the convexity with a plurality of particles overlapping in the thickness direction of the resin layer. A part may be formed (FIG. 3B).
  • a part or all of the convex region is covered with a resin (binder) contained in the resin layer. This is preferable because dropout of particles is effectively suppressed.
  • the polyethylene particles according to the present invention include particles made of an ethylene homopolymer and / or particles made of a copolymer containing ethylene as a main component. Among these particles, the viscosity average molecular weight is 10,000 or more. Particles having a melting point of 115 ° C. or higher are selected.
  • the melting point of the polyethylene particles according to the present invention is preferably 120 ° C. or higher, more preferably 125 ° C. or higher, and 128 ° C. or higher, from the viewpoint of suppressing sticking between the reflective film and the light guide plate and suppressing damage to the light guide plate or thermal contamination.
  • the above is particularly preferable.
  • the upper limit of the melting point of the polyethylene particles is to ensure the transparency of the particles and the hardness of the particles. From the standpoint of suppressing damage to the light guide plate by making it relatively small, it is preferably 175 ° C. or lower, more preferably 170 ° C. or lower, and particularly preferably 160 ° C. or lower.
  • the viscosity average molecular weight of the polyethylene particles according to the present invention is preferably 50,000 or more from the viewpoint of suppressing sticking between the reflective film and the light guide plate and suppressing damage to the light guide plate or thermal contamination. More preferably, it is particularly preferably 150,000 or more.
  • the polyethylene particles according to the present invention include particles made of a copolymer having ethylene as a main component, and the copolymer having ethylene as a main component is the content of ethylene in the copolymer. It means that the ratio is 50% by mass or more. When the content ratio of ethylene in the copolymer is less than 50% by mass, the original characteristics of the polyethylene particles (the characteristics that the polyethylene particles have relatively low hardness and relatively little deterioration (discoloration, etc.) due to heat) are sufficient. It may not develop.
  • the ethylene content in the copolymer is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more from the above viewpoint (from the viewpoint of sufficiently expressing the original characteristics of the polyethylene particles). Particularly preferred.
  • the upper limit is about 99% by mass.
  • the copolymer component of the copolymer includes ⁇ -olefins (for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 4-methyl-1-pentene). , 3-methyl-1-pentene, etc.), cyclic olefin, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, styrene, fluorinated ethylene and the like.
  • ⁇ -olefins for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene,
  • ⁇ -olefin, cyclic olefin, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, and styrene are preferable, and ⁇ -olefin and cyclic olefin are particularly preferable.
  • particles made of an ethylene homopolymer are particularly preferable.
  • Particles made of an ethylene homopolymer have an appropriate hardness, so that damage to the light guide plate can be effectively suppressed, and mixing to the resin layer is relatively good, and the applicability of the resin layer is relatively good.
  • polyethylene particles according to the present invention is, for example, particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more among polyethylene particles having a density of 942 kg / m 3 or more. It can be selected and used.
  • polyethylene particles having a viscosity average molecular weight of 10,000 or more and a density of 942 kg / m 3 or more may be referred to as “high-density polyethylene particles”.
  • the density of the high density polyethylene particles is more preferably 945 kg / m 3 or more, more preferably 950 kg / m 3 or more. Since the melting point tends to increase as the density of the high density polyethylene particles increases, the density of the high density polyethylene particles is preferably higher as described above. On the other hand, since the transparency when the density of the high density polyethylene particle is high tends to be more likely and hardness decrease, the density of the upper limit is preferably 980 kg / m 3 or less, 970 kg / m 3 or less is more preferable.
  • the high-density polyethylene particles may have a viscosity average molecular weight of 50,000 or more from the viewpoint of improving the slipperiness of the reflective film surface or effectively suppressing sticking between the reflective film and the light guide plate. Preferably, it is 100,000 or more, more preferably 150,000 or more.
  • the upper limit of the viscosity average molecular weight of the high density polyethylene particles is not particularly limited, but is preferably less than about 700,000.
  • high-density polyethylene particles examples include “Flow Beads” (registered trademark) “HE-3040” manufactured by Sumitomo Seika Co., Ltd., and “Sunfine” (registered trademark) TM “LH” manufactured by Asahi Kasei Chemicals Corporation. Series "etc. are mentioned.
  • particles having a melting point of 115 ° C. or higher are selected and used from polyethylene particles having a viscosity average molecular weight of 700,000 or higher. it can.
  • the above-mentioned polyethylene particles having a viscosity average molecular weight of 700,000 or more have a viscosity average molecular weight of preferably 800,000 or more, more preferably 1,000,000 or more, and particularly preferably 1,500,000 or more from the viewpoint of obtaining a higher melting point.
  • the upper limit is not particularly limited, but is preferably 20 million or less, more preferably 10 million or less, particularly preferably 7 million or less, and most preferably 5 million or less.
  • the density of the polyethylene particles viscosity average molecular weight of 700,000 or more is not particularly limited, 925 is preferably in the range of ⁇ 980 kg / m 3, more preferably in the range of 930 ⁇ 970kg / m 3, of 935 ⁇ 965kg / m 3 A range is further preferred.
  • Examples of polyethylene particles having a melting point of 115 ° C. or higher and a viscosity average molecular weight of 700,000 or higher include “Miperon” (registered trademark, product name) series (manufactured by Mitsui Chemicals), “Hi-Zex Million” (registered trademark, product) Name) Series (made by Mitsui Chemicals), “Sun Fine” (registered trademark, product name) series (made by Asahi Kasei Chemicals), “Dyneema” (registered trademark, product name) series (made by DSM), “Spectra” ( Registered trademark, product name) series (manufactured by Honeywell), “GUR” (registered trademark, product name) series (manufactured by Ticona), "Hostalen” (registered trademark, product name) series (manufactured by Hoechst), etc. .
  • the polyethylene particles according to the present invention are preferably contained so that convex portions of the polyethylene particles are formed on the surface of the resin layer.
  • the average particle diameter (r: ⁇ m) of the polyethylene particles is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and particularly preferably 15 ⁇ m or more.
  • the upper limit of the average particle diameter of the polyethylene particles is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, from the viewpoint of suppressing dropping of the polyethylene particles and ensuring uniform coating properties when the resin layer is formed by coating.
  • the thickness is preferably 50 ⁇ m or less.
  • Polyethylene particles having an average particle diameter of 5 to 100 ⁇ m are contained in the resin layer, and appropriate convex portions are formed on the surface of the resin layer. Sticking with the light plate can be effectively suppressed. Moreover, since the convex part formed with the polyethylene particle has comparatively small hardness, it can suppress the damage of a light-guide plate, and is preferable.
  • the average particle diameter (r: ⁇ m) is a square or rectangle having the smallest area that completely surrounds one particle on a photograph.
  • the length (major axis diameter) is defined as the maximum length of the particles, and is a value obtained by averaging the maximum lengths of the number of particles described in the examples.
  • the shape of the polyethylene particles according to the present invention is preferably spherical.
  • spherical does not necessarily mean only a true sphere, but means that the cross-sectional shape of the particle is surrounded by a curved surface such as a circle, an ellipse, a substantially circle, or a substantially ellipse.
  • the ratio of major axis to minor axis means 1.4 or less.
  • a convex portion of the polyethylene particles according to the present invention By forming a convex portion of the polyethylene particles according to the present invention on the surface of the resin layer, for example, a preferable effect of improving the slipperiness of the reflective film surface is exhibited.
  • damage (scratch scratch) of the light guide plate caused by contact between the reflective film surface and the light guide plate is suppressed, and the polyethylene particles contained in the resin layer are further scraped off. This is preferable because contamination of the light guide plate is suppressed.
  • polyethylene particles particles having a relatively low melting point
  • polyethylene wax particles generally polyethylene wax particles having a viscosity average molecular weight of less than 10,000
  • the slipperiness was not improved but rather slippery. The reason for this is presumed that the convex portions formed by conventional polyethylene particles or polyethylene wax particles are compressed and deformed by contact with a contact member (for example, a light guide plate), and slipperiness is reduced.
  • a contact member for example, a light guide plate
  • the slip property of the reflective film surface can be expressed by a dynamic friction coefficient between the reflective film surface and the acrylic plate.
  • the dynamic friction coefficient is preferably 0.6 or less, and particularly preferably 0.3 or less. That is, in the reflective film according to the present invention, the dynamic friction coefficient of the reflective film surface of at least one surface is preferably 0.6 or less, and particularly preferably 0.3 or less. That is, when the resin layer is provided on both surfaces of the base film, the dynamic friction coefficient on the surface of the reflective film only on one surface may be 0.6 or less (particularly 0.3 or less is preferable) The dynamic friction coefficient on the surface of the reflective film may be 0.6 or less (particularly 0.3 or less is preferable).
  • the resin layer according to the present invention is provided on at least one surface of the base film. That is, the resin layer according to the present invention may be provided only on one side of the base film, or may be provided on both sides.
  • the resin layer according to the present invention preferably contains the polyethylene particles according to the present invention and a resin (binder).
  • the resin is not particularly limited, but a resin mainly composed of organic components is preferable.
  • polyester resins polyurethane resins, acrylic resins or methacrylic resins are preferably used in terms of heat resistance, additive dispersibility, productivity, and glossiness.
  • ultraviolet absorbing component contained in these resins include benzotriazole and benzophenone, and examples of the light stabilizing component contained in the resin include hindered amine (HALS).
  • HALS hindered amine
  • a resin containing an ultraviolet absorbing component and a light stabilizing component is preferable.
  • a resin obtained by copolymerizing a polymerizable monomer containing an ultraviolet absorbing component in the molecule and an acrylic monomer a resin obtained by copolymerizing a polymerizable monomer containing a light stabilizing component in the molecule and an acrylic monomer, or Examples thereof include a resin obtained by copolymerizing a polymerizable monomer containing an ultraviolet absorbing component in the molecule, a polymerizable monomer containing a light stabilizing component in the molecule, and an acrylic monomer.
  • Examples of the polymerizable monomer containing an ultraviolet absorbing component in the molecule include 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole (for example, a product manufactured by Otsuka Chemical Co., Ltd.). Name "RUVA-93").
  • Examples of the polymerizable monomer containing a light stabilizing component in the molecule include, for example, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine (for example, trade name “Adeka Stub LA-” manufactured by ADEKA Corporation). 82 ").
  • the content of polyethylene particles in the resin layer is the total amount of the resin layer. 3 mass% or more is preferable with respect to 100 mass%, 5 mass% or more is more preferable, 7 mass% or more is further more preferable, and 10 mass% or more is especially preferable.
  • the upper limit content is preferably 75% by mass or less, more preferably 60% by mass or less, from the viewpoint of suppressing the falling off of the polyethylene particles and ensuring uniform coating properties at the time of forming the resin layer. 55 mass% or less is particularly preferable. That is, the content of polyethylene particles in the resin layer is preferably 3 to 75% by mass with respect to 100% by mass of the total resin layer.
  • the content of the resin (binder) in the resin layer is such that the total amount of the resin layer is 100 from the viewpoint of fixing the polyethylene particles and suppressing dropping off, and ensuring uniform coatability when the resin layer is applied and formed. 20 mass% or more is preferable with respect to mass%, 25 mass% or more is more preferable, and 30 mass% or more is especially preferable.
  • the upper limit of the resin content is preferably 90% by mass or less, and 85% by mass or less, with respect to 100% by mass of the total resin layer, from the viewpoint of forming a moderately large convex portion on the surface of the resin layer. More preferred is 80% by mass or less.
  • the resin layer preferably further contains a crosslinking agent. That is, the resin layer is formed from a composition containing the above-described resin (binder) and a crosslinking agent, whereby a crosslinked structure is formed in the resin layer and the hardness of the resin layer is improved. It is preferable because the effect of suppressing dropout can be improved.
  • an isocyanate-based, melamine-based, or epoxy-based crosslinking agent is preferable, and an isocyanate-based crosslinking agent is preferable from the viewpoint that a crosslinking reaction can be rapidly performed even at a relatively low temperature.
  • the content of the crosslinking agent in the resin layer is preferably in the range of 0.3 to 20% by mass, more preferably in the range of 0.5 to 15% by mass with respect to 100% by mass of the total resin layer, and 1 to 10% by mass. A range is particularly preferred.
  • the reflective film of the present invention may be charged during processing (the reflective film is punched, molded and incorporated in the backlight), and there may be a problem that charged dust or dust existing in the vicinity adheres. .
  • the resin layer contains an antistatic agent within a range that does not impair the effects of the present invention.
  • antistatic agents examples include organic antistatic agents such as cationic resins and anionic resins, conductive inorganic compounds (for example, tin oxide, antimony-doped tin oxide (ATO), indium oxide, tin-doped indium oxide, etc.) ).
  • organic antistatic agents such as cationic resins and anionic resins
  • conductive inorganic compounds for example, tin oxide, antimony-doped tin oxide (ATO), indium oxide, tin-doped indium oxide, etc.
  • various additives can be further added within a range that does not impair the effects of the present invention.
  • the additive include a fluorescent brightening agent, a heat stabilizer, an oxidation stabilizer, an organic lubricant, a coupling agent, a dye, and a pigment.
  • the thickness (d) of the resin layer is not particularly limited, but is preferably in the range of 0.3 to 20 ⁇ m, more preferably in the range of 0.5 to 15 ⁇ m, and particularly preferably in the range of 1 to 10 ⁇ m.
  • the thickness of the resin layer means the thickness of a portion where no convex portion due to particles exists on the resin layer. That is, it is the thickness of the portion where there is no protrusion due to particles.
  • the polyethylene particles When the thickness of the resin layer is less than 0.3 ⁇ m, the polyethylene particles may fall off, whereas when the thickness of the resin layer exceeds 20 ⁇ m, the convex portions due to the polyethylene particles may not be sufficiently formed.
  • the average particle diameter of polyethylene particles contained in the resin layer is preferably 1.5 or more, more preferably 2.0 or more, and particularly preferably 3.0 or more.
  • the upper limit of the ratio (r / d) is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less, from the viewpoint of suppressing the falling of the polyethylene particles.
  • the thickness of the resin layer can be determined, for example, as follows. First, the reflective film of the present invention is cut in a direction perpendicular to the film plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Research Co., Ltd. The obtained film cross section was observed using a scanning electron microscope (S-3400N, manufactured by Hitachi, Ltd.), and not the portion where the convex portion due to the particle exists on the surface of the resin layer, but the convex portion due to the particle on the surface of the resin layer. The thickness of 5 portions where no portion exists is measured, and the average value is taken as the thickness of the resin layer.
  • the present invention includes a mode in which, as shown in FIG. 3A and FIG. 3B described above, particles are arranged in a plane on the surface of the resin layer almost without gaps to form convex portions.
  • the thickness of the resin layer is determined by measuring the distance from the surface of the substrate to the surface of the convex portion of the particles at five locations, and the average value is referred to as the thickness of the resin layer.
  • the resin binder
  • part or all of the convex region formed by the particles can be covered with the resin contained in the resin layer, thereby preventing the particles from falling off.
  • one of the convex regions formed by the particles Part or all can be covered with a resin contained in the resin layer.
  • the resin layer can contain particles other than polyethylene particles (hereinafter referred to as “other particles”).
  • other particles When other particles are contained in the resin layer, the average particle size of the other particles is preferably smaller than the average particle size of the polyethylene particles. It is preferable for the resin layer to contain other particles having a relatively small average particle diameter, since the scratch resistance of the resin layer (which makes it difficult for scratches to enter) is improved.
  • the average particle diameter of the other particles is preferably 0.8 times or less, more preferably 0.7 times or less, and particularly preferably 0.6 times or less that of the polyethylene particles.
  • the lower limit is preferably 0.05 times or more, and more preferably 0.1 times or more.
  • the average particle diameter of the other particles is preferably in the range of 1 to 20 ⁇ m, more preferably in the range of 2 to 15 ⁇ m.
  • the content of other particles in the resin layer is preferably in the range of 10 to 200 parts by weight, more preferably in the range of 20 to 150 parts by weight, and particularly preferably in the range of 30 to 130 parts by weight with respect to 100 parts by weight of the polyethylene particles. .
  • Examples of other particles include organic resin particles such as acrylic resin particles, silicone resin particles, nylon resin particles, styrene resin particles, benzoguanamine resin particles, urethane resin particles, and polyester resin particles.
  • Organic particles are exemplified, or inorganic particles such as silica, aluminum hydroxide, aluminum oxide, zinc oxide, barium sulfide, magnesium silicate and the like are exemplified.
  • nylon resin particles are preferable. Since the nylon resin particles have a relatively low hardness, they are preferable from the viewpoint of suppressing damage to the light guide plate.
  • the resin layer is provided on at least one surface of the base film.
  • the resin layer may be provided only on one side of the base film, or may be provided on both sides of the base film.
  • the lamination of the resin layer can be performed, for example, by applying and drying a coating composition (coating liquid) containing at least a resin, polyethylene particles, and an organic solvent on a base film.
  • a coating composition coating liquid containing at least a resin, polyethylene particles, and an organic solvent on a base film.
  • any coating method can be used for coating the coating composition of the resin layer on the base film.
  • coating methods such as gravure coating, roll coating, spin coating, reverse coating, bar coating, screen coating, blade coating, air knife coating, and dipping can be used.
  • the coating composition of the resin layer may be applied at the time of manufacturing the base film (in-line coating), or may be applied on the base film after completion of crystal orientation (off-line coating).
  • Base film It does not specifically limit as a base film, Silver, the vapor deposition film of aluminum, the laminate film of silver foil or aluminum foil, a white film, a multilayer laminated film, etc. are mentioned.
  • the base film When the base film is used as a reflective film, the higher the visible light reflectance, the better. For this reason, a white film containing bubbles and / or incompatible particles therein is preferably used.
  • the white film is, for example, a film that is made white by adding a white colorant and / or air bubbles to a film made of a thermoplastic resin or the like.
  • the white film preferably has a high visible light reflectance (for example, the reflectance of visible light (wavelength 550 nm) is preferably 95% or more). From this viewpoint, a white film having at least air bubbles inside is preferably used. It is done.
  • a high visible light reflectance for example, the reflectance of visible light (wavelength 550 nm) is preferably 95% or more. From this viewpoint, a white film having at least air bubbles inside is preferably used. It is done.
  • the white film having air bubbles inside is not particularly limited, and examples thereof include a porous unstretched or biaxially stretched polypropylene film and a porous unstretched or stretched polyethylene terephthalate film.
  • a porous unstretched or biaxially stretched polypropylene film and a porous unstretched or stretched polyethylene terephthalate film.
  • porous white biaxially stretched polyethylene terephthalate film disclosed in JP-A-2002-90515 or the porous white biaxially stretched polyethylene terephthalate film mixed and / or copolymerized with polyethylene naphthalate is preferably used.
  • a preferable embodiment of the white film includes a film layer (A layer) laminated on at least one surface of the above-described film layer (B layer) containing bubbles.
  • the A layer may be laminated only on one side of the B layer, or may be laminated on both sides of the B layer. That is, a two-layer configuration of A layer / B layer and a three-layer configuration of A1 layer / B layer / A2 layer can be mentioned.
  • a three-layer configuration of A1 layer / B layer / A2 layer is preferable.
  • the A1 layer and the A2 layer are A layers, and the A1 layer and the A2 layer may have the same configuration (composition and thickness are the same), or may be different configurations (at least one of the composition and thickness is different). There may be.
  • the A1 layer and the A2 layer may be configured with the same composition or may be configured with different compositions, but from the viewpoint of the productivity of the white film, It is preferable that A2 layer is comprised by the completely same composition.
  • the A1 layer and the A2 layer may be collectively referred to as “A layer”, and the expression “A layer” includes the two-layer A layer, the three-layer A1 layer, and the A2 layer. Is included.
  • the content of various materials contained in the A layer refers to the content per layer.
  • the A layer has a function of supporting (holding) the B layer.
  • the A layer is preferably a resin-based layer.
  • the A layer is a layer mainly composed of a resin means that the resin is contained by 50% by mass or more with respect to 100% by mass of the total amount of the A layer.
  • the A layer preferably contains 60% by mass or more of resin, more preferably 70% by mass or more, and particularly preferably 80% by mass or more. The upper limit is about 99% by mass.
  • the layer A preferably contains particles.
  • an appropriate slip property can be imparted to the reflective film.
  • handling properties and workability such as punching for forming a transmission portion (opening portion) are improved.
  • a polyester resin is preferable.
  • a polyester resin polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable.
  • various known additives such as an antioxidant and an antistatic agent may be added to the polyester resin.
  • the content of the polyester resin constituting the A layer is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to 100% by mass of the total resin constituting the A layer. The upper limit is about 99% by mass.
  • Examples of the particles contained in the A layer include organic particles and inorganic particles.
  • Examples of the organic particles include polyester resins, polyamide resins such as benzoguanamine, polyurethane resins, acrylic resins, methacrylic resins, polyamide resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyacetic acids.
  • examples thereof include particles made of a resin such as a vinyl resin, a fluorine resin, and a silicone resin, and particles made of a copolymer or a mixture of two or more of the above resins.
  • Inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, silica, alumina, mica, titanium mica, talc, clay, kaolin, fluoride. And lithium fluoride and calcium fluoride.
  • inorganic particles are preferable, and among the inorganic particles, calcium carbonate, titanium oxide, barium sulfate, and silica are preferably used.
  • the average particle size of the particles contained in the layer A is preferably in the range of 0.05 to 15 ⁇ m, more preferably in the range of 0.1 to 5 ⁇ m, and still more preferably in the range of 0.2 to 3 ⁇ m.
  • the content of particles in the A layer is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more with respect to 100% by mass of the total amount of the A layer.
  • the upper limit content is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less with respect to 100% by mass of the total amount of the A layer.
  • the content of the particles is less than 0.005% by mass, good sliding properties may not be obtained.
  • the content of the particles exceeds 20% by mass, the film forming property may be deteriorated.
  • the B layer is preferably a layer that is whitened by containing fine bubbles inside the film layer.
  • the layer B is preferably a porous unstretched or biaxially stretched polypropylene film or a porous unstretched or stretched polyethylene terephthalate film.
  • the method for producing the film layer (B layer) containing bubbles in the inside is disclosed in, for example, JP-A-8-262208, JP-A-2002-90515, JP-A-2002-138150, etc. It is disclosed in detail and can be used in the present invention.
  • the B layer is preferably made of a polypropylene resin or a polyester resin, and particularly preferably made of a polyester resin.
  • a polyester resin As the polyester resin constituting the B layer, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable.
  • various known additives such as an antioxidant and an antistatic agent may be added to the polyester resin.
  • the content of the polyester resin constituting the B layer is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to 100% by mass of the total amount of the B layer. The upper limit is about 95% by mass.
  • Formation of air bubbles in the B layer can be achieved, for example, by finely dispersing a resin incompatible with the polyester resin in a polyester film that is a film substrate and stretching (for example, biaxial stretching).
  • the B layer is preferably mixed with a polyester resin constituting the B layer in an incompatible resin (hereinafter sometimes referred to as an incompatible resin).
  • an incompatible resin hereinafter sometimes referred to as an incompatible resin.
  • the inclusion of the incompatible resin is preferable because a cavity having the incompatible resin as a nucleus is formed at the time of stretching, and light reflection occurs at the cavity interface.
  • the resin incompatible with the polyester resin may be a homopolymer or a copolymer.
  • Polyolefin resin such as polyethylene, polypropylene, polybutene, polymethylpentene, cyclic polyolefin resin, polystyrene resin, polyacrylate Resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, fluororesins, and the like are preferably used. Two or more of these may be used in combination.
  • polyolefin resin examples include polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, and copolymers thereof.
  • the preferable content of the incompatible resin contained in the B layer is 5% by mass or more and 25% by mass or less with respect to 100% by mass of the total amount of the B layer.
  • the incompatible resin contained in the B layer is dispersed in a matrix made of a polyester resin with a number average particle diameter of 0.4 ⁇ m or more and 3.0 ⁇ m or less. It is preferable in obtaining.
  • the number average particle diameter of the incompatible resin is more preferably in the range of 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the number average particle diameter here is a cross section of the film in the width direction (TD), and the B layer portion of the cross section is a scanning electron microscope (FE-SEM) model S-2100A manufactured by Hitachi, Ltd. The average value of the diameters when the area of 100 particles observed in this way is obtained and converted to a perfect circle.
  • the layer B further contains particles such as organic particles and inorganic particles.
  • particles include the same particles as those that can be contained in the A layer.
  • inorganic particles such as calcium carbonate, barium sulfate, and titanium dioxide that absorb less in the visible light range of wavelength 400 to 700 nm are preferable from the viewpoints of reflection characteristics, concealability, production cost, and the like.
  • barium sulfate and titanium dioxide are most preferable from the viewpoints of film winding property, long-term film-forming stability, and improvement in reflection characteristics.
  • the average particle diameter of the particles is preferably in the range of 0.1 to 3 ⁇ m. Use of such inorganic particles is preferable because the reflectivity and concealability are improved.
  • the content of the inorganic particles in the B layer is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to 100% by mass of the total amount of the B layer, from the viewpoint of ensuring good reflection characteristics and concealment. More preferred is 1% by mass or more.
  • the upper limit content of the inorganic particles is preferably 10% by mass or less, and 5% by mass. The following is more preferable, and 3% by mass or less is particularly preferable.
  • the B layer preferably further contains a copolyester.
  • a copolyester By containing the copolyester in the B layer, it is possible to stably form a film even when the B layer contains a relatively high concentration of inorganic particles.
  • the copolyester also has a role as a dispersant for the incompatible resin in the B layer.
  • Examples of such a copolyester include a copolymer of polyethylene terephthalate and isophthalic acid, a copolymer of polyethylene terephthalate and cyclohexanedimethanol, a copolymer of polybutylene terephthalate and polytetramethylene terephthalate, and the like. In this invention, it is preferable to contain at least 2 types chosen from the group which consists of these copolyesters.
  • the thickness of the base film is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, and particularly preferably 100 ⁇ m or more from the viewpoint of ensuring high reflectance.
  • the upper limit of the thickness is preferably 1,000 ⁇ m or less, more preferably 500 ⁇ m or less, further preferably 400 ⁇ m or less, and particularly preferably 300 ⁇ m or less from the viewpoint of reducing the thickness of the backlight unit.
  • a commercially available base film can be used.
  • “Lumirror” registered trademark) E20 (manufactured by Toray Industries, Inc.), SY90, SY95 (manufactured by SKC) and the like can be mentioned.
  • Lumirror (registered trademark) E60L, E6SL, E6SR, E6SQ, E6Z, E80A , E85D (manufactured by Toray Industries, Inc.), “Tetron” (registered trademark) film UX, UXE, UXS7, UXQ1 (manufactured by Teijin DuPont Films, Inc.), Lumirex II (manufactured by Mitsubishi Plastics, Inc.), and the like.
  • Optilon ACR3000, ACR3020 (manufactured by DuPont), “MCPET” (registered trademark) (manufactured by Furukawa Electric Co., Ltd.) can be mentioned.
  • the reflective film of the present invention is suitable for a backlight unit of a liquid crystal display device.
  • the backlight method an edge light type and a direct type are generally employed, but the reflective film of the present invention is applied to both methods.
  • the reflective film of the present invention is suitable for an edge light type backlight system.
  • the edge-light type backlight system is a system in which light from a light source disposed at a side end portion of a light guide plate is propagated through the light guide plate to illuminate a liquid crystal layer (screen). Is disposed on the opposite side of the liquid crystal layer. At this time, the reflective film of the present invention is disposed so that the surface on which the resin layer is laminated faces the light guide plate.
  • the edge light type backlight system has a problem of damaging the light guide plate due to contact between the light guide plate and the reflective film, and white spot unevenness due to adhesion between the light guide plate and the reflective film.
  • these problems are alleviated by using the reflective film of the present invention.
  • a specific problem problem that the light guide plate is contaminated by heat
  • the reflective film of the present invention that is, It is suppressed by including the polyethylene particles according to the present invention in the resin layer.
  • the obtained sample was further cut, and the vicinity of the center of the particle was measured by a microscopic FT-IR method.
  • the above-described particle sampling, cutting treatment, and microscopic FT-IR measurement were performed on 20 particles contained in the resin layer.
  • ⁇ Apparatus Microscopic infrared spectroscopic analyzer IR ⁇ s (manufactured by SPECTRA-TECH) ⁇ conditions: Light source: Silicon carbide rod heating element (made by Grover) Detector: Narrow MCT (HgCdTe) Detection wave number range: 4,000 to 650 cm ⁇ 1 Purge: Nitrogen gas Measurement mode: Permeation method Resolution: 8 cm -1 Integration count :: 512 timesData correction: Baseline correction.
  • Average particle diameter of polyethylene particles contained in the resin layer The reflective film was cut in a direction perpendicular to the film plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Laboratories. .
  • the cross section of the obtained film was observed with a scanning electron microscope (S-3400N manufactured by Hitachi, Ltd.) (particles larger than 50 ⁇ m were 500 times larger, otherwise 1,000 times).
  • the maximum length of each of 30 particles randomly selected with respect to the particles contained in the layer was measured, and the average value of these was taken as the average particle diameter of the particles.
  • the maximum length of a particle is a square or rectangle having the smallest area that completely surrounds one particle (that is, a square or rectangle in which the particle is in contact with the four sides of the square or rectangle).
  • the length of the side, and in the case of a rectangle, the length of the long side (major axis diameter) was taken as the maximum length of the particle (that is, the longest constant tangent diameter was taken as the maximum length of the particle).
  • the distance from the substrate surface to the surface of the convex portion by the particles is measured at five locations, and the average value of the resin layer surface is It is called thickness.
  • the distance from the base material surface to the surface of the convex part by the particle if the surface of the convex part region formed by the particle is covered with a resin (binder), the resin (binder covering) ) Including the distance.
  • the longitudinal direction of the acrylic plate and the reflection film shall be the moving direction (direction in which the relative displacement movement between the contact surface of the acrylic plate and the reflective film) is made, and the contact surface of the acrylic plate and the reflective film at the following moving speed The relative displacement between them was made.
  • the dynamic friction coefficient in this evaluation was calculated from the frictional force at the point moved 100 mm after starting the relative displacement movement between the contact surfaces of the acrylic plate and the reflective film.
  • Heat resistance evaluation 1 (discoloration due to heat) The reflective film was heated in an atmosphere at a temperature of 60 ° C. for 500 hours and then allowed to stand at room temperature for 1 hour, and the discoloration of the resin layer surface of the reflective film was visually evaluated according to the following criteria. A: There is no discoloration. B: Discoloration is recognized.
  • the backlight A thus disassembled and assembled is heated for 1 hour in an atmosphere of 80 ° C., then left at room temperature for 1 hour, the liquid crystal television is disassembled again, and the surface of the light guide plate on which the reflective film is in contact
  • the contamination state was visually evaluated according to the following criteria. S: There is no contamination. A: Slight contamination is observed, but at an acceptable level. B: Contaminated.
  • Class B 200 gf / cm 2 of but scratches is observed under load, under a load of 100 gf / cm 2, not seen wounds under a load of 50 gf / cm 2.
  • Class C 200gf / cm 2, but scratches observed under a load of 100 gf / cm 2, not seen wounds under a load of 50 gf / cm 2.
  • Class D Scratches are observed under a load of 50 gf / cm 2 .
  • particles to be included in the resin layer Various particles as shown below were prepared. The shape of the particles is spherical except for particles g and particles j (indefinite shape).
  • ⁇ Particle (a) particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000> “Miperon” (registered trademark) XM-220 manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , viscosity average molecular weight 2 million
  • ⁇ Particle (c) Particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000> “Miperon” (registered trademark) PM-200 manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , viscosity average molecular weight 1.8 million
  • ⁇ Particle (d) Particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000> “Miperon” (registered trademark) XM-330 manufactured by Mitsui Chemicals, Ltd., density 940 kg / m 3 , viscosity average molecular weight 2 million
  • ⁇ Particle (f) Low-density polyethylene particle> “Flow beads” (registered trademark) LE-2080 manufactured by Sumitomo Seika Co., Ltd., density 919 kg / m 3 , viscosity average molecular weight 100,000
  • ⁇ Particle (g) Low density polyethylene particle> “Flocene” (registered trademark) UF20 manufactured by Sumitomo Seika Co., Ltd., density 921 kg / m 3 , viscosity average molecular weight 150,000
  • Example 1 Using a bar coater, apply the following resin layer coating solution on one side of a white film (“Lumirror” (registered trademark) E6SQ: 300 ⁇ m thickness) manufactured by Toray Industries, Inc.) so that the resin layer thickness is about 3 ⁇ m. And it dried at 100 degreeC and laminated
  • a white film (“Lumirror” (registered trademark) E6SQ: 300 ⁇ m thickness) manufactured by Toray Industries, Inc.)
  • ⁇ Resin layer coating solution 70 parts by mass of a benzotriazole-containing acrylic copolymer resin (“HALS HYBRID” (registered trademark) UV-G720T concentration 40 mass% solution manufactured by Nippon Shokubai Co., Ltd.), particles a (“Miperon” manufactured by Mitsui Chemicals, Inc.) (Registered trademark) XM-220, viscosity average molecular weight 2 million) 12 parts by mass, isocyanate-based crosslinking agent (“Coronate” (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2.7 parts by mass Then, 55 parts by mass of ethyl acetate was added with stirring to prepare a coating solution.
  • HALS HYBRID registered trademark
  • particles a (“Miperon” manufactured by Mitsui Chemicals, Inc.) (Registered
  • the solid concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 28.6% by mass, and the content ratio of the resin is 66.7% by mass.
  • Examples 2 to 5 and Comparative Examples 1 to 5 A reflective film was produced in the same manner as in Example 1 except that the particles a in the resin layer coating liquid of Example 1 were changed to the particles shown in Table 1. In addition, Example 4 was applied so that the resin layer thickness was about 6 ⁇ m.
  • Example 6 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • Example 7 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • “HALS HYBRID” (registered trademark) UV-G720T concentration 40 mass% solution) 85 parts by mass, particles a (“Miperon” manufactured by Mitsui Chemicals, Inc.) (Registered trademark) XM-220, viscosity average molecular weight 2 million) 6 parts by mass, isocyanate-based crosslinking agent (“Coronate” (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2.7 parts by mass Then, 46 parts by mass of ethyl acetate was added with stirring to prepare a coating solution. The solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating liquid is 14.3% by mass, and the content ratio of the resin is 81.0% by mass.
  • Example 8 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • the solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in
  • Example 9 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • the solid content concentration of this coating solution is 30% by mass.
  • Example 10 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • the solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect
  • Example 11 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • the solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by
  • Example 12 A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
  • ⁇ Resin layer coating solution> Benzotriazole-containing acrylic copolymer resin (manufactured by Nippon Shokubai “Hals Hybrid” (registered trademark) UV-G720T concentration 40 mass% solution) 86.3 parts by mass, particles a (manufactured by Mitsui Chemicals, Inc.) "Miperon” (registered trademark) XM-220, viscosity average molecular weight 2 million) 3.4 parts by mass, nylon particles (SP10 manufactured by Toray Industries, Inc.) 2.1 parts by mass, isocyanate crosslinking agent (Nippon Polyurethane Industry Co., Ltd.) 2.7 parts by mass of “Coronate” (registered trademark) HL, concentration 75% by mass) and 45 parts by mass of ethyl acetate were added with stirring to prepare a coating solution.
  • the solid content concentration of this coating solution is 30% by mass.
  • the content ratio of polyethylene particles a with respect to 100% by mass of the total solid content contained in this coating solution is 8.1% by mass
  • the content ratio of nylon particles is 5.0% by mass
  • the content ratio of resin is 82.2% by mass. It is.
  • Example 13 to 18 In Examples 6, 7, and 9 to 12, reflective films were produced in the same manner except that the particle a of the resin layer coating solution was changed to particles e.
  • Example 6 corresponds to Example 13
  • Example 7 is Example 14
  • Example 9 is Example 15
  • Example 10 is Example 16
  • Example 11 is Example 17, Example 12 Corresponds to Example 18, respectively.
  • the nylon particles (SP10) of Example 12 were changed to nylon particles (SP500).
  • heat resistance 1 no discoloration due to heat
  • heat resistance 2 no light guide plate contamination due to heat
  • all of the examples of the present invention have good slipping property and coating property.
  • Comparative Examples 1 and 2 using polyethylene particles having a melting point of less than 115 ° C. are inferior in heat resistance 2 (the light guide plate is not contaminated by heat). Moreover, since Comparative Example 1 and 2 are inferior in slipperiness, particle
  • Comparative Example 3 using crosslinked acrylic particles is inferior in damage to the light guide plate.
  • the light guide plate is inferior in damage, and since the particles having a relatively small average particle diameter are used, white spot unevenness is observed.
  • Comparative Example 5 using polyethylene wax particles is inferior in heat resistance 2 (the light guide plate is not contaminated by heat).
  • the particles are scraped by contact with the light guide plate and transferred to the light guide plate to contaminate the light guide plate.
  • the comparative example 5 is inferior in applicability
  • the comparative example 5 is inferior in evaluation of a white spot nonuniformity.
  • the reflective film according to the present invention can be applied to any reflective film that is required to suppress sticking to a member (contact member) that comes into contact with the reflective film, to prevent damage to the contact member or contamination of the contact member due to heat, and heat resistance.
  • it is suitable for use in an edge light type backlight unit.

Abstract

A reflective film which is characterized by having, on at least one surface of a base film, a resin layer that contains polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115°C or more. The present invention is able to provide a reflective film which is suppressed in adhering to a member (for example, a light guide plate) that comes into contact with the reflective film, while being capable of suppressing damage (such as scratches and contamination) on the contact member (for example, a light guide plate) and contamination of the contact member by heat at the same time, and which has good heat resistance (and undergoes little discoloration due to heat).

Description

反射フィルムおよびそれを用いたエッジライト型バックライトユニットReflective film and edge light type backlight unit using the same
 本発明は、液晶表示装置等のバックライトに使用される反射フィルムに関し、特にエッジライト型バックライトユニットに好適な反射フィルムに関する。 The present invention relates to a reflective film used for a backlight of a liquid crystal display device or the like, and more particularly to a reflective film suitable for an edge light type backlight unit.
 液晶表示装置は、液晶層を背面から照らして発光されるバックライト方式が一般に採用されている。このバックライト方式としては、エッジライト型と直下型が知られている。 The liquid crystal display device generally employs a backlight system that emits light by illuminating the liquid crystal layer from the back. As this backlight system, an edge light type and a direct type are known.
 これらのバックライトに使用される反射フィルムとして、白色フィルムの少なくとも一方の面に粒子を含有する樹脂層(以下、ビーズ層、粒子含有層あるいは塗布層とも言う)が積層され、表面に粒子による凸部(突起)が形成された反射フィルムが知られている。 As a reflective film used in these backlights, a resin layer containing particles (hereinafter also referred to as a bead layer, a particle-containing layer or a coating layer) is laminated on at least one surface of a white film, and the surface is projected by particles. A reflective film in which a portion (projection) is formed is known.
 例えば、バックライトの輝度向上や輝度ムラを抑制するために、粒子の被覆率、粒子の積層数、突起高さ、突出する粒子個数等を規定した樹脂層が提案されている(例えば特許文献1~4)。 For example, in order to improve the luminance of the backlight and suppress luminance unevenness, a resin layer that defines particle coverage, the number of particles stacked, the height of protrusions, the number of protruding particles, and the like has been proposed (for example, Patent Document 1). ~ 4).
 また、エッジライト型バックライトユニットを構成する導光板と反射フィルムとの貼り付きを抑制するために、あるいは導光板と反射フィルムとの接触により導光板にスクラッチ傷が入るのを抑制するために、樹脂層に粒子を含有させて樹脂層表面に粒子による凸部(突起)を形成させることが提案されている(例えば特許文献5~9)。 In addition, in order to suppress sticking between the light guide plate and the reflective film constituting the edge light type backlight unit, or to suppress scratches on the light guide plate due to contact between the light guide plate and the reflective film, It has been proposed that particles are contained in the resin layer to form convex portions (projections) due to the particles on the surface of the resin layer (for example, Patent Documents 5 to 9).
特開2010-85843号公報JP 2010-85843 A 特開2010-44321号公報JP 2010-44321 A 特開2010-44238号公報JP 2010-44238 A 特開2013-210639号公報JP 2013-210639 A 特開2003-92018号公報Japanese Patent Laid-Open No. 2003-92018 特表2008-512719号公報Special table 2008-512719 国際公開第2011/105294号公報International Publication No. 2011/105294 特開2012-108190号公報JP 2012-108190 A 特開2012-159610号公報JP 2012-159610 A
 上述の特許文献には、樹脂層に含有される粒子として多くの種類の粒子が開示されている。これらの粒子の中には、ポリエチレン粒子も例示されている。従来から知られているポリエチレン粒子の融点は100~110℃程度が一般的である。 In the above-mentioned patent documents, many types of particles are disclosed as particles contained in the resin layer. Among these particles, polyethylene particles are also exemplified. The melting point of conventionally known polyethylene particles is generally about 100 to 110 ° C.
 本発明者らは、ポリエチレン粒子は比較的硬度が低く、熱に対する劣化(変色等)が比較的少ないという特性があることに注目し、これらの特性を活かした反射フィルムの開発に着手した。 The inventors of the present invention have noticed that polyethylene particles have relatively low hardness and relatively little deterioration (discoloration, etc.) due to heat, and have started to develop a reflective film that takes advantage of these characteristics.
 しかしながら、従来から一般的に知られているポリエチレン粒子を樹脂層に含有させた場合、加工時あるいは製品使用時の高温環境下で、溶融や変形が起こりやすく、その結果反射フィルムと接触する部材(例えば導光板)を汚染させるという不都合な問題を引き起こすことが判明した。 However, when polyethylene particles generally known from the past are contained in the resin layer, they are likely to melt and deform under a high temperature environment during processing or product use, and as a result, a member that contacts the reflective film ( For example, it has been found that it causes an inconvenient problem of contaminating the light guide plate).
 また、ポリエチレン粒子は比較的滑り性が良好であることが知られている。しかし、従来から一般的に知られているポリエチレン粒子を樹脂層に含有させて反射フィルムの表面に凸部(突起)を形成させた場合、導光板との接触による滑り性は十分に発現されず、その結果、導光板との接触によって削り取られたポリエチレン粒子の一部が導光板に付着して導光板を汚染させるという問題があることが判明した。 Also, it is known that polyethylene particles have relatively good slipperiness. However, when polyethylene particles generally known from the past are included in the resin layer to form protrusions (projections) on the surface of the reflective film, the slipperiness due to contact with the light guide plate is not sufficiently exhibited. As a result, it has been found that there is a problem that a part of the polyethylene particles scraped off by contact with the light guide plate adheres to the light guide plate and contaminates the light guide plate.
 そこで、本発明の目的は、ポリエチレン粒子の特性(比較的硬度が低く、熱に対する劣化(変色)が比較的少ないという特性)を活かし、反射フィルムと接触する部材(例えば導光板)との貼り付きを抑制するのと同時に、接触部材(例えば導光板)の損傷(スクラッチ傷や汚染)および熱による接触部材(例えば導光板)の汚染を抑制することができ、かつ耐熱性(熱による変色が小さい)が良好な反射フィルムを提供することにある。 Accordingly, an object of the present invention is to stick to a member (for example, a light guide plate) that comes into contact with a reflective film, taking advantage of the properties of polyethylene particles (the properties of relatively low hardness and relatively little deterioration (discoloration) against heat). At the same time, it is possible to suppress damage (scratch scratches and contamination) of the contact member (for example, light guide plate) and contamination of the contact member (for example, light guide plate) due to heat, and heat resistance (small discoloration due to heat). ) Is to provide a good reflective film.
 本発明の上記目的は、以下の発明によって基本的に達成された。
[1]基材フィルムの少なくとも一方の面に、粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子を含有する樹脂層を有することを特徴とする反射フィルム。
[2]前記ポリエチレン粒子の密度が942kg/m以上である、[1]に記載の反射フィルム。
[3]前記ポリエチレン粒子の粘度平均分子量が70万以上である、[1]に記載の反射フィルム。
[4]前記反射フィルムの少なくとも一方の面の樹脂層を有する側の表面とアクリル板との動摩擦係数が0.6以下である、[1]~[3]のいずれかに記載の反射フィルム。
[5]前記樹脂層における前記ポリエチレン粒子の含有量が、樹脂層総量100質量%に対して3~75質量%である、[1]~[4]のいずれかに記載の反射フィルム。
[6]前記基材フィルムが、少なくとも内部に気泡を有するフィルムである、[1]~[5]のいずれかに記載の反射フィルム。
[7]前記基材フィルムが、内部に気泡を含有するフィルム層(B層)の両面にフィルム層(A層)が積層されたフィルムである、[1]~[6]のいずれかに記載の反射フィルム。
[8][1]~[7]のいずれかに記載の反射フィルムが、その樹脂層を有する側の表面を導光板と向き合うように配置されてなる、エッジライト型バックライトユニット。
The above object of the present invention has been basically achieved by the following invention.
[1] A reflective film comprising a resin layer containing polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more on at least one surface of a base film.
[2] The reflective film according to [1], wherein the density of the polyethylene particles is 942 kg / m 3 or more.
[3] The reflective film according to [1], wherein the polyethylene particles have a viscosity average molecular weight of 700,000 or more.
[4] The reflective film according to any one of [1] to [3], wherein a coefficient of dynamic friction between the surface having the resin layer on at least one surface of the reflective film and the acrylic plate is 0.6 or less.
[5] The reflective film according to any one of [1] to [4], wherein the content of the polyethylene particles in the resin layer is 3 to 75% by mass with respect to 100% by mass of the total resin layer.
[6] The reflective film according to any one of [1] to [5], wherein the base film is a film having at least air bubbles inside.
[7] The film according to any one of [1] to [6], wherein the base film is a film in which a film layer (A layer) is laminated on both surfaces of a film layer (B layer) containing air bubbles inside. Reflective film.
[8] An edge-light type backlight unit in which the reflective film according to any one of [1] to [7] is disposed so that the surface having the resin layer faces the light guide plate.
 本発明によれば、反射フィルムと接触する部材(以下、接触部材ということもある。例えば導光板)との貼り付きを抑制するのと同時に、接触部材(例えば導光板)の損傷(スクラッチ傷や汚染)および熱による接触部材(例えば導光板)の汚染を抑制することができ、かつ耐熱性(熱による変色が小さい)が良好な反射フィルムを提供することができる。 According to the present invention, damage to the contact member (for example, the light guide plate) (scratch scratch, Contamination) and contamination of the contact member (for example, the light guide plate) due to heat can be suppressed, and a reflective film having good heat resistance (small discoloration due to heat) can be provided.
 本発明において、反射フィルムと接触する部材(接触部材)は特に限定されず、反射フィルムの用途や使用目的によって接触部材が適宜選択できる。 In the present invention, the member (contact member) that comes into contact with the reflective film is not particularly limited, and the contact member can be appropriately selected depending on the use and purpose of use of the reflective film.
 本発明の反射フィルムは、特に、エッジライト型バックライトユニットに好適であり、かかるバックライトユニットは反射フィルムと導光板とが接触して配置されており、以下、接触部材の例として導光板を取り上げ、本発明による効果を説明する。 The reflective film of the present invention is particularly suitable for an edge light type backlight unit, and the backlight unit is disposed so that the reflective film and the light guide plate are in contact with each other. Hereinafter, a light guide plate is used as an example of a contact member. The effects of the present invention will be described.
 反射フィルムと導光板との貼り付きによって白点ムラ(点状に明るく視認される部分が発生するという現象)が発生することがあるが、本発明の反射フィルムを用いることによって導光板との貼り付きが抑制され、その結果、白点ムラの発生が抑制される。 White spot unevenness (a phenomenon in which a spot that is brightly visible in a dotted shape occurs) may occur due to sticking between the reflective film and the light guide plate, but sticking to the light guide plate by using the reflective film of the present invention. Sticking is suppressed, and as a result, the occurrence of uneven white spots is suppressed.
 反射フィルムと導光板とが接触することによって導光板が損傷することがあるが、本発明の反射フィルムを用いることによって導光板の損傷が抑制される。ここで、導光板が損傷するとは、例えば導光板にスクラッチ傷が入ること、反射フィルムの樹脂層中の粒子が削られて導光板に転写して導光板を汚染させることが挙げられる。 Although a light guide plate may be damaged when a reflective film and a light guide plate contact, damage to a light guide plate is suppressed by using a reflective film of the present invention. Here, the damage to the light guide plate includes, for example, scratching the light guide plate, or particles in the resin layer of the reflective film being shaved and transferred to the light guide plate to contaminate the light guide plate.
 また、液晶表示装置のバックライトユニットは、液晶表示装置の点灯によって高温となることがあり、樹脂層に含有させる粒子として従来のポリエチレン粒子を用いた場合、ポリエチレン粒子が溶融して導光板を汚染させることがあるが、本発明の反射フィルムを用いることにより、このような熱による導光板の汚染が抑制される。 In addition, the backlight unit of the liquid crystal display device may become hot when the liquid crystal display device is turned on. When conventional polyethylene particles are used as particles to be included in the resin layer, the polyethylene particles melt and contaminate the light guide plate. However, by using the reflective film of the present invention, such contamination of the light guide plate by heat is suppressed.
 さらに、本発明の反射フィルムは、粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子を用いることにより、耐熱性(熱による変色)が良好となる。 Furthermore, the reflective film of the present invention has good heat resistance (discoloration due to heat) by using polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more.
本発明に係る反射フィルムの一例を示す樹脂層表面の走査型電子顕微鏡による表面写真の画像である。It is an image of the surface photograph by the scanning electron microscope of the resin layer surface which shows an example of the reflective film which concerns on this invention. 本発明の一実施態様に係る反射フィルムの樹脂層部分の模式断面図である。It is a schematic cross section of the resin layer part of the reflective film which concerns on one embodiment of this invention. 本発明の別の実施態様に係る反射フィルムの樹脂層部分の模式断面図である。It is a schematic cross section of the resin layer part of the reflective film which concerns on another embodiment of this invention.
 以下に、本発明について、実施の形態とともに詳細に説明する。
 本発明の反射フィルムは、基材フィルムの少なくとも一方の面に、粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子を含有する樹脂層を有することを特徴としている。以下、粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子を、本発明に係るポリエチレン粒子ということがある。
Hereinafter, the present invention will be described in detail together with embodiments.
The reflective film of the present invention is characterized by having a resin layer containing polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more on at least one surface of a base film. Hereinafter, polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more may be referred to as polyethylene particles according to the present invention.
 また、本発明の反射フィルムにおいては、樹脂層表面に、上記ポリエチレン粒子による凸部が形成されていることが好ましい。 Further, in the reflective film of the present invention, it is preferable that the resin layer surface has convex portions formed of the polyethylene particles.
 樹脂層表面に上記のような凸部を設けることにより、反射フィルムと導光板との貼り付きが抑制され、その結果、白点ムラの発生が抑制されるため好ましい。そして、凸部を本発明に係るポリエチレン粒子で形成することにより、導光板の損傷(スクラッチ傷や汚染)および熱による導光板の汚染が抑制されるため好ましい。また、本発明に係るポリエチレン粒子を用いることにより、耐熱性(熱による変色)が良好となるため好ましい。 It is preferable to provide the convex portions as described above on the surface of the resin layer because sticking between the reflective film and the light guide plate is suppressed, and as a result, occurrence of white spot unevenness is suppressed. And it is preferable to form the convex part with the polyethylene particles according to the present invention because damage (scratch scratches or contamination) of the light guide plate and contamination of the light guide plate due to heat are suppressed. In addition, it is preferable to use the polyethylene particles according to the present invention because heat resistance (discoloration due to heat) is improved.
 ここで、樹脂層表面に粒子による凸部が形成されているかどうかは、例えば、樹脂層表面を走査型電子顕微鏡(SEM)により倍率500倍で観察することによって確認することができる。この場合、観察角度は樹脂層表面に対して30度の斜角で観察することによって凸部をより明確に確認することができる。 Here, whether or not the convex portions of the particles are formed on the surface of the resin layer can be confirmed by, for example, observing the surface of the resin layer with a scanning electron microscope (SEM) at a magnification of 500 times. In this case, the observation can be made more clearly by observing the observation angle at an oblique angle of 30 degrees with respect to the resin layer surface.
 図1は、本発明に係る反射フィルムの一例の樹脂層表面の走査型電子顕微鏡による表面写真の画像である。反射フィルム100の樹脂層表面には、粒子による凸部が存在していることが明確に確認できる。 FIG. 1 is an image of a surface photograph taken by a scanning electron microscope on the surface of a resin layer as an example of a reflective film according to the present invention. It can be clearly confirmed that convex portions due to particles are present on the surface of the resin layer of the reflective film 100.
 図2、図3は、本発明に係る反射フィルムの樹脂層部分の例を示す模式断面図である。図2において、符号1が樹脂による皮膜を、符号2が粒子(粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子)を、符号3が粒子2を含有する樹脂層を、符号4が基材フィルムを、それぞれ示している。 2 and 3 are schematic sectional views showing examples of the resin layer portion of the reflective film according to the present invention. In FIG. 2, the code | symbol 1 is the film | membrane by resin, the code | symbol 2 is a particle | grain (the polyethylene particle whose viscosity average molecular weight is 10,000 or more and melting | fusing point is 115 degreeC or more), and the code | symbol 3 contains the resin layer containing the particle | grains 2, The code | symbol 4 has each shown the base film.
 樹脂層表面における粒子による凸部は、粒子の一部のみが表面に突出して形成されていてもよいし(図2A)、粒子の半分以上が表面に突出して形成されていてもよい(図2B)。凸部は、図2Aおよび図2Bに示すように個々の粒子で形成されていてもよいし、複数個の粒子が集合あるいは凝集した状態で凸部が形成されていてもよい(図2C)。 The convex portions by the particles on the surface of the resin layer may be formed such that only a part of the particles protrudes from the surface (FIG. 2A), or more than half of the particles may protrude from the surface (FIG. 2B). ). The convex portion may be formed of individual particles as shown in FIGS. 2A and 2B, or the convex portion may be formed in a state where a plurality of particles are aggregated or aggregated (FIG. 2C).
 また、樹脂層表面に平面的に粒子がほぼ隙間なく配列されて凸部が形成されていてもよいし(図3A)、更に、樹脂層の厚み方向に複数個の粒子が重なった状態で凸部が形成されていてもよい(図3B)。 Further, the convexity may be formed by arranging the particles on the surface of the resin layer in a planar manner with almost no gap (FIG. 3A), and further, the convexity with a plurality of particles overlapping in the thickness direction of the resin layer. A part may be formed (FIG. 3B).
 図2、図3では図示を省略しているが、凸部領域の一部もしくは全部が、樹脂層に含有される樹脂(バインダー)で被覆されていることが好ましい。これによって、粒子の脱落が効果的に抑制されるため好ましい。 Although not shown in FIGS. 2 and 3, it is preferable that a part or all of the convex region is covered with a resin (binder) contained in the resin layer. This is preferable because dropout of particles is effectively suppressed.
 [粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子]
 本発明に係るポリエチレン粒子には、エチレンの単独重合体からなる粒子および/またはエチレンを主成分とする共重合体からなる粒子が含まれ、これらの粒子の中から粘度平均分子量が1万以上でかつ融点が115℃以上である粒子が選択される。
[Polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more]
The polyethylene particles according to the present invention include particles made of an ethylene homopolymer and / or particles made of a copolymer containing ethylene as a main component. Among these particles, the viscosity average molecular weight is 10,000 or more. Particles having a melting point of 115 ° C. or higher are selected.
 本発明に係るポリエチレン粒子の融点は、反射フィルムと導光板との貼り付きの抑制および導光板の損傷や熱汚染の抑制の観点から、120℃以上が好ましく、125℃以上がより好ましく、128℃以上が特に好ましい。 The melting point of the polyethylene particles according to the present invention is preferably 120 ° C. or higher, more preferably 125 ° C. or higher, and 128 ° C. or higher, from the viewpoint of suppressing sticking between the reflective film and the light guide plate and suppressing damage to the light guide plate or thermal contamination. The above is particularly preferable.
 一方、ポリエチレン粒子の融点が高くなるに伴って透明性が低下する傾向や硬度が高くなる傾向にあるので、ポリエチレン粒子の融点の上限は、粒子の透明性を確保するという観点および粒子の硬度を比較的小さくして導光板の損傷を抑制するという観点から、175℃以下が好ましく、170℃以下がより好ましく、160℃以下が特に好ましい。 On the other hand, as the melting point of the polyethylene particles increases, the transparency tends to decrease and the hardness tends to increase. Therefore, the upper limit of the melting point of the polyethylene particles is to ensure the transparency of the particles and the hardness of the particles. From the standpoint of suppressing damage to the light guide plate by making it relatively small, it is preferably 175 ° C. or lower, more preferably 170 ° C. or lower, and particularly preferably 160 ° C. or lower.
 本発明に係るポリエチレン粒子の粘度平均分子量は、反射フィルムと導光板との貼り付きの抑制および導光板の損傷や熱汚染の抑制の観点から、5万以上であることが好ましく、10万以上であることがより好ましく、15万以上であることが特に好ましい。 The viscosity average molecular weight of the polyethylene particles according to the present invention is preferably 50,000 or more from the viewpoint of suppressing sticking between the reflective film and the light guide plate and suppressing damage to the light guide plate or thermal contamination. More preferably, it is particularly preferably 150,000 or more.
 上記したように、本発明に係るポリエチレン粒子には、エチレンを主成分とする共重合体からなる粒子が含まれるが、エチレンを主成分とする共重合体とは、共重合体におけるエチレンの含有比率が50質量%以上であることを意味する。共重合体におけるエチレンの含有比率が50質量%未満であると、ポリエチレン粒子の本来の特性(ポリエチレン粒子は比較的硬度が低く、熱に対する劣化(変色等)が比較的少ないという特性)が十分に発現しない場合がある。この共重合体におけるエチレンの含有比率は、上記の観点(ポリエチレン粒子の本来の特性を十分に発現させる観点)から、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が特に好ましい。上限は99質量%程度である。上記共重合体の共重合成分としては、α-オレフィン(例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、4-メチル-1-ペンテン、3-メチル-1-ペンテンなど)、環状オレフィン、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリ酸エステル、スチレン、フッ化エチレン等が挙げられる。 As described above, the polyethylene particles according to the present invention include particles made of a copolymer having ethylene as a main component, and the copolymer having ethylene as a main component is the content of ethylene in the copolymer. It means that the ratio is 50% by mass or more. When the content ratio of ethylene in the copolymer is less than 50% by mass, the original characteristics of the polyethylene particles (the characteristics that the polyethylene particles have relatively low hardness and relatively little deterioration (discoloration, etc.) due to heat) are sufficient. It may not develop. The ethylene content in the copolymer is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more from the above viewpoint (from the viewpoint of sufficiently expressing the original characteristics of the polyethylene particles). Particularly preferred. The upper limit is about 99% by mass. The copolymer component of the copolymer includes α-olefins (for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 4-methyl-1-pentene). , 3-methyl-1-pentene, etc.), cyclic olefin, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, styrene, fluorinated ethylene and the like.
 上記共重合成分の中でも、α-オレフィン、環状オレフィン、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリ酸エステル、スチレンが好ましく、特に、α-オレフィン、環状オレフィンが好ましい。 Among the above copolymer components, α-olefin, cyclic olefin, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, and styrene are preferable, and α-olefin and cyclic olefin are particularly preferable.
 上記したポリエチレン粒子の中でも、エチレンの単独重合体からなる粒子が特に好ましい。エチレンの単独重合体からなる粒子は、適度な硬度を有することから導光板の損傷を有効に抑制できること、樹脂層への混合が比較的良好であり樹脂層の塗布性が比較的良好であるという利点がある。 Among the above-mentioned polyethylene particles, particles made of an ethylene homopolymer are particularly preferable. Particles made of an ethylene homopolymer have an appropriate hardness, so that damage to the light guide plate can be effectively suppressed, and mixing to the resin layer is relatively good, and the applicability of the resin layer is relatively good. There are advantages.
 本発明に係るポリエチレン粒子の好ましい態様の1つとしては、例えば、密度が942kg/m以上であるポリエチレン粒子の中から、粘度平均分子量が1万以上でかつ融点が115℃以上である粒子を選択して用いることができる。なお、以降、粘度平均分子量が1万以上でかつ密度が942kg/m以上であるポリエチレン粒子を「高密度ポリエチレン粒子」ということもある。 One preferred embodiment of the polyethylene particles according to the present invention is, for example, particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more among polyethylene particles having a density of 942 kg / m 3 or more. It can be selected and used. Hereinafter, polyethylene particles having a viscosity average molecular weight of 10,000 or more and a density of 942 kg / m 3 or more may be referred to as “high-density polyethylene particles”.
 上記高密度ポリエチレン粒子の密度は、945kg/m以上がより好ましく、950kg/m以上がさらに好ましい。高密度ポリエチレン粒子の密度が高くなるほど融点が高くなる傾向にあるので、高密度ポリエチレン粒子の密度は上記したように高い方が好ましい。一方、高密度ポリエチレン粒子の密度が高くなると透明性が低下する傾向や硬度が高くなる傾向にあるので、上限の密度は980kg/m以下が好ましく、970kg/m以下がより好ましい。 The density of the high density polyethylene particles is more preferably 945 kg / m 3 or more, more preferably 950 kg / m 3 or more. Since the melting point tends to increase as the density of the high density polyethylene particles increases, the density of the high density polyethylene particles is preferably higher as described above. On the other hand, since the transparency when the density of the high density polyethylene particle is high tends to be more likely and hardness decrease, the density of the upper limit is preferably 980 kg / m 3 or less, 970 kg / m 3 or less is more preferable.
 上記高密度ポリエチレン粒子は、反射フィルム表面の滑り性を向上させたり、反射フィルムと導光板との貼り付きを効果的に抑制させたりするという観点から、粘度平均分子量が5万以上であることが好ましく、10万以上であることがさらに好ましく、15万以上であることが特に好ましい。高密度ポリエチレン粒子の粘度平均分子量の上限は、特に限定されないが、70万未満程度が適当である。 The high-density polyethylene particles may have a viscosity average molecular weight of 50,000 or more from the viewpoint of improving the slipperiness of the reflective film surface or effectively suppressing sticking between the reflective film and the light guide plate. Preferably, it is 100,000 or more, more preferably 150,000 or more. The upper limit of the viscosity average molecular weight of the high density polyethylene particles is not particularly limited, but is preferably less than about 700,000.
 上記高密度ポリエチレン粒子としては、例えば、住友精化(株)製の“フロービーズ”(登録商標)「HE-3040」、旭化成ケミカルズ(株)製の“サンファイン”(登録商標)TM「LHシリーズ」などが挙げられる。 Examples of the high-density polyethylene particles include “Flow Beads” (registered trademark) “HE-3040” manufactured by Sumitomo Seika Co., Ltd., and “Sunfine” (registered trademark) TM “LH” manufactured by Asahi Kasei Chemicals Corporation. Series "etc. are mentioned.
 また、本発明に係るポリエチレン粒子の好ましい別の態様の1つとして、例えば、粘度平均分子量が70万以上であるポリエチレン粒子の中から、融点が115℃以上である粒子を選択して用いることができる。 Further, as another preferred embodiment of the polyethylene particles according to the present invention, for example, particles having a melting point of 115 ° C. or higher are selected and used from polyethylene particles having a viscosity average molecular weight of 700,000 or higher. it can.
 上記の粘度平均分子量が70万以上のポリエチレン粒子は、さらに高い融点を得るという観点から、粘度平均分子量は80万以上がより好ましく、100万以上がさらに好ましく、150万以上が特に好ましい。上限は特に限定されないが、2,000万以下が好ましく、1,000万以下がより好ましく、700万以下が特に好ましく、500万以下が最も好ましい。 The above-mentioned polyethylene particles having a viscosity average molecular weight of 700,000 or more have a viscosity average molecular weight of preferably 800,000 or more, more preferably 1,000,000 or more, and particularly preferably 1,500,000 or more from the viewpoint of obtaining a higher melting point. The upper limit is not particularly limited, but is preferably 20 million or less, more preferably 10 million or less, particularly preferably 7 million or less, and most preferably 5 million or less.
 粘度平均分子量が70万以上であるポリエチレン粒子の密度は、特に限定されないが、925~980kg/mの範囲が好ましく、930~970kg/mの範囲がより好ましく、935~965kg/mの範囲がさらに好ましい。 The density of the polyethylene particles viscosity average molecular weight of 700,000 or more is not particularly limited, 925 is preferably in the range of ~ 980 kg / m 3, more preferably in the range of 930 ~ 970kg / m 3, of 935 ~ 965kg / m 3 A range is further preferred.
 融点が115℃以上でありかつ粘度平均分子量が70万以上のポリエチレン粒子としては、例えば、“ミペロン”(登録商標、商品名)シリーズ(三井化学社製)、“ハイゼックスミリオン”(登録商標、商品名)シリーズ(三井化学社製)、“サンファイン”(登録商標、商品名)シリーズ(旭化成ケミカルズ社製)、“ダイニーマ”(登録商標、商品名)シリーズ(DSM社製)、“スペクトラ”(登録商標、商品名)シリーズ(ハネウェル社製)、“GUR”(登録商標、商品名)シリーズ(チコナ社製)、“ホスタレン”(登録商標、商品名)シリーズ(ヘキスト社製)などが挙げられる。 Examples of polyethylene particles having a melting point of 115 ° C. or higher and a viscosity average molecular weight of 700,000 or higher include “Miperon” (registered trademark, product name) series (manufactured by Mitsui Chemicals), “Hi-Zex Million” (registered trademark, product) Name) Series (made by Mitsui Chemicals), “Sun Fine” (registered trademark, product name) series (made by Asahi Kasei Chemicals), “Dyneema” (registered trademark, product name) series (made by DSM), “Spectra” ( Registered trademark, product name) series (manufactured by Honeywell), "GUR" (registered trademark, product name) series (manufactured by Ticona), "Hostalen" (registered trademark, product name) series (manufactured by Hoechst), etc. .
 本発明に係るポリエチレン粒子は、樹脂層の表面にポリエチレン粒子による凸部が形成されるように含有させることが好ましい。この観点から、ポリエチレン粒子の平均粒子径(r:μm)は5μm以上が好ましく、10μm以上がより好ましく、15μm以上が特に好ましい。樹脂層に平均粒子径が5μm以上であるポリエチレン粒子を含有させることにより、樹脂層表面に適度な凸部が形成され、その結果、反射フィルムと導光板との貼り付きが効果的に抑制される(白点ムラの発生が抑制される)ため好ましい。 The polyethylene particles according to the present invention are preferably contained so that convex portions of the polyethylene particles are formed on the surface of the resin layer. In this respect, the average particle diameter (r: μm) of the polyethylene particles is preferably 5 μm or more, more preferably 10 μm or more, and particularly preferably 15 μm or more. By containing polyethylene particles having an average particle diameter of 5 μm or more in the resin layer, moderate convex portions are formed on the surface of the resin layer, and as a result, sticking between the reflective film and the light guide plate is effectively suppressed. This is preferable because the occurrence of white spot unevenness is suppressed.
 ポリエチレン粒子の平均粒子径の上限は、ポリエチレン粒子の脱落を抑制するという観点、および樹脂層を塗布形成する時の均一な塗工性を確保するという観点から、100μm以下が好ましく、75μm以下がより好ましく、50μm以下が特に好ましい。 The upper limit of the average particle diameter of the polyethylene particles is preferably 100 μm or less, more preferably 75 μm or less, from the viewpoint of suppressing dropping of the polyethylene particles and ensuring uniform coating properties when the resin layer is formed by coating. The thickness is preferably 50 μm or less.
 平均粒子径が5~100μmのポリエチレン粒子を樹脂層に含有させて、樹脂層表面に適度な凸部を形成することにより、粒子の脱落防止や均一な塗布性を確保しながら、反射フィルムと導光板との貼り付きを効果的に抑制することができる。また、ポリエチレン粒子によって形成された凸部は、硬度が比較的小さいので、導光板の傷付きを抑制することができるため好ましい。 Polyethylene particles having an average particle diameter of 5 to 100 μm are contained in the resin layer, and appropriate convex portions are formed on the surface of the resin layer. Sticking with the light plate can be effectively suppressed. Moreover, since the convex part formed with the polyethylene particle has comparatively small hardness, it can suppress the damage of a light-guide plate, and is preferable.
 ここで平均粒子径(r:μm)とは、写真上で1つの粒子を完全に囲む面積が最も小さい正方形または長方形において、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)を粒子の最大長さとし、実施例に記載の個数の粒子の最大長さを平均した値をいう。 Here, the average particle diameter (r: μm) is a square or rectangle having the smallest area that completely surrounds one particle on a photograph. In the case of a square, the length of one side, and in the case of a rectangle, the length of a long side. The length (major axis diameter) is defined as the maximum length of the particles, and is a value obtained by averaging the maximum lengths of the number of particles described in the examples.
 本発明に係るポリエチレン粒子の形状は、球状であることが好ましい。球状のポリエチレン粒子で樹脂層に凸部を形成することにより、導光板の傷付きを更に抑制することができる。ここで、「球状」とは、必ずしも真球だけを意味するのではなく、粒子の断面形状が円形、楕円形、ほぼ円形、ほぼ楕円形など曲面で囲まれているものを意味し、粒子の断面において長径と短径の比(長径/短径)が1.4以下を意味する。 The shape of the polyethylene particles according to the present invention is preferably spherical. By forming the convex portion on the resin layer with spherical polyethylene particles, the light guide plate can be further prevented from being damaged. Here, “spherical” does not necessarily mean only a true sphere, but means that the cross-sectional shape of the particle is surrounded by a curved surface such as a circle, an ellipse, a substantially circle, or a substantially ellipse. In the cross section, the ratio of major axis to minor axis (major axis / minor axis) means 1.4 or less.
 樹脂層表面に本発明に係るポリエチレン粒子による凸部を形成することにより、例えば反射フィルム表面の滑り性が向上するという好ましい効果が発現する。反射フィルム表面の滑り性が向上することにより、反射フィルム表面と導光板とが接触することによって起こる導光板の損傷(スクラッチ傷)が抑制され、更に樹脂層に含有されるポリエチレン粒子が削り取られることが抑制されるので導光板の汚染が抑制されるため好ましい。 By forming a convex portion of the polyethylene particles according to the present invention on the surface of the resin layer, for example, a preferable effect of improving the slipperiness of the reflective film surface is exhibited. By improving the slipperiness of the reflective film surface, damage (scratch scratch) of the light guide plate caused by contact between the reflective film surface and the light guide plate is suppressed, and the polyethylene particles contained in the resin layer are further scraped off. This is preferable because contamination of the light guide plate is suppressed.
 従来から一般的に知られているポリエチレン粒子(比較的融点が低い粒子)は、樹脂層に含有させて樹脂層表面に凸部を形成させた場合、反射フィルム表面の滑り性は向上せず、むしろ滑り性は劣ることが分かった。また、ポリエチレン系ワックス粒子(一般的なポリエチレン系ワックス粒子は粘度平均分子量が1万未満)も上記と同様に、樹脂層に含有させて樹脂層表面に凸部を形成させた場合、反射フィルム表面の滑り性は向上せず、むしろ滑り性は劣ることが分かった。この理由は、従来のポリエチレン粒子やポリエチレン系ワックス粒子によって形成された凸部は、接触部材(例えば、導光板)との接触により圧縮変形し、滑り性が低下していると推測される。滑り性が劣る場合、樹脂層に含有されるポリエチレン粒子が削り取られて導光板を汚染する場合がある。 Conventionally known polyethylene particles (particles having a relatively low melting point) do not improve the slipperiness of the reflective film surface when they are contained in the resin layer and have convex portions formed on the resin layer surface. Rather, it was found that the slipperiness was inferior. In the same manner as above, polyethylene wax particles (general polyethylene wax particles having a viscosity average molecular weight of less than 10,000) are also included in the resin layer to form convex portions on the surface of the reflective film. It was found that the slipperiness was not improved but rather slippery. The reason for this is presumed that the convex portions formed by conventional polyethylene particles or polyethylene wax particles are compressed and deformed by contact with a contact member (for example, a light guide plate), and slipperiness is reduced. When the slipperiness is inferior, the polyethylene particles contained in the resin layer may be scraped off to contaminate the light guide plate.
 上記の反射フィルム表面の滑り性は、反射フィルム表面とアクリル板との動摩擦係数で表すことができる。かかる動摩擦係数は、0.6以下が好ましく、0.3以下が特に好ましい。つまり、本発明に係る反射フィルムは、少なくとも一方の面の反射フィルム表面の上記動摩擦係数が0.6以下であることが好ましく、0.3以下であることが特に好ましい。即ち、樹脂層が基材フィルムの両面に設けられている場合、片面のみの反射フィルム表面の上記動摩擦係数が0.6以下(特に0.3以下が好ましい)であってもよいし、両面の反射フィルム表面の上記動摩擦係数が0.6以下(特に0.3以下が好ましい)であってもよい。 The slip property of the reflective film surface can be expressed by a dynamic friction coefficient between the reflective film surface and the acrylic plate. The dynamic friction coefficient is preferably 0.6 or less, and particularly preferably 0.3 or less. That is, in the reflective film according to the present invention, the dynamic friction coefficient of the reflective film surface of at least one surface is preferably 0.6 or less, and particularly preferably 0.3 or less. That is, when the resin layer is provided on both surfaces of the base film, the dynamic friction coefficient on the surface of the reflective film only on one surface may be 0.6 or less (particularly 0.3 or less is preferable) The dynamic friction coefficient on the surface of the reflective film may be 0.6 or less (particularly 0.3 or less is preferable).
 また、反射フィルム表面の滑り性が良好であると、バックライトが振動した際や導光板が熱変形した際に、反射フィルムが導光板に引っかかって反射フィルムが変形するという現象が起こりにくいという効果が期待される。 In addition, when the reflective film surface has good sliding properties, when the backlight vibrates or when the light guide plate is thermally deformed, the effect that the reflective film is not easily deformed by being caught by the light guide plate There is expected.
 [樹脂層]
 本発明に係る樹脂層は、基材フィルムの少なくとも一方の面に設けられる。つまり、本発明に係る樹脂層は、基材フィルムの片面のみに設けられてもよいし、両面に設けられてもよい。
[Resin layer]
The resin layer according to the present invention is provided on at least one surface of the base film. That is, the resin layer according to the present invention may be provided only on one side of the base film, or may be provided on both sides.
 本発明に係る樹脂層は、本発明に係るポリエチレン粒子と樹脂(バインダー)とを含有することが好ましい。樹脂としては、特に限定されないが、有機成分を主体とする樹脂が好ましく、例えばポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂などが挙げられる。 The resin layer according to the present invention preferably contains the polyethylene particles according to the present invention and a resin (binder). The resin is not particularly limited, but a resin mainly composed of organic components is preferable. For example, polyester resin, polyurethane resin, acrylic resin, methacrylic resin, polyamide resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene chloride resin , Polystyrene resin, polyvinyl acetate resin, fluorine resin and the like.
 これらの樹脂は単独で用いてもよく、あるいは2種以上の共重合体もしくは混合物としたものを用いてもよい。中でもポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂もしくはメタクリル樹脂が、耐熱性、添加物の分散性、生産性、光沢度の点から好ましく用いられる。 These resins may be used alone, or two or more copolymers or a mixture thereof may be used. Of these, polyester resins, polyurethane resins, acrylic resins or methacrylic resins are preferably used in terms of heat resistance, additive dispersibility, productivity, and glossiness.
 また、樹脂層の耐光性を向上させるという観点から、紫外線吸収剤(紫外線吸収成分)や光安定化剤(光安定化成分)を含む樹脂を用いることが好ましい。これらの樹脂中に含有させる紫外線吸収成分としてはベンゾトリアゾールやベンゾフェノンなどが挙げられ、樹脂中に含有させる光安定化成分としてはヒンダードアミン(HALS)が挙げられる。特に、紫外線吸収成分と光安定化成分とを含む樹脂が好ましい。 Also, from the viewpoint of improving the light resistance of the resin layer, it is preferable to use a resin containing an ultraviolet absorber (ultraviolet absorbing component) or a light stabilizer (light stabilizing component). Examples of the ultraviolet absorbing component contained in these resins include benzotriazole and benzophenone, and examples of the light stabilizing component contained in the resin include hindered amine (HALS). In particular, a resin containing an ultraviolet absorbing component and a light stabilizing component is preferable.
 かかる樹脂として、分子中に紫外線吸収成分を含む重合性モノマーとアクリル系モノマーとを共重合した樹脂、分子中に光安定化成分を含む重合性モノマーとアクリル系モノマーとを共重合した樹脂、あるいは分子中に紫外線吸収成分を含む重合性モノマー、分子中に光安定化成分を含む重合性モノマーおよびアクリル系モノマーとを共重合した樹脂が挙げられる。 As such a resin, a resin obtained by copolymerizing a polymerizable monomer containing an ultraviolet absorbing component in the molecule and an acrylic monomer, a resin obtained by copolymerizing a polymerizable monomer containing a light stabilizing component in the molecule and an acrylic monomer, or Examples thereof include a resin obtained by copolymerizing a polymerizable monomer containing an ultraviolet absorbing component in the molecule, a polymerizable monomer containing a light stabilizing component in the molecule, and an acrylic monomer.
 上記の分子中に紫外線吸収成分を含む重合性モノマーとしては、例えば、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール(例えば、大塚化学(株)製の商品名「RUVA-93」)が挙げられる。 Examples of the polymerizable monomer containing an ultraviolet absorbing component in the molecule include 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole (for example, a product manufactured by Otsuka Chemical Co., Ltd.). Name "RUVA-93").
 上記の分子中に光安定化成分を含む重合性モノマーとしては、例えば、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン(例えば、(株)ADEKA製の商品名「アデカスタブLA-82」)が挙げられる。 Examples of the polymerizable monomer containing a light stabilizing component in the molecule include, for example, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine (for example, trade name “Adeka Stub LA-” manufactured by ADEKA Corporation). 82 ").
 これらの樹脂の製造方法は、特開2002-90515号公報に詳細に開示されており、これを参照して製造することができる。また、これらの樹脂は、(株)日本触媒から“ハルスハイブリッド”(登録商標)として市販されており、入手することができる。 The method for producing these resins is disclosed in detail in Japanese Patent Application Laid-Open No. 2002-90515, and can be produced with reference to this. In addition, these resins are commercially available as “Hals Hybrid” (registered trademark) from Nippon Shokubai Co., Ltd., and can be obtained.
 反射フィルムと導光板との貼り付きを抑制するためには、樹脂層表面に適度の量の凸部を形成することが好ましく、この観点から、樹脂層におけるポリエチレン粒子の含有量は、樹脂層総量100質量%に対して3質量%以上が好ましく、5質量%以上がより好ましく、7質量%以上がさらに好ましく、10質量%以上が特に好ましい。上限の含有量は、ポリエチレン粒子の脱落を抑制するという観点、および樹脂層の塗布形成時の均一な塗工性を確保するという観点から、75質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下が特に好ましい。すなわち、樹脂層におけるポリエチレン粒子の含有量は樹脂層総量100質量%に対して3~75質量%が好ましい。 In order to suppress sticking between the reflective film and the light guide plate, it is preferable to form an appropriate amount of convex portions on the surface of the resin layer. From this viewpoint, the content of polyethylene particles in the resin layer is the total amount of the resin layer. 3 mass% or more is preferable with respect to 100 mass%, 5 mass% or more is more preferable, 7 mass% or more is further more preferable, and 10 mass% or more is especially preferable. The upper limit content is preferably 75% by mass or less, more preferably 60% by mass or less, from the viewpoint of suppressing the falling off of the polyethylene particles and ensuring uniform coating properties at the time of forming the resin layer. 55 mass% or less is particularly preferable. That is, the content of polyethylene particles in the resin layer is preferably 3 to 75% by mass with respect to 100% by mass of the total resin layer.
 樹脂層における樹脂(バインダー)の含有量は、ポリエチレン粒子を固着して脱落を抑制するという観点、および樹脂層を塗布形成する時の均一な塗工性を確保するという観点から、樹脂層総量100質量%に対して20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上が特に好ましい。樹脂含有量の上限は、樹脂層表面に適度な大きさの凸部を適度な量で形成するという観点から、樹脂層総量100質量%に対して90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下が特に好ましい。 The content of the resin (binder) in the resin layer is such that the total amount of the resin layer is 100 from the viewpoint of fixing the polyethylene particles and suppressing dropping off, and ensuring uniform coatability when the resin layer is applied and formed. 20 mass% or more is preferable with respect to mass%, 25 mass% or more is more preferable, and 30 mass% or more is especially preferable. The upper limit of the resin content is preferably 90% by mass or less, and 85% by mass or less, with respect to 100% by mass of the total resin layer, from the viewpoint of forming a moderately large convex portion on the surface of the resin layer. More preferred is 80% by mass or less.
 樹脂層は、更に架橋剤を含有することが好ましい。つまり、樹脂層は、上述の樹脂(バインダー)と架橋剤とを含有する組成物から形成されることにより、樹脂層に架橋構造が形成されて樹脂層の硬度が向上し、これによってポリエチレン粒子の脱落の抑制効果を向上させることができるため好ましい。 The resin layer preferably further contains a crosslinking agent. That is, the resin layer is formed from a composition containing the above-described resin (binder) and a crosslinking agent, whereby a crosslinked structure is formed in the resin layer and the hardness of the resin layer is improved. It is preferable because the effect of suppressing dropout can be improved.
 かかる架橋剤としては、イソシアネート系、メラミン系、エポキシ系の架橋剤が好ましく、中でも、比較的低温でも迅速に架橋反応することができるという観点から、イソシアネート系架橋剤が好ましい。 As such a crosslinking agent, an isocyanate-based, melamine-based, or epoxy-based crosslinking agent is preferable, and an isocyanate-based crosslinking agent is preferable from the viewpoint that a crosslinking reaction can be rapidly performed even at a relatively low temperature.
 樹脂層における架橋剤の含有量は、樹脂層総量100質量%に対して0.3~20質量%の範囲が好ましく、0.5~15質量%の範囲がより好ましく、1~10質量%の範囲が特に好ましい。 The content of the crosslinking agent in the resin layer is preferably in the range of 0.3 to 20% by mass, more preferably in the range of 0.5 to 15% by mass with respect to 100% by mass of the total resin layer, and 1 to 10% by mass. A range is particularly preferred.
 本発明の反射フィルムは、その加工時(反射フィルムを打ち抜き、成形してバックライト内に組み込む)などに帯電し、周囲に存在する帯電した塵や埃が付着するという問題が発生する場合がある。かかる問題に対応するため、樹脂層に本発明の効果を阻害しない範囲内で帯電防止剤を含有することが好ましい。 The reflective film of the present invention may be charged during processing (the reflective film is punched, molded and incorporated in the backlight), and there may be a problem that charged dust or dust existing in the vicinity adheres. . In order to cope with such a problem, it is preferable that the resin layer contains an antistatic agent within a range that does not impair the effects of the present invention.
 かかる帯電防止剤としては、例えば、カチオン性樹脂やアニオン性樹脂などの有機系帯電防止剤、導電性無機化合物(例えば、酸化錫、アンチモンドープ酸化錫(ATO)、酸化インジウム、錫ドープ酸化インジウムなど)が挙げられる。 Examples of such antistatic agents include organic antistatic agents such as cationic resins and anionic resins, conductive inorganic compounds (for example, tin oxide, antimony-doped tin oxide (ATO), indium oxide, tin-doped indium oxide, etc.) ).
 本発明に係る樹脂層には、さらに、本発明の効果を阻害しない範囲内で各種の添加剤を添加することができる。添加剤としては、例えば、蛍光増白剤、耐熱安定剤、耐酸化安定剤、有機の滑剤、カップリング剤、染料、顔料などが挙げられる。 In the resin layer according to the present invention, various additives can be further added within a range that does not impair the effects of the present invention. Examples of the additive include a fluorescent brightening agent, a heat stabilizer, an oxidation stabilizer, an organic lubricant, a coupling agent, a dye, and a pigment.
 樹脂層の厚み(d)は特に限定しないが、0.3~20μmの範囲が好ましく、0.5~15μmの範囲がより好ましく、1~10μmの範囲が特に好ましい。ここで、樹脂層の厚みとは、樹脂層上に粒子による凸部が存在しない部分の厚みを意味する。つまり、粒子による突起が存在しない部分の厚みである。 The thickness (d) of the resin layer is not particularly limited, but is preferably in the range of 0.3 to 20 μm, more preferably in the range of 0.5 to 15 μm, and particularly preferably in the range of 1 to 10 μm. Here, the thickness of the resin layer means the thickness of a portion where no convex portion due to particles exists on the resin layer. That is, it is the thickness of the portion where there is no protrusion due to particles.
 樹脂層の厚みが0.3μm未満であると、ポリエチレン粒子が脱落する場合があり、一方、樹脂層の厚みが20μmを超えるとポリエチレン粒子による凸部が十分に形成されない場合がある。 When the thickness of the resin layer is less than 0.3 μm, the polyethylene particles may fall off, whereas when the thickness of the resin layer exceeds 20 μm, the convex portions due to the polyethylene particles may not be sufficiently formed.
 特に、導光板の損傷を抑制するという観点および反射フィルムと導光板との貼り付きを抑制(白点ムラの発生を抑制)するという観点から、樹脂層に含有されるポリエチレン粒子の平均粒子径(r:μm)と樹脂層厚み(d:μm)との比率(r/d)は、1.5以上が好ましく、2.0以上がより好ましく、3.0以上が特に好ましい。上記比率(r/d)の上限は、ポリエチレン粒子の脱落を抑制するという観点から、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。 In particular, from the viewpoint of suppressing damage to the light guide plate and suppressing sticking between the reflective film and the light guide plate (suppressing the occurrence of uneven white spots), the average particle diameter of polyethylene particles contained in the resin layer ( The ratio (r / d) between r: μm) and the resin layer thickness (d: μm) is preferably 1.5 or more, more preferably 2.0 or more, and particularly preferably 3.0 or more. The upper limit of the ratio (r / d) is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less, from the viewpoint of suppressing the falling of the polyethylene particles.
 樹脂層の厚みは、例えば、以下のようにして求めることができる。まず、本発明の反射フィルムを、日本ミクロトーム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にてフィルム平面に垂直な方向に切断する。得られたフィルム断面を、走査型電子顕微鏡((株)日立製作所製S-3400N)を用いて観察し、樹脂層表面に粒子による凸部が存在する部分ではなく、樹脂層表面に粒子による凸部が存在しない部分5箇所の厚みを測定し、その平均値を樹脂層の厚みとする。 The thickness of the resin layer can be determined, for example, as follows. First, the reflective film of the present invention is cut in a direction perpendicular to the film plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Research Co., Ltd. The obtained film cross section was observed using a scanning electron microscope (S-3400N, manufactured by Hitachi, Ltd.), and not the portion where the convex portion due to the particle exists on the surface of the resin layer, but the convex portion due to the particle on the surface of the resin layer. The thickness of 5 portions where no portion exists is measured, and the average value is taken as the thickness of the resin layer.
 本発明には、前述の図3Aおよび図3Bに示されるように、樹脂層表面に平面的に粒子がほぼ隙間なく配列されて凸部を形成する態様が含まれる。この態様において樹脂層の厚みとは、基材表面から粒子による凸部の表面までの距離を5箇所測定し、その平均値を樹脂層の厚みというものとする。なお、基材表面から粒子による凸部の表面までの距離を測定する際に、粒子によって形成された凸部領域の表面が樹脂(バインダー)で覆われている場合は、覆っている樹脂(バインダー)も含めた距離を測定する。これらの態様は、粒子によって形成された凸部領域の一部もしくは全部を樹脂層に含まれる樹脂で被覆させることにより、粒子の脱落を抑制することができるため好ましい。つまり、樹脂層に含有される粒子の平均粒子径、粒子と樹脂の含有比率等を調整することによって、あるいは粒子と樹脂の相溶性を調整することにより、粒子によって形成された凸部領域の一部もしくは全部を樹脂層に含まれる樹脂で被覆させることができる。 The present invention includes a mode in which, as shown in FIG. 3A and FIG. 3B described above, particles are arranged in a plane on the surface of the resin layer almost without gaps to form convex portions. In this embodiment, the thickness of the resin layer is determined by measuring the distance from the surface of the substrate to the surface of the convex portion of the particles at five locations, and the average value is referred to as the thickness of the resin layer. In addition, when measuring the distance from the base material surface to the surface of the convex part by the particle, if the surface of the convex part region formed by the particle is covered with a resin (binder), the resin (binder covering) ) Including the distance. These aspects are preferable because part or all of the convex region formed by the particles can be covered with the resin contained in the resin layer, thereby preventing the particles from falling off. In other words, by adjusting the average particle diameter of the particles contained in the resin layer, the content ratio of the particles and the resin, or by adjusting the compatibility between the particles and the resin, one of the convex regions formed by the particles Part or all can be covered with a resin contained in the resin layer.
 樹脂層は、ポリエチレン粒子以外の他の粒子(以下、「他の粒子」と言う)を含有することができる。樹脂層に他の粒子を含有させる場合、他の粒子の平均粒子径はポリエチレン粒子の平均粒子径より小さいことが好ましい。樹脂層が、平均粒子径が比較的小さい他の粒子を含有することにより、樹脂層の傷耐性(傷が入りにくくなる)が向上するため好ましい。 The resin layer can contain particles other than polyethylene particles (hereinafter referred to as “other particles”). When other particles are contained in the resin layer, the average particle size of the other particles is preferably smaller than the average particle size of the polyethylene particles. It is preferable for the resin layer to contain other particles having a relatively small average particle diameter, since the scratch resistance of the resin layer (which makes it difficult for scratches to enter) is improved.
 他の粒子の平均粒子径は、ポリエチレン粒子の平均粒子径の0.8倍以下が好ましく、0.7倍以下がより好ましく、0.6倍以下が特に好ましい。下限は0.05倍以上が好ましく、0.1倍以上がより好ましい。他の粒子の平均粒子径は、具体的には1~20μmの範囲が好ましく、2~15μmの範囲がより好ましい。 The average particle diameter of the other particles is preferably 0.8 times or less, more preferably 0.7 times or less, and particularly preferably 0.6 times or less that of the polyethylene particles. The lower limit is preferably 0.05 times or more, and more preferably 0.1 times or more. Specifically, the average particle diameter of the other particles is preferably in the range of 1 to 20 μm, more preferably in the range of 2 to 15 μm.
 樹脂層における他の粒子の含有量は、ポリエチレン粒子100質量部に対して10~200質量部の範囲が好ましく、20~150質量部の範囲がより好ましく、30~130質量部の範囲が特に好ましい。 The content of other particles in the resin layer is preferably in the range of 10 to 200 parts by weight, more preferably in the range of 20 to 150 parts by weight, and particularly preferably in the range of 30 to 130 parts by weight with respect to 100 parts by weight of the polyethylene particles. .
 他の粒子としては、例えば、有機系粒子としては、アクリル系樹脂粒子、シリコーン系樹脂粒子、ナイロン系樹脂粒子、スチレン系樹脂粒子、ベンゾグアナミン系樹脂粒子、ウレタン系樹脂粒子、ポリエステル系樹脂粒子等の有機系粒子が挙げられ、あるいは、無機系粒子としては、シリカ、水酸化アルミニウム、酸化アルミニウム、酸化亜鉛、硫化バリウム、マグネシウムシリケート等の無機系粒子が挙げられる。これらの粒子の中でも、ナイロン系樹脂粒子が好ましい。ナイロン系樹脂粒子は硬度が比較的低いので、導光板の損傷を抑制するという観点から好ましい。 Examples of other particles include organic resin particles such as acrylic resin particles, silicone resin particles, nylon resin particles, styrene resin particles, benzoguanamine resin particles, urethane resin particles, and polyester resin particles. Organic particles are exemplified, or inorganic particles such as silica, aluminum hydroxide, aluminum oxide, zinc oxide, barium sulfide, magnesium silicate and the like are exemplified. Among these particles, nylon resin particles are preferable. Since the nylon resin particles have a relatively low hardness, they are preferable from the viewpoint of suppressing damage to the light guide plate.
 本発明に係る反射フィルムにおいて、樹脂層は基材フィルムの少なくとも一方の面に設けられる。樹脂層は、基材フィルムの片面のみに設けられていてもよいし、基材フィルムの両面に設けられていてもよい。 In the reflective film according to the present invention, the resin layer is provided on at least one surface of the base film. The resin layer may be provided only on one side of the base film, or may be provided on both sides of the base film.
 樹脂層の積層は、例えば、少なくとも樹脂、ポリエチレン粒子および有機溶剤を含む塗布組成物(塗布液)を基材フィルム上に塗布、乾燥することによって行うことができる。 The lamination of the resin layer can be performed, for example, by applying and drying a coating composition (coating liquid) containing at least a resin, polyethylene particles, and an organic solvent on a base film.
 樹脂層の塗布組成物を基材フィルムに塗布するにあたり、任意の塗布方法を用いることができる。例えばグラビアコート、ロールコート、スピンコート、リバースコート、バーコート、スクリーンコート、ブレードコート、エアーナイフコート、ディッピングなどの塗布方法を用いることができる。また、樹脂層の塗布組成物は、基材フィルムの製造時に塗布(インラインコーティング)してもよいし、結晶配向完了後の基材フィルム上に塗布(オフラインコーティング)してもよい。 Any coating method can be used for coating the coating composition of the resin layer on the base film. For example, coating methods such as gravure coating, roll coating, spin coating, reverse coating, bar coating, screen coating, blade coating, air knife coating, and dipping can be used. Moreover, the coating composition of the resin layer may be applied at the time of manufacturing the base film (in-line coating), or may be applied on the base film after completion of crystal orientation (off-line coating).
 [基材フィルム]
 基材フィルムとしては、特に限定されず、銀やアルミニウムの蒸着フィルム、銀箔やアルミニウム箔のラミネートフィルム、白色フィルム、多層積層フィルム等が挙げられる。
[Base film]
It does not specifically limit as a base film, Silver, the vapor deposition film of aluminum, the laminate film of silver foil or aluminum foil, a white film, a multilayer laminated film, etc. are mentioned.
 基材フィルムは、反射フィルムとして使用する場合には可視光線反射率が高ければ高い方が良い。このため、内部に気泡及び/又は非相溶の粒子を含有する白色フィルムが好ましく使用される。 When the base film is used as a reflective film, the higher the visible light reflectance, the better. For this reason, a white film containing bubbles and / or incompatible particles therein is preferably used.
 白色フィルムは、例えば、熱可塑性樹脂等からなるフィルムに、白色着色剤および/または気泡を含有させることによって白色を呈するようにしたフィルムである。 The white film is, for example, a film that is made white by adding a white colorant and / or air bubbles to a film made of a thermoplastic resin or the like.
 白色フィルムは、可視光線反射率が高いことが好ましく(例えば可視光線(波長550nm)の反射率が95%以上であることが好ましく)、この観点から、少なくとも内部に気泡を有する白色フィルムが好ましく用いられる。 The white film preferably has a high visible light reflectance (for example, the reflectance of visible light (wavelength 550 nm) is preferably 95% or more). From this viewpoint, a white film having at least air bubbles inside is preferably used. It is done.
 内部に気泡を有する白色フィルムとしては特に限定されるものではないが、多孔質の未延伸、あるいは二軸延伸ポリプロピレンフィルム、多孔質の未延伸あるいは延伸ポリエチレンテレフタレートフィルムが例として挙げられる。これらの製造方法等については、特開平8-262208号公報の〔0034〕~〔0057〕、特開2002-90515号公報の〔0007〕~〔0018〕、特開2002-138150号公報の〔0008〕~〔0034〕等に詳細に開示されている。中でも特開2002-90515号公報に開示されている多孔質白色二軸延伸ポリエチレンテレフタレートフィルム、あるいはポリエチレンナフタレートと混合及び/又は共重合した多孔質白色二軸延伸ポリエチレンテレフタレートフィルムが好ましく用いられる。 The white film having air bubbles inside is not particularly limited, and examples thereof include a porous unstretched or biaxially stretched polypropylene film and a porous unstretched or stretched polyethylene terephthalate film. With respect to these production methods and the like, [0034] to [0057] of JP-A-8-262208, [0007] to [0018] of JP-A-2002-90515, and [0008] of JP-A-2002-138150. ] To [0034] and the like. Among them, the porous white biaxially stretched polyethylene terephthalate film disclosed in JP-A-2002-90515, or the porous white biaxially stretched polyethylene terephthalate film mixed and / or copolymerized with polyethylene naphthalate is preferably used.
 白色フィルムの好ましい態様は、上述の内部に気泡を含有するフィルム層(B層)の少なくとも一方の面に、フィルム層(A層)が積層されたものが挙げられる。この態様において、A層はB層の片面のみに積層されていてもよいし、B層の両面に積層されていてもよい。つまり、A層/B層の2層構成、A1層/B層/A2層の3層構成が挙げられる。これらの中でも、高い剛性を得るという観点から、A1層/B層/A2層の3層構成が好ましい。ここで、A1層とA2層はA層であり、A1層とA2層は同一の構成(組成や厚みが同一)であってもよいし、異なる構成(組成および厚みの少なくとも一方が異なる)であってもよい。 A preferable embodiment of the white film includes a film layer (A layer) laminated on at least one surface of the above-described film layer (B layer) containing bubbles. In this embodiment, the A layer may be laminated only on one side of the B layer, or may be laminated on both sides of the B layer. That is, a two-layer configuration of A layer / B layer and a three-layer configuration of A1 layer / B layer / A2 layer can be mentioned. Among these, from the viewpoint of obtaining high rigidity, a three-layer configuration of A1 layer / B layer / A2 layer is preferable. Here, the A1 layer and the A2 layer are A layers, and the A1 layer and the A2 layer may have the same configuration (composition and thickness are the same), or may be different configurations (at least one of the composition and thickness is different). There may be.
 上記のような3層構成において、A1層とA2層は全く同一組成で構成されていてもよいし、異なる組成で構成されていてもよいが、白色フィルムの生産性の観点から、A1層とA2層は全く同一組成で構成されていることが好ましい。以下の説明において、A1層とA2層を統合して「A層」と称することがあり、「A層」なる表現には、2層構成のA層および3層構成のA1層とA2層とが含まれる。また、以下の説明においてA層に含有する各種材料の含有量は、一層当たりの含有量を指す。 In the three-layer configuration as described above, the A1 layer and the A2 layer may be configured with the same composition or may be configured with different compositions, but from the viewpoint of the productivity of the white film, It is preferable that A2 layer is comprised by the completely same composition. In the following description, the A1 layer and the A2 layer may be collectively referred to as “A layer”, and the expression “A layer” includes the two-layer A layer, the three-layer A1 layer, and the A2 layer. Is included. In the following description, the content of various materials contained in the A layer refers to the content per layer.
 A層はB層を支持(保持)する機能を有することが好ましい。A層にこの機能を付与するという観点から、A層は樹脂を主体とする層であることが好ましい。ここで、A層が樹脂を主体とする層であるとは、A層の総量100質量%に対して樹脂を50質量%以上含有することを意味する。更にA層は、樹脂を60質量%以上含有することが好ましく、70質量%以上含有することがより好ましく、特に80質量%以上含有することが好ましい。上限は99質量%程度である。 It is preferable that the A layer has a function of supporting (holding) the B layer. From the viewpoint of imparting this function to the A layer, the A layer is preferably a resin-based layer. Here, that the A layer is a layer mainly composed of a resin means that the resin is contained by 50% by mass or more with respect to 100% by mass of the total amount of the A layer. Furthermore, the A layer preferably contains 60% by mass or more of resin, more preferably 70% by mass or more, and particularly preferably 80% by mass or more. The upper limit is about 99% by mass.
 また、A層は粒子を含有することが好ましい。A層に粒子を含有させることによって反射フィルムに適度なすべり性を付与することができる。反射フィルムにすべり性が付与されることによりハンドリング性や加工性(透過部(開口部)を形成するための打ち抜き加工等)が良好となる。 The layer A preferably contains particles. By including particles in the A layer, an appropriate slip property can be imparted to the reflective film. By imparting slipperiness to the reflective film, handling properties and workability (such as punching for forming a transmission portion (opening portion)) are improved.
 A層を構成する樹脂としては、ポリエステル樹脂が好ましい。かかるポリエステル樹脂としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が好ましい。また、このポリエステル樹脂の中には、公知の各種添加剤、例えば、酸化防止剤、帯電防止剤などが添加されていてもよい。A層を構成するポリエステル樹脂の含有量は、A層を構成する樹脂総量100質量%に対して50質量%以上が好ましく、60質量%以上がより好ましく、特に70質量%以上が好ましい。上限は99質量%程度である。 As the resin constituting the A layer, a polyester resin is preferable. As such a polyester resin, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable. In addition, various known additives such as an antioxidant and an antistatic agent may be added to the polyester resin. The content of the polyester resin constituting the A layer is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to 100% by mass of the total resin constituting the A layer. The upper limit is about 99% by mass.
 A層に含有させる粒子としては、有機粒子や無機粒子を挙げることができる。有機粒子としては、例えばポリエステル樹脂、ベンゾグアナミンのようなポリアミド系樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂、シリコーン樹脂などの樹脂からなる粒子、上記樹脂の2種以上の共重合体もしくは混合物からなる粒子が挙げられる。 Examples of the particles contained in the A layer include organic particles and inorganic particles. Examples of the organic particles include polyester resins, polyamide resins such as benzoguanamine, polyurethane resins, acrylic resins, methacrylic resins, polyamide resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyacetic acids. Examples thereof include particles made of a resin such as a vinyl resin, a fluorine resin, and a silicone resin, and particles made of a copolymer or a mixture of two or more of the above resins.
 無機粒子としては、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫化亜鉛、リン酸カルシウム、シリカ、アルミナ、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム、フッ化カルシウム等が挙げられる。 Inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, silica, alumina, mica, titanium mica, talc, clay, kaolin, fluoride. And lithium fluoride and calcium fluoride.
 上記した粒子の中でも無機粒子が好ましく、更に無機粒子の中でも、炭酸カルシウム、酸化チタン、硫酸バリウム、シリカが好ましく用いられる。 Among the above particles, inorganic particles are preferable, and among the inorganic particles, calcium carbonate, titanium oxide, barium sulfate, and silica are preferably used.
 A層に含有させる粒子の平均粒子径は、0.05~15μmの範囲が好ましく、0.1~5μmの範囲がより好ましく、0.2~3μmの範囲がさらに好ましい。 The average particle size of the particles contained in the layer A is preferably in the range of 0.05 to 15 μm, more preferably in the range of 0.1 to 5 μm, and still more preferably in the range of 0.2 to 3 μm.
 A層における粒子の含有量は、A層の総量100質量%に対して0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましい。上限の含有量は、A層の総量100質量%に対して20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。粒子の含有量が0.005質量%未満では、良好なすべり性が得られない場合がある。一方、粒子の含有量が20質量%を超えると製膜性が低下する場合がある。 The content of particles in the A layer is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more with respect to 100% by mass of the total amount of the A layer. The upper limit content is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less with respect to 100% by mass of the total amount of the A layer. When the content of the particles is less than 0.005% by mass, good sliding properties may not be obtained. On the other hand, when the content of the particles exceeds 20% by mass, the film forming property may be deteriorated.
 B層はフィルム層内部に微細な気泡を含有することによって白色化されている層であることが好ましい。B層は、多孔質の未延伸あるいは二軸延伸ポリプロピレンフィルム、多孔質の未延伸あるいは延伸ポリエチレンテレフタレートフィルムが好ましく用いられる。この内部に気泡を含有するフィルム層(B層)の製造方法等は、前述したように、例えば特開平8-262208号公報、特開2002-90515号公報、特開2002-138150号公報等に詳細に開示されており、本発明に用いることができる。 The B layer is preferably a layer that is whitened by containing fine bubbles inside the film layer. The layer B is preferably a porous unstretched or biaxially stretched polypropylene film or a porous unstretched or stretched polyethylene terephthalate film. As described above, the method for producing the film layer (B layer) containing bubbles in the inside is disclosed in, for example, JP-A-8-262208, JP-A-2002-90515, JP-A-2002-138150, etc. It is disclosed in detail and can be used in the present invention.
 B層は、ポリプロピレン樹脂やポリエステル樹脂で構成されていることが好ましく、特にポリエステル樹脂で構成されていることが好ましい。B層を構成するポリエステル樹脂としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が好ましい。また、このポリエステル樹脂の中には、公知の各種添加剤、例えば、酸化防止剤、帯電防止剤などが添加されていてもよい。B層を構成するポリエステル樹脂の含有量は、B層の総量100質量%に対して50質量%以上が好ましく、60質量%以上がより好ましく、特に70質量%以上が好ましい。上限は95質量%程度である。 The B layer is preferably made of a polypropylene resin or a polyester resin, and particularly preferably made of a polyester resin. As the polyester resin constituting the B layer, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable. In addition, various known additives such as an antioxidant and an antistatic agent may be added to the polyester resin. The content of the polyester resin constituting the B layer is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to 100% by mass of the total amount of the B layer. The upper limit is about 95% by mass.
 B層における気泡の形成は、例えば、フィルム基材であるポリエステルフィルム中に、ポリエステル樹脂とは非相溶な樹脂を細かく分散させ、それを延伸(たとえば二軸延伸)することにより達成できる。 Formation of air bubbles in the B layer can be achieved, for example, by finely dispersing a resin incompatible with the polyester resin in a polyester film that is a film substrate and stretching (for example, biaxial stretching).
 B層は、B層を構成するポリエステル樹脂に非相溶な樹脂(以下、非相溶樹脂ということもある)を混合して含有させることが好ましい。非相溶樹脂を含有することにより、延伸時に非相溶樹脂を核とした空洞が生まれ、この空洞界面により光反射が起きるため好ましい。ポリエステル樹脂に非相溶な樹脂としては、単独重合体であっても共重合体であってもよく、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン樹脂、環状ポリオレフィン樹脂、ポリスチレン樹脂、ポリアクリレート樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂などが好適に用いられる。これらは2種以上を併用してもよい。 The B layer is preferably mixed with a polyester resin constituting the B layer in an incompatible resin (hereinafter sometimes referred to as an incompatible resin). The inclusion of the incompatible resin is preferable because a cavity having the incompatible resin as a nucleus is formed at the time of stretching, and light reflection occurs at the cavity interface. The resin incompatible with the polyester resin may be a homopolymer or a copolymer. Polyolefin resin such as polyethylene, polypropylene, polybutene, polymethylpentene, cyclic polyolefin resin, polystyrene resin, polyacrylate Resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, fluororesins, and the like are preferably used. Two or more of these may be used in combination.
 上記の非相溶樹脂の中でも、特にポリエステル樹脂との臨界表面張力差が大きく、延伸後の熱処理によって変形しにくい樹脂が好ましい。具体的には、ポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン樹脂、環状ポリオレフィン樹脂、および、これらの共重合体を挙げることができる。 Among the incompatible resins described above, a resin that has a particularly large critical surface tension difference from the polyester resin and is not easily deformed by heat treatment after stretching is preferable. Specifically, polyolefin resin is preferable. Examples of the polyolefin resin include polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, and copolymers thereof.
 B層に含有させる非相溶樹脂の好ましい含有量は、B層の総量100質量%に対して5質量%以上25質量%以下である。また、B層中に含有させる非相溶樹脂は、ポリエステル樹脂からなるマトリックス中に数平均粒子径が0.4μm以上3.0μm以下で分散していることが、適切な反射界面数やフィルム強度を得る上で好ましい。さらに非相溶樹脂の数平均粒子径は、0.5μm以上1.5μm以下の範囲であることがより好ましい。 The preferable content of the incompatible resin contained in the B layer is 5% by mass or more and 25% by mass or less with respect to 100% by mass of the total amount of the B layer. In addition, the incompatible resin contained in the B layer is dispersed in a matrix made of a polyester resin with a number average particle diameter of 0.4 μm or more and 3.0 μm or less. It is preferable in obtaining. Furthermore, the number average particle diameter of the incompatible resin is more preferably in the range of 0.5 μm or more and 1.5 μm or less.
 ここでいう数平均粒子径とは、フィルムの幅方向(TD)の断面を切り出し、その断面のB層部分を(株)日立製作所製走査型電子顕微鏡(FE-SEM)S-2100A形を用いて観測される粒子100個の面積を求め、真円に換算した際の直径の平均値である。 The number average particle diameter here is a cross section of the film in the width direction (TD), and the B layer portion of the cross section is a scanning electron microscope (FE-SEM) model S-2100A manufactured by Hitachi, Ltd. The average value of the diameters when the area of 100 particles observed in this way is obtained and converted to a perfect circle.
 B層には、更に有機粒子や無機粒子などの粒子を含有させることが好ましい。かかる粒子としては前述のA層に含有させることができる粒子と同様のものが挙げられる。これらの粒子の中でも、波長400~700nmの可視光域において吸収の少ない炭酸カルシウム、硫酸バリウム、二酸化チタンの無機粒子が反射特性や隠蔽性、製造コスト等の観点で好ましい。本発明において、フィルムの巻き取り性、長時間の製膜安定性、反射特性向上の観点から、硫酸バリウム、二酸化チタンが最も好ましい。粒子の平均粒子径としては、0.1~3μmの範囲が好ましく、このような無機粒子を使用することによって反射性や隠蔽性が向上するため好ましい。 It is preferable that the layer B further contains particles such as organic particles and inorganic particles. Examples of such particles include the same particles as those that can be contained in the A layer. Among these particles, inorganic particles such as calcium carbonate, barium sulfate, and titanium dioxide that absorb less in the visible light range of wavelength 400 to 700 nm are preferable from the viewpoints of reflection characteristics, concealability, production cost, and the like. In the present invention, barium sulfate and titanium dioxide are most preferable from the viewpoints of film winding property, long-term film-forming stability, and improvement in reflection characteristics. The average particle diameter of the particles is preferably in the range of 0.1 to 3 μm. Use of such inorganic particles is preferable because the reflectivity and concealability are improved.
 B層における無機粒子の含有量は、良好な反射特性や隠蔽性を確保するという観点から、B層の総量100質量%に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が特に好ましい。一方、このような無機粒子の含有量が多くなると、反射シートの透過黄色度(YI)が高くなる傾向にあるので、無機粒子の上限の含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。 The content of the inorganic particles in the B layer is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to 100% by mass of the total amount of the B layer, from the viewpoint of ensuring good reflection characteristics and concealment. More preferred is 1% by mass or more. On the other hand, when the content of such inorganic particles increases, the transmission yellowness (YI) of the reflective sheet tends to increase. Therefore, the upper limit content of the inorganic particles is preferably 10% by mass or less, and 5% by mass. The following is more preferable, and 3% by mass or less is particularly preferable.
 B層は、更に共重合ポリエステルを含有することが好ましい。B層に共重合ポリエステルを含有させることにより、B層に比較的高濃度の無機粒子を含有させる場合であっても安定して製膜することができる。共重合ポリエステルは、B層中の非相溶樹脂の分散剤としての役割も有する。 The B layer preferably further contains a copolyester. By containing the copolyester in the B layer, it is possible to stably form a film even when the B layer contains a relatively high concentration of inorganic particles. The copolyester also has a role as a dispersant for the incompatible resin in the B layer.
 かかる共重合ポリエステルとしては、ポリエチレンテレフタレートとイソフタル酸との共重合体、ポリエチレンテレフタレートとシクロヘキサンジメタノールとの共重合体、ポリブチレンテレフタレートとポリテトラメチレンテレフタレートとの共重合体等が挙げられる。本発明では、これらの共重合ポリエステルからなる群の中から選ばれる少なくとも2種類を含有することが好ましい。 Examples of such a copolyester include a copolymer of polyethylene terephthalate and isophthalic acid, a copolymer of polyethylene terephthalate and cyclohexanedimethanol, a copolymer of polybutylene terephthalate and polytetramethylene terephthalate, and the like. In this invention, it is preferable to contain at least 2 types chosen from the group which consists of these copolyesters.
 白色フィルムが2層構成である場合の各層の厚み比率は、高い反射率を維持するという観点から、A層:B層=2:98~20:80の範囲が好ましく、更に、A層:B層=3:97~10:90の範囲がより好ましい。 When the white film has a two-layer structure, the thickness ratio of each layer is preferably in the range of A layer: B layer = 2: 98 to 20:80 from the viewpoint of maintaining high reflectance, and further, A layer: B The range of layer = 3: 97 to 10:90 is more preferable.
 白色フィルムが3層構成である場合の各層の厚み比率は、高い反射率を維持するという観点から、A1層:B層:A2層=1:98:1~15:70:15の範囲が好ましく、更に、A1層:B層:A2層=2:96:2~10:80:10の範囲がより好ましい。 When the white film has a three-layer structure, the thickness ratio of each layer is preferably in the range of A1 layer: B layer: A2 layer = 1: 98: 1 to 15:70:15 from the viewpoint of maintaining high reflectance. Furthermore, the range of A1 layer: B layer: A2 layer = 2: 96: 2 to 10:80:10 is more preferable.
 基材フィルムの厚みは、高い反射率を確保するという観点から、30μm以上が好ましく、50μm以上がより好ましく、100μm以上が特に好ましい。厚みの上限は、バックライトユニットの薄型化を図るという観点から、1,000μm以下が好ましく、500μm以下がより好ましく、400μm以下がさらに好ましく、300μm以下が特に好ましい。 The thickness of the base film is preferably 30 μm or more, more preferably 50 μm or more, and particularly preferably 100 μm or more from the viewpoint of ensuring high reflectance. The upper limit of the thickness is preferably 1,000 μm or less, more preferably 500 μm or less, further preferably 400 μm or less, and particularly preferably 300 μm or less from the viewpoint of reducing the thickness of the backlight unit.
 基材フィルムは市販されているものを使用することができる。例えば、単層構成の白色フィルムとしては、“ルミラー”(登録商標)E20(東レ(株)製)、SY90、SY95(SKC製)などが挙げられ、2層構成の白色フィルムとしては、“テトロン”(登録商標)フィルムUXSP、UXJP(帝人デュポンフィルム(株)製)などが挙げられ、3層構成の白色フィルムとしては、“ルミラー”(登録商標)E60L、E6SL、E6SR、E6SQ、E6Z、E80A、E85D(東レ(株)製)、“テトロン”(登録商標)フィルムUX、UXE、UXS7、UXQ1(帝人デュポンフィルム(株)製)、LumirexII(三菱樹脂(株)製)などが挙げられる。また、これら以外の構成である白色フィルムの例として、Optilon ACR3000、ACR3020(デュポン(株)製)、“MCPET”(登録商標)(古河電気工業(株)製)が挙げられる。 A commercially available base film can be used. For example, as a white film having a single layer structure, “Lumirror” (registered trademark) E20 (manufactured by Toray Industries, Inc.), SY90, SY95 (manufactured by SKC) and the like can be mentioned. "(Registered trademark) film UXSP, UXJP (manufactured by Teijin DuPont Films Co., Ltd.) and the like. As a white film having a three-layer structure," Lumirror "(registered trademark) E60L, E6SL, E6SR, E6SQ, E6Z, E80A , E85D (manufactured by Toray Industries, Inc.), “Tetron” (registered trademark) film UX, UXE, UXS7, UXQ1 (manufactured by Teijin DuPont Films, Inc.), Lumirex II (manufactured by Mitsubishi Plastics, Inc.), and the like. Moreover, as an example of a white film having a configuration other than these, Optilon ACR3000, ACR3020 (manufactured by DuPont), “MCPET” (registered trademark) (manufactured by Furukawa Electric Co., Ltd.) can be mentioned.
 [液晶表示装置のバックライトユニット]
 本発明の反射フィルムは、液晶表示装置のバックライトユニットに好適である。バックライト方式としては、エッジライト型と直下型が一般的に採用されているが、本発明の反射フィルムは、どちらの方式にも適用される。特に、本発明の反射フィルムは、エッジライト型バックライト方式に好適である。
[Backlight unit of liquid crystal display]
The reflective film of the present invention is suitable for a backlight unit of a liquid crystal display device. As the backlight method, an edge light type and a direct type are generally employed, but the reflective film of the present invention is applied to both methods. In particular, the reflective film of the present invention is suitable for an edge light type backlight system.
 エッジライト型バックライト方式は、導光板の側端部に配置された光源の光を、導光板を介して伝搬させ液晶層(画面)を照らす方式であり、本発明の反射フィルムは、導光板に対して液晶層とは反対側に配置される。この際、本発明の反射フィルムは、樹脂層が積層された面が導光板と向き合うように配置される。 The edge-light type backlight system is a system in which light from a light source disposed at a side end portion of a light guide plate is propagated through the light guide plate to illuminate a liquid crystal layer (screen). Is disposed on the opposite side of the liquid crystal layer. At this time, the reflective film of the present invention is disposed so that the surface on which the resin layer is laminated faces the light guide plate.
 このようなエッジライト型バックライト方式は、前述したように、導光板と反射フィルムが接触することによって、導光板を損傷させるという問題、導光板と反射フィルムの貼り付きによる白点ムラの問題があるが、これらの問題は本発明の反射フィルムを用いることにより軽減される。 As described above, the edge light type backlight system has a problem of damaging the light guide plate due to contact between the light guide plate and the reflective film, and white spot unevenness due to adhesion between the light guide plate and the reflective film. However, these problems are alleviated by using the reflective film of the present invention.
 また、前述したように、樹脂層に従来から一般的に知られているポリエチレン粒子を用いたときの特有の問題(熱によって導光板を汚染するという問題)は、本発明の反射フィルム、即ち、樹脂層に本発明に係るポリエチレン粒子を含有させることによって抑制される。 In addition, as described above, a specific problem (problem that the light guide plate is contaminated by heat) when using polyethylene particles that are conventionally known in the resin layer is the reflective film of the present invention, that is, It is suppressed by including the polyethylene particles according to the present invention in the resin layer.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、本実施例における、測定方法、評価方法および材料を以下に示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method, evaluation method, and material in a present Example are shown below.
 [測定方法および評価方法]
 (1)樹脂層のポリエチレン粒子の確認
 実体顕微鏡(Nikon社製、SMZ1500)を用いて、倍率20~200倍で適宜調節して樹脂層の表面を観察しながら金属製の治具で樹脂層に含まれる粒子をサンプリングし、測定対象試料とした。
[Measurement method and evaluation method]
(1) Confirmation of polyethylene particles in resin layer Using a stereomicroscope (SMK1500, manufactured by Nikon), adjust the magnification at 20 to 200 times and observe the surface of the resin layer with a metal jig. The contained particles were sampled and used as samples to be measured.
 得られた試料を更に切断処理し、粒子の中心付近を顕微FT-IR法にて測定を行った。
上記の粒子サンプリング、切断処理、顕微FT-IR法による測定は、樹脂層に含まれる20個の粒子に対して行った。
The obtained sample was further cut, and the vicinity of the center of the particle was measured by a microscopic FT-IR method.
The above-described particle sampling, cutting treatment, and microscopic FT-IR measurement were performed on 20 particles contained in the resin layer.
 次に、上記によって得られた顕微FT-IRの赤外光吸収波形から樹脂層にポリエチレン粒子が含有されていることを確認した。
 顕微FT-IR法で用いた装置名や測定条件などを以下に示す。
・装置:顕微赤外分光分析装置 IRμs(SPECTRA-TECH社製)
・条件:
 光源:炭化ケイ素棒発熱体(グローバー社製)
 検出器:Narrow・MCT(HgCdTe)
 検出波数範囲:4,000~650cm-1
 パージ:窒素ガス
 測定モード:透過法
 分解能:8cm-1
 積算回数::512回
・データ補正:ベースライン補正。
Next, it was confirmed from the infrared light absorption waveform of the microscopic FT-IR obtained as described above that the resin layer contained polyethylene particles.
The device names and measurement conditions used in the microscopic FT-IR method are shown below.
・ Apparatus: Microscopic infrared spectroscopic analyzer IRμs (manufactured by SPECTRA-TECH)
·conditions:
Light source: Silicon carbide rod heating element (made by Grover)
Detector: Narrow MCT (HgCdTe)
Detection wave number range: 4,000 to 650 cm −1
Purge: Nitrogen gas Measurement mode: Permeation method Resolution: 8 cm -1
Integration count :: 512 timesData correction: Baseline correction.
 (2)ポリエチレン粒子の融点測定
 示差走査熱量計(DSC)(セイコー電子工業社製、RDC220)を用い、JIS K7121-1987に準拠して測定および、解析を行った。5mgの粒子サンプルを用い、25℃から20℃/分で200℃まで昇温した際に得られたDSC曲線のグラフ(縦軸:DSC(mW)、横軸:温度(℃))から融解吸熱ピークの頂点が示す温度を読み取り、融点とした。融解吸熱ピークの頂点が複数存在する場合は、縦軸方向の値が最も小さい頂点(最も吸熱側に位置する頂点)が示す温度を融点とした。
(2) Melting | fusing point measurement of polyethylene particle Using the differential scanning calorimeter (DSC) (the Seiko Electronics Co., Ltd. make, RDC220), it measured and analyzed based on JISK7121-1987. Using a 5 mg particle sample, a DSC curve graph (vertical axis: DSC (mW), horizontal axis: temperature (° C)) obtained when the temperature was raised from 25 ° C to 200 ° C at 20 ° C / min. The temperature indicated by the peak apex was read and taken as the melting point. When there were a plurality of vertices of the melting endothermic peak, the temperature indicated by the vertex having the smallest value in the vertical axis direction (vertex located on the most endothermic side) was taken as the melting point.
 (3)ポリエチレン粒子の密度の測定
 JIS K7112(1999)、密度勾配管法(23℃)により測定した。
(3) Measurement of density of polyethylene particles The density was measured by JIS K7112 (1999), density gradient tube method (23 ° C.).
 (4)ポリエチレン粒子の粘度平均分子量の測定
 JIS K7367-3(1999)に従って、極限粘度[η]及び粘度平均分子量(Mv)を測定した。
 20mLのデカリン(ジブチルヒドロキシトルエン(BHT)を1g/L含む)にポリエチレン粒子20mgを入れ、150℃で、2時間攪拌してポリエチレン粒子を溶解させた。その溶液を135℃の恒温糟で、キャノン-フェンスケ粘度計(SO)を用いて、標線間の落下時間(ts)を測定した。なお、ブランクとしてポリエチレン粒子を溶解していない、デカリンのみの落下時間(tb)を測定した。以下の式に従いポリエチレンの比粘度(ηsp/C)をプロットし、濃度0に外挿した極限粘度[η]を求めた。
 (ηsp/C) = (ts/tb-1)/0.1
 この[η]から以下の式に従い、粘度平均分子量(Mv)を求めた。
 Mv = (5.37×10)×[η]1.37
(4) Measurement of viscosity average molecular weight of polyethylene particles The intrinsic viscosity [η] and viscosity average molecular weight (Mv) were measured according to JIS K7367-3 (1999).
20 mL of decalin (containing 1 g / L of dibutylhydroxytoluene (BHT)) was charged with 20 mg of polyethylene particles and stirred at 150 ° C. for 2 hours to dissolve the polyethylene particles. The solution was measured at a constant temperature of 135 ° C. using a Canon-Fenske viscometer (SO) for the drop time (ts) between the marked lines. In addition, the fall time (tb) of only decalin which did not melt | dissolve polyethylene particles as a blank was measured. The specific viscosity (ηsp / C) of polyethylene was plotted according to the following formula, and the intrinsic viscosity [η] extrapolated to a concentration of 0 was determined.
(Ηsp / C) = (ts / tb−1) /0.1
From this [η], the viscosity average molecular weight (Mv) was determined according to the following formula.
Mv = (5.37 × 10 4 ) × [η] 1.37
 (5)樹脂層に含有されるポリエチレン粒子の平均粒子径
 反射フィルムを、日本ミクロトーム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にてフィルム平面に垂直な方向に切断した。得られたフィルム断面を、走査型電子顕微鏡((株)日立製作所製S-3400N)(50μmよりも大きい粒子は500倍、それ以外は1,000倍)で観察し、その断面写真から、樹脂層に含有される粒子について無作為に選択した30個の粒子のそれぞれの最大長さを計測し、それらを平均した値を粒子の平均粒子径とした。ここで、粒子の最大長さは1つの粒子を完全に囲む面積が最も小さい正方形または長方形(すなわち、正方形または長方形の4辺に粒子が接している正方形または長方形)を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)を粒子の最大長さとした(すなわち、最も長い定方向接線径を、粒子の最大長さとした)。
(5) Average particle diameter of polyethylene particles contained in the resin layer The reflective film was cut in a direction perpendicular to the film plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Laboratories. . The cross section of the obtained film was observed with a scanning electron microscope (S-3400N manufactured by Hitachi, Ltd.) (particles larger than 50 μm were 500 times larger, otherwise 1,000 times). The maximum length of each of 30 particles randomly selected with respect to the particles contained in the layer was measured, and the average value of these was taken as the average particle diameter of the particles. Here, the maximum length of a particle is a square or rectangle having the smallest area that completely surrounds one particle (that is, a square or rectangle in which the particle is in contact with the four sides of the square or rectangle). The length of the side, and in the case of a rectangle, the length of the long side (major axis diameter) was taken as the maximum length of the particle (that is, the longest constant tangent diameter was taken as the maximum length of the particle).
 (6)樹脂層の厚み
 反射フィルムを、日本ミクロトーム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にてフィルム平面に垂直な方向に切断した。得られたフィルム断面を、走査型電子顕微鏡((株)日立製作所製S-3400N)(倍率:500倍)を用いて観察し、樹脂層表面に粒子による凸部が存在する部分ではなく、樹脂層表面に粒子による凸部が存在しない部分5箇所の厚みを測定し、その平均値を樹脂層の厚みとした。
(6) Resin Layer Thickness The reflective film was cut in a direction perpendicular to the film plane at a knife inclination angle of 3 ° using a rotary microtome manufactured by Nippon Microtome Research Co., Ltd. The cross section of the obtained film was observed using a scanning electron microscope (S-3400N, manufactured by Hitachi, Ltd.) (magnification: 500 times). The thickness of five portions where no convex portions due to particles exist on the surface of the layer was measured, and the average value was taken as the thickness of the resin layer.
 なお、図3で示されるような樹脂層表面が粒子によって覆われている態様の場合は、基材表面から粒子による凸部の表面までの距離を5箇所測定し、その平均値を樹脂層の厚みというものとする。なお、基材表面から粒子による凸部の表面までの距離を測定する際に、粒子によって形成された凸部領域の表面が樹脂(バインダー)で覆われている場合は、覆っている樹脂(バインダー)も含めた距離を測定する。 In the case where the surface of the resin layer as shown in FIG. 3 is covered with particles, the distance from the substrate surface to the surface of the convex portion by the particles is measured at five locations, and the average value of the resin layer surface is It is called thickness. In addition, when measuring the distance from the base material surface to the surface of the convex part by the particle, if the surface of the convex part region formed by the particle is covered with a resin (binder), the resin (binder covering) ) Including the distance.
 (7)滑り性の評価
 反射フィルムの樹脂層面とアクリル板(住友化学(株)製の「“スミペックス”(登録商標)E(クリア)」厚み3mm)との動摩擦係数をJIS K7125(1999)に準拠して、同JIS規定に準拠して制作した東レ(株)式のスリップテスター200G-15C(MAKINO SEISAKUSHO製)を用いて測定した。なお、本評価においてはスリップテスターの試験台上に、下記サイズのアクリル板、反射フィルム、滑り片を、この順に置き、このとき反射フィルムの樹脂層面がアクリル板側になるように置いた。また、アクリル板、反射フィルムの長手方向を移動方向(アクリル板と反射フィルムの接触面間の相対ずれ運動をさせる方向)とするものとし、下記の移動速度にてアクリル板と反射フィルムの接触面間の相対ずれ運動をさせた。本評価における動摩擦係数は、アクリル板と反射フィルムの接触面間の相対ずれ運動を開始した後100mm移動した点の摩擦力から計算するものとした。
(7) Evaluation of slipperiness The coefficient of kinetic friction between the resin layer surface of the reflective film and the acrylic plate (“Sumipex” (registered trademark) E (clear) ”3 mm thickness manufactured by Sumitomo Chemical Co., Ltd.) is defined in JIS K7125 (1999). In conformity, the measurement was performed using a Toray Co., Ltd. type slip tester 200G-15C (manufactured by MAKINO SEISAKUSHO) produced in accordance with the JIS regulations. In this evaluation, an acrylic plate, a reflective film, and a sliding piece having the following sizes were placed in this order on a test table of a slip tester, and at this time, the resin layer surface of the reflective film was placed on the acrylic plate side. In addition, the longitudinal direction of the acrylic plate and the reflection film shall be the moving direction (direction in which the relative displacement movement between the contact surface of the acrylic plate and the reflective film) is made, and the contact surface of the acrylic plate and the reflective film at the following moving speed The relative displacement between them was made. The dynamic friction coefficient in this evaluation was calculated from the frictional force at the point moved 100 mm after starting the relative displacement movement between the contact surfaces of the acrylic plate and the reflective film.
 <測定条件>
 反射フィルムのサイズ:80mm×200mm
 アクリル板のサイズ:150mm×300mm
 滑り片のサイズ、質量:63mm×63mm、200g
 移動速度:150mm/分。
<Measurement conditions>
Reflective film size: 80mm x 200mm
Acrylic plate size: 150mm x 300mm
Slide piece size, mass: 63mm x 63mm, 200g
Movement speed: 150 mm / min.
 <評価>
 それぞれの反射フィルムについて同一サンプルから3つの試験片を準備することで動摩擦係数を3回測定し平均した。なお、基材フィルムの両面に樹脂層を有する反射フィルムについては、一方の樹脂層面および他方の樹脂層面それぞれについて評価を行った。このようにして得られた動摩擦係数を以下の基準で評価した。
S:動摩擦係数が0.3以下である。
A:動摩擦係数が0.3より大きく0.6以下である。
B:動摩擦係数が0.6より大きい。
<Evaluation>
By preparing three test pieces from the same sample for each reflective film, the dynamic friction coefficient was measured three times and averaged. In addition, about the reflective film which has a resin layer on both surfaces of a base film, each resin layer surface and the other resin layer surface were evaluated. The dynamic friction coefficient thus obtained was evaluated according to the following criteria.
S: The dynamic friction coefficient is 0.3 or less.
A: The dynamic friction coefficient is greater than 0.3 and less than or equal to 0.6.
B: The dynamic friction coefficient is larger than 0.6.
 (8)耐熱性評価その1(熱による変色)
 反射フィルムを温度60℃の雰囲気下で500時間加熱した後、常温下で1時間放置し、反射フィルムの樹脂層面の変色を以下の基準により目視で評価した。
A:変色がない。
B:変色が認められる。
(8) Heat resistance evaluation 1 (discoloration due to heat)
The reflective film was heated in an atmosphere at a temperature of 60 ° C. for 500 hours and then allowed to stand at room temperature for 1 hour, and the discoloration of the resin layer surface of the reflective film was visually evaluated according to the following criteria.
A: There is no discoloration.
B: Discoloration is recognized.
 (9)耐熱性評価その2(熱による導光板の汚染)
 17インチ液晶テレビ(パナソニック(株)製、“VIERA”(登録商標) TH-L17F1)を分解し、LEDを光源とするエッジライト型バックライト(バックライトAとする)を取り出した。バックライトAの発光面の大きさは、37.5cm×21.2cmであり、対角の長さは43.1cmであった。さらにバックライトAから光学フィルム3枚、導光板(アクリル板、3.5mm厚み、導光板に形成された凸部の高さ12μm)及び反射フィルムを取り出し、本発明の反射フィルムを搭載されていた反射フィルムと同じ形状、大きさに裁断した。それぞれの反射フィルムについて裁断したサンプルを準備した後、搭載されていた反射フィルムの代わりに裁断したサンプルの樹脂層の面が導光板側を向くように設置し、導光板及び光学フィルム3枚を分解前と同じ順序及び方向で設置した。
(9) Heat resistance evaluation 2 (contamination of light guide plate by heat)
A 17-inch liquid crystal television (manufactured by Panasonic Corporation, “VIERA” (registered trademark) TH-L17F1) was disassembled, and an edge light type backlight using LED as a light source (referred to as backlight A) was taken out. The size of the light emitting surface of the backlight A was 37.5 cm × 21.2 cm, and the diagonal length was 43.1 cm. Further, three optical films, a light guide plate (acrylic plate, 3.5 mm thickness, height of the convex portion formed on the light guide plate 12 μm) and the reflective film were taken out from the backlight A, and the reflective film of the present invention was mounted. Cut into the same shape and size as the reflective film. After preparing the sample cut for each reflective film, install the cut sample resin layer side facing the light guide plate instead of the mounted reflective film, and disassemble the light guide plate and three optical films Installed in the same order and direction as before.
 このようにして分解および組み立てたバックライトAを温度80度の雰囲気下で1時間加熱した後、常温下で1時間放置し、再度液晶テレビを分解して、導光板の反射フィルムが接触した面の汚染状態を以下の基準により目視で評価した。
S:汚染がない。
A:汚染が僅かに認められるが、許容レベルである。
B:汚染されている。
The backlight A thus disassembled and assembled is heated for 1 hour in an atmosphere of 80 ° C., then left at room temperature for 1 hour, the liquid crystal television is disassembled again, and the surface of the light guide plate on which the reflective film is in contact The contamination state was visually evaluated according to the following criteria.
S: There is no contamination.
A: Slight contamination is observed, but at an acceptable level.
B: Contaminated.
 (10-1)導光板の損傷(スクラッチ傷)の評価その1
 それぞれの反射フィルムについてサンプルを準備し、40インチ液晶テレビ(Samsung社製、PAVV UN40B7000WF)を分解して得られた導光板の凸部が設けられた面側に反射フィルムの樹脂層の面が接触されるように積層させた後、200gf/cm2(0.0196MPa)、100gf/cm2(0.0098MPa)及び50gf/cm2(0.0049MPa)の荷重下で反射フィルムを1m/分の線速度で引き上げ、前記導光板の表面上に発生したスクラッチ傷の程度を目視で観察し、以下の基準で評価した。
A級:いずれの荷重下においても傷が見られない。
B級:200gf/cm2の荷重下では傷が見られるが、100gf/cm2の荷重下、50gf/cm2の荷重下においては傷が見られない。
C級:200gf/cm2、100gf/cm2の荷重下では傷が見られるが、50gf/cm2の荷重下においては傷が見られない。
D級:50gf/cm2の荷重下において傷が見られる。
(10-1) Evaluation of damage (scratch damage) of the light guide plate 1
Samples were prepared for each reflective film, and the resin layer surface of the reflective film was in contact with the surface of the light guide plate provided with the projections obtained by disassembling a 40-inch liquid crystal television (manufactured by Samsung, PAVV UN40B7000WF). after lamination as, 200gf / cm 2 (0.0196MPa) , linear reflection film of 1 m / min under a load of 100gf / cm 2 (0.0098MPa) and 50gf / cm 2 (0.0049MPa) The surface was pulled up at a speed, and the degree of scratches generated on the surface of the light guide plate was visually observed and evaluated according to the following criteria.
Class A: No scratches are seen under any load.
Class B: 200 gf / cm 2 of but scratches is observed under load, under a load of 100 gf / cm 2, not seen wounds under a load of 50 gf / cm 2.
Class C: 200gf / cm 2, but scratches observed under a load of 100 gf / cm 2, not seen wounds under a load of 50 gf / cm 2.
Class D: Scratches are observed under a load of 50 gf / cm 2 .
 (10-2)導光板の損傷(粒子削りかすの転写汚染)の評価その2
 40インチ液晶テレビ(Samsung社製、PAVV UN40B7000WF)を分解して得られた導光板の凸部が設けられた面側に反射フィルムの樹脂層の面が接触されるように積層させた後、200gf/cm2(0.0196MPa)の荷重下で反射フィルムを1m/分の線速度で引き上げ、前記導光板の表面上に反射フィルムに含有される粒子の削りかすが導光板に転写して導光板を汚染させているかどうかを目視で観察し、以下の基準で評価した。
A:汚染がない。
B:汚染されている。
(10-2) Evaluation of damage to light guide plate (transfer contamination of particle shavings) Part 2
After laminating a 40-inch liquid crystal television (manufactured by Samsung, PAVV UN40B7000WF) so that the surface of the light guide plate provided with the convex portion is laminated so that the surface of the resin layer of the reflective film is in contact, 200 gf The reflective film is pulled up at a linear velocity of 1 m / min under a load of / cm 2 (0.0196 MPa), and the shavings of particles contained in the reflective film are transferred onto the surface of the light guide plate and transferred to the light guide plate. Whether it was contaminated was visually observed and evaluated according to the following criteria.
A: There is no contamination.
B: Contaminated.
 (11)白点ムラ(反射フィルムと導光板との貼り付き)の評価
 52インチ液晶テレビ(ソニー社製、“BRAVIA”(登録商標)KDL-52EX700)を分解して、LEDを光源とするエッジライト型バックライトを取り出した。このバックライトの発光面の大きさは、116cm×65.5cmであり、対角の長さは133.2cmであった。さらにバックライトから光学フィルム3枚、凹型導光板(アクリル板、4mm厚み、凹部深さ55μm)及び反射フィルムを取り出し、本発明の反射フィルムを搭載されていた反射フィルムと同じ形状、大きさに裁断した。それぞれの反射フィルムについて裁断したサンプルを準備した後、搭載されていた反射フィルムの代わりに裁断した反射フィルムの樹脂層面が導光板側を向くように設置し、導光板及び光学フィルム3枚を分解前と同じ向き及び方向で設置した。
この液晶テレビを点灯して、以下の基準により目視で白点ムラを観察した。
S:白点が観察されない。
A:白点が僅かに観察されるが、許容レベルである。
B:白点が明確に観察される。
(11) Evaluation of white spot unevenness (attachment of reflective film and light guide plate) Disassembling a 52-inch LCD TV (manufactured by Sony Corporation, “BRAVIA” (registered trademark) KDL-52EX700) and using LED as the light source The light type backlight was taken out. The size of the light emitting surface of this backlight was 116 cm × 65.5 cm, and the diagonal length was 133.2 cm. Further, three optical films, a concave light guide plate (acrylic plate, 4 mm thickness, concave depth 55 μm) and a reflective film are taken out from the backlight and cut into the same shape and size as the reflective film on which the reflective film of the present invention was mounted. did. After preparing a sample cut for each reflective film, install the cut reflective film so that the resin layer surface of the cut reflective film faces the light guide plate instead of the mounted reflective film, before disassembling the light guide plate and the three optical films. Installed in the same direction and direction.
The liquid crystal television was turned on, and white spot unevenness was visually observed according to the following criteria.
S: A white spot is not observed.
A: A white point is slightly observed, but it is an acceptable level.
B: A white spot is clearly observed.
 (12)樹脂層の塗布性の評価
 基材フィルム上に塗布された樹脂層を目視観察し、筋状ムラの発生程度を以下の基準で評価した。
S:筋状ムラは認められない。
A:薄い筋状ムラが認められる。
B:筋状ムラが明確に認められる。
(12) Evaluation of application property of resin layer The resin layer applied on the base film was visually observed, and the degree of occurrence of streaky unevenness was evaluated according to the following criteria.
S: Streaky unevenness is not recognized.
A: Thin streaky irregularities are observed.
B: Streaky unevenness is clearly recognized.
 (13)樹脂層表面における粒子による凸部の確認
 反射フィルムの樹脂層表面を走査型電子顕微鏡((株)日立製作所製S-3400N)(500倍)で、樹脂層表面に対して30度の斜角で観察し、凸部が存在しているかどうかを確認した。
(13) Confirmation of convex portions by particles on the surface of the resin layer The surface of the resin layer of the reflective film was measured with a scanning electron microscope (S-3400N manufactured by Hitachi, Ltd.) (500 times) at 30 degrees with respect to the resin layer surface. Observed at an oblique angle, it was confirmed whether or not a convex portion was present.
 [樹脂層に含有させる粒子]
 下記に示すような各種粒子を用意した。粒子の形状は、粒子g及び粒子j(不定形)以外はいずれも球状である。
[Particles to be included in the resin layer]
Various particles as shown below were prepared. The shape of the particles is spherical except for particles g and particles j (indefinite shape).
<粒子(a);粘度平均分子量が10万超のエチレンの単独重合体からなる粒子>
 三井化学(株)製の“ミペロン”(登録商標)XM-220、密度940kg/m、粘度平均分子量200万
<Particle (a); particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000>
“Miperon” (registered trademark) XM-220 manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , viscosity average molecular weight 2 million
<粒子(b);粘度平均分子量が10万超のエチレンの単独重合体からなる粒子>
 三井化学(株)製の“ミペロン”(登録商標)XM-221U、密度940kg/m、粘度平均分子量200万、
<Particle (b): Particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000>
“Miperon” (registered trademark) XM-221U manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , viscosity average molecular weight 2 million,
<粒子(c);粘度平均分子量が10万超のエチレンの単独重合体からなる粒子>
 三井化学(株)製の“ミペロン”(登録商標)PM-200、密度940kg/m、粘度平均分子量180万
<Particle (c): Particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000>
“Miperon” (registered trademark) PM-200 manufactured by Mitsui Chemicals, Inc., density 940 kg / m 3 , viscosity average molecular weight 1.8 million
<粒子(d);粘度平均分子量が10万超のエチレンの単独重合体からなる粒子>
 三井化学(株)製の“ミペロン”(登録商標)XM-330、密度940kg/m、粘度平均分子量200万
<Particle (d): Particle made of a homopolymer of ethylene having a viscosity average molecular weight exceeding 100,000>
“Miperon” (registered trademark) XM-330 manufactured by Mitsui Chemicals, Ltd., density 940 kg / m 3 , viscosity average molecular weight 2 million
<粒子(e);高密度ポリエチレン粒子>
 住友精化(株)製の“フロービーズ”(登録商標)HE-3040、密度961kg/m、粘度平均分子量45万
<Particle (e); High-density polyethylene particle>
“Flow beads” (registered trademark) HE-3040 manufactured by Sumitomo Seika Co., Ltd., density 961 kg / m 3 , viscosity average molecular weight 450,000
<粒子(f);低密度ポリエチレン粒子>
 住友精化(株)製の“フロービーズ”(登録商標)LE-2080、密度919kg/m、粘度平均分子量10万
<Particle (f); Low-density polyethylene particle>
“Flow beads” (registered trademark) LE-2080 manufactured by Sumitomo Seika Co., Ltd., density 919 kg / m 3 , viscosity average molecular weight 100,000
<粒子(g);低密度ポリエチレン粒子>
 住友精化(株)製の“フローセン”(登録商標)UF20、密度921kg/m、粘度平均分子量15万
<Particle (g); Low density polyethylene particle>
“Flocene” (registered trademark) UF20 manufactured by Sumitomo Seika Co., Ltd., density 921 kg / m 3 , viscosity average molecular weight 150,000
<粒子(h);架橋アクリル粒子>
 積水化成品工業(株)製の“テクポリマー”(登録商標)MBX-30
<Particle (h); Crosslinked acrylic particle>
"Techpolymer" (registered trademark) MBX-30 manufactured by Sekisui Plastics Co., Ltd.
<粒子(i);架橋アクリル粒子>
 積水化成品工業(株)製の“テクポリマー”(登録商標)SSX-104
<Particle (i); Crosslinked acrylic particle>
"Techpolymer" (registered trademark) SSX-104 manufactured by Sekisui Plastics Co., Ltd.
<粒子(j);ポリエチレン系ワックス粒子>
 クラリアント社製の“セリダスト”(登録商標)3620、粘度平均分子量4,800
<Particle (j); Polyethylene wax particles>
“Celidust” (registered trademark) 3620 manufactured by Clariant, viscosity average molecular weight 4,800
<粒子(k);他の粒子>
 東レ(株)製のSP10(ナイロン12樹脂粒子)。
<Particle (k); other particles>
SP10 (nylon 12 resin particles) manufactured by Toray Industries, Inc.
<粒子(l);他の粒子>
 東レ(株)製のSP500(ナイロン12樹脂粒子)。
<Particle (l); Other particles>
SP500 (nylon 12 resin particles) manufactured by Toray Industries, Inc.
 [実施例1]
 白色フィルム(東レ(株)製“ルミラー”(登録商標)E6SQ:厚み300μm)の片面に、バーコーターを使用して、樹脂層厚みが約3μmとなるように、下記の樹脂層塗布液を塗布し、100℃で乾燥して樹脂層を積層し、反射フィルムを作製した。
[Example 1]
Using a bar coater, apply the following resin layer coating solution on one side of a white film (“Lumirror” (registered trademark) E6SQ: 300 μm thickness) manufactured by Toray Industries, Inc.) so that the resin layer thickness is about 3 μm. And it dried at 100 degreeC and laminated | stacked the resin layer, and produced the reflective film.
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)70質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)12質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル55質量部を攪拌しながら添加して塗布液を調製した。
<Resin layer coating solution>
70 parts by mass of a benzotriazole-containing acrylic copolymer resin (“HALS HYBRID” (registered trademark) UV-G720T concentration 40 mass% solution manufactured by Nippon Shokubai Co., Ltd.), particles a (“Miperon” manufactured by Mitsui Chemicals, Inc.) (Registered trademark) XM-220, viscosity average molecular weight 2 million) 12 parts by mass, isocyanate-based crosslinking agent (“Coronate” (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2.7 parts by mass Then, 55 parts by mass of ethyl acetate was added with stirring to prepare a coating solution.
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は28.6質量%、樹脂の含有比率は66.7質量%である。 The solid concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 28.6% by mass, and the content ratio of the resin is 66.7% by mass.
 [実施例2~5および比較例1~5]
 実施例1の樹脂層塗布液における粒子aを表1に示す粒子に変更した以外は、実施例1と同様にして反射フィルムを作製した。尚、実施例4は、樹脂層厚みが約6μmとなるように塗布した。
[Examples 2 to 5 and Comparative Examples 1 to 5]
A reflective film was produced in the same manner as in Example 1 except that the particles a in the resin layer coating liquid of Example 1 were changed to the particles shown in Table 1. In addition, Example 4 was applied so that the resin layer thickness was about 6 μm.
 [実施例6]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)50質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)20質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル67質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は47.6質量%、樹脂の含有比率は47.6質量%である。
[Example 6]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
Benzotriazole-containing acrylic copolymer resin (“HALS HYBRID” (registered trademark) UV-G720T 40% by weight solution manufactured by Nippon Shokubai Co., Ltd.) 50 parts by mass, particle a (“Miperon” manufactured by Mitsui Chemicals, Inc.) (Registered trademark) XM-220, viscosity average molecular weight 2 million 20 parts by mass, isocyanate-based crosslinking agent (“Coronate” (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2.7 parts by mass Then, 67 parts by mass of ethyl acetate was added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 47.6% by mass, and the content ratio of the resin is 47.6% by mass.
 [実施例7]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)85質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)6質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル46質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は14.3質量%、樹脂の含有比率は81.0質量%である。
[Example 7]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
Benzotriazole-containing acrylic copolymer resin (manufactured by Nippon Shokubai Co., Ltd. “HALS HYBRID” (registered trademark) UV-G720T concentration 40 mass% solution) 85 parts by mass, particles a (“Miperon” manufactured by Mitsui Chemicals, Inc.) (Registered trademark) XM-220, viscosity average molecular weight 2 million) 6 parts by mass, isocyanate-based crosslinking agent (“Coronate” (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2.7 parts by mass Then, 46 parts by mass of ethyl acetate was added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating liquid is 14.3% by mass, and the content ratio of the resin is 81.0% by mass.
 [実施例8]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)16質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)33.6質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル87質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は80.0質量%、樹脂の含有比率は15.2質量%である。
[Example 8]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
Benzotriazole-containing acrylic copolymer resin (“HALS HYBRID” (registered trademark) UV-G720T 40% by mass solution manufactured by Nippon Shokubai Co., Ltd.) 16 parts by mass, particle a (“Mipperon” manufactured by Mitsui Chemicals, Inc.) (Registered trademark) XM-220, 33.6 parts by mass of viscosity average molecular weight 2 million, isocyanate-based crosslinking agent (“Coronate” (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2.7 Mass parts and 87 parts by mass of ethyl acetate were added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 80.0% by mass, and the content ratio of the resin is 15.2% by mass.
 [実施例9]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)26.5質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)29.4質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル84質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は70.0質量%、樹脂の含有比率は20.2質量%である。
[Example 9]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
26.5 parts by mass of a benzotriazole-containing acrylic copolymer resin (“Hals Hybrid” (registered trademark) UV-G720T concentration 40% by mass solution) manufactured by Nippon Shokubai Co., Ltd., particles a (manufactured by Mitsui Chemicals, Inc.) 29.4 parts by weight of Mipperon (registered trademark) XM-220, viscosity average molecular weight 2 million, isocyanate cross-linking agent (“Coronate” (registered trademark) HL, concentration 75% by mass, manufactured by Nippon Polyurethane Industry Co., Ltd.) 2 0.7 parts by mass and 84 parts by mass of ethyl acetate were added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. Moreover, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 70.0% by mass, and the content ratio of the resin is 20.2% by mass.
 [実施例10]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)96.8質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)1.3質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル39質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は3.0質量%、樹脂の含有比率は92.2質量%である。
[Example 10]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
96.8 parts by mass of a benzotriazole-containing acrylic copolymer resin (“HALS HYBRID” (registered trademark) UV-G720T concentration 40% by mass solution) manufactured by Nippon Shokubai Co., Ltd .; particles a (manufactured by Mitsui Chemicals, Inc.) MIPERON "(registered trademark) XM-220, viscosity average molecular weight 2 million) 1.3 parts by mass, isocyanate-based crosslinking agent (" Coronate "(registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75% by mass) 2 0.7 parts by mass and 39 parts by mass of ethyl acetate were added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 3.0% by mass, and the content ratio of the resin is 92.2% by mass.
 [実施例11]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)94.8質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)2.1質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル40質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対する粒子の含有比率は5.0質量%、樹脂の含有比率は90.3質量%である。
[Example 11]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
94.8 parts by mass of a benzotriazole-containing acrylic copolymer resin (“HALS HYBRID” (registered trademark) UV-G720T concentration 40 mass% solution manufactured by Nippon Shokubai Co., Ltd.), particles a (manufactured by Mitsui Chemicals, Inc.) "Miperon" (registered trademark) XM-220, viscosity average molecular weight 2 million) 2.1 parts by mass, isocyanate-based cross-linking agent ("Coronate" (registered trademark) HL manufactured by Nippon Polyurethane Industry Co., Ltd., concentration 75 mass%) 2 0.7 parts by mass and 40 parts by mass of ethyl acetate were added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. Further, the content ratio of the particles with respect to 100% by mass of the total solid content contained in the coating solution is 5.0% by mass, and the content ratio of the resin is 90.3% by mass.
 [実施例12]
 以下の樹脂層塗布液に変更する以外は、実施例1と同様にして反射フィルムを作製した。
 <樹脂層塗布液>
 ベンゾトリアゾール含有アクリル系共重合体樹脂((株)日本触媒製“ハルスハイブリッド”(登録商標)UV-G720T 濃度40質量%溶液)86.3質量部、粒子a(三井化学(株)製の“ミペロン”(登録商標)XM-220、粘度平均分子量200万)3.4質量部、ナイロン粒子(東レ(株)製のSP10)2.1質量部、イソシアネート系架橋剤(日本ポリウレタン工業(株)製の“コロネート”(登録商標)HL、濃度75質量%)2.7質量部、酢酸エチル45質量部を攪拌しながら添加して塗布液を調製した。
 この塗布液の固形分濃度は30質量%である。また、この塗布液に含まれる全固形分量100質量%に対するポリエチレン粒子aの含有比率は8.1質量%、ナイロン粒子の含有比率は5.0質量%、樹脂の含有比率は82.2質量%である。
[Example 12]
A reflective film was produced in the same manner as in Example 1 except that the following resin layer coating solution was used.
<Resin layer coating solution>
Benzotriazole-containing acrylic copolymer resin (manufactured by Nippon Shokubai "Hals Hybrid" (registered trademark) UV-G720T concentration 40 mass% solution) 86.3 parts by mass, particles a (manufactured by Mitsui Chemicals, Inc.) "Miperon" (registered trademark) XM-220, viscosity average molecular weight 2 million) 3.4 parts by mass, nylon particles (SP10 manufactured by Toray Industries, Inc.) 2.1 parts by mass, isocyanate crosslinking agent (Nippon Polyurethane Industry Co., Ltd.) 2.7 parts by mass of “Coronate” (registered trademark) HL, concentration 75% by mass) and 45 parts by mass of ethyl acetate were added with stirring to prepare a coating solution.
The solid content concentration of this coating solution is 30% by mass. In addition, the content ratio of polyethylene particles a with respect to 100% by mass of the total solid content contained in this coating solution is 8.1% by mass, the content ratio of nylon particles is 5.0% by mass, and the content ratio of resin is 82.2% by mass. It is.
 [実施例13~18]
 実施例6、7、9~12において、樹脂層塗布液の粒子aを粒子eに変更する以外は同様にして反射フィルムを作製した。尚、実施例6は実施例13に対応し、同様に実施例7は実施例14、実施例9は実施例15、実施例10は実施例16、実施例11は実施例17、実施例12は実施例18にそれぞれ対応する。さらに、実施例18は、実施例12のナイロン粒子(SP10)をナイロン粒子(SP500)に変更した。
[Examples 13 to 18]
In Examples 6, 7, and 9 to 12, reflective films were produced in the same manner except that the particle a of the resin layer coating solution was changed to particles e. In addition, Example 6 corresponds to Example 13, and similarly, Example 7 is Example 14, Example 9 is Example 15, Example 10 is Example 16, Example 11 is Example 17, Example 12 Corresponds to Example 18, respectively. Furthermore, in Example 18, the nylon particles (SP10) of Example 12 were changed to nylon particles (SP500).
 [評価]
 上記の実施例および比較例で作製した反射フィルムについて、前述した測定および評価を行った。その結果を表1、2に示す。
 尚、実施例および比較例のいずれも、樹脂層表面に粒子による凸部が存在することが確認された。
[Evaluation]
About the reflective film produced by said Example and comparative example, the measurement and evaluation which were mentioned above were performed. The results are shown in Tables 1 and 2.
In addition, it was confirmed that the convex part by particle | grains exists in the resin layer surface in any of an Example and a comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の実施例は、いずれも、耐熱性1(熱による変色がないこと)および耐熱性2(熱による導光板の汚染がないこと)が良好であり、導光板の損傷および白点ムラの発生が抑制されている。また、本発明の実施例は、いずれも滑り性および塗布性が良好である。 In all the examples of the present invention, heat resistance 1 (no discoloration due to heat) and heat resistance 2 (no light guide plate contamination due to heat) are good, and the light guide plate is damaged and white spots are uneven. Occurrence is suppressed. Moreover, all of the examples of the present invention have good slipping property and coating property.
 一方、融点が115℃未満であるポリエチレン粒子を用いた比較例1および2は、耐熱性2(熱による導光板の汚染がないこと)が劣っている。また、比較例1および2は、滑り性が劣っているので導光板との接触によって粒子が削られて導光板に転写し、導光板を汚染させている。また、比較例1および2は塗布性が劣っており筋状ムラの発生がある。また、比較例1および2は白点ムラの評価が劣っている。 On the other hand, Comparative Examples 1 and 2 using polyethylene particles having a melting point of less than 115 ° C. are inferior in heat resistance 2 (the light guide plate is not contaminated by heat). Moreover, since Comparative Example 1 and 2 are inferior in slipperiness, particle | grains are shaved by contact with a light-guide plate, are transcribe | transferred to a light-guide plate, and the light-guide plate is contaminated. Further, Comparative Examples 1 and 2 are inferior in applicability and cause streaky irregularities. Further, Comparative Examples 1 and 2 are inferior in white spot unevenness evaluation.
 架橋アクリル粒子を用いた比較例3は、導光板の損傷が劣っている。 Comparative Example 3 using crosslinked acrylic particles is inferior in damage to the light guide plate.
 架橋アクリル粒子を用いた比較例4は、導光板の損傷が劣っており、また、平均粒子径が比較的小さい粒子を用いているので、白点ムラの発生が見られる。 In Comparative Example 4 using the crosslinked acrylic particles, the light guide plate is inferior in damage, and since the particles having a relatively small average particle diameter are used, white spot unevenness is observed.
 ポリエチレン系ワックス粒子(粘度平均分子量が1万未満)を用いた比較例5は、耐熱性2(熱による導光板の汚染がないこと)が劣っている。また、比較例5は、滑り性が劣っているので導光板との接触によって粒子が削られて導光板に転写し、導光板を汚染させている。また、比較例5は塗布性が劣っており筋状ムラの発生がある。また、比較例5は白点ムラの評価が劣っている。 Comparative Example 5 using polyethylene wax particles (viscosity average molecular weight less than 10,000) is inferior in heat resistance 2 (the light guide plate is not contaminated by heat). In Comparative Example 5, since the slipperiness is inferior, the particles are scraped by contact with the light guide plate and transferred to the light guide plate to contaminate the light guide plate. Moreover, the comparative example 5 is inferior in applicability | paintability, and there exists generation | occurrence | production of streaky irregularity. Moreover, the comparative example 5 is inferior in evaluation of a white spot nonuniformity.
 本発明に係る反射フィルムは、反射フィルムと接触する部材(接触部材)との貼り付きの抑制、接触部材の損傷や熱による接触部材の汚染の抑制、耐熱性が求められるあらゆる反射フィルムに適用でき、特に、エッジライト型バックライトユニット用に用いて好適なものである。 The reflective film according to the present invention can be applied to any reflective film that is required to suppress sticking to a member (contact member) that comes into contact with the reflective film, to prevent damage to the contact member or contamination of the contact member due to heat, and heat resistance. In particular, it is suitable for use in an edge light type backlight unit.
1:樹脂による皮膜
2:粒子(ポリエチレン粒子)
3:樹脂層
4:基材フィルム
100:反射フィルム
1: Coating with resin 2: Particles (polyethylene particles)
3: Resin layer 4: Base film 100: Reflective film

Claims (8)

  1.  基材フィルムの少なくとも一方の面に、粘度平均分子量が1万以上でかつ融点が115℃以上であるポリエチレン粒子を含有する樹脂層を有することを特徴とする反射フィルム。 A reflective film comprising a resin layer containing polyethylene particles having a viscosity average molecular weight of 10,000 or more and a melting point of 115 ° C. or more on at least one surface of a base film.
  2.  前記ポリエチレン粒子の密度が942kg/m以上である、請求項1に記載の反射フィルム。 The reflective film according to claim 1, wherein the density of the polyethylene particles is 942 kg / m 3 or more.
  3.  前記ポリエチレン粒子の粘度平均分子量が70万以上である、請求項1に記載の反射フィルム。 The reflective film according to claim 1, wherein the polyethylene particles have a viscosity average molecular weight of 700,000 or more.
  4.  前記反射フィルムの少なくとも一方の面の樹脂層を有する側の表面とアクリル板との動摩擦係数が0.6以下である、請求項1~3のいずれかに記載の反射フィルム。 The reflective film according to any one of claims 1 to 3, wherein a coefficient of dynamic friction between the surface having the resin layer on at least one surface of the reflective film and the acrylic plate is 0.6 or less.
  5.  前記樹脂層における前記ポリエチレン粒子の含有量が、樹脂層総量100質量%に対して3~75質量%である、請求項1~4のいずれかに記載の反射フィルム。 5. The reflective film according to claim 1, wherein the content of the polyethylene particles in the resin layer is 3 to 75% by mass with respect to 100% by mass of the total resin layer.
  6.  前記基材フィルムが、少なくとも内部に気泡を有するフィルムである、請求項1~5のいずれかに記載の反射フィルム。 6. The reflective film according to claim 1, wherein the base film is a film having at least air bubbles inside.
  7.  前記基材フィルムが、内部に気泡を含有するフィルム層(B層)の両面にフィルム層(A層)が積層されたフィルムである、請求項1~6のいずれかに記載の反射フィルム。 The reflective film according to any one of claims 1 to 6, wherein the base film is a film in which a film layer (A layer) is laminated on both surfaces of a film layer (B layer) containing bubbles inside.
  8.  請求項1~7のいずれかに記載の反射フィルムが、その樹脂層を有する側の表面を導光板と向き合うように配置されてなる、エッジライト型バックライトユニット。 An edge light type backlight unit, wherein the reflective film according to any one of claims 1 to 7 is disposed so that the surface having the resin layer faces the light guide plate.
PCT/JP2015/073964 2014-09-17 2015-08-26 Reflective film and edge-lit backlight unit using same WO2016042992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542499A JP6641627B2 (en) 2014-09-17 2015-08-26 Reflective film and edge light type backlight unit using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014188733 2014-09-17
JP2014-188733 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016042992A1 true WO2016042992A1 (en) 2016-03-24

Family

ID=55533034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073964 WO2016042992A1 (en) 2014-09-17 2015-08-26 Reflective film and edge-lit backlight unit using same

Country Status (3)

Country Link
JP (1) JP6641627B2 (en)
TW (1) TW201614276A (en)
WO (1) WO2016042992A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093217A1 (en) * 2017-11-08 2019-05-16 東洋紡株式会社 Polyethylene resin film
WO2021193789A1 (en) * 2020-03-26 2021-09-30 日東電工株式会社 Optical member, and backlight unit and image display device using said optical member
JP7323266B2 (en) 2017-11-30 2023-08-08 大日本印刷株式会社 Barrier film for wavelength conversion sheet, wavelength conversion sheet and display device used therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229943A (en) * 2006-02-27 2007-09-13 Nitto Denko Corp Porous sheet manufacturing method and porous sheet obtained thereby
JP2007321143A (en) * 2006-05-01 2007-12-13 Fujifilm Corp Oil-in-water(o/w) type emulsion coating composition, laminated form, polarizing plate, image display device, and method for producing the laminated form
WO2010101214A1 (en) * 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
WO2011105294A1 (en) * 2010-02-24 2011-09-01 東レ株式会社 White reflective film for edge-lit backlight and backlight using the aforementioned
JP2012159610A (en) * 2011-01-31 2012-08-23 Teijin Dupont Films Japan Ltd Reflection film
JP2013205599A (en) * 2012-03-28 2013-10-07 Panasonic Corp Screen for projection and whiteboard device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255287B2 (en) * 2008-01-30 2013-08-07 帝人株式会社 Method for producing porous membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229943A (en) * 2006-02-27 2007-09-13 Nitto Denko Corp Porous sheet manufacturing method and porous sheet obtained thereby
JP2007321143A (en) * 2006-05-01 2007-12-13 Fujifilm Corp Oil-in-water(o/w) type emulsion coating composition, laminated form, polarizing plate, image display device, and method for producing the laminated form
WO2010101214A1 (en) * 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
WO2011105294A1 (en) * 2010-02-24 2011-09-01 東レ株式会社 White reflective film for edge-lit backlight and backlight using the aforementioned
JP2012159610A (en) * 2011-01-31 2012-08-23 Teijin Dupont Films Japan Ltd Reflection film
JP2013205599A (en) * 2012-03-28 2013-10-07 Panasonic Corp Screen for projection and whiteboard device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093217A1 (en) * 2017-11-08 2019-05-16 東洋紡株式会社 Polyethylene resin film
CN111315805A (en) * 2017-11-08 2020-06-19 东洋纺株式会社 Polyethylene resin film
JPWO2019093217A1 (en) * 2017-11-08 2020-12-10 東洋紡株式会社 Polyethylene resin film
JP7200943B2 (en) 2017-11-08 2023-01-10 東洋紡株式会社 polyethylene resin film
CN111315805B (en) * 2017-11-08 2023-04-11 东洋纺株式会社 Polyethylene resin film
JP7323266B2 (en) 2017-11-30 2023-08-08 大日本印刷株式会社 Barrier film for wavelength conversion sheet, wavelength conversion sheet and display device used therefor
WO2021193789A1 (en) * 2020-03-26 2021-09-30 日東電工株式会社 Optical member, and backlight unit and image display device using said optical member
JPWO2021193789A1 (en) * 2020-03-26 2021-09-30
JP7389228B2 (en) 2020-03-26 2023-11-29 日東電工株式会社 Optical member, backlight unit and image display device using the optical member

Also Published As

Publication number Publication date
TW201614276A (en) 2016-04-16
JPWO2016042992A1 (en) 2017-06-29
JP6641627B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6485758B2 (en) White reflective film for edge light type backlight of liquid crystal display and backlight using the same
TW200829962A (en) White polyester film for light reflecting plate
JP2009210911A (en) Optical laminated sheet and image display device
TW200937044A (en) Anti-glare film, anti-glare polarizing plate, and image display device
JP2008074083A (en) Optical laminated sheet and image display device
WO2016042992A1 (en) Reflective film and edge-lit backlight unit using same
TW201126242A (en) Viewing angle enhancement film for liquid crystal display device, protect film with function of viewing angle enhancement, and liquid crystal display device
JP5532799B2 (en) White reflective film
WO2016204234A1 (en) Reflection film and reflection unit for surface light source device
KR101580346B1 (en) Light diffusion film and device comprising same
TWI676551B (en) Laminate film
JP6226024B2 (en) Edge light type backlight unit using reflective film
JP2008286907A (en) Laminate for reflection
KR102590694B1 (en) white reflective film
KR100744842B1 (en) High brightness light-diffusion sheet for back-light unit of liquid crystal display and method for manufacturing thereof
JP2017044718A (en) Reflective film and edge-light backlight having the same
JP2017090560A (en) Reflective film and edge-light backlight unit having the same
JP2008282010A (en) Optical diffusion plate
JP2020011430A (en) Reflector
JP2017134146A (en) Reflection film for edge light type backlight and backlight for liquid crystal display using the same
KR20160145684A (en) Edge light-type backlight reflection film and backlight using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015542499

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842819

Country of ref document: EP

Kind code of ref document: A1