WO2019092843A1 - 医療用マニピュレータシステムとその作動方法 - Google Patents

医療用マニピュレータシステムとその作動方法 Download PDF

Info

Publication number
WO2019092843A1
WO2019092843A1 PCT/JP2017/040537 JP2017040537W WO2019092843A1 WO 2019092843 A1 WO2019092843 A1 WO 2019092843A1 JP 2017040537 W JP2017040537 W JP 2017040537W WO 2019092843 A1 WO2019092843 A1 WO 2019092843A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
sensor
amount
detected
transfer function
Prior art date
Application number
PCT/JP2017/040537
Other languages
English (en)
French (fr)
Inventor
考広 小室
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/040537 priority Critical patent/WO2019092843A1/ja
Publication of WO2019092843A1 publication Critical patent/WO2019092843A1/ja
Priority to US16/849,068 priority patent/US11553975B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles

Definitions

  • the present invention relates to a medical manipulator system and a method of operating the same.
  • a medical manipulator system which pulls a wire by a motor provided at the proximal end of an elongated insertion portion and operates a joint provided at the distal end of the insertion portion (see, for example, Patent Document 1).
  • a sensor for detecting the amount of movement of the wire is mounted near the joint at the distal end of the insertion portion in order to prevent a mismatch between the amount of operation and the amount of bending due to slack or friction of the wire.
  • An encoder is mounted on the towing motor, and feedback control of the motor is performed in real time based on signals detected by both the sensor and the encoder.
  • the tip of the insertion portion is required to have a small diameter, the installation space of the sensor for detecting the movement of the wire can not be sufficiently secured, and only a small, low resolution sensor can be mounted. For this reason, when feedback control of the motor is performed using both a low resolution sensor and a relatively high resolution encoder, there is a disadvantage that the control becomes unstable.
  • the present invention has been made in view of the above-described circumstances, and a medical manipulator system capable of stably controlling a joint at a tip of an insertion portion according to an operation command regardless of slack or friction of a wire It is intended to provide a method of operation.
  • One aspect of the present invention is an elongated insertion portion having a joint at its distal end portion, a first sensor for detecting an amount of movement of the joint in the insertion portion, and the joint disposed at a proximal end of the insertion portion via a wire.
  • a second sensor for detecting the amount of movement of the actuator, an operation input unit operated by a user, and a controller for generating a control signal to the actuator, the controller comprising An operation mode for generating the control signal through a transfer function having the input value of the operation input unit and the operation amount of the actuator detected by the second sensor as an input, and the detection by the first sensor A carrier for adjusting the transfer function based on the movement amount of the joint and the movement amount of the actuator detected by the second sensor
  • a medical manipulator system comprising a configuration mode.
  • an operation command corresponding to the input value is input to the controller and the actuator is operated, and the driving force of the actuator is inserted through the wire. It is transmitted to the joint disposed at the tip of the part, and the joint is operated.
  • a control signal is generated via a transfer function having as inputs the operation input value and the operation amount of the actuator detected by the second sensor. At this time, the detected amount of movement of the actuator is fed back, and the amount of movement of the actuator is controlled so that the deviation from the movement command according to the input value is reduced.
  • the transfer function is based on the amount of movement of the joint detected by the first sensor and the amount of movement detected by the first sensor and the amount of movement of the actuator detected by the second sensor. Adjusted. Then, after the transfer function is adjusted, the actuator is controlled based on the input value and the amount of movement detected by the second sensor, not based on the amount of movement detected by the first sensor.
  • the joint at the distal end of the insertion portion can be stably controlled according to the operation command regardless of slack or friction of the wire, and the distal end of the insertion portion The diameter of the part can be reduced.
  • the calibration mode causes the joint to move by a predetermined amount
  • a difference between the operation amount detected by the first sensor and the operation amount detected by the second sensor may be adjusted such that is less than or equal to a predetermined threshold.
  • the operation amount detected by the first sensor and the operation amount detected by the second sensor may be adjusted so that the difference between the By doing this, the difference between the amount of movement detected by the first sensor and the second sensor due to backlash or friction generated when the joint reciprocates is reduced, and the actuator is stabilized as instructed by the operation. Can be controlled.
  • the operation amount detected by the first sensor and the operation detected by the second sensor may be adjusted so that the average value of the difference with the amount is less than or equal to a predetermined threshold value.
  • the controller further includes a table for storing the difference and the transfer function adjusted by the difference in association with each other, and the calibration mode uses the table to store the transfer function. You may adjust. By doing this, it is possible to adopt the transfer function stored in the table corresponding to the difference in the amount of movement detected by the first sensor and the second sensor, and the processing can be simplified.
  • a medical manipulator system 1 according to an embodiment of the present invention and an operation method thereof will be described below with reference to the drawings.
  • the treatment tool 2 for treating the affected area the motor unit 3 for driving the treatment tool 2
  • the user perform operation input
  • An operation input unit 4 and a controller 5 for controlling the motor unit 3 in accordance with a user operation via the operation input unit 4 are provided.
  • the treatment instrument 2 is provided with a joint 7 at the distal end of the long insertion portion 6 and the treatment portion 8 at the distal end of the joint 7.
  • the treatment tool 2 is provided with a connection portion 9 connected to the motor unit 3 at the proximal end of the insertion portion 6.
  • the joint 7 is provided with a joint encoder (first sensor) 10 for detecting a swing angle (motion amount) of the joint 7.
  • the connection portion 9 is provided with a pulley 11 for detachably connecting a motor 13 described later.
  • the joint 7 and the pulley 11 are connected by a wire 12 wound around the pulley 11 so that the joint 7 can be rotationally driven by transmitting the rotation of the pulley 11 by the wire 12 There is.
  • the motor unit 3 includes a motor (actuator) 13 and a motor encoder (second sensor) 14 connected to the motor 13 to detect a rotation angle of the motor 13.
  • the operation input unit 4 instructs the operation unit 15 such as a handle that the user holds and moves with one hand or both hands and an instruction to start an operation (operation mode) or cancel the operation or a calibration (calibration mode) start And an input unit 16 for inputting a command or the like.
  • the controller 5 includes an arithmetic processing unit (processor) and a memory (not shown).
  • processor arithmetic processing unit
  • memory not shown.
  • the operation mode when a command instructing operation start is input from the input unit 16 in the operation mode, the target angle of the joint 7 commanded by the operation unit 15 and the motor fed back from the motor encoder 14 An operation command signal to the motor 13 is calculated based on the rotation angle 13 and output.
  • the memory stores a calibration program.
  • FIG. 3 shows a control block diagram of the motor 13 by the arithmetic processing unit.
  • the arithmetic processing unit includes a feedforward control unit (FF control unit) 17 and a motor control unit 18 that generates a drive command for driving the motor 13.
  • FF control unit feedforward control unit
  • motor control unit 18 that generates a drive command for driving the motor 13.
  • the arithmetic processing unit reads out and executes the calibration program stored in the memory when the instruction to cancel the operation is input from the input unit 16 and the instruction to start the calibration is input.
  • a CAL command unit 19 that outputs a target angle for operating the joint 7 in a predetermined pattern
  • a transfer function adjustment unit 20 that calculates the control gain of the transfer function are provided.
  • the joint 7 When the calibration program is executed and the target angle is output from the CAL command unit 19, the joint 7 is operated, and the rotation angle of the motor 13 detected by the motor encoder 14 at that time and the joint encoder 10 The swing angle of the joint 7 detected by the above is input to the transfer function adjustment unit 20.
  • the control gain of the transfer function of the FF control unit 17 is calculated based on the rotation angle of the motor 13 and the swing angle of the joint 7 and is input to the FF control unit 17. There is.
  • the transfer function of the FF control unit 17 includes a control gain kd that compensates for the slack of the wire 12 and a control gain ke that compensates for the attenuation of the displacement angle of the joint 7 based on the shape of the insertion portion 6 or the like.
  • the calibration program includes an operation A for operating each joint 7 from 0 ° to ⁇ 90 °, an operation B for operating from ⁇ 90 ° to + 90 °, an operation B from + 90 ° to 0 ° It includes an operation C that operates up to °°.
  • the transfer function adjustment unit 20 outputs the control gains kd and ke to the FF control unit 17, and the movement of the joint 7 detected by the joint encoder 10 when the operations A, B and C are performed once in sequence respectively. The difference between the angle and the estimated angle of the joint 7 estimated based on the rotation angle of the motor 13 detected by the motor encoder 14 is calculated.
  • the transfer function adjustment unit 20 repeats changing the control gains kd and ke by defined values (for example, 0.1) at a time and outputting the control gains to the FF control unit 17 until the difference becomes equal to or less than a predetermined threshold. .
  • the transfer function including the control gains kd and ke whose difference is equal to or less than the predetermined threshold value is set in the FF control unit 17. That is, after the adjusted transfer function is set, the target angle command input from the operation input unit 4 is adjusted by the set transfer function in the FF control unit 17 by switching to the operation mode. The target angle command is input to the motor control unit 18, and the motor 13 is driven.
  • a user first inserts an overtube and an endoscope disposed in the overtube into the body along a patient's body cavity (step S1). .
  • the form of the endoscope is determined.
  • step S2 the user inserts the treatment tool 2 into the patient's body via the channel provided in the overtube (step S2). Thereby, the form of the treatment tool 2 is determined. Then, the connection portion 9 provided at the proximal end of the insertion portion 6 of the treatment tool 2 is connected to the motor unit 3 outside the patient (step S3).
  • step S4 when the user performs an input to switch to the calibration mode at the input unit of the operation input unit 4 (step S4), the control gains kd and ke of the transfer function of the FF control unit 17 are set to initial values (step S5)
  • step S6 In the operation processing unit, the calibration program read from the memory is executed by the CAL instruction unit 19, and the joint 7 is operated in a predetermined pattern (step S6).
  • step S7 the difference between the swing angle of the joint 7 detected by the joint encoder 10 and the estimated angle of the joint 7 based on the rotation angle of the motor 13 detected by the motor encoder 14 is calculated (step S7) It is determined whether the difference is less than or equal to a predetermined threshold (step S8). If the difference exceeds the predetermined threshold value, the control gains kd and ke are updated (step S9), and the process from step S6 is repeated. If the difference is less than or equal to the predetermined threshold, the calibration mode is ended.
  • the operation unit 15 can be operated to operate the joint 7, and backlash, friction, and attenuation of angular displacement depending on the form of the insertion unit 6.
  • the joint 7 can be operated stably as the operation input.
  • the medical manipulator system 1 it is possible to perform feedback control of the motor 13 with high accuracy using a motor encoder 14 having a relatively high resolution. Further, by properly adjusting the transfer function of the FF control unit 17, it is possible to control the joint 7 at the tip of the insertion portion 6 as the operation input regardless of the slack or friction of the wire 12.
  • the information on the swing angle of the joint 7 detected by the joint encoder 10 is used when adjusting the transfer function of the FF control unit 17 in the calibration mode. It is only used, and when the joint 7 is operated in the operation mode, the information of the rocking angle of the joint 7 detected by the joint encoder 10 is not used in real time (as shown in FIG. 6, Since the operation mode and the calibration mode are switched), even if a low resolution encoder is used as the joint encoder 10, there is an advantage that the joint 7 can be operated stably.
  • a compact encoder with low resolution can be used as the joint encoder 10 disposed at the distal end portion of the insertion portion 6, and there is also an advantage that the diameter reduction of the distal end portion of the insertion portion 6 can be achieved.
  • the calibration operation is repeated until the swing angle detected by the joint encoder 10 substantially matches the estimated angle of the joint 7 based on the rotation angle detected by the motor encoder 14.
  • the control gains kd and ke are made to converge.
  • the treatment tool 2 is provided with a memory 21 for storing identification information for identifying the treatment tool 2, and the motor unit 3 is connected to the connection portion 9 of the treatment tool 2.
  • a table may be provided which stores the control gains kd and ke in association with the differences ⁇ 1 and ⁇ 2 between the swing angle of the joint 7 generated by the joint encoder 10 and the angle estimated by the motor encoder 14.
  • FIG. 8 shows an example of the table.
  • the difference ⁇ 1 is, for example, a difference obtained when each of the operation A, the operation B, and the operation C in FIG. 4 is independently performed, and the difference (reciprocal difference) ⁇ 2 is, for example, the folding operations A and B in FIG. It is a difference when B and C are continuously performed.
  • standard control gains kd and ke are set as initial values of the control gains kd and ke in step S5, and calibration operations A, B, C and C are set.
  • step S10 After connecting the treatment tool 2 to the motor unit 3 in step S3, the calibration table is read (step S10), and only one calibration operation is performed.
  • the control gains kd and ke can be read out from the difference and the table and updated (step S11).
  • the joint 7 is operated in the order of 0 ° to -90 ° to + 90 ° to 0 °, but instead of this, the calibration operation It may extend over the entire movable range or may be smaller than the movable range. In addition, although it has been made to operate in the positive and negative directions centering on 0 °, only one side may be operated.
  • the control gain ke may be calculated by operating the joint 7 at predetermined angle ranges, for example, 10 ° each, calculating the ratio of the angles for each angle range, and calculating the average value.
  • the joint 7 is reciprocated in a predetermined angle range (for example, 10 °), and the rotation angle of the motor 13 detected by the motor encoder 14 and the swing angle of the joint 7 detected by the joint encoder 10 in the forward path Calculating the difference ⁇ 2 ⁇ 1 between the difference ⁇ 1 of the rotation angle and the difference ⁇ 2 between the rotation angle of the motor 13 detected by the motor encoder 14 and the swing angle of the joint 7 detected by the joint encoder 10 in the return path
  • the control gain kd may be calculated for each angle range.
  • the joint 7 may be operated in the range of the minimum unit angle (for example, 10 °) of the resolution of the joint encoder 10.
  • the ratio between the angle of the joint 7 detected by the joint encoder 10 by one detection and the angle of the joint 7 estimated based on the angle detected by the motor encoder 14 is directly used as a control gain. It may be used as kd and ke. Alternatively, the corresponding control gains kd and ke in the table may be searched using the above ratio. By doing so, even when the treatment tool 2 can not be operated largely in a narrow body cavity, the transfer function of the FF control unit 17 can be properly adjusted.
  • the calibration mode and the operation mode are switched.
  • the user operates the operation input unit 4 to operate the joint 7 without performing the mode switching.
  • the transfer function may be adjusted. For example, as shown in FIG. 10, when the user operates the treatment tool 2 (step S12), the joint encoder 10 stands by until the minimum unit angle is detected (step S13).
  • step S7 the difference between the rocking angle of the joint 7 by the joint encoder 10 and the estimated angle by the motor encoder 14 is immediately calculated (step S7), and control is performed from the table
  • the gains kd and ke are read out, and the transfer function of the FF control unit 17 is updated (step S11).
  • the transfer function is properly updated during the operation of the operation input unit 4 without the user waiting for the calibration operation.
  • a difference for reading out the control gains kd and ke from the table is calculated.
  • the process may wait until the angle of the joint 7 becomes 0 ° (step S15), and the transfer function may be updated when the angle becomes 0 °.
  • the control gain ke may be calculated and stored by the same calculation method every time the rocking angle changes by the minimum unit angle after that as the ke is calculated and stored.
  • the rocking angle of the joint 7 detected by the joint encoder 10 changes by a minimum unit angle (for example, 10 °) after the rocking direction of the joint 7 is turned back so as to turn back the rocking direction.
  • An estimated angle (for example, 12 °) of the motor encoder 14 calculated based on a swing angle (for example, 10 °) of the joint 7 detected by the joint encoder 10 and a control gain ke (for example, 12 °)
  • the control gain kd may be updated by calculating the difference (for example, 4 °) from the rotation angle (for example, 16 °) detected by the motor encoder 14 as the control gain kd.
  • the transfer function adjustment unit 20 adjusts the transfer function of the FF control unit 17.
  • the transfer function of the motor control unit 18 may be adjusted.
  • a sensor (not shown) for detecting the shape of the insertion portion 6 of the endoscope may be provided, and the calibration operation may be performed when the sensor detects that the shape of the insertion portion 6 has changed. Good.
  • the rotary joint was illustrated as the joint 7, you may apply to any other joints, such as a slide joint.
  • the motor 13 which is driven to rotate is illustrated as an actuator, it may be applied to any actuator such as a motor or a cylinder which drives linearly, instead.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

ワイヤの弛みや摩擦に係わらず挿入部の先端の関節を操作指令通りに安定的に制御することを目的として、本発明に係る医療用マニピュレータシステム(1)は、先端部に関節(7)を備える細長い挿入部(6)と、関節の動作量を検出する第1センサと、挿入部の基端に配置されワイヤを介して関節を駆動するよう動作するアクチュエータと、アクチュエータの動作量を検出する第2センサと、ユーザにより操作される操作入力部(4)と、アクチュエータへの制御信号を生成するコントローラ(5)とを備え、コントローラが、操作入力部の入力値と第2センサにより検出されたアクチュエータの動作量を入力とする伝達関数を介して、制御信号を生成するオペレーションモードと、第1センサにより検出された関節動作量、および第2センサにより検出されたアクチュエータの動作量に基づいて、伝達関数を調整するキャリブレーションモードとを備える。

Description

医療用マニピュレータシステムとその作動方法
 本発明は、医療用マニピュレータシステムとその作動方法に関するものである。
 従来、細長い挿入部の基端に設けられたモータによりワイヤを牽引して、挿入部の先端に設けられた関節を動作させる医療用マニピュレータシステムが知られている(例えば、特許文献1参照。)。
 この医療用マニピュレータシステムは、ワイヤの弛みや摩擦による操作量と湾曲量との不一致を防止するために、挿入部の先端の関節付近にワイヤの移動量を検出するセンサを搭載するとともに、ワイヤを牽引するモータにエンコーダを搭載し、センサおよびエンコーダの両方により検出された信号に基づいてモータをリアルタイムにフィードバック制御している。
特開2002-264048号公報
 しかしながら、挿入部の先端は細径であることが要求されるので、ワイヤの移動量を検出するセンサの設置スペースが十分に確保できず、小型の低分解能のセンサしか搭載することができない。このため、低分解能のセンサおよび比較的高分解能のエンコーダの両方を用いてモータをリアルタイムにフィードバック制御する場合、制御が不安定になるという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、ワイヤの弛みや摩擦に係わらず挿入部の先端の関節を操作指令通りに安定的に制御することができる医療用マニピュレータシステムとその作動方法を提供することを目的としている。
 本発明の一態様は、先端部に関節を備える細長い挿入部と、該挿入部の前記関節の動作量を検出する第1センサと、前記挿入部の基端に配置されワイヤを介して前記関節を駆動するよう動作するアクチュエータと、該アクチュエータの動作量を検出する第2センサと、ユーザにより操作される操作入力部と、前記アクチュエータへの制御信号を生成するコントローラとを備え、該コントローラが、前記操作入力部の入力値と前記第2センサにより検出された前記アクチュエータの動作量とを入力とする伝達関数を介して、前記制御信号を生成するオペレーションモードと、前記第1センサにより検出された前記関節の動作量、および前記第2センサにより検出された前記アクチュエータの動作量に基づいて、前記伝達関数を調整するキャリブレーションモードとを備える医療用マニピュレータシステムである。
 本態様によれば、ユーザが操作入力部を操作して操作入力を行うと、入力値に応じた動作指令がコントローラに入力されてアクチュエータが動作させられ、アクチュエータの駆動力がワイヤを介して挿入部の先端部に配置された関節に伝達され、関節が動作させられる。オペレーションモードにおいては、操作入力された入力値と第2センサにより検出されたアクチュエータの動作量とを入力とする伝達関数を介して制御信号が生成される。このとき、検出されたアクチュエータの動作量はフィードバックされて、入力値に応じた動作指令との偏差が小さくなるようにアクチュエータの動作量が制御される。
 また、キャリブレーションモードにおいては、関節の動作量が第1センサにより検出され、第1センサにより検出された動作量と、第2センサにより検出されたアクチュエータの動作量とに基づいて、伝達関数が調整される。そして、伝達関数が調整された後には、第1センサにより検出された動作量に基づくことなく、入力値と第2センサにより検出された動作量とに基づいてアクチュエータが制御される。これにより、第1センサとして小型の低分解能のものを用いても、ワイヤの弛みや摩擦に係わらず挿入部の先端の関節を操作指令通りに安定的に制御することができ、挿入部の先端部の細径化を図ることができる。
 上記態様においては、前記キャリブレーションモードが、前記関節を所定量だけ動作させたときに、前記第1センサにより検出された前記動作量と、前記第2センサにより検出された前記動作量との差分が所定の閾値以下となるように前記伝達関数を調整してもよい。
 このようにすることで、関節を所定量だけ移動させる際に第1センサにより検出された動作量と第2センサにより検出された動作量とが近い値となるように伝達関数が調整され、第1センサを用いずに第2センサによって検出された動作量に基づいて精度よくかつ安定的にアクチュエータを制御することができる。
 また、上記態様においては、前記キャリブレーションモードが、前記関節に所定の往復動作をさせたときに、前記第1センサにより検出された前記動作量と、前記第2センサにより検出された前記動作量との差分が所定の閾値以下となるように前記伝達関数を調整してもよい。
 このようにすることで、関節が往復動作を行う際に発生するバックラッシュや摩擦による第1センサおよび第2センサにより検出される動作量の差分を低減して、アクチュエータを操作指令通りに安定的に制御することができる。
 また、上記態様においては、前記キャリブレーションモードが、前記関節を所定量だけ複数回動作させたときに、前記第1センサにより検出された前記動作量と、前記第2センサにより検出された前記動作量との差分の平均値が所定の閾値以下となるように前記伝達関数を調整してもよい。
 このようにすることで、関節の動作位置に応じて変動する第1センサおよび第2センサにより検出される動作量の差分を平均して簡易に制御することができる。
 また、上記態様においては、前記コントローラが、前記差分と該差分によって調整された前記伝達関数とを対応づけて記憶するテーブルをさらに備え、前記キャリブレーションモードが、前記テーブルを用いて前記伝達関数を調整してもよい。
 このようにすることで、第1センサおよび第2センサにより検出された動作量の差分に対応してテーブルに記憶されている伝達関数を採用することができ、処理を簡易にすることができる。
本発明の一実施形態に係る医療用マニピュレータシステムを示す全体構成図である。 図1の医療用マニピュレータシステムを示すブロック図である。 図2の医療用マニピュレータシステムに備えられたコントローラを説明するブロック図である。 図1の医療用マニピュレータシステムにおけるキャリブレーション動作の一例を示す図である。 図1の医療用マニピュレータシステムにおけるキャリブレーションの手順を説明するフローチャートである。 図1の医療用マニピュレータシステムにおけるモード遷移について示す図である。 図1の医療用マニピュレータシステムの変形例を示すブロック図である。 図7の医療用マニピュレータシステムのメモリに記憶されたテーブルの一例を示す図である。 図7の医療用マニピュレータシステムにおけるキャリブレーションの手順を説明するフローチャートである。 図9のキャリブレーションの手順の変形例を示すフローチャートである。 図9のキャリブレーションの手順の他の変形例を示すフローチャートである。 図9のキャリブレーションの手順の他の変形例を示すフローチャートである。 図4のキャリブレーション動作の変形例を説明する図である。
 本発明の一実施形態に係る医療用マニピュレータシステム1とその作動方法について、図面を参照して以下に説明する。
 本実施形態に係る医療用マニピュレータシステム1は、図1から図3に示されるように、患部を処置する処置具2と、該処置具2を駆動するモータユニット3と、ユーザが操作入力を行う操作入力部4と、該操作入力部4を介したユーザの操作に応じてモータユニット3を制御するコントローラ5とを備えている。
 処置具2は、長尺の挿入部6の先端部に関節7を備え、関節7の先端に処置部8を備えている。また、処置具2は、挿入部6の基端にモータユニット3に接続する接続部9を備えている。関節7には、関節7の揺動角度(動作量)を検出する関節用エンコーダ(第1センサ)10が備えられている。接続部9には、後述するモータ13を着脱可能に接続するプーリ11が配置されている。関節7とプーリ11との間は、プーリ11に回し掛けられたワイヤ12によって接続されており、プーリ11の回転をワイヤ12によって伝達することにより関節7を回転駆動することができるようになっている。
 モータユニット3は、モータ(アクチュエータ)13と、モータ13に接続されモータ13の回転角度を検出するモータ用エンコーダ(第2センサ)14を備えている。
 操作入力部4は、ユーザが片手または両手で把持して移動させるハンドル等の操作部15と、操作(オペレーションモード)開始あるいは操作解除を指示する指令あるいはキャリブレーション(キャリブレーションモード)開始を指示する指令等を入力する入力部16とを備えている。
 コントローラ5は、図示しない演算処理部(プロセッサ)とメモリとを備えている。
 演算処理部は、オペレーションモードにおいて、入力部16から操作開始を指示する指令が入力されてきたときには、操作部15により指令された関節7の目標角度と、モータ用エンコーダ14からフィードバックされてきたモータ13の回転角度とに基づいて、モータ13への動作指令信号を演算し、出力するようになっている。メモリにはキャリブレーションプログラムが記憶されている。
 図3に、演算処理部によるモータ13の制御ブロック図を示す。
 演算処理部は、フィードフォワード制御部(FF制御部)17と、モータ13を駆動する駆動指令を生成するモータ制御部18とを備えている。操作入力部4により目標角度(入力値)が入力されると、入力された目標角度がフィードフォワード制御部17の伝達関数により調整された角度指令と、モータ用エンコーダ14からフィードバックされてくるモータ13の回転角度との偏差がモータ制御部18に入力され、モータ13を駆動する駆動指令が生成されてモータ13に入力されるようになっている。このとき、関節用エンコーダ10からの関節7の揺動角度の情報は使用されないようになっている。
 また、演算処理部は、入力部16から操作解除を指示する指令が入力され、かつ、キャリブレーション開始を指示する指令が入力されてきたときには、メモリに記憶されているキャリブレーションプログラムを読み出して実行することにより、所定のパターンで関節7を動作させる目標角度を出力するCAL指令部19と、伝達関数の制御ゲインを算出する伝達関数調整部20とを備えている。
 キャリブレーションプログラムが実行されて、CAL指令部19から目標角度が出力されると、関節7が動作させられ、そのときのモータ用エンコーダ14により検出されたモータ13の回転角度と、関節用エンコーダ10により検出された関節7の揺動角度とが伝達関数調整部20に入力されるようになっている。伝達関数調整部20においては、モータ13の回転角度と関節7の揺動角度とに基づいてFF制御部17の伝達関数の制御ゲインが算出され、FF制御部17に入力されるようになっている。
 FF制御部17の伝達関数は、ワイヤ12の弛みを補償する制御ゲインkdと、挿入部6の形状等に基づく関節7の変位角度の減衰を補償する制御ゲインkeとを含んでいる。
 キャリブレーションプログラムは、例えば、図4に示されるように、各関節7に対して、0°から-90°まで動作させる動作A、-90°から+90°まで動作させる動作B、+90°から0°まで動作させる動作Cを含んでいる。
 伝達関数調整部20は、制御ゲインkd,keをFF制御部17に出力し、動作A,B,Cが順にそれぞれ1回行われた際に関節用エンコーダ10により検出された関節7の揺動角度と、モータ用エンコーダ14により検出されたモータ13の回転角度とに基づき推定される関節7の推定角度と、の差分を算出するようになっている。
 そして、伝達関数調整部20は、上記差分が所定の閾値以下となるまで、制御ゲインkd,keを規定値(例えば、0.1)ずつ変更して、FF制御部17に出力することを繰り返す。これにより、差分が所定の閾値以下となる制御ゲインkd,keを含む伝達関数がFF制御部17に設定されるようになっている。
 すなわち、調整された伝達関数が設定された後は、オペレーションモードに切り替えられることにより、操作入力部4から入力された目標角度指令が、FF制御部17において、設定された伝達関数により調整された目標角度指令となってモータ制御部18に入力され、モータ13が駆動されるようになっている。
 このように構成された本実施形態に係る医療用マニピュレータシステム1の動作について、図5のフローチャートに従って説明する。
 本実施形態に係る医療用マニピュレータシステム1を使用するには、まず、ユーザが、オーバーチューブおよび該オーバーチューブ内に配置された内視鏡を患者の体腔に沿って体内に挿入する(ステップS1)。内視鏡の視野内に処置すべき患部が入った時点で、内視鏡の形態が決定される。
 次いで、ユーザがオーバーチューブに設けられたチャネルを介して処置具2を患者の体内に挿入する(ステップS2)。これにより、処置具2の形態が決定される。そして、処置具2の挿入部6の基端に設けられた接続部9を患者の体外においてモータユニット3に接続する(ステップS3)。
 この状態で、ユーザが、操作入力部4の入力部においてキャリブレーションモードに切り替える入力を行う(ステップS4)と、FF制御部17の伝達関数の制御ゲインkd,keが初期値に設定され(ステップS5)、演算処理部においてCAL指令部19によりメモリから読み出されたキャリブレーションプログラムが実行され、関節7が所定のパターンで動作させられる(ステップS6)。
 そして、この動作後に、関節用エンコーダ10により検出された関節7の揺動角度と、モータ用エンコーダ14により検出されたモータ13の回転角度に基づく関節7の推定角度との差分が算出され(ステップS7)、差分が所定の閾値以下か否かが判定される(ステップS8)。差分が所定の閾値を超えている場合には、制御ゲインkd,keが更新され(ステップS9)、ステップS6からの工程が繰り返される。
 差分が所定の閾値以下の場合には、キャリブレーションモードを終了する。
 この後に、ユーザが入力部16からオペレーションモードに切り替えることにより、操作部15を操作して関節7を作動させることができ、バックラッシュや摩擦、挿入部6の形態に依存した角度変位の減衰が補償されて、関節7を操作入力通りに安定して動作させることができる。
 このように、本実施形態に係る医療用マニピュレータシステム1によれば、モータ用エンコーダ14としては分解能の比較的高いものを使用して、モータ13を精度よくフィードバック制御することができる。また、FF制御部17の伝達関数が適正に調整されることで、ワイヤ12の弛みや摩擦に係わらず挿入部6の先端部の関節7を操作入力通りに制御することができる。
 さらに、本実施形態に係る医療用マニピュレータシステム1によれば、関節用エンコーダ10により検出される関節7の揺動角度の情報は、キャリブレーションモードにおいてFF制御部17の伝達関数を調整する際に使用されるのみであり、オペレーションモードで関節7が動作させられる際には関節用エンコーダ10により検出された関節7の揺動角度の情報がリアルタイムに用いられない(図6に示されるように、オペレーションモードとキャリブレーションモードとを切替える)ので、関節用エンコーダ10として低分解能のものを用いても、関節7を安定的に動作させることができるという利点がある。
 また、挿入部6の先端部に配置される関節用エンコーダ10として低分解能の小型のものを用いることができ、挿入部6の先端部の細径化を図ることができるという利点もある。
 なお、本実施形態においては、関節用エンコーダ10により検出された揺動角度と、モータ用エンコーダ14により検出された回転角度に基づく関節7の推定角度とが略一致するまで、キャリブレーション動作を繰り返すことで制御ゲインkd,keを収束させることとした。これに代えて、図7に示されるように、処置具2に、該処置具2を識別する識別情報を記憶するメモリ21が備えられ、モータユニット3に、処置具2の接続部9が接続されたときにメモリ21内の識別情報を読み取る読取装置22が備えられ、コントローラ5のメモリ内に、処置具2の識別情報毎に、標準の制御ゲインkd,keによってキャリブレーション動作をさせたときに発生する関節用エンコーダ10による関節7の揺動角度とモータ用エンコーダ14による推定角度との差分Δ1,Δ2と対応づけて制御ゲインkd,keを記憶するテーブルが備えられていてもよい。
 図8にテーブルの一例を示す。
 差分Δ1は、例えば、図4の動作A、動作B、動作Cをそれぞれ単独で行った際の差分であり、差分(往復差)Δ2は、例えば、図4の折り返し動作A,Bあるいは折り返し動作B,Cを連続して行った場合の差分である。
 そして、本実施形態においては、図9に示されるように、ステップS5において制御ゲインkd,keの初期値として標準の制御ゲインkd,keを設定し、キャリブレーションの各動作A,B,Cおよび差分の算出を1回だけ行うことにより、算出された差分を用いて、テーブル内を検索し、対応する所望の制御ゲインkd,keを得ることができるという利点がある。
 すなわち、ステップS3において処置具2をモータユニット3に接続した後に、キャリブレーション用のテーブルを読み出し(ステップS10)、1回のキャリブレーション動作を行わせるだけで、2つのエンコーダ10,14による角度の差分とテーブルから制御ゲインkd,keを読み出して、更新することができる(ステップS11)。
 また、本実施形態においては、キャリブレーション動作として、0°~-90°~+90°から0°の順に関節7を動作させることとしたが、これに代えて、キャリブレーション動作は、関節7の可動範囲全域にわたっていてもよいし、可動範囲より小さい範囲であってもよい。また、0°を中心として正負両方向に動作させることとしたが、片側だけ動作させてもよい。
 また、0°~-90°~+90°から0°の順に関節7を動作させるキャリブレーション動作毎に、2つのエンコーダ10,14による角度の差分を算出することとしたが、これに代えて、関節7を所定角度範囲、例えば、10°ずつ動作させ、角度範囲毎に角度の比率を計算して平均値を算出することにより、制御ゲインkeを算出してもよい。
 また、関節7を所定角度範囲(例えば、10°)で往復動作させ、往路においてモータ用エンコーダ14により検出されたモータ13の回転角度と関節用エンコーダ10により検出された関節7の揺動角度との差分Δ1と、復路においてモータ用エンコーダ14により検出されたモータ13の回転角度と関節用エンコーダ10により検出された関節7の揺動角度との差分Δ2と、の差分Δ2-Δ1を算出することにより、角度範囲毎に制御ゲインkdを算出してもよい。
 また、本実施形態においては、キャリブレーション動作として、関節用エンコーダ10の分解能の最小単位角度(例えば、10°)の範囲で関節7を動作させることにしてもよい。
 この場合には、1回の検出により関節用エンコーダ10により検出された関節7の角度と、モータ用エンコーダ14により検出された角度に基づいて推定される関節7の角度との比をそのまま制御ゲインkd,keとして用いることにすればよい。あるいは、上記比を用いてテーブル内の対応する制御ゲインkd,keを検索することにしてもよい。
 このようにすることで、狭い体腔内において処置具2を大きく動作させることができない場合であっても、FF制御部17の伝達関数を適正に調整することができる。
 また、上記各実施形態においては、キャリブレーションモードとオペレーションモードとを切り替えることとしたが、モード切替を行うことなくユーザが操作入力部4を操作して関節7を動作させているオペレーションの途中で、伝達関数を調整することにしてもよい。
 例えば、図10に示されるように、ユーザが処置具2を操作すると(ステップS12)、関節用エンコーダ10が最小単位角度を検出するまで待機される(ステップS13)。
 関節用エンコーダ10が最小単位角度を検出した場合には、即座に関節用エンコーダ10による関節7の揺動角度とモータ用エンコーダ14による推定角度との差分が算出され(ステップS7)、テーブルから制御ゲインkd,keが読み出されてFF制御部17の伝達関数が更新される(ステップS11)。これにより、ユーザがキャリブレーション動作を待つことなく、操作入力部4の操作中に適正な伝達関数の更新が行われる。
 また、操作入力部4の操作中に伝達関数が変化することによる操作感の変化を防止するために、図11に示されるように、テーブルから制御ゲインkd,keを読み出すための差分が算出されても、入力部16から処置具操作を解除する指令が入力されるまで待機し(ステップS14)、その間、伝達関数の変更を行わないことにしてもよい。すなわち、伝達関数は処置具操作が解除されている状態で行われるので、操作途中での操作感の変化を防止することができる。これに代えて、図12に示されるように、関節7の角度が0°となるまで待機し(ステップS15)、0°になったときに伝達関数の更新をしてもよい。
 また、図13に示されるように、関節用エンコーダ10により検出される関節7の揺動角度が最小単位角度(例えば、10°)だけ変化した時点で、関節用エンコーダ10により検出された関節7の揺動角度θ1(例えば、10°)と、モータ用エンコーダ14により検出されたモータ13の回転角度θ2(例えば、12°)との比率(例えば、θ2/θ1=1.2)を制御ゲインkeとして算出して記憶しておき、以降、揺動角度が最小単位角度ずつ変化する毎に、同様の算出方法で制御ゲインkeを算出し、制御ゲインkeを更新してもよい。
 また、関節7の揺動方向を切り返すように揺動させた後に揺動角度が関節用エンコーダ10により検出される関節7の揺動角度が最小単位角度(例えば、10°)だけ変化した時点で、関節用エンコーダ10により検出された関節7の揺動角度(例えば、10°)及び制御ゲインke(例えば、12°)に基づき算出されたモータ用エンコーダ14の推定角度(例えば、12°)とモータ用エンコーダ14により検出された回転角度(例えば、16°)との差分(例えば、4°)を制御ゲインkdとして算出し、制御ゲインkdを更新してもよい。
 また、本実施形態においては、コントローラ5において、伝達関数調整部20がFF制御部17の伝達関数を調整することとしたが、モータ制御部18の伝達関数を調整することにしてもよい。
 また、内視鏡の挿入部6の形状を検出する図示しないセンサを設けておき、挿入部6の形状が変化したことがセンサにより検出されたときに、キャリブレーション動作を実行することにしてもよい。
 また、関節7として回転関節を例示したが、スライド関節等、他の任意の関節に適用してもよい。
 また、アクチュエータとして回転駆動するモータ13を例示したが、これに代えて、直線駆動するモータあるいはシリンダ等の任意のアクチュエータに適用してもよい。
 1 医療用マニピュレータシステム
 4 操作入力部
 5 コントローラ
 6 挿入部
 7 関節
 10 関節用エンコーダ(第1センサ)
 12 ワイヤ
 13 モータ(アクチュエータ)
 14 モータ用エンコーダ(第2センサ)

Claims (5)

  1.  先端部に関節を備える細長い挿入部と、
     該挿入部の前記関節の動作量を検出する第1センサと、
     前記挿入部の基端に配置されワイヤを介して前記関節を駆動するよう動作するアクチュエータと、
     該アクチュエータの動作量を検出する第2センサと、
     ユーザにより操作される操作入力部と、
     前記アクチュエータへの制御信号を生成するコントローラとを備え、
     該コントローラが、該操作入力部の入力値と前記第2センサにより検出された前記アクチュエータの動作量を入力とする伝達関数を介して、前記制御信号を生成するオペレーションモードと、前記第1センサにより検出された前記関節の動作量、および前記第2センサにより検出された前記アクチュエータの動作量に基づいて、前記伝達関数を調整するキャリブレーションモードとを備える医療用マニピュレータシステム。
  2.  前記キャリブレーションモードが、前記関節を所定量だけ動作させたときに、前記第1センサにより検出された前記動作量と、前記第2センサにより検出された前記動作量との差分が所定の閾値以下となるように前記伝達関数を調整する請求項1に記載の医療用マニピュレータシステム。
  3.  前記キャリブレーションモードが、前記関節に所定の往復動作をさせたときに、前記第1センサにより検出された前記動作量と、前記第2センサにより検出された前記動作量との差分が所定の閾値以下となるように前記伝達関数を調整する請求項1または請求項2に記載の医療用マニピュレータシステム。
  4.  前記キャリブレーションモードが、前記関節を所定量だけ複数回動作させたときに、前記第1センサにより検出された前記動作量と、前記第2センサにより検出された前記動作量との差分の平均値が所定の閾値以下となるように前記伝達関数を調整する請求項1に記載の医療用マニピュレータシステム。
  5.  前記コントローラが、前記差分と該差分によって調整された前記伝達関数とを対応づけて記憶するテーブルをさらに備え、
     前記キャリブレーションモードが、前記テーブルを用いて前記伝達関数を調整する請求項2から請求項4のいずれかに記載の医療用マニピュレータシステム。
PCT/JP2017/040537 2017-11-10 2017-11-10 医療用マニピュレータシステムとその作動方法 WO2019092843A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/040537 WO2019092843A1 (ja) 2017-11-10 2017-11-10 医療用マニピュレータシステムとその作動方法
US16/849,068 US11553975B2 (en) 2017-11-10 2020-04-15 Medical manipulator system and method for operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040537 WO2019092843A1 (ja) 2017-11-10 2017-11-10 医療用マニピュレータシステムとその作動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/849,068 Continuation US11553975B2 (en) 2017-11-10 2020-04-15 Medical manipulator system and method for operating same

Publications (1)

Publication Number Publication Date
WO2019092843A1 true WO2019092843A1 (ja) 2019-05-16

Family

ID=66437636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040537 WO2019092843A1 (ja) 2017-11-10 2017-11-10 医療用マニピュレータシステムとその作動方法

Country Status (2)

Country Link
US (1) US11553975B2 (ja)
WO (1) WO2019092843A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113712674B (zh) * 2021-09-13 2023-05-09 上海微创微航机器人有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055927A (ja) * 2004-08-18 2006-03-02 Sharp Corp 関節駆動装置および関節駆動装置の制御方法
WO2011036750A1 (ja) * 2009-09-24 2011-03-31 株式会社 東芝 ロボット制御装置
WO2015129607A1 (ja) * 2014-02-28 2015-09-03 オリンパス株式会社 マニピュレータのキャリブレーション方法、マニピュレータ、およびマニピュレータシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264048A (ja) 2001-03-08 2002-09-18 Hitachi Ltd 被牽引機構の位置決め制御装置
JP4705128B2 (ja) 2008-04-15 2011-06-22 オリンパスメディカルシステムズ株式会社 マニピュレータ
JP6027770B2 (ja) 2011-06-30 2016-11-16 オリンパス株式会社 処置具、マニピュレータ、及び手術支援システム
JP6116426B2 (ja) 2013-07-25 2017-04-19 オリンパス株式会社 マニピュレータシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055927A (ja) * 2004-08-18 2006-03-02 Sharp Corp 関節駆動装置および関節駆動装置の制御方法
WO2011036750A1 (ja) * 2009-09-24 2011-03-31 株式会社 東芝 ロボット制御装置
WO2015129607A1 (ja) * 2014-02-28 2015-09-03 オリンパス株式会社 マニピュレータのキャリブレーション方法、マニピュレータ、およびマニピュレータシステム

Also Published As

Publication number Publication date
US20200237469A1 (en) 2020-07-30
US11553975B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
KR102031232B1 (ko) 로봇시스템
KR102345763B1 (ko) 수술 지원 장치, 그 제어 방법, 기록 매체 및 수술 지원 시스템
US9423869B2 (en) Operation support device
JP3926119B2 (ja) 医療用マニピュレータ
US20140148819A1 (en) Surgical instrument and control method thereof
EP2108329A2 (en) Medical manipulator system
JP6116426B2 (ja) マニピュレータシステム
JP6169049B2 (ja) マニピュレータの制御方法、マニピュレータ、およびマニピュレータシステム
WO2015012241A1 (ja) 医療用システムおよびその制御方法
US10548677B2 (en) Medical manipulator system, control device of medical manipulator system, and control method of medical manipulator system
GB2454017A (en) A control assembly
KR101828452B1 (ko) 서보 제어 장치 및 그 제어 방법
JP6865808B2 (ja) 電動ハンドカート及び手術支援ロボット
KR102199910B1 (ko) 탈부착형 로봇 수술 도구를 이용한 다자유도 복강경 수술 장치
WO2019092843A1 (ja) 医療用マニピュレータシステムとその作動方法
WO2016006623A1 (ja) マニピュレータ
KR101763766B1 (ko) 수술 로봇 시스템 및 그 제어방법
US9833898B2 (en) Positioning control apparatus
US20180169867A1 (en) Manipulator system
KR101772805B1 (ko) 수술 로봇 시스템용 유저 인터페이스 장치
US10507071B2 (en) Hand actuated, articulating device having an electric force enhancement system
US20190090970A1 (en) Manipulator system
JP5636239B2 (ja) 医療用マニピュレータ
US20230270515A1 (en) Robotic surgical system, control device of robotic surgical system, and control method of robotic surgical system
KR20220155798A (ko) 와이어 히스테리시스 보상 기능을 갖는 수술 도구 장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP