WO2019092884A1 - ユーザ装置 - Google Patents

ユーザ装置 Download PDF

Info

Publication number
WO2019092884A1
WO2019092884A1 PCT/JP2017/040750 JP2017040750W WO2019092884A1 WO 2019092884 A1 WO2019092884 A1 WO 2019092884A1 JP 2017040750 W JP2017040750 W JP 2017040750W WO 2019092884 A1 WO2019092884 A1 WO 2019092884A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
user apparatus
coverage area
threshold
information
Prior art date
Application number
PCT/JP2017/040750
Other languages
English (en)
French (fr)
Inventor
真平 安川
聡 永田
ホワン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/040750 priority Critical patent/WO2019092884A1/ja
Priority to CN201780096539.3A priority patent/CN111386659B/zh
Priority to US16/762,013 priority patent/US20200359357A1/en
Publication of WO2019092884A1 publication Critical patent/WO2019092884A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to user equipment in a wireless communication system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G New Radio
  • D2D Device to Device
  • D2D reduces the traffic between the user apparatus and the base station apparatus, and enables communication between the user apparatuses even when the base station apparatus becomes unable to communicate in a disaster or the like.
  • D2D is D2D discovery (also referred to as D2D discovery, also referred to as D2D discovery) for finding another user apparatus that can communicate, and D2D communication (for direct communication between D2D communication, end-to-end communication for direct communication between user apparatuses). It is also roughly divided into communication and so on. In the following, D2D communication, D2D discovery and the like are simply referred to as D2D when not distinguished from each other. Further, a signal transmitted / received by D2D is called a D2D signal.
  • D2D Downlink
  • sidelink the more general term D2D is used in this specification.
  • sidelink is also used as needed.
  • V2X Vehicle to Everything
  • eV2X enhanced V2X
  • V2X is a part of ITS (Intelligent Transport Systems), and means a form of communication performed between vehicles.
  • V2V Vehicle to Vehicle
  • RSU roadside unit
  • V2I Vehicle to Infrastructure
  • V2N vehicle to Nomadic device
  • V2P Vehicle to Pedestrian
  • Mode 3 and Mode 4 are defined for resource allocation for V2X communication to the user apparatus.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) sent from the base station apparatus to the user apparatus.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the user apparatus autonomously selects transmission resources from the resource pool.
  • Non-Patent Document 2 D2D at NR, it is assumed to use a wide range of frequencies from the low frequency band similar to LTE to a frequency band higher than LTE (millimeter wave band).
  • LTE millimeter wave band
  • the receiving user apparatus when the transmitting user apparatus applies beamforming, the receiving user apparatus in the direction in which the beam is not directed decreases the received power of the beam. However, even if it is a resource in the direction in which the beam from the transmitting user apparatus is not directed, the receiving user apparatus determines that it is the transmission range of the transmitting user apparatus, and actually uses available resources. It may be excluded from possible resources, and there was a problem that resource utilization efficiency fell.
  • the present invention has been made in view of the above-described point, and has an object to improve resource utilization efficiency of a user apparatus that performs transmission by applying beamforming in D2D.
  • a user equipment performs communication with other user equipment to which beamforming is applied, and receives from another user equipment information on an area covered by a beam for a certain resource;
  • a user apparatus comprising: a selection unit that selects the resource based on information indicating an area covered by the beam; and a transmission unit that performs transmission using the selected resource.
  • D2D it is possible to improve resource utilization efficiency of a user apparatus that applies beamforming and performs transmission.
  • FIG. 2 is a diagram showing an exemplary configuration of an antenna mounted on a user apparatus 100. It is a figure which shows the example which the user apparatus 100 transmits by applying a different beam by time division.
  • FIG. 2 is a diagram showing a transmission range of a user apparatus 100.
  • FIG. 2 is a diagram showing an example of a beam transmitted from a user apparatus 100.
  • FIG. 7 is a diagram illustrating an example of a sensing operation by a user device 100. It is a figure which shows the example (1) of resource selection by the user apparatus 100.
  • FIG. It is a figure which shows the example (2) of resource selection by the user apparatus 100.
  • FIG. It is a figure which shows the example of resource selection in embodiment of this invention. It is a figure for demonstrating the beam coverage area in embodiment of this invention.
  • the existing technology is used as appropriate.
  • the existing technology is, for example, the existing LTE, but is not limited to the existing LTE.
  • LTE LTE
  • LTE-Advanced LTE-Advanced or later (e.g., NR) unless otherwise specified.
  • FIG. 1 is a diagram showing an example of a configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system in the embodiment of the present invention includes a plurality of user apparatuses 100 as shown in FIG. 1B or 1C. Although three user devices 100 are shown in FIG. 1B, this is an example and may be more.
  • the user apparatus 100 is also referred to as “UE (User Equipment)”.
  • the user apparatus 100 is a communication apparatus equipped with a wireless communication function such as a communication apparatus mounted on a vehicle, a smartphone, a mobile phone, a tablet, a wearable terminal, a communication module for M2M (Machine-to-Machine), etc.
  • M2M Machine-to-Machine
  • wireless connection is made to the user apparatus 100, and various communication services provided by the wireless communication system are used.
  • the user apparatus 100 can perform beamforming to transmit and receive signals.
  • communication using a millimeter wave band is mainly assumed by a communication device mounted on a vehicle in V2X.
  • the duplex method may be TDD (Time Division Duplex) method, FDD (Frequency Division Duplex) method, or the other (for example, Flexible Duplex etc.). May be used.
  • transmitting a signal using a transmission beam may be transmitting a signal multiplied by a precoding vector (precoded by a precoding vector).
  • receiving a signal using a receive beam may be to multiply the received signal by a predetermined weight vector.
  • transmitting a signal using a transmit beam may be referred to as transmitting a signal at a particular antenna port.
  • receiving a signal using a receive beam may be referred to as receiving a signal at a particular antenna port.
  • the antenna port refers to a logical antenna port or a physical antenna port defined in the 3GPP standard.
  • the method of forming the transmit beam and the receive beam is not limited to the method described above.
  • a method of changing the angle of each antenna may be used, or a method of combining the method of using the precoding vector and the method of changing the antenna angle may be used.
  • the antenna panels may be switched and used, a method of combining and using a plurality of antenna panels may be used, or any other method may be used.
  • a plurality of different transmit beams may be used.
  • the use of multiple transmission beams is called multi-beam operation, and the use of one transmission beam is called single-beam operation.
  • FIG. 1A is a diagram showing a configuration example of an antenna mounted on a user apparatus 100.
  • Antenna panels Panel1 to Panel4 are mounted in the front, rear, left, and right directions of the vehicle, respectively, and function as transmitting and receiving antennas in the millimeter wave band.
  • FIG. 1B is a diagram illustrating an example in which the user apparatus 100 performs transmission by applying different beams in a time division manner. This is an example of beam switching in which a beam directed to UE3 is transmitted at time Time # 1 and a beam directed to UE2 is transmitted at time Time # 2.
  • FIG. 1C is a diagram showing a transmission range of the user apparatus 100.
  • the range indicated by “TX range” in the drawing is the communication range targeted by V2X in the present embodiment.
  • the communication range is assumed to be, for example, several hundred meters around the vehicle center radius.
  • Example 1 will be described below.
  • FIG. 2 is a diagram illustrating an example of a beam transmitted from the user apparatus 100.
  • the user apparatus 100 performs millimeter wave band communication. Transmission by beam switching, which switches the beam every time, or repetitive transmission of the beam may be performed. Also, as defined in Release 14 of 3GPP in the user apparatus 100, based on performing autonomous resource selection by sensing resources, background sensing and transmission resources can be secured. Assume. Also, in the user apparatus 100, transmission using beamforming is assumed, and beams having different beam widths are used to realize different transmission ranges. Also, in the millimeter wave band communication, communication using MIMO (multiple-input and multiple-output) is assumed because the antenna size can be reduced.
  • MIMO multiple-input and multiple-output
  • UE 1 is an example of a user apparatus 100 that transmits eight beams of Beam 1 to Beam 8.
  • UE2 is an example of the user apparatus 100 which transmits four beams of Beam1 to Beam4.
  • UE3 is an example of the user apparatus 100 which transmits Beam1.
  • FIG. 3 is a diagram illustrating an example of a sensing operation by the user apparatus 100.
  • the resource selection by the user apparatus 100 is performed based on the result of sensing the millimeter wave band as defined in release 14 of 3GPP.
  • resources used by other nearby user apparatuses 100 in proximity are excluded from selection targets in order to avoid resource conflicts.
  • resource selection may be selected according to time domain and frequency domain, may be selected only in time domain in consideration of in-band interference, or may be selected only in frequency domain to reduce delay. It is also good.
  • the resource selection in the embodiment of the present invention is not limited to sensing in Release 14 of 3GPP, and can be any resource selection that uses a plurality of measurement results.
  • the resources being used are excluded from the selection targets despite being usable by other adjacent user apparatuses 100.
  • the space reuse efficiency of resources may decrease.
  • resource selection or exclusion based on a beam coverage area in consideration of the beam direction will be described later.
  • the UE 1 shown in FIG. 3 occupies the Resource 1 and transmits a beam. Since UE2 is within the transmission range of UE1 shown by the outer circle in the figure, it may exclude Resource1 when performing resource selection. Therefore, the space reuse efficiency of resources is reduced. Then, the method of making it the resource in the direction in which UE1 does not turn a beam not to be excluded in resource selection of UE2 can be considered.
  • FIG. 4 is a diagram illustrating an example (1) of resource selection by the user apparatus 100.
  • FIG. 4 an example in which the user apparatus 100 always randomly selects a resource without performing sensing will be described.
  • the UE 2 shown in FIG. 4 randomly selects resources without sensing when the beam has a specific width and index. Therefore, when UE1 is using the resource, a resource collision occurs. If resources are randomly selected without performing sensing, it is conceivable that resource collisions frequently occur between adjacent user apparatuses 100.
  • the beam index is 1 to 8 of "Beam 1" to "Beam 8" shown in FIG.
  • FIG. 5 is a diagram illustrating an example (2) of resource selection by the user apparatus 100.
  • an example will be described in which the user apparatus 100 reuses the resources occupied by other nearby user apparatuses 100.
  • UE2 shown in FIG. 5 reuses the resource occupied by UE1 and transmits it to a destination different from the destination of UE1.
  • UE1 and UE2 can use the same resources.
  • the following pieces of information need to be shared between adjacent user apparatuses 100.
  • the position information is position information of each user device 100.
  • the resource is identified by the information indicating the time domain and frequency domain of the resource to be occupied.
  • the direction of the beam transmitted by the resource to be occupied may be specified from the ID (source ID) of the transmission source user apparatus 100 and the ID (destination ID) of the transmission destination user apparatus 100.
  • the user apparatus 100 can generate an interference map based on the above shared information and sensing results.
  • the interference map indicates the position information, the occupied resources, and the direction of the beam being transmitted, for each adjacent user apparatus 100.
  • the user apparatus 100 can select resources and transmission paths that do not interfere with other transmissions based on the interference map.
  • FIG. 6 is a diagram showing an example of resource selection in the embodiment of the present invention. Techniques for improving both space reuse efficiency and mitigation of resource conflicts are described below.
  • the user apparatus 100 excludes resources in resource selection based on the measured reference signal received power (RSRP) and beam coverage area.
  • RSRP reference signal received power
  • FIG. 7 is a diagram for explaining a beam coverage area in the embodiment of the present invention.
  • the beam coverage area in a certain occupied resource is defined by the ratio of the area covered by the predefined transmission beam to the entire area which the transmitting user apparatus 100 can cover.
  • the transmission angle spread is within X dB from the peak level (gain in the main beam direction).
  • FIG. 7 shows the area covered by the transmit beam for each of the 50% beam coverage area, the 25% beam coverage area, and the 12.5% beam coverage area.
  • the beam coverage area is 50%
  • 50% of the entire area that can be covered by the transmitting user apparatus 100 is the area covered by the transmission beam.
  • the beam coverage area is 25%
  • 25% of the entire area that can be covered by the transmitting user apparatus 100 is the area covered by the transmission beam.
  • the beam coverage area is 12.5%
  • 12.5% of the entire area that can be covered by the transmitting user apparatus 100 is the area covered by the transmission beam.
  • Table 1 shown below is an example in which the beam coverage area is indexed.
  • “1” is for beam coverage area 100%, “2” for beam coverage area 50%, and “3” for beam coverage area 25%. "4" corresponds to%.
  • the numerical value of the beam coverage area is not limited to the one showing an accurate ratio, but may be an approximate value, or a numerical value different from that of Table 1, such as 60%, 40%, 33%, etc. may be defined.
  • 10 indexes from 100% to 0% may be defined for every 10% corresponding to the beam coverage area.
  • the beam coverage area may be replaced with a beam pattern, a precoder index, a precoder matrix, or the like. That is, the beam pattern, the precoder index, the precoder matrix, etc. may be indexed and treated in the same manner as the index assigned to the beam coverage area.
  • the user apparatus 100 measures the same RSRP in sensing for a certain resource, there is a possibility of excluding the resource when a narrower beam is transmitted from another user apparatus 100 based on the beam coverage area. Make it fall. That is, the resource occupied by the narrower beam has its RSRP threshold set high when selecting a resource of the user apparatus 100 that is sensing. For example, when there are two resource candidates with the same RSRP, excluding the resource with the wider transmission beam width increases the probability that peripheral user apparatuses can select resources with lower interference levels.
  • the user apparatus 100 in order to perform resource selection based on the beam coverage area, notifies the adjacent user apparatus 100 of an index indicating the beam coverage area or the beam coverage area.
  • the beam coverage area and the index indicating the beam coverage area are predefined as described in FIG.
  • the notification of the beam coverage area may be performed by PHY layer signaling, may be performed by signaling by MAC (Medium Access Control) CE (Control Element), or may be performed by RRC (Radio Resource Control) signaling. It is also good.
  • the signaling may be performed together with information indicating explicit resource reservation or resource priority.
  • the signaling in D2D communication may be contained in the control signal which concerns on the said reception, when reception is previously successful, and may decode and acquire a resource at the time of sensing.
  • the criteria for excluding resources at the time of resource selection of the user apparatus 100 are, for example, the following three.
  • FIG. 8 is a flowchart illustrating an example (1) of resource selection according to the embodiment of this invention.
  • FIG. 8 shows the Opt. 10 is a flowchart corresponding to 1; Opt.
  • the user apparatus 100 determines whether to exclude the resource based on the beam coverage area acquired from another user apparatus 100 for a certain resource.
  • step S101 the user apparatus 100 acquires the beam coverage area in a certain resource from another nearby user apparatus 100.
  • the beam coverage area may be notified by the index of the beam coverage area shown in Table 1.
  • the user apparatus 100 determines whether the beam coverage area is less than a threshold.
  • the threshold for determining the beam coverage area may be set or may be predefined.
  • the process proceeds to step S103, and the resource is made available. On the other hand, if the beam coverage area is equal to or greater than the threshold, the process proceeds to step S104, and the resource is excluded.
  • FIG. 9 is a flowchart illustrating an example (2) of resource selection according to the embodiment of this invention.
  • FIG. 9 shows the Opt. 10 is a flowchart corresponding to 2; Opt.
  • the user apparatus 100 determines whether to exclude the resource based on the RSRP threshold value corrected based on the beam coverage area acquired from another user apparatus 100 for a certain resource.
  • step S201 the user apparatus 100 performs sensing on a certain resource.
  • the user apparatus 100 acquires beam coverage areas in certain resources from other user apparatuses 100 in proximity.
  • the beam coverage area may be notified by the index of the beam coverage area shown in Table 1.
  • the user apparatus 100 determines whether the RSRP of the resource is less than the corrected threshold.
  • step S204 If RSRP is less than the corrected threshold (YES in S203), the process proceeds to step S204, and the resource is made available. On the other hand, if RSRP is equal to or greater than the corrected threshold, the process proceeds to step S205, and the resource is excluded.
  • Table 2 shown below is an example of correcting the RSRP threshold based on the beam coverage area.
  • Beam coverage area of sensing resource shown in Table 2 is a beam coverage area of resources that the user apparatus 100 senses.
  • RSRP deduction factor k is a factor that reduces the threshold.
  • Beam coverage area of potential transmission shown in Table 2 is a beam coverage area of a beam that the user apparatus 100 attempts to transmit.
  • “RSRP deduction step size ⁇ T / dB” is a step size ⁇ T [dB] for reducing the threshold.
  • T 100% is a threshold before correction and is predefined.
  • the resource is more likely to be excluded in the sensing user apparatus 100 as a wider beam is transmitted from another user apparatus 100 to a certain resource. Further, when the RSRP threshold value is corrected based on Table 2, as the user apparatus 100 sensing to a certain resource tries to transmit a thin beam, the resource is less likely to be excluded.
  • “RSRP deduction step size ⁇ T / dB” may increase the step size as the coverage area of the beam to be transmitted by the user apparatus 100 is smaller. In that case, as the user apparatus 100 sensing a certain resource tries to transmit a wider beam, the resource is less likely to be excluded.
  • “RSRP deduction step size ⁇ T / dB” may be a constant value, unlike Table 2. In that case, the resource is more likely to be excluded in the sensing user device 100 as the thinner beam is transmitted from another user device 100 to a certain resource regardless of the beam that the sensing user device 100 tries to transmit Become.
  • the threshold of RSRP in the resource to be sensed may be set according to a beam width prioritized at the time of transmission by the user apparatus 100, or may be defined in advance.
  • RSRP deduction step size ⁇ T / dB may be set according to transmit beam index or transmit beam coverage, or may be defined in advance.
  • the user apparatus 100 can perform resource selection in consideration of the interference pattern depending on the transmission beam, and can select a resource with less interference.
  • FIG. 10 is a flowchart showing an example (3) of resource selection according to the embodiment of this invention.
  • FIG. 9 shows the Opt. 10 is a flowchart corresponding to 3; Opt.
  • the user apparatus 100 determines whether to exclude the resource based on the RSRP threshold value corrected based on the beam coverage area and the beam coverage area acquired from another user apparatus 100 for a certain resource.
  • step S301 the user apparatus 100 performs sensing on a certain resource.
  • the user apparatus 100 acquires beam coverage areas in a certain resource from other user apparatuses 100 in proximity.
  • the beam coverage area may be notified by the index of the beam coverage area shown in Table 1.
  • the user apparatus 100 determines whether the beam coverage area is less than a threshold.
  • the threshold for determining the beam coverage area may be set or may be predefined.
  • step S305 If the beam coverage area is less than the threshold (YES in S303), the process proceeds to step S305, and the resource is made available. On the other hand, if the beam coverage area is equal to or greater than the threshold, the process proceeds to step S304.
  • the user apparatus 100 determines whether the RSRP of the resource is less than the corrected threshold.
  • RSRP is less than the corrected threshold (YES in S304)
  • the process proceeds to step 305, and the resource is made available.
  • RSRP is equal to or greater than the corrected threshold, the process proceeds to step S306, and the resource is excluded.
  • the user apparatus 100 acquires the beam coverage area which concerns on the beam transmitted from the other user apparatus 100 which adjoins.
  • the user apparatus 100 can determine whether to exclude the sensed resource based on the beam coverage area.
  • the user apparatus 100 may be set to correct the RSRP threshold in the resource to be sensed based on the beam coverage area, or may be defined in advance.
  • the threshold of RSRP in the resource to be sensed may be set according to a beam width with which the user apparatus 100 prioritizes transmission, that is, a beam coverage area, or may be defined in advance.
  • the user device 100 can improve the utilization efficiency of resources that may be used by other nearby user devices 100. That is, in D2D, it is possible to improve resource utilization efficiency of a user apparatus that performs transmission by applying beamforming.
  • Example 2 Example 2 will be described below. In the second embodiment, differences from the first embodiment will be described. Therefore, points that are not particularly mentioned may be the same as in the first embodiment.
  • FIG. 11 is a diagram showing reception of a beam by the user apparatus 100 according to the embodiment of the present invention. As shown in the left diagram of FIG. 11, when the user apparatus 100 receives beams from a plurality of user apparatuses 100, resource collision occurs when receiving with a wide beam width.
  • the user apparatus 100 may receive beams from a plurality of user apparatuses 100 by performing RX beamforming to simultaneously receive a plurality of narrow beam widths. Resource conflicts can be avoided.
  • RX beamforming that simultaneously receives a plurality of narrow beam widths may be set or predefined when communicating using a millimeter wave band.
  • Beam patterns may be set or defined and signaled.
  • the user apparatus 100 may be signaled whether to use one beam pattern covering 360 degrees or four beam patterns covering 90 degrees each. The signaling may be performed based on the beam coverage area described in the first embodiment. That is, if the beam coverage area is narrow, it may be signaled to apply RX beamforming to receive multiple narrow beams.
  • FIG. 12 is a diagram showing an example of the antenna setting of the user apparatus 100 according to the embodiment of the present invention.
  • FIG. 12 is an example showing an antenna setting of RX beamforming for receiving the beam B1, the beam B2, the beam B3 and the beam B4 transmitted from the transmission side TXRU (Remote Unit).
  • TXRU Remote Unit
  • the user apparatus 100 avoids resource collision even when receiving beams from a plurality of user apparatuses 100 by performing RX beamforming that simultaneously receives a plurality of narrow beam widths. be able to. That is, in D2D, it is possible to improve resource utilization efficiency of a user apparatus that performs transmission by applying beamforming.
  • the user device 100 includes at least the functionality to implement the embodiment. However, the user apparatus 100 may have only some of the functions in the embodiment.
  • FIG. 13 is a diagram showing an example of a functional configuration of the user apparatus 100.
  • the user apparatus 100 includes a transmission unit 110, a reception unit 120, a resource control unit 130, and a power measurement unit 140.
  • the functional configuration shown in FIG. 13 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the names of the function divisions and the function parts may be arbitrary.
  • the transmission unit 110 creates a transmission signal from the transmission data, and wirelessly transmits the transmission signal.
  • the receiving unit 120 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals. Further, the receiving unit 120 has a function of receiving a synchronization signal, a control signal, data, and the like transmitted from the user apparatus 100.
  • the transmission unit 110 transmits data or control signal to another user apparatus 100, and the reception unit 120 receives data or control signal from the other user apparatus 100.
  • the transmission unit 110 may perform transmission by applying beamforming.
  • the resource control unit 130 selects a resource to be used for transmission based on information detected by performing reception by the reception unit 120 or information acquired by signaling. In addition, the resource control unit 130 acquires explicit information for selecting a resource included in the sensing signal.
  • the power measurement unit 140 controls the measurement of the received signal power, the received signal strength, and the like in the user apparatus 100 as described in the embodiment.
  • a functional unit related to signal transmission or the like in the resource control unit 130 or the power measurement unit 140 may be included in the transmission unit 110, and a functional unit related to signal reception or the like may be included in the reception unit 120.
  • each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
  • any one of the user devices 100 according to the embodiment of the present invention may function as a computer that performs the process according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of a hardware configuration of the user apparatus 100 according to the embodiment of the present invention.
  • Each of the user devices 100 described above may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “device” can be read as a circuit, a device, a unit or the like.
  • the hardware configuration of the user device 100 may be configured to include one or more devices indicated by 1001 to 1006 illustrated in the figure, or may be configured without including some devices.
  • Each function in the user device 100 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001, storage device 1002, etc. Communication by the communication device 1004, storage device 1002 and assistance This is realized by controlling reading and / or writing of data in the storage device 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module or data from the auxiliary storage device 1003 and / or the communication device 1004 to the storage device 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the transmission unit 110, the reception unit 120, the resource control unit 130, and the power measurement unit 140 of the user apparatus 100 illustrated in FIG. 13 are stored in the storage device 1002 and realized by a control program operated by the processor 1001. It is also good.
  • the various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer readable recording medium, and is, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be configured.
  • the storage device 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the storage device 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disc) -Ray (R) disk), smart card, flash memory (for example, card, stick, key drive), floppy (R) disk, magnetic strip and the like.
  • the auxiliary storage device 1003 may be called an auxiliary storage device.
  • the above-described storage medium may be, for example, a database including the storage device 1002 and / or the auxiliary storage device 1003, a server or other appropriate media.
  • the communication device 1004 is hardware (a transmission / reception device) for performing communication between computers via a wired and / or wireless network, and includes at least an antenna for wireless communication, for example, a network device, a network controller, a network card It is also called a communication module etc.
  • the transmission unit 110 and the reception unit 120 of the user device 100 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives external input.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • the user device 100 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a user apparatus that performs beamforming communication with another user apparatus, is information on a region covered by the beam for a certain resource, A receiver configured to select the resource based on information indicating an area covered by the beam; and a transmitter configured to perform transmission using the selected resource based on information indicating an area covered by the beam.
  • a user device is provided.
  • the user apparatus can exclude resources according to the beam widths of other user apparatuses by acquiring beam coverage areas from other user apparatuses and selecting resources. That is, in D2D, it is possible to improve resource utilization efficiency of a user apparatus that performs transmission by applying beamforming.
  • the selection unit may exclude the resource from selected resource candidates when the size of the area indicated by the information on the area covered by the beam is equal to or greater than a first threshold.
  • the selection unit senses a resource and measures received power, and when the received power is equal to or greater than a second threshold, excludes the sensed resource from selected resource candidates, and the second threshold
  • the correction may be performed based on information indicating an area covered by the beam.
  • the user apparatus can correct the RSRP threshold of the resource to be sensed in accordance with the beam coverage area acquired from another user apparatus.
  • the second threshold may be corrected to be smaller as the area indicated by the information on the area covered by the beam is wider.
  • the user apparatus corrects the RSRP threshold value of the resource to be sensed to be smaller as the beam coverage area obtained from another user apparatus increases, and removes the resource, thereby reducing the interference level at the peripheral user apparatus.
  • the probability of being able to select a resource is high.
  • the second threshold may be corrected based on information on the area covered by the beam transmitted by the transmitter.
  • the user apparatus can control the resources to be excluded by changing the RSRP threshold to be sensed in accordance with the beam width to be transmitted.
  • the receiving unit may perform reception beamforming based on information on an area covered by the beam.
  • the user apparatus receives beams from a plurality of other user apparatuses at the same time without colliding resources by performing reception beamforming according to the beam coverage area acquired from the other user apparatuses. Can.
  • the operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components.
  • the order of processing may be changed as long as there is no contradiction.
  • the user device 100 has been described using a functional block diagram for convenience of the processing description, such a device may be realized in hardware, in software, or a combination thereof.
  • the software operated by the processor of the user device 100 according to the embodiment of the present invention and the software operated by the processor of the user device 100 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the user equipment 100 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, by those skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision” and the like.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the resource control unit 130 or the power measurement unit 140 is an example of a selection unit.
  • the beam coverage area is an example of information on the area covered by the beam.
  • Reference Signs List 100 user apparatus 110 transmission unit 120 reception unit 130 resource control unit 140 power measurement unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ装置は、他のユーザ装置とビームフォーミングが適用された通信を行い、あるリソースに対する、ビームがカバーする領域に関する情報を、他のユーザ装置から受信する受信部と、前記ビームがカバーする領域を示す情報に基づいて、前記リソースを選択する選択部と、選択された前記リソースを使用して送信を行う送信部とを有する。

Description

ユーザ装置
 本発明は、無線通信システムにおけるユーザ装置に関する。
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gともいう。))では、ユーザ装置同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている。
 D2Dは、ユーザ装置と基地局装置との間のトラフィックを軽減し、災害時等に基地局装置が通信不能になった場合でもユーザ装置間の通信を可能とする。
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう。)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信等ともいう。)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリ等を特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。
 なお、3GPP(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてsidelinkも使用している。
 また、3GPPでは、上記のD2D機能を拡張することでV2X(Vehicle to Everything)あるいはeV2X(enhanced V2X)を実現することが検討され、仕様化が進められている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
 LTEのRel-14において、V2Xの幾つかの機能に関する仕様化がなされている(例えば非特許文献1)。当該仕様では、ユーザ装置へのV2X通信用のリソース割当に関してMode3とMode4が規定されている。Mode3では、基地局装置からユーザ装置に送られるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、ユーザ装置はリソースプールから自律的に送信リソースを選択する。
 また、NRでのD2Dにおいて、LTEと同様の低い周波数帯から、LTEよりも更に高い周波数帯(ミリ波帯)までの幅広い周波数を使用することが想定されている。特に、高周波数帯では伝搬ロスが増大することから、当該伝搬ロスを補うために、ビーム幅の狭いビームフォーミングを適用することが検討されている(例えば非特許文献2)。
3GPP TS 36.213 V14.3.0(2017-06) 3GPP TS 36.211 V14.3.0(2017-06)
 D2Dにおいて、送信側ユーザ装置がビームフォーミングを適用する場合、ビームが向けられていない方向の受信側ユーザ装置は、当該ビームの受信電力は低下する。しかしながら、受信側ユーザ装置において、送信側ユーザ装置からのビームが向けられていない方向のリソースであっても、送信側ユーザ装置の送信範囲であると判定して、実際には使用できるリソースを使用可能であるリソースから除外する場合があり、リソース利用効率が低下する問題があった。
 本発明は上記の点に鑑みてなされたものであり、D2Dにおいて、ビームフォーミングを適用して送信を行うユーザ装置のリソース利用効率を向上させることを目的とする。
 開示の技術によれば、ユーザ装置は、他のユーザ装置とビームフォーミングが適用された通信を行い、あるリソースに対する、ビームがカバーする領域に関する情報を、他のユーザ装置から受信する受信部と、前記ビームがカバーする領域を示す情報に基づいて、前記リソースを選択する選択部と、選択された前記リソースを使用して送信を行う送信部とを有するユーザ装置が提供される。
 開示の技術によれば、D2Dにおいて、ビームフォーミングを適用して送信を行うユーザ装置のリソース利用効率を向上させることができる。
ユーザ装置100に搭載されたアンテナの構成例を示す図である。 ユーザ装置100が時分割で異なるビームを適用して送信を行う例を示す図である。 ユーザ装置100の送信範囲を示す図である。 ユーザ装置100から送信されるビームの例を示す図である。 ユーザ装置100によるセンシング動作の例を示す図である。 ユーザ装置100によるリソース選択の例(1)を示す図である。 ユーザ装置100によるリソース選択の例(2)を示す図である。 本発明の実施の形態におけるリソース選択の例を示す図である。 本発明の実施の形態におけるビームカバレッジエリアを説明するための図である。 本発明の実施の形態におけるリソース選択の例(1)を示すフローチャートである。 本発明の実施の形態におけるリソース選択の例(2)を示すフローチャートである。 本発明の実施の形態におけるリソース選択の例(3)を示すフローチャートである。 本発明の実施の形態におけるユーザ装置100によるビームの受信を示す図である。 本発明の実施の形態におけるユーザ装置100のアンテナ設定の例を示す図である。 本発明の実施の形態におけるユーザ装置100の機能構成の例を示す図である。 本発明の実施の形態におけるユーザ装置100のハードウェア構成の例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 図1は、本発明の実施の形態における無線通信システムの構成例を示す図である。本発明の実施の形態における無線通信システムは、図1B又は図1Cに示されるように、複数のユーザ装置100を含む。図1Bには、ユーザ装置100が3つ示されているが、これは例であり、さらに多数であってもよい。以下、ユーザ装置100を、「UE(User Equipment)」ともいう。ユーザ装置100は、車両に搭載された通信装置、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置であり、基地局装置又はユーザ装置100に無線接続し、無線通信システムにより提供される各種通信サービスを利用する。ユーザ装置100は、ビームフォーミングを行って信号の送受信を行うことが可能である。本発明の実施の形態では、V2Xにおける車両に搭載された通信装置による、ミリ波帯を使用する通信を主に想定する。
 なお、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。また、以下の説明において、送信ビームを用いて信号を送信することは、プリコーディングベクトルが乗算された(プリコーディングベクトルでプリコードされた)信号を送信することとしてもよい。同様に、受信ビームを用いて信号を受信することは、所定の重みベクトルを受信した信号に乗算することとしてもよい。また、送信ビームを用いて信号を送信することは、特定のアンテナポートで信号を送信することと表現されてもよい。同様に、受信ビームを用いて信号を受信することは、特定のアンテナポートで信号を受信することと表現されてもよい。アンテナポートとは、3GPPの規格で定義されている論理アンテナポート又は物理アンテナポートを指す。なお、送信ビーム及び受信ビームの形成方法は、上記の方法に限られない。例えば、複数アンテナを備えるユーザ装置100において、それぞれのアンテナの角度を変える方法を用いてもよいし、プリコーディングベクトルを用いる方法とアンテナの角度を変える方法を組み合わせる方法を用いてもよいし、異なるアンテナパネルを切り替えて利用してもよいし、複数のアンテナパネルを合わせて使う方法を組み合わせる方法を用いてもよいし、その他の方法を用いてもよい。また、例えば、高周波数帯において、複数の互いに異なる送信ビームが使用されてもよい。複数の送信ビームが使用されることを、マルチビーム運用といい、ひとつの送信ビームが使用されることを、シングルビーム運用という。
 図1Aは、ユーザ装置100に搭載されたアンテナの構成例を示す図である。アンテナパネルPanel1からPanel4が、車両の前後左右の向きにそれぞれ搭載され、ミリ波帯の送受信アンテナとして機能する。
 図1Bは、ユーザ装置100が時分割で異なるビームを適用して送信を行う例を示す図である。時刻Time#1において、UE3に向けたビームを送信して、時刻Time#2において、UE2に向けたビームを送信する、ビームスイッチングの例である。
 図1Cは、ユーザ装置100の送信範囲を示す図である。図中「TX range」で示した範囲が、本実施の形態におけるV2Xが対象とする通信範囲である。当該通信範囲は、例えば、車両中心半径数百m程度が想定される。
 (実施例1)
 以下、実施例1について説明する。
 図2は、ユーザ装置100から送信されるビームの例を示す図である。本発明の実施の形態において、ユーザ装置100は、ミリ波帯の通信を行うことを想定する。時間ごとにビームを切り替えるビームスイッチングによる送信、又はビームの繰り返し送信が行われてもよい。また、ユーザ装置100において、3GPPのリリース14で規定されるように、リソースをセンシングすることにより、自律的なリソース選択を行うことを基本とし、バックグラウンドセンシング及び送信リソースの確保が可能であることを想定する。また、ユーザ装置100において、ビームフォーミングを用いた送信が想定され、異なる送信範囲を実現するために、異なるビーム幅を有するビームが使用される。また、ミリ波帯の通信においては、アンテナサイズを小さくできるため、MIMO(multiple-input and multiple-output)を使用した通信が想定される。
 図2に示されるように、UE1は、Beam1からBeam8の8つのビームを送信するユーザ装置100の例である。UE2は、Beam1からBeam4の4つのビームを送信するユーザ装置100の例である。UE3は、Beam1を送信するユーザ装置100の例である。
 図3は、ユーザ装置100によるセンシング動作の例を示す図である。ユーザ装置100によるリソース選択は、3GPPのリリース14で規定されるように、ミリ波帯をセンシングした結果に基づいて行われる。ユーザ装置100がリソース選択を行う場合、リソース衝突を避けるため、近接する他のユーザ装置100が使用しているリソースが選択対象から除外される。なお、リソース選択は、時間領域及び周波数領域によって選択されてもよいし、インバンド干渉を考慮して時間領域のみにおいて選択されてもよいし、遅延を低減させるために周波数領域のみにおいて選択されてもよい。本発明の実施の形態におけるリソース選択は、3GPPのリリース14におけるセンシングに限らず、複数の測定結果を使用するいかなるリソース選択も対象とすることができる。
 ここで、ユーザ装置100が、狭いビーム幅を有するビームを送信している場合、使用されているリソースが、他の近接するユーザ装置100によって使用可能であるにもかかわらず選択対象から除外されてリソースの空間再利用効率が低下することがある。本実施例において、高い空間再利用効率を実現するため、ビームの方向を考慮したビームカバレッジエリアに基づいたリソース選択又は除外について後述する。
 図3に示されるUE1は、Resource1を占有してビームを送信している。UE2は、図中の外側の円で示されるUE1の送信範囲に入っているため、リソース選択を実行するとき、Resource1を除外する可能性がある。したがって、リソースの空間再利用効率は低下する。そこで、UE1がビームを向けていない方向のリソースが、UE2のリソース選択において除外されないようにする方法が考えられる。
 図4は、ユーザ装置100によるリソース選択の例(1)を示す図である。図4において、ユーザ装置100が、センシングを行わずに常にリソース選択をランダムに実行する例を説明する。
 図4に示されるUE2は、ビームが特定の幅及びインデックスを有するとき、センシングを行わずにリソースをランダムに選択する。したがって、UE1が当該リソースを使用している場合、リソースの衝突が発生する。センシングを行わずにリソースをランダムに選択すると、近接するユーザ装置100間でリソースの衝突が頻繁に発生することが考えられる。ビームのインデックスとは、図2に示される「Beam1」から「Beam8」の1から8
 図5は、ユーザ装置100によるリソース選択の例(2)を示す図である。図5において、ユーザ装置100が、近接する他のユーザ装置100が占有するリソースを再利用する例を説明する。
 図5に示されるUE2は、UE1の送信先とは異なる送信先に、UE1が占有するリソースを再利用して送信する。UE1とUE2の送信範囲がオーバラップしないとき、UE1及びUE2は、同一のリソースを使用することができる。同一のリソースを使用するために、近接するユーザ装置100間で、以下の情報の共有が必要となる。
1)位置情報
2)占有されるリソースの時間領域及び周波数領域を示す情報
3)占有されるリソースで送信されるビームの方向
 位置情報は、各ユーザ装置100の位置情報である。占有されるリソースの時間領域及び周波数領域を示す情報で、リソースが特定される。占有されるリソースで送信されるビームの方向は、例えば、送信元ユーザ装置100のID(ソースID)と、送信先ユーザ装置100のID(デスティネーションID)とから特定されてもよい。
 ユーザ装置100は、上記の共有される情報及びセンシング結果に基づいて、干渉マップを生成することができる。干渉マップとは、近接する各ユーザ装置100について、位置情報、占有されているリソース、送信されているビームの方向を示すものである。ユーザ装置100は、干渉マップに基づいて、他の送信に干渉しないリソース及び送信パスを選択することができる。
 ここで、上記の例においては、位置情報が不正確である可能性、近接する各ユーザ装置100間で共有される情報による過大なシグナリングオーバヘッドの発生、干渉マップが動的に変更されることが考えられる。
 図6は、本発明の実施の形態におけるリソース選択の例を示す図である。空間再利用効率及びリソース衝突の緩和の双方を向上させる手法を以下に説明する。
 ユーザ装置100は、測定されたRSRP(Reference Signal Received Power)及びビームカバレッジエリアに基づいて、リソース選択の際にリソースを除外する。
 図7は、本発明の実施の形態におけるビームカバレッジエリアを説明するための図である。ある占有されたリソースにおけるビームカバレッジエリアとは、予め規定された送信ビームがカバーする領域と、送信側ユーザ装置100がカバーできる全ての領域との比で定義される。例えば、ピークレベル(メインビーム方向のゲイン)からXdB以内の送信角度広がりである。
 図7は、ビームカバレッジエリアが50%、ビームカバレッジエリアが25%、ビームカバレッジエリアが12.5%の各場合について、送信ビームがカバーする領域を示している。ビームカバレッジエリアが50%の場合は、送信側ユーザ装置100がカバーできる全ての領域の50%が送信ビームでカバーされる領域となる。同様にビームカバレッジエリアが25%の場合は、送信側ユーザ装置100がカバーできる全ての領域の25%が送信ビームでカバーされる領域となる。同様にビームカバレッジエリアが12.5%の場合は、送信側ユーザ装置100がカバーできる全ての領域の12.5%が送信ビームでカバーされる領域となる。以下に示される表1は、ビームカバレッジエリアにインデックスを付与した例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、ビームカバレッジエリア100%には「1」が、ビームカバレッジエリア50%には「2」が、ビームカバレッジエリア25%には「3」が、ビームカバレッジエリア12.5%には「4」が対応する。なお、ビームカバレッジエリアの数値は、正確な比を示すものに限らず概算でもよいし、例えば、60%、40%、33%等のように表1とは異なる数値が規定されてもよい。また、ビームカバレッジエリアに対応するインデックスは、例えば、100%から0%まで10%ごとに10個規定されてもよい。
 また、ビームカバレッジエリアは、ビームのパターン、プリコーダのインデックス、プリコーダの行列等に置き換えられてもよい。すなわち、ビームのパターン、プリコーダのインデックス、プリコーダの行列等にインデックスが付与されて、ビームカバレッジエリアに付与されたインデックスと同様に扱われてもよい。
 図6に戻る。ユーザ装置100が、あるリソースに対するセンシングにおいて同程度のRSRPを測定した場合、ビームカバレッジエリアに基づいて、より狭いビームが他のユーザ装置100から送信されている場合に当該リソースを除外する可能性が低下するようにする。すなわち、より狭いビームに占有されるリソースは、センシングしているユーザ装置100のリソース選択時に、RSRPの閾値が高く設定される。例えばRSRPが同じリソース候補が2つあった場合、送信ビーム幅がより広い方のリソースを除外することで、周辺ユーザ装置においてより低い干渉レベルのリソースを選択できる確率が高くなる。
 上記のようにビームカバレッジエリアに基づいたリソース選択を行うため、ユーザ装置100は、ビームカバレッジエリア又はビームカバレッジエリアを示すインデックスを近接するユーザ装置100に通知する。ビームカバレッジエリア及びビームカバレッジエリアを示すインデックスは、図7で説明したように、予め規定される。ビームカバレッジエリアの通知は、PHYレイヤシグナリングで行われてもよいし、MAC(Medium Access Control)CE(Control Element)によるシグナリングで行われてもよいし、RRC(Radio Resource Control)シグナリングで行われてもよい。当該シグナリングは、明示的なリソース予約又はリソースの優先度を示す情報と共に実行されてもよい。
 なお、D2D通信におけるシグナリングは、以前に受信が成功している場合当該受信に係る制御信号に含まれていてもよいし、センシング時にリソースをデコードして取得されてもよい。
 ユーザ装置100のリソース選択時にリソースを除外する基準は、例えば、以下の3つである。
Opt.1)ビームカバレッジエリアの閾値
Opt.2)ビームカバレッジエリアによって補正されたRSRPの閾値
Opt.3)ビームカバレッジエリアの閾値及びビームカバレッジエリアによって補正されたRSRPの閾値
 図8は、本発明の実施の形態におけるリソース選択の例(1)を示すフローチャートである。図8は、図6で説明したOpt.1に対応するフローチャートである。Opt.1において、ユーザ装置100は、あるリソースについて他のユーザ装置100から取得したビームカバレッジエリアに基づいて当該リソースを除外するか否か決定する。
 ステップS101において、ユーザ装置100は、あるリソースにおけるビームカバレッジエリアを近接する他のユーザ装置100から取得する。ビームカバレッジエリアは、表1に示されるビームカバレッジエリアのインデックスで通知されてもよい。
 続くステップS102において、ユーザ装置100は、ビームカバレッジエリアが閾値未満であるか否かを判定する。ビームカバレッジエリアを判定する閾値は、設定されてもよいし、予め規定されてもよい。
 ビームカバレッジエリアが閾値未満であった場合(S102のYES)、ステップS103に進み、当該リソースは使用可能とされる。一方、ビームカバレッジエリアが閾値以上であった場合、ステップS104に進み、当該リソースは除外される。
 図9は、本発明の実施の形態におけるリソース選択の例(2)を示すフローチャートである。図9は、図6で説明したOpt.2に対応するフローチャートである。Opt.2において、ユーザ装置100は、あるリソースについて他のユーザ装置100から取得したビームカバレッジエリアに基づいて補正されたRSRPの閾値に基づいて当該リソースを除外するか否か決定する。
 ステップS201において、ユーザ装置100は、あるリソースにおいてセンシングを実行する。
 続くステップS202において、ユーザ装置100は、あるリソースにおけるビームカバレッジエリアを近接する他のユーザ装置100から取得する。ビームカバレッジエリアは、表1に示されるビームカバレッジエリアのインデックスで通知されてもよい。
 続くステップS203において、ユーザ装置100は、当該リソースのRSRPが補正された閾値未満であるか否かを判定する。
 RSRPが補正された閾値未満であった場合(S203のYES)、ステップS204に進み、当該リソースは使用可能とされる。一方、RSRPが補正された閾値以上であった場合、ステップS205に進み、当該リソースは除外される。
 以下に示される表2は、ビームカバレッジエリアに基づいて、RSRPの閾値を補正する例である。
Figure JPOXMLDOC01-appb-T000002
 表2に示される「Beam coverage area of sensing resource」は、ユーザ装置100がセンシングするリソースのビームカバレッジエリアである。「RSRP deduction factor k」は、閾値を減少させる係数である。
 表2に示される「Beam coverage area of potential transmission」は、ユーザ装置100が送信しようとするビームのビームカバレッジエリアである。「RSRP deduction stepsize ΔT/dB」は、閾値を減少させるステップサイズΔT[dB]である。
 補正後の閾値Tは、T=T100%-k*ΔTで表される。T100%は、補正される前の閾値であり、予め規定されている。ここで、k=0又はΔT=0とした場合、3GPPのリリース14におけるRSRP測定に基づくリソース除外と同等の処理が行われる。
 表2に基づいてRSRPの閾値の補正を行った場合、あるリソースに他のユーザ装置100からより広いビームが送信されているほど、センシングするユーザ装置100において当該リソースは、除外されやすくなる。また、表2に基づいてRSRPの閾値の補正を行った場合、あるリソースにセンシングするユーザ装置100が細いビームを送信しようとしているほど、当該リソースは、除外されにくくなる。
 また、例えば「RSRP deduction stepsize ΔT/dB」を、表2とは異なり、ユーザ装置100が送信しようとするビームのカバレッジエリアが小さいほど、ステップサイズを大きくしてもよい。その場合、あるリソースをセンシングするユーザ装置100が広いビームを送信しようとしているほど、当該リソースは、除外されにくくなる。
 また、例えば「RSRP deduction stepsize ΔT/dB」を、表2とは異なり、一定の値としてもよい。その場合、センシングするユーザ装置100が送信しようとするビームによらず、あるリソースに他のユーザ装置100からより細いビームが送信されているほど、センシングするユーザ装置100において当該リソースは、除外されやすくなる。
 上記のように、他のユーザ装置100から送信されるビーム幅に基づいて、センシングされるリソースにおけるRSRPの閾値を補正することが設定されてもよいし、予め規定されてもよい。また、ユーザ装置100が送信時に優先するビーム幅に応じて、センシングされるリソースにおけるRSRPの閾値を補正することが設定されてもよいし、予め規定されてもよい。
 「RSRP deduction stepsize ΔT/dB」は、送信ビームインデックス又は送信ビームカバレッジに応じて設定されてもよいし、予め規定されてもよい。ユーザ装置100は、送信ビームに依存した与干渉パターンを考慮したリソース選択が可能になり、より干渉が少ないリソースを選択できる。
 図10は、本発明の実施の形態におけるリソース選択の例(3)を示すフローチャートである。図9は、図6で説明したOpt.3に対応するフローチャートである。Opt.3において、ユーザ装置100は、あるリソースについて他のユーザ装置100から取得したビームカバレッジエリア及びビームカバレッジエリアに基づいて補正されたRSRPの閾値に基づいて当該リソースを除外するか否か決定する。
 ステップS301において、ユーザ装置100は、あるリソースにおいてセンシングを実行する。
 続くステップS302において、ユーザ装置100は、あるリソースにおけるビームカバレッジエリアを近接する他のユーザ装置100から取得する。ビームカバレッジエリアは、表1に示されるビームカバレッジエリアのインデックスで通知されてもよい。
 続くステップS303において、ユーザ装置100は、ビームカバレッジエリアが閾値未満であるか否かを判定する。ビームカバレッジエリアを判定する閾値は、設定されてもよいし、予め規定されてもよい。
 ビームカバレッジエリアが閾値未満であった場合(S303のYES)、ステップS305に進み、当該リソースは使用可能とされる。一方、ビームカバレッジエリアが閾値以上であった場合、ステップS304に進む。
 続くステップS304において、ユーザ装置100は、当該リソースのRSRPが補正された閾値未満であるか否かを判定する。
 RSRPが補正された閾値未満であった場合(S304のYES)、ステップ305に進み、当該リソースは使用可能とされる。一方、RSRPが補正された閾値以上であった場合、ステップS306に進み、当該リソースは除外される。
 上述の実施例1において、ユーザ装置100は、近接する他のユーザ装置100から送信されるビームに係るビームカバレッジエリアを取得する。ユーザ装置100は、当該ビームカバレッジエリアに基づいて、センシングされるリソースを除外するか否かを決定することができる。また、ユーザ装置100は、当該ビームカバレッジエリアに基づいて、センシングされるリソースにおけるRSRPの閾値を補正することが設定されてもよいし、予め規定されてもよい。また、ユーザ装置100が送信時に優先するビーム幅、すなわちビームカバレッジエリアに応じて、センシングされるリソースにおけるRSRPの閾値を補正することが設定されてもよいし、予め規定されてもよい。
 上記のように、ユーザ装置100は、近接する他のユーザ装置100が使用する可能性のあるリソースの利用効率を向上させることができる。すなわち、D2Dにおいて、ビームフォーミングを適用して送信を行うユーザ装置のリソース利用効率を向上させることができる。
 (実施例2)
 以下、実施例2について説明する。実施例2では実施例1と異なる点について説明する。したがって、特に言及されない点については、実施例1と同様であってもよい。
 図11は、本発明の実施の形態におけるユーザ装置100によるビームの受信を示す図である。図11の左図に示されるように、ユーザ装置100は、複数のユーザ装置100からビームを受信する場合に、広いビーム幅で受信すると、リソース衝突が発生する。
 そこで、図11の右図に示されるように、ユーザ装置100は、複数の狭いビーム幅を同時に受信するRXビームフォーミングを行うことによって、複数のユーザ装置100からビームを受信する場合であってもリソースの衝突を回避することができる。
 複数の狭いビーム幅を同時に受信するRXビームフォーミングは、ミリ波帯を使用して通信を行う場合に、設定されてもよいし、予め規定されてもよい。ビームパターンが、設定又は規定されて、シグナリングされてもよい。例えば、360度をカバーするビームパターン1つと、それぞれ90度をカバーするビームパターン4つとの、いずれを使用するかがユーザ装置100にシグナリングされてもよい。当該シグナリングは、実施例1で説明したビームカバレッジエリアに基づいて行われてもよい。すなわち、ビームカバレッジエリアが狭い場合、複数の狭いビームを受信するRXビームフォーミングを適用することがシグナリングされてもよい。
 図12は、本発明の実施の形態におけるユーザ装置100のアンテナ設定の例を示す図である。図12は、送信側TXRU(Remote Unit)から送信されるビームB1、ビームB2、ビームB3及びビームB4をそれぞれ受信するRXビームフォーミングのアンテナ設定を示す例である。
 上述の実施例2において、ユーザ装置100は、複数の狭いビーム幅を同時に受信するRXビームフォーミングを行うことによって、複数のユーザ装置100からビームを受信する場合であってもリソースの衝突を回避することができる。すなわち、D2Dにおいて、ビームフォーミングを適用して送信を行うユーザ装置のリソース利用効率を向上させることができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行するユーザ装置100の機能構成例を説明する。ユーザ装置100は、少なくとも実施例を実施する機能を含む。ただし、ユーザ装置100は、実施例の中の一部の機能のみを備えることとしてもよい。
 図13は、ユーザ装置100の機能構成の一例を示す図である。図13に示されるように、ユーザ装置100は、送信部110と、受信部120と、リソース制御部130と、電力測定部140とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部120は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部120は、ユーザ装置100から送信される同期信号、制御信号、データ等を受信する機能を有する。また、送信部110は、他のユーザ装置100にデータ又は制御信号を送信し、受信部120は、他のユーザ装置100からデータ又は制御信号を受信する。また、送信部110は、ビームフォーミングを適用して送信を行ってもよい。
 リソース制御部130は、実施例において説明したように、受信部120によりセンシングを行って検知した情報又はシグナリングにより取得した情報に基づいて、送信に使用するリソースを選択する。また、リソース制御部130は、センシング信号に含まれるリソースを選択するための明示的な情報を取得する。
 電力測定部140は、実施例において説明したように、ユーザ装置100において受信信号電力又は受信信号強度等の測定に係る制御を行う。なお、リソース制御部130又は電力測定部140における信号送信等に関する機能部を送信部110に含め、信号受信等に関する機能部を受信部120に含めてもよい。
 (ハードウェア構成)
 上述の本発明の実施の形態の説明に用いた機能構成図(図13)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 また、例えば、本発明の一実施の形態におけるユーザ装置100はいずれも、本発明の実施の形態に係る処理を行うコンピュータとして機能してもよい。図14は、本発明の実施の形態におけるユーザ装置100のハードウェア構成の一例を示す図である。上述のユーザ装置100はそれぞれ、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007等を含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。ユーザ装置100のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 ユーザ装置100における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、補助記憶装置1003及び/又は通信装置1004から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図13に示したユーザ装置100の送信部110と、受信部120と、リソース制御部130、電力測定部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つで構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つで構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び/又は補助記憶装置1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、無線通信のためのアンテナを少なくとも含み、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュール等ともいう。例えば、ユーザ装置100の送信部110及び受信部120は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、ユーザ装置100は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、他のユーザ装置とビームフォーミングが適用された通信を行うユーザ装置であって、あるリソースに対する、ビームがカバーする領域に関する情報を、他のユーザ装置から受信する受信部と、前記ビームがカバーする領域を示す情報に基づいて、前記リソースを選択する選択部と、選択された前記リソースを使用して送信を行う送信部とを有するユーザ装置が提供される。
 上記の構成により、ユーザ装置は、他のユーザ装置からビームカバレッジエリアを取得して、リソースを選択することで、他のユーザ装置のビーム幅に応じてリソースを除外することができる。すなわち、D2Dにおいて、ビームフォーミングを適用して送信を行うユーザ装置のリソース利用効率を向上させることができる。
 前記選択部は、前記ビームがカバーする領域に関する情報が示す前記領域の大きさが第1の閾値以上である場合、前記リソースを選択されるリソース候補から除外してもよい。当該構成により、ユーザ装置は、他のユーザ装置から取得したビームカバレッジエリアが大きい場合リソースを除外することで、他のユーザ装置が送信するビーム幅が狭い場合にリソースを選択することができる。
 前記選択部は、リソースをセンシングして受信電力を測定し、前記受信電力が第2の閾値以上である場合、センシングされた前記リソースを選択されるリソース候補から除外し、前記第2の閾値は、前記ビームがカバーする領域を示す情報に基づいて、補正されてもよい。当該構成により、ユーザ装置は、他のユーザ装置から取得したビームカバレッジエリアに応じて、センシングするリソースのRSRP閾値を補正することができる。
 前記ビームがカバーする領域に関する情報が示す前記領域が広いほど、前記第2の閾値がより小さくなるよう補正されてもよい。当該構成により、ユーザ装置は、他のユーザ装置から取得したビームカバレッジエリアが大きいほど、センシングするリソースのRSRP閾値を小さくなるよう補正してリソースを除外することで、周辺ユーザ装置においてより低い干渉レベルのリソースを選択できる確率が高くなる。
 前記送信部が送信するビームがカバーする領域に関する情報に基づいて、前記第2の閾値が補正されてもよい。当該構成により、ユーザ装置は、送信するビーム幅に応じて、センシングするRSRPの閾値を変更して、除外するリソースを制御することができる。
 前記受信部は、前記ビームがカバーする領域に関する情報に基づいて、受信ビームフォーミングを行ってもよい。当該構成により、ユーザ装置は、他のユーザ装置から取得したビームカバレッジエリアに応じて、受信ビームフォーミングを行うことで、リソースを衝突させずに、複数の他のユーザ装置から同時にビームを受信することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置100は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置100が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 ユーザ装置100は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事等を含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事等を含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)等した事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 「含む(include)」、「含んでいる(including)」、及びそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
 なお、本発明の実施の形態において、リソース制御部130又は電力測定部140は、選択部の一例である。ビームカバレッジエリアは、ビームがカバーする領域に関する情報の一例である。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
100   ユーザ装置
110   送信部
120   受信部
130   リソース制御部
140   電力測定部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  他のユーザ装置とビームフォーミングが適用された通信を行うユーザ装置であって、
     あるリソースに対する、ビームがカバーする領域に関する情報を、他のユーザ装置から受信する受信部と、
     前記ビームがカバーする領域を示す情報に基づいて、前記リソースを選択する選択部と、
     選択された前記リソースを使用して送信を行う送信部とを有するユーザ装置。
  2.  前記選択部は、前記ビームがカバーする領域に関する情報が示す前記領域の大きさが第1の閾値以上である場合、前記リソースを選択されるリソース候補から除外する請求項1記載のユーザ装置。
  3.  前記選択部は、リソースをセンシングして受信電力を測定し、前記受信電力が第2の閾値以上である場合、センシングされた前記リソースを選択されるリソース候補から除外し、
     前記第2の閾値は、前記ビームがカバーする領域を示す情報に基づいて、補正される請求項1記載のユーザ装置。
  4.  前記ビームがカバーする領域に関する情報が示す前記領域が広いほど、前記第2の閾値がより小さくなるよう補正される請求項3記載のユーザ装置。
  5.  前記送信部が送信するビームがカバーする領域に関する情報に基づいて、前記第2の閾値が補正される請求項4記載のユーザ装置。
  6.  前記受信部は、前記ビームがカバーする領域に関する情報に基づいて、受信ビームフォーミングを行う請求項1記載のユーザ装置。
PCT/JP2017/040750 2017-11-13 2017-11-13 ユーザ装置 WO2019092884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/040750 WO2019092884A1 (ja) 2017-11-13 2017-11-13 ユーザ装置
CN201780096539.3A CN111386659B (zh) 2017-11-13 2017-11-13 用户装置
US16/762,013 US20200359357A1 (en) 2017-11-13 2017-11-13 User device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040750 WO2019092884A1 (ja) 2017-11-13 2017-11-13 ユーザ装置

Publications (1)

Publication Number Publication Date
WO2019092884A1 true WO2019092884A1 (ja) 2019-05-16

Family

ID=66437649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040750 WO2019092884A1 (ja) 2017-11-13 2017-11-13 ユーザ装置

Country Status (3)

Country Link
US (1) US20200359357A1 (ja)
CN (1) CN111386659B (ja)
WO (1) WO2019092884A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021152747A1 (ja) * 2020-01-29 2021-08-05
WO2022208597A1 (ja) * 2021-03-29 2022-10-06 日本電気株式会社 路側通信装置、路側通信方法及び記憶媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029127A1 (en) 2018-08-08 2020-02-13 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
WO2022061555A1 (zh) * 2020-09-22 2022-03-31 华为技术有限公司 通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126022A1 (ja) * 2013-02-12 2014-08-21 京セラ株式会社 移動通信システム、通信装置、及びd2d端末
WO2014208559A1 (ja) * 2013-06-27 2014-12-31 京セラ株式会社 通信制御方法、基地局及びユーザ端末

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8325620B2 (en) * 2007-01-16 2012-12-04 Koninklijke Philips Electronics N.V. Method and system of communication employing spatial reuse reservation protocol
CN101335553B (zh) * 2007-06-26 2012-05-23 中兴通讯股份有限公司 一种天线阵列实现广播信道覆盖的方法及装置
CN101399584A (zh) * 2007-09-26 2009-04-01 鼎桥通信技术有限公司 一种下行传输方法及基站
CN101635593B (zh) * 2008-07-25 2013-10-02 华为技术有限公司 实现多播广播业务数据传输方法、装置及系统
WO2014158208A1 (en) * 2013-03-29 2014-10-02 Intel Corporation Orthogonal beamforming for multiple user multiple-input and multiple-output (mu-mimo)
EP3042521B1 (en) * 2013-09-06 2021-11-03 Huawei Technologies Co., Ltd. Method for muting of radio resources in a wireless communication system
KR102306128B1 (ko) * 2015-06-04 2021-09-28 한국전자통신연구원 가상 빔 식별자 설정 방법 및 장치, 가상 빔 식별자를 이용해 자원을 할당하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126022A1 (ja) * 2013-02-12 2014-08-21 京セラ株式会社 移動通信システム、通信装置、及びd2d端末
WO2014208559A1 (ja) * 2013-06-27 2014-12-31 京セラ株式会社 通信制御方法、基地局及びユーザ端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Considerations on eV2X NR design", 3GPP TSG-RAN WG1#86B R1-1610367, 9 October 2016 (2016-10-09), XP051150379, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610367.zip> *
NTT DOCOMO, INC.: "On carrier aggregation using mode 4 resource selection", 3GPP TSG-RAN WG1#90B R1-1718165, 8 October 2017 (2017-10-08), XP051341347, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90b/Docs/R1-1718165.zip> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021152747A1 (ja) * 2020-01-29 2021-08-05
WO2021152747A1 (ja) * 2020-01-29 2021-08-05 三菱電機株式会社 無線通信装置、無線通信システム、制御回路、記憶媒体および無線通信方法
JP7113984B2 (ja) 2020-01-29 2022-08-05 三菱電機株式会社 無線通信装置、無線通信システム、制御回路、記憶媒体および無線通信方法
WO2022208597A1 (ja) * 2021-03-29 2022-10-06 日本電気株式会社 路側通信装置、路側通信方法及び記憶媒体

Also Published As

Publication number Publication date
CN111386659B (zh) 2022-08-09
CN111386659A (zh) 2020-07-07
US20200359357A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
JP7082133B2 (ja) 端末及び通信方法
EP3579601B1 (en) User apparatus, and preamble transmission method
US20180227971A1 (en) User equipment and d2d signal transmission method
JP6543943B2 (ja) 無線装置テザリングのためのマルチバンドリソーススケジューリング
WO2019092884A1 (ja) ユーザ装置
EP3567929B1 (en) User device, base station, and preamble transmission method
CN115190501A (zh) 一种移动性管理方法及通信装置
CN111149302B (zh) 用户装置
WO2018030121A1 (ja) ユーザ装置及び信号送信方法
CN111108793B (zh) 用户装置及基站装置
WO2016208296A1 (ja) ユーザ装置、基地局及び通信方法
US20210243586A1 (en) User equipment and base station device
JPWO2019239505A1 (ja) ユーザ装置及び基地局装置
WO2020230213A1 (ja) ユーザ装置
WO2019138973A1 (ja) ユーザ装置及びネットワーク装置
WO2020166088A1 (ja) ユーザ装置及び通信方法
WO2020059132A1 (ja) ユーザ装置及び基地局装置
CN112205043A (zh) 通信装置
WO2019163142A1 (ja) ユーザ装置及び基地局装置
WO2019155632A1 (ja) ユーザ装置及び基地局装置
WO2020021690A1 (ja) ユーザ装置
WO2019244256A1 (ja) ユーザ装置及び基地局装置
WO2023205343A1 (en) Overhead and latency reduction for beam reports
CN118139173A (zh) 用户装置及基站装置
JPWO2020003367A1 (ja) ユーザ装置及び基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP