WO2019091396A1 - 通信方法及通信设备 - Google Patents

通信方法及通信设备 Download PDF

Info

Publication number
WO2019091396A1
WO2019091396A1 PCT/CN2018/114315 CN2018114315W WO2019091396A1 WO 2019091396 A1 WO2019091396 A1 WO 2019091396A1 CN 2018114315 W CN2018114315 W CN 2018114315W WO 2019091396 A1 WO2019091396 A1 WO 2019091396A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
bearer
qos flow
communication device
scg
Prior art date
Application number
PCT/CN2018/114315
Other languages
English (en)
French (fr)
Inventor
彭文杰
戴明增
仇力炜
王曼
杨旭东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020009214-2A priority Critical patent/BR112020009214A2/pt
Priority to EP18876562.2A priority patent/EP3606276B1/en
Priority to JP2020526011A priority patent/JP7038815B2/ja
Priority to KR1020207015480A priority patent/KR102364595B1/ko
Publication of WO2019091396A1 publication Critical patent/WO2019091396A1/zh
Priority to US16/708,965 priority patent/US11212698B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/20Master-slave selection or change arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a communication method and a communication device.
  • LTE long term evolution
  • NR dual connectivity
  • the transmission of service data between the network device and the terminal is directly configured by the core network device, and is implemented by an evolved packet system (EPS) bearer.
  • EPS evolved packet system
  • the present application describes a communication method and a communication device to enable a terminal to simultaneously perform data transmission with a plurality of network devices based on radio resources.
  • an embodiment of the present application provides a communication method, the method comprising: a first communication device transmitting quality of service QoS flow information to a second communication device, the QoS flow indicated by the QoS flow information corresponding to at least one bearer type; Receiving, by the first communication device, the QoS flow list sent by the second communication device based on the QoS flow information, any one of the QoS flow lists being mapped to one radio bearer; and the first communication device to the second communication device Sending a radio bearer identifier of the QoS flow list.
  • the radio bearer or the DRB for transmitting the QoS flow is determined by the base station, thereby improving the flexible configuration of the base station.
  • the QoS flow information includes the bearer type and all QoS flows corresponding to the bearer type.
  • the radio bearer identity has the same ranking order as the QoS flow list.
  • the method further includes:
  • the first communication device sends a mapping relationship between the radio bearer identifier and the QoS flow list to the second communication device.
  • the QoS flow information further includes at least one of the following:
  • the method further includes:
  • the first communication device receives at least one of the following information sent by the second communication device:
  • the QoS parameters of the radio bearers of the QoS flow list are the QoS parameters of the radio bearers of the QoS flow list.
  • the first communication device is a primary base station
  • the second communication device is a secondary base station
  • the first communication device is a centralized unit CU, and the second communication device is a distributed unit DU.
  • the first communication device is a primary base station
  • the second communication device is a secondary base station
  • the method further includes:
  • the primary base station sends a first GTP-U tunnel endpoint identifier to the secondary base station, where the primary base station receives the downlink data of the SCG split bearer or the SCG-MCG bearer that is offloaded by the secondary base station;
  • the primary base station receives the second GTP-U tunnel endpoint identifier sent by the secondary base station, and the primary base station sends the uplink data of the SCG split bearer or the SCG-MCG bearer to the secondary base station.
  • the method further includes:
  • the primary base station receives the third GTP-U tunnel endpoint identifier sent by the secondary base station, and is used by the primary base station to send, by the primary base station, the primary cell group MCG bearer, the MCG offload split bearer, or the MCG-SCG bearer. At least one of the uplink data converted to at least one of an SCG bearer, an SCG split bearer, or an SCG-MCG bearer; or
  • a fourth GTP-U tunnel endpoint identifier sent by the secondary base station where the primary base station sends at least one of an MCG bearer, an MCG offload split bearer, or an MCG-SCG bearer to the secondary base station.
  • the primary base station sends at least one of an MCG bearer, an MCG offload split bearer, or an MCG-SCG bearer to the secondary base station.
  • Downlink data to at least one of an SCG bearer, an SCG split bearer, or an SCG-MCG bearer Downlink data to at least one of an SCG bearer, an SCG split bearer, or an SCG-MCG bearer.
  • the QoS flows are uplink data or downlink data with the same QoS parameters.
  • an embodiment of the present application provides a first communications apparatus, including:
  • a sending unit configured to send quality of service QoS flow information to the second communication device, where the QoS flow indicated by the QoS flow information corresponds to at least one bearer type;
  • a receiving unit configured to receive a QoS flow list sent by the second communications apparatus based on the QoS flow information, where any one of the QoS flow lists is mapped to one radio bearer;
  • the sending unit is further configured to send the radio bearer identifier of the QoS flow list to the second communications device.
  • the QoS flow information includes the bearer type and all QoS flows corresponding to the bearer type.
  • the radio bearer identity has the same ranking order as the QoS flow list.
  • the sending unit is further configured to send, to the second communication device, a mapping relationship between the radio bearer identifier and the QoS flow list.
  • the QoS flow information further includes at least one of the following:
  • the receiving unit is further configured to receive the following at least one type of information sent by the second communications device:
  • the QoS parameters of the radio bearers of the QoS flow list are the QoS parameters of the radio bearers of the QoS flow list.
  • the first communication device is a primary base station
  • the second communication device is a secondary base station
  • the first communication device is a centralized unit CU, and the second communication device is a distributed unit DU.
  • the first communication device is a primary base station
  • the second communication device is a secondary base station
  • the bearer type is a secondary cell component flow SCG split bearer or an SCG-MCG bearer:
  • the sending unit is further configured to send the first GTP-U tunnel endpoint identifier to the secondary base station, where the primary base station receives the downlink data of the SCG split bearer or the SCG-MCG bearer that is offloaded by the secondary base station; or
  • the receiving unit is further configured to receive the second GTP-U tunnel endpoint identifier sent by the secondary base station, where the primary base station sends the uplink data of the SCG split bearer or the SCG-MCG bearer to the secondary base station.
  • the receiving unit is further configured to:
  • the primary base station Receiving, by the primary base station, the third GTP-U tunnel endpoint identifier sent by the secondary base station, where the primary base station sends at least one of a primary cell group MCG bearer, an MCG offload split bearer, or an MCG-SCG bearer to the secondary base station.
  • the primary base station sends at least one of a primary cell group MCG bearer, an MCG offload split bearer, or an MCG-SCG bearer to the secondary base station.
  • a fourth GTP-U tunnel endpoint identifier where the primary base station sends, to the secondary base station, at least one of an MCG bearer, an MCG offload split bearer, or an MCG-SCG bearer to be converted to an SCG bearer.
  • the QoS flows are uplink data or downlink data with the same QoS parameters.
  • the embodiment of the present invention provides a network side device, which may be a base station or a control node.
  • an embodiment of the present invention provides a communication device having a function of implementing the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the above communication device includes a processor and a transceiver configured to support a base station to perform a corresponding function in the above method.
  • the transceiver is configured to support communication between the base station and the terminal, send information or instructions involved in the foregoing method to the terminal, or receive information or instructions sent by the terminal.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a further aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 1c is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a user plane protocol stack according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the embodiment of the present invention proposes a technical solution based on the communication system described in FIG. 1a to FIG. 1c for improving data transmission in the system system. Effectiveness.
  • FIG. 1a - FIG. 1c at least three communication systems are provided in the embodiments of the present application, which are as follows:
  • Figures 1a-1b are dual-connected to the terminal based on LTE and NR or LTE.
  • the communication system includes at least one NR core network device 10a, one LTE base station 11a, and one NR base station 12a.
  • the LTE base station 11a and the NR base station 12a simultaneously communicate with the terminal 13a.
  • the NR base station 12a is a master node (MN or primary base station), and the LTE base station 11a is a secondary node (SN or secondary base station).
  • MN master node
  • SN secondary node
  • the communication system b includes at least one NR core network device 10b, one LTE base station 11b and one NR base station 12b.
  • the LTE base station 11b and the NR base station 12b simultaneously communicate with the terminal 13b.
  • the LTE base station 11b is a primary base station
  • the NR base station 12b is a secondary base station.
  • the control plane and the user plane connection may be established between the primary base station and the core network device of the foregoing different communication systems.
  • the secondary base station and the core network device of the above different communication systems can establish a user plane connection without establishing a control plane connection. It is to be understood by those skilled in the art that the communication system in which the primary and secondary base stations are both LTE base stations or NR base stations is also applicable to the technical solution of the embodiment of the present invention.
  • the communication system includes at least a centralized unit (CU) 10c and a distributed unit (DU) 11c.
  • the DU 11c described above is in communication with the terminal 12c.
  • some of the functions of the NR base station are deployed in the CU, and the remaining functions are deployed in the DU.
  • the number of DUs may be one or more, and multiple DUs may share one CU to save cost and facilitate network expansion.
  • the severing of the CU and the DU may be performed according to the protocol stack.
  • One possible way is to deploy at least one of the following protocol layers in the CU: Radio Resource Control (RRC) layer, service data.
  • RRC Radio Resource Control
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the CU and the DU can be connected through the F1 interface.
  • the CU represents the NR base station and the NR core network connection.
  • the above CUs and DUs may be located in different physical entities or independently of the NR base station. In other words, the combination of the CU and the DU can implement the function of the NR base station or replace the NR base station.
  • the communication system may be a variety of radio access technology (RAT) systems, such as, for example, code division multiple access (CDMA), time division multiple (time division multiple) Access, TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA) Long term evolution (LTE) and other systems based on LTE evolution.
  • RAT radio access technology
  • CDMA code division multiple access
  • TDMA time division multiple (time division multiple) Access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • SC-FDMA Long term evolution
  • LTE Long term evolution
  • the communication system 100 can also be applied to a future-oriented communication technology, such as the 5th Generation mobile communication (5G), as long as the communication system adopting the new communication technology is applicable to the embodiment of the present invention.
  • 5G 5th Generation mobile communication
  • the communication device is a device deployed in the radio access network to provide a wireless communication function for the terminal.
  • the communication device may include various forms of macro base stations, micro base stations (also referred to as small stations or micro stations), relay nodes (RNs), access points, and the like.
  • the names of devices with the above functions may be different, for example, in NR or 5G, called g-NodeB (g NodeB, gNB) or ng-evolved Node B. (ng-eNB).
  • g-NodeB g NodeB, gNB
  • ng-eNB ng-evolved Node B
  • LTE Long Term Evolution
  • eNB evolved Node B
  • 3G 3rd generation
  • any of the following devices may be collectively referred to as a network side device or a communication device: a base station, a control node connected to the base station, and any network side device having resource configuration or resource scheduling or resource multiplexing decision function.
  • a network side device or a communication device a base station, a control node connected to the base station, and any network side device having resource configuration or resource scheduling or resource multiplexing decision function.
  • the above-mentioned device or network side device that provides a wireless communication function for a terminal is collectively referred to as a communication system.
  • the communication system may further include a control node, where the control node may connect to at least one base station and perform unified scheduling on resources in the system.
  • the control node may allocate resources to the terminal, perform resource reuse decisions, or interfere with coordination.
  • the base station can be a Node B in a UMTS system, and the control node can be a network controller.
  • the base station may be a small base station, and the control node may be a macro base station that covers the small station or the micro base station.
  • the control node may be a wireless network cross-system cooperative controller or the like, and the base station is a base station in the wireless network, which is not limited in the embodiment of the present invention.
  • the terminals involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the terminal may also be referred to as a mobile station (MS), a user equipment (UE), a terminal equipment, and may also include a subscriber unit, a cellular phone, and a cellular phone.
  • Smart phone wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld, laptop computer, cordless phone (cordless phone) or wireless local loop (WLL) station, machine type communication (MTC) terminal, Session Initiation Protocol (SSIP) phone, wireless communication function
  • PDA personal digital assistant
  • MTC machine type communication
  • SSIP Session Initiation Protocol
  • terminals For convenience of description, in all embodiments of the present invention, the above-mentioned devices are collectively referred to as terminals.
  • the bearer of the primary base station includes at least one of the following or any combination: a primary cell group (MCG) bearer and an MCG offload bearer.
  • the bearer of the secondary base station includes at least one of the following or any combination: a secondary cell group (SCG) bearer, and an SCG offload bearer.
  • the data carried by the MCG may be all sent by the primary base station to the terminal, or sent by the terminal to the primary base station.
  • the data carried by the above MCG does not need the assistance of the secondary base station.
  • the data carried by the SCG may be sent by the secondary base station to the terminal or sent by the terminal to the secondary base station.
  • the data carried by the above SCG does not require the assistance of the primary base station.
  • the primary base station determines that the bearer type of the QoS flow delivered by the core network is the MCG offload bearer, and the primary base station performs offloading, and sends the data of the partial QoS flow to the secondary base station, and the secondary base station sends the data to the terminal, and the remaining QoS flow
  • the data is sent by the primary base station to the terminal.
  • the data part of the MCG offloading is directly sent by the terminal to the primary base station, and the remaining part is sent to the primary base station through the secondary base station.
  • the primary base station determines that the bearer type of the QoS flow delivered by the core network is the SCG offload bearer, and the secondary base station performs offloading, and sends the data of the part of the QoS flow to the primary base station, and the primary base station sends the data to the terminal, and the remaining QoS flow
  • the data is sent by the secondary base station to the terminal.
  • the data part of the SCG offloading is directly sent by the terminal to the secondary base station, and the remaining part is sent to the secondary base station by the primary base station.
  • another data that carries the QoS flow is sent from the core network to the primary base station, and then all the traffic is offloaded to the secondary base station by the primary base station, and the secondary base station sends the data to the terminal.
  • the uplink is sent directly from the terminal to the secondary base station, and then sent by the secondary base station to the primary base station (hereinafter, the description is convenient, and the bearer type is called MCG-SCG bearer).
  • the MCG-SCG bearer can be considered as one type carried by the primary base station.
  • another bearer type is that the QoS flow data is sent from the core network to the secondary base station, and the secondary base station is offloaded to the primary base station, and is sent to the terminal by the primary base station, and the corresponding uplink is directly sent from the terminal to the terminal.
  • the primary base station is further sent by the primary base station to the secondary base station (hereinafter, the description is convenient, and the bearer type is referred to as an SCG-MCG bearer).
  • the SCG-MCG bearer can be considered as one of the bearer carried by the secondary base station.
  • the bearers corresponding to the above six bearer types may be collectively referred to as a radio bearer or a data radio bearer (DRB).
  • the primary and secondary base stations may each determine a radio bearer corresponding to a different bearer type.
  • the primary base station may determine a radio bearer corresponding to the MCG, the MCG split, or the MCG-SCG
  • the secondary base station may determine a radio bearer corresponding to the SCG, the SCG split, or the SCG-MCG.
  • a quality of service (QoS) flow consists of data streams or data packets with the same or similar QoS parameters.
  • the QoS flow can be understood as uplink data and/or downlink data having the same QoS parameters.
  • a core network device maps an internet protocol (IP) packet or IP flow to a QoS flow, and the IP packets or IP flows in the QoS flow may have the same or similar QoS parameters.
  • the base station maps at least one QoS flow in the same packet data unit (PDU) session into one DRB, and the data in the DRB can use the same QoS parameter when transmitting between the base station and the terminal.
  • IP internet protocol
  • PDU packet data unit
  • the above PDU session may be a link between the terminal and the communication network to provide a packet data unit link service.
  • the PDU packet data unit
  • the PDU includes multiple types of data units, for example, may include an IP packet, an untrusted PDU or an Ethernet frame.
  • the communication between the terminal and the base station can be based on the wireless air interface, and is divided into a user plane and a control plane according to the purpose.
  • the user base protocol stack of the primary and secondary base stations shown in FIG. 2 may include: a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, and a wireless chain. Radio link control (RLC) layer, media access control (MAC) layer.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC Radio link control
  • MAC media access control
  • the SDAP layer may correspond to one or more PDCP entities, or may be split into multiple SDAP entities to respectively correspond to the same number of PDCP entities.
  • the SDAP entity may have any one or combination of functions: transmitting user plane data; mapping uplink QoS flows to corresponding DRBs for uplink and downlink data; adding QoS flow identifiers for uplink and downlink data; and reflecting QoS flows for uplink SDAP PDUs Mapping relationship of DRB.
  • the RLC entity and the MAC layer can be connected by a logical channel.
  • the MAC layer provides data transmission on a logical channel, and different logical channels are defined according to data of different service types.
  • the main functions of the PDCP layer are header compression and decompression of user plane data, security functions such as encryption and decryption of user and control planes, integrity protection and verification of control plane data.
  • the core network device first maps an IP packet or an IP flow into an EPS bearer. Among them, multiple IP packets can form an IP stream.
  • the core network device Based on the EPS bearer, the core network device establishes an S1 bearer on the S1 interface between the base station, and the base station establishes a data radio bearer (DRB) between the base station and the terminal.
  • DRB data radio bearer
  • the EPS bearer, the S1 bearer, the DRB, and the E-RAB have mapping relationships, which are one-to-one correspondence.
  • the core network device transmits the data carried by the S1bearer to the base station, and the base station transmits the data carried by the DRB to the terminal. Therefore, the core network uniformly allocates EPS bearers, resulting in no diversity of resource allocation between the base station and the terminal, and reducing the effectiveness of data transmission between the base station and the terminal.
  • the Ultra Reliable Low Latency Communications (URLLC) technology is introduced, which has strict requirements on data transmission delay and transmission reliability, for example, the URLLC service data delay is less than 0.5 ms. Or the URLLC service data transmission success rate is not less than 99.999%.
  • the terminal can correspond to the foregoing multiple uplink services, the bearer type required for the different services between the terminal and the base station also needs to be implemented.
  • the service may be an Internet of Things service, a voice service, an MBB service, a URLLC service, or the like.
  • uplink data that is, data transmitted by the terminal to the base station
  • downlink data that is, data transmitted by the base station to the terminal.
  • the base station may determine the radio bearer or the DRB for transmitting the QoS flow, thereby improving the flexible configuration of the base station. For example, the base station may determine the number of DRBs or determine the mapping relationship between the QoS flows and the DRBs.
  • FIG. 3 is a schematic flowchart of a communication method provided by the present application.
  • the following first communication device is the primary base station, and the second communication device is the secondary base station;
  • the first communication device is a CU, and the second communication device is a DU.
  • the above-mentioned primary and secondary base stations, CUs, and DUs may all be chips, or may be implemented by a chip, which is not limited in this embodiment of the present application.
  • the method includes:
  • the first communications device sends QoS flow information to the second communications device.
  • the second communication device sends the QoS flow list or the number of radio bearers to the first communication device.
  • the first communications device sends, to the first communications device, a radio bearer identifier corresponding to the QoS flow list or a radio bearer identifier corresponding to the number of radio bearers.
  • the QoS flow information indicates a QoS flow, which may be uplink data or downlink data having the same QoS parameters.
  • the QoS flow indicated by the QoS flow information corresponds to at least one bearer type.
  • the foregoing QoS flow information may include at least one or any combination of the following: a QoS flow identifier, a QoS flow parameter of the QoS flow, a PDU session identifier to which the QoS flow belongs, or hierarchical slicing information.
  • the first communication device transmits a QoS flow identifier to the second communication device for the second communication device to determine the QoS flow corresponding to the QoS flow identifier.
  • the QoS flow parameter may be used for the same or similar processing of the service data, such as a scheduling policy, a queuing management policy, a rate adjustment policy, and an RLC configuration, for the service data mapped to the same QoS flow.
  • the QoS flow parameter may include at least one or any combination of the following: QoS indication, allocation and reservation priority, resource type, priority level, packet delay budget, packet error rate, average window, downlink maximum stream bit rate, and maximum uplink. Stream bit rate, downlink guaranteed bit rate, uplink guaranteed bit rate, notification control, and transmission QoS attributes.
  • the PDU session to which the above QoS flow belongs can be understood as a number of QoS flows that can belong to one PDU session.
  • At least one PDU session is established between the core network device and the base station, and each PDU session includes at least one QoS flow.
  • the base station maps the foregoing QoS flows into radio bearers, and each radio bearer corresponds to at least one QoS flow.
  • the bearer type corresponding to the QoS flow may be determined by the primary base station.
  • the primary eNB maps the QoS flows to at least one of the MCG-SCG bearer, the MCG bearer, and the MCG split bearer, and maps the remaining QoS flows to at least one of the SCG-MCG, the SCG bearer, and the SCG split bearer.
  • the foregoing mapping can be understood as: mapping the QoS flows carried by the MCG-SCG bearer, the MCG bearer, and the MCG split, and the QoS flows mapped to the SCG-MCG bearer, the SCG bearer, and the SCG split bearer may belong to the same PDU session, or may be Belong to different PDU sessions.
  • the primary and secondary base stations respectively perform mapping of QoS flows and radio bearers for different bearer types.
  • the technical solution of the embodiment of the present invention can improve the degree of freedom of the base station decision and the flexibility of the configuration.
  • the CU can be uniformly managed, the QoS flow is mapped to the radio bearer, and the terminal communicates with the terminal through at least one DU.
  • MCG split bearer In the DC scenario of the embodiment of the present invention, the MCG split bearer may be offloaded to the secondary base station by the PDCP layer of the primary base station to perform downlink transmission to the terminal, or directly transmitted by the primary base station to the terminal. Similarly, the terminal may perform uplink transmission of the MCG split bearer to the primary base station based on the secondary base station; or the terminal directly transmits to the primary base station.
  • the primary base station may send at least one or any combination of the following: a mapping relationship between the QoS flow and the radio bearer, a PDU session identifier, and a QoS flow parameter of the radio bearer. Wherein at least one QoS flow can be mapped to one radio bearer.
  • the SCG-MCG bearer, the SCG bearer, or the SCG split bearer In the DC scenario of the embodiment of the present invention, when the bearer type of the QoS flow is an SCG bearer, the service data corresponding to the QoS flow may communicate with the terminal via the secondary base station. When the bearer type of the QoS flow is an SCG split bearer, the service data corresponding to the QoS flow may be communicated by the secondary base station and the terminal, or the secondary base station cooperates with the primary base station to communicate with the terminal; when the bearer type of the QoS flow is SCG-MCG bearer The service data corresponding to the QoS flow may all be communicated by the secondary base station in cooperation with the primary base station and the terminal. The foregoing service data may include uplink and downlink transmissions between the terminal and the network device.
  • the primary base station may further send the bearer type of the QoS flow to the secondary base station.
  • the primary base station may send all bearer types and all QoS flows corresponding to the bearer type to the secondary base station.
  • the primary base station sends the SCG bearer type to the secondary base station and associates all QoS flows of the type, SCG split bearers and associates all QoS flows of the type, or SCG-MCG bearer types and associates all QoS flows of the type.
  • the foregoing association manner may be in the form of a list.
  • the QoS flows in the list 1 are all identified as SCG bearers, and the QoS flows in the list 2 are all identified as SCG split bearers, and the QoS flows in the list 3 are all identified as SCG-MCG bearers.
  • the header of the list 1 is identified as an SCG bearer, and all QoS flows in the list can be considered as SCG bearers;
  • the header of the list 2 is an SCG split bearer, and all QoS flows in the list can be regarded as SCG splits. Bearer;
  • the header of Listing 3 is the SCG-MCG bearer, and all QoS flows in the list can be considered as SCG-MCG bearers.
  • the secondary eNB may map the QoS flows to different QoS flow lists according to different bearer types sent by the primary base station, thereby improving The communication efficiency of the secondary base station.
  • the secondary base station maps QoS flows having the same bearer type to at least one QoS flow list, and QoS flows having different bearer types to different QoS flow lists.
  • the list sent by the primary base station or the QoS flow list sent by the secondary base station may be presented in different forms, including but not limited to a list, a bitmap, an index, etc., as long as the receiver can be received.
  • the manner of receiving or identifying the above QoS flows is within the protection scope of the embodiments of the present application.
  • the CU may not need to send the bearer type of the QoS flow to the DU.
  • the primary base station may send a request message (SN addition request) or a secondary station addition request message before the secondary base station.
  • the secondary base station transmits the bearer type of the QoS flow information and/or the QoS flow described above.
  • the CU sends the QoS flow information to the DU through a UE context setup request.
  • the request may be applied to the process of initial accessing the network, attaching, tracking area update, random access, etc., which is not limited by the present invention.
  • Method 1 The second communication device sends a QoS flow list to the first communication device.
  • the second communication device maps the corresponding QoS flow to the at least one QoS flow list according to the received QoS flow information, and any one of the QoS flow lists is mapped to one radio bearer.
  • the same QoS flow list may include QoS flows with the same bearer type.
  • the second communication device transmits the first, second, and third QoS flow lists to the first communication device.
  • the radio bearers of all QoS flows in the first QoS flow list received by the first communication device have the same bearer type, and the radio bearers of all QoS flows in the second QoS flow list have the same bearer type, and the third QoS flow list
  • the radio bearers of all QoS flows have the same bearer type.
  • all QoS flows in any one of the QoS flow lists may be uniformly configured by the second communication device as any one of an SCG bearer, an SCG split bearer, or an SCG-MCG bearer.
  • all QoS flows in the first QoS flow list are SCG bearers
  • all QoS flows in the second QoS flow list are SCG split bearers
  • all QoS flows in the third QoS flow list are SCG-MCG bearers. Therefore, the first communication device can determine, according to the received QoS flow list, a radio bearer that allocates a pair of QoS flow lists to the second base station.
  • the first communication device maps to three radio bearers one by one according to the received first to third QoS flow lists.
  • any QoS flow list configured by the second communication device is in the QoS flow list, and the QoS flows in the same QoS flow list have the same bearer type, and different QoS flow lists may have the same or different.
  • the type of bearer For example, the bearer types of the first to third QoS flow lists may be different in the QoS flow list, may be the same, or all the same.
  • any QoS flow list may be mapped to any radio bearer.
  • the first QoS flow list is one
  • the second QoS flow list is one
  • the second QoS flow list is mapped to one radio bearer.
  • the first QoS flow list is at least two
  • the at least two first QoS flow lists are mapped to at least two radio bearers of the same number
  • the second QoS flow list is at least two
  • at least two first QoS The flow list is mapped to at least two radio bearers of the same number.
  • Manner 2 The second communication device sends the number of radio bearers to the first communication device.
  • the number of radio bearers may correspond to the number of QoS flow lists determined by the second communications device.
  • the radio bearers are the same as the number of QoS flow lists, and are used to respectively carry service data corresponding to the QoS flows in different QoS flow lists.
  • the radio bearer corresponding to the number of radio bearers may have a bearer type in the QoS flow list.
  • the first communications device can directly configure the same number of radio bearers for the first communications device according to the obtained number of radio bearers, thereby simplifying the operation and configuration of the first communications device.
  • the secondary base station may send the foregoing QoS flow list or the number of radio bearers to the primary base station by using a secondary base station update request (SN modification request);
  • SN modification request For the cell of the base station or the secondary base station, the secondary base station sends the foregoing QoS flow list or the number of radio bearers to the primary base station by adding a request confirmation (SN addition request ack) or a message before the secondary base station increases the request acknowledgement.
  • the DU sends the foregoing QoS flow list or the number of radio bearers to the CU by using a UE context setup response.
  • the second communication device may further send at least one or any combination of the following to the first communication device:
  • the bearer type of the radio bearer corresponding to the QoS flow list or
  • the second communication device may also reject the QoS flow sent by the first communication device, and the QoS flow may be sent to the first communication device via the QoS flow identification or other indication information.
  • the information of the QoS flow that can be identified by the first communication device is within the protection scope of the embodiments of the present invention.
  • the foregoing second communications device may determine whether to update the QoS parameter of the QoS flow to the wireless corresponding to the QoS flow list according to the QoS parameter of the QoS flow, the current load status of the second communication device, or the current air interface status of the second communication device.
  • Method 1 Based on the scenario in which the second communication device sends the QoS flow list to the first communication device, taking a plurality of first QoS flow lists as an example, the following two possibilities are listed:
  • the radio bearer identifier sent by the first communications device to the second communications device has the same sorting order as the first QoS stream list.
  • the first communication device may map the first QoS flow list to the radio bearer or the one-to-one allocation radio bearer identifier, that is, the first QoS flow list has the same number as the corresponding radio bearer identifier.
  • the second communication device may identify the first QoS flow list corresponding to the radio bearer identifier sent by the first communications device, so that the QoS flows in the first QoS flow list are all passed through the wireless.
  • the radio bearer corresponding to the bearer identifier is transmitted. This method saves communication resources between the first and second communication devices and improves system efficiency.
  • the first communication device may send a mapping relationship between the radio bearer identifier and the first QoS flow list to the second communication device.
  • the first communication device sends, to the second communication device, a plurality of radio bearer identifiers that are the same as the first QoS flow list, and a mapping relationship between the radio bearer identifiers and the first QoS flow list, where the second communications device identifies the received
  • the radio bearer corresponding to the radio bearer identifier, and the first QoS flow list corresponding to the radio bearer may send a mapping relationship between the radio bearer identifier and the first QoS flow list to the second communication device.
  • mapping manner of the second QoS flow list and the radio bearer or the radio bearer identifier allocation manner may refer to the mapping manner of the first QoS flow list and the radio bearer, and details are not described herein again.
  • the foregoing first and second oS flow lists may respectively correspond to the same or different bearer types.
  • Manner 2 A scheme for transmitting a number of radio bearer identifiers to the first communications device based on the second communications device.
  • the first communication device provides a corresponding radio bearer identification list.
  • the data transmission of the bearer may be performed by using a general packet radio service (GPRS) tunneling protocol (GTP) between the primary and secondary base stations in the DC scenario.
  • the data transmission includes data pre-transmission performed between the primary and secondary base stations in the bearer type change process, and data shunting in at least one of the MCG-SCG bearer, the SCG-MCG bearer, the MCG offload bearer, and the SCG offload bearer in the normal transmission process. And gathering.
  • GPRS general packet radio service
  • GTP general packet radio service tunneling protocol
  • any one of the MCG-SCG bearer, the MCG bearer, and the MCG split bearer is adjusted to any one of the SCG-MCG bearer, the SCG bearer, or the SCG split bearer.
  • the primary base station needs to transmit the downlink data to the secondary base station before the new or unsuccessfully transmitted downlink data, and the secondary base station sends the downlink data to the terminal.
  • the primary base station needs to transmit the data that has not been sent to the upper layer received from the terminal to the secondary station, and the secondary station sends the data to the upper layer. The following describes the uplink and downlink transmissions:
  • the secondary base station When the secondary base station establishes the SCG-MCG bearer, the SCG bearer, the SCG offload bearer, or the other PDCP entity in the bearer of the secondary base station, the secondary base station needs to allocate the GTP-U tunnel end identifier for the data pre-transmission (tunnel). Endpoint identifier, TEID). For the uplink data and the downlink data, the secondary base station allocates different TEIDs for distinguishing between uplink and downlink transmissions. Based on the TEID described above, the primary base station transmits data that needs to be forwarded to the secondary base station.
  • the GTP-U TEID used for data pre-transmission may be sent to the primary base station when the secondary base station sends the QoS flow list or the data radio bearer identifier to the primary base station; or the secondary base station sends the secondary base station to the primary base station to allocate the secondary base station to the terminal.
  • the configuration information is sent to the primary base station.
  • the secondary base station maps at least one QoS flow of the foregoing bearer to the radio bearer.
  • the following describes the uplink and downlink data corresponding to the radio bearer:
  • the secondary base station may allocate a GTP-U TEID to the corresponding bearer and send it to the primary base station, where the secondary base station receives the service data sent by the terminal via the primary base station.
  • the GTP-U TEID may be sent to the primary base station when the secondary base station sends the QoS flow list or the data radio bearer identifier to the primary base station; or when the secondary base station sends the configuration information allocated by the secondary base station to the terminal to the primary base station. Send to the primary base station.
  • the secondary base station when the cell of the secondary base station or the secondary base station is added, the secondary base station carries the TEID in the message before the SN addition request ack or the secondary base station adds the request acknowledgement message; when the cell of the secondary base station or the secondary base station is updated, the secondary base station is supplemented
  • the TEID is carried in the SN modification required or the SN modification request ack.
  • the primary base station may allocate a GTP-U TEID to the corresponding bearer and send it to the secondary base station, where the secondary base station sends the service data to the terminal via the primary base station.
  • the GTP-U TEID may be sent to the secondary base station when the primary base station sends the radio bearer identifier to the secondary base station.
  • the primary base station carries the TEID in the SN configuration complete or SN addition request; when the cell of the secondary base station or the secondary base station is updated, the primary base station updates in the secondary base station.
  • the above TEID is carried in the request (SN modification request).
  • the secondary base station generates at least one QoS flow list according to different bearer types based on the QoS flow sent by the primary base station.
  • the QoS flows in each QoS flow list have the same bearer type, and different QoS flow lists may have the same or different bearer types.
  • the secondary base station maps the QoS flow list with each bearer type being the SCG split bearer to the radio bearer, and each radio bearer corresponds to one TEID.
  • the secondary base station maps at least one of the foregoing bearers to the radio bearer, and the following is wireless.
  • the secondary base station may allocate a GTP-U TEID to the corresponding bearer and send it to the primary base station, where the secondary base station receives the service data sent by the terminal via the primary base station.
  • the GTP-U TEID may be sent to the primary base station when the secondary base station sends the QoS flow list or the data radio bearer identifier to the primary base station; or when the secondary base station sends the configuration information allocated by the secondary base station to the terminal to the primary base station. Send to the primary base station.
  • the secondary base station when the cell of the secondary base station or the secondary base station is added, the secondary base station carries the TEID in a message before the SN addition request ack or the SN addition request ack message; when the cell of the secondary base station or the secondary base station is updated, the secondary base station is at the secondary base station The above TEID is carried in the SN modification required or the SN modification request ack.
  • the primary base station may allocate a GTP-U TEID to the corresponding bearer and send it to the secondary base station, where the secondary base station sends the service data to the terminal via the primary base station.
  • the GTP-U TEID may be sent to the secondary base station when the primary base station sends the radio bearer identifier to the secondary base station.
  • the primary base station carries the TEID in the message before the SN configuration complete or the SN addition request or the SN addition request message; when updating the cell of the secondary base station or the secondary base station
  • the primary base station carries the TEID in the SN modification request.
  • the secondary base station generates at least one QoS flow list according to different bearer types based on the QoS flow sent by the primary base station.
  • the QoS flows in each QoS flow list have the same bearer type.
  • the secondary base station maps the QoS flow list with each bearer type being the SCG split bearer to the radio bearer, and each radio bearer corresponds to one TEID.
  • the following describes the uplink and downlink data corresponding to the radio bearer transmitted between the CU and the DU in the CU-DU scenario:
  • the DU Based on the downlink data, the DU sends a TEID corresponding to the radio bearer identifier to the CU, where the CU transmits the service data to the terminal via the DU.
  • the TEID may be sent to the CU when the DU sends the QoS flow list or the data radio bearer identifier to the CU, or may be sent to the CU when the DU sends the configuration information allocated by the DU to the CU.
  • the TEID may be carried by the DU to the CU in the UE context setup response, or may be carried by the DU to the CU in the UE context setup complete after the DU receives the UE context setup ack sent by the CU. send.
  • the CU Based on the uplink data, the CU sends a TEID corresponding to the radio bearer identifier to the DU, and is used by the terminal to transmit the service data to the CU via the DU.
  • the GTP-U TEID may be sent to the DU when the CU sends the radio bearer identifier to the DU.
  • the TEID can be carried in the UE context setup ack by the CU to the DU.
  • the CU may send a QoS flow identifier to the DU based on the GTP-U tunnel, for example, the CU adds a QoS flow identifier to the GTP-U header of the GTP-U data packet sent to the DU, and is used for the DU. Obtain the QoS flow information corresponding to the foregoing data packet.
  • the CU can add a QoS flow identifier on the GTP-U header regardless of whether the mapping of the QoS flow list and the radio bearer is determined by the CU or the DU.
  • FIG. 4 is a schematic diagram showing the hardware structure of a communication device 40 according to an embodiment of the present application.
  • the communication device 40 includes at least one processor 401, a communication bus 402, a memory 403, and at least one communication interface 404.
  • the processor 401 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 402 can include a path for communicating information between the components described above.
  • Communication interface 404 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 403 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 403 is used to store application code for executing the solution of the present application, and is controlled by the processor 401 for execution.
  • the processor 401 is configured to execute the application code stored in the memory 403, thereby implementing the communication method provided by the above embodiment of the present application.
  • the processor 401 may perform the processing related function in the communication method provided by the foregoing embodiment of the present application, and the communication interface 404 is responsible for communicating with other devices or the communication network. This example does not specifically limit this.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 40 may include multiple processors, such as processor 401 and processor 408 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions. It will be appreciated that FIG. 4 only shows a simplified design of the communication device 40. In practical applications, the communication device can include any number of input devices, output devices, processors, memories, communication interfaces, and any number of communication units can be provided separately or in combination to provide the above functions.
  • communication device 40 may also include an output device 405 and an input device 406.
  • Output device 405 is in communication with processor 401 and can display information in a variety of ways.
  • the output device 405 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 406 is in communication with processor 401 and can accept user input in a variety of ways.
  • input device 406 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the communication device 40 provided by the embodiment of the present application may be a chip, a base station, a CU, or a DU, or a device having a similar structure in FIG.
  • the embodiment of the present application does not limit the type of the communication device 40.
  • FIG. 5 is a schematic structural diagram of a first communications apparatus according to an embodiment of the present application.
  • the terms or terms appearing below may be understood in conjunction with the above description; the steps or actions presented below may also be understood in conjunction with the above description.
  • the first communication device 500 can include a transmitting unit 510 and a receiving unit 530.
  • the transmitting unit 510 and the receiving unit 530 described above may be respectively connected to an antenna.
  • the sending unit 510 and the receiving unit 530 can be configured to support sending and receiving information between the first communication device and the second communication device.
  • the above-described transmitting unit 510 and receiving unit 530 may be configured to perform processing performed by the first communication device in the communication method described in the above embodiments.
  • the sending unit 510 is configured to send the QoS QoS flow information to the second communications device, and is further configured to send, to the second communications device, the radio bearer identifier of the QoS flow list or the radio bearer identifier of the corresponding radio bearer number.
  • the receiving unit 530 is configured to receive a QoS flow list or a number of radio bearers sent by the second communications device.
  • the sending unit 510 is further configured to send a mapping relationship between the radio bearer identifier and the QoS flow list to the second communications device, or to send the radio bearer identifier that has the same sorting order as the QoS stream list to the second communications device.
  • the receiving unit 530 is further configured to receive at least one of the following information sent by the second communications device: a bearer type of the radio bearer of the QoS flow list; and a QoS parameter of the radio bearer of the QoS flow list.
  • the first communication device is the primary base station and the second communication device is the secondary base station:
  • the sending unit 510 is further configured to send the first GTP-U tunnel endpoint identifier to the secondary base station, where the primary base station receives the downlink data of the SCG split carried by the secondary base station; or
  • the receiving unit 530 is further configured to receive the second GTP-U tunnel endpoint identifier sent by the secondary base station, where the primary base station sends the uplink data carried by the SCG split to the secondary base station; or
  • the receiving unit 530 is further configured to receive a third GTP-U tunnel endpoint identifier sent by the secondary base station, where the primary base station sends at least one of the primary cell group MCG bearer or the MCG offload split bearer to the SCG bearer or the SCG. Uplink data carried by the split; or
  • the receiving unit 530 is further configured to receive a fourth GTP-U tunnel endpoint identifier sent by the secondary base station, where the primary base station sends, to the secondary base station, at least one of the MCG bearer or the MCG offload split bearer to be converted to the SCG bearer or the SCG split bearer. Downstream data.
  • FIG. 6 is a schematic structural diagram of a second communication apparatus according to an embodiment of the present application.
  • the second communication device 600 can include a transmitting unit 610 and a receiving unit 630.
  • the transmitting unit 610 and the receiving unit 630 may be respectively connected to an antenna.
  • the sending unit 610 and the receiving unit 630 can be configured to support sending and receiving information between the second communication device and the first communication device.
  • the above-described transmitting unit 610 and receiving unit 630 may be configured to perform processing performed by the first communication device in the communication method described in the above embodiments.
  • the receiving unit 630 is configured to receive the QoS flow information sent by the first communications device, and may be further configured to receive the radio bearer identifier of the corresponding QoS flow list sent by the first communications device or the radio bearer identifier of the corresponding radio bearer number.
  • the sending unit 510 is configured to send the QoS flow list or the number of radio bearers to the first communications device based on the QoS flow information.
  • the receiving unit 630 is further configured to receive a mapping relationship between the radio bearer identifier sent by the first communications device and the QoS flow list.
  • the sending unit 610 is further configured to send, to the first communications device, at least one of the following information: a radio bearer type of the QoS flow list; and a QoS parameter of the radio bearer of the QoS flow list.
  • the first communication device is the primary base station and the second communication device is the secondary base station:
  • the receiving unit 630 is further configured to receive, by the primary base station, the first GTP-U tunnel endpoint identifier, where the primary base station receives the downlink data of the SCG split carried by the secondary base station; or
  • the sending unit 610 is further configured to send, by the primary base station, a second GTP-U tunnel endpoint identifier, where the primary base station sends the uplink data carried by the SCG split to the secondary base station; or
  • the sending unit 610 is further configured to send, by the primary base station, a third GTP-U tunnel endpoint identifier, where the primary base station sends at least one of the primary cell group MCG bearer or the MCG offload split bearer to the SCG bearer or the SCG split to the secondary base station. Carrying upstream data; or
  • the sending unit 610 is further configured to send, by the primary base station, a fourth GTP-U tunnel endpoint identifier, where the primary base station sends, to the secondary base station, a downlink that is converted by the at least one of the MCG bearer or the MCG split split bearer to the SCG bearer or the SCG split bearer. data.
  • the first communication device or the second communication device described above is presented in a form that divides each functional module or unit in an integrated manner.
  • a “module” or “unit” herein may refer to an Application-Specific Integrated Circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other A device that can provide the above functions.
  • ASIC Application-Specific Integrated Circuit
  • the communication device 500 or 600 can take the form shown in FIG. 4, respectively.
  • the function/implementation process of the transmitting unit 510/receiving unit 530 in FIG. 5 can be implemented by the processor 401 and the memory 403 of FIG.
  • the function/implementation process of the sending unit 510/receiving unit 530 in FIG. 5 may be implemented by the processor 401 of FIG. 4 or by the communication interface 404 of FIG. 4, which is used by the embodiment of the present application. No restrictions are imposed.
  • the function/implementation process of the transmitting unit 610/receiving unit 630 in FIG. 6 can be implemented by the processor 401 and the memory 403 of FIG. Specifically, it can be executed by calling the application code stored in the memory 403 by the processor 401, which is not limited in this embodiment.
  • the function/implementation process of the sending unit 610/receiving unit 630 in FIG. 6 may be implemented by the processor 401 of FIG. 4 or by the communication interface 404 of FIG. 4, which is used by the embodiment of the present application. No restrictions are imposed.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor, and is configured to support a communication device to implement the foregoing communication method.
  • the chip system also includes a memory.
  • the memory is used to store program instructions and data necessary for the communication device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices. This embodiment of the present application does not specifically limit this.
  • the controller/processor for performing the above-mentioned base station, terminal, base station or terminal of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and field programmable. Gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a terminal or base station.
  • the processor and the storage medium may also be present in the terminal or base station as discrete components.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the communication method provided by the embodiment of the present invention is introduced from the perspective of the interaction between the network elements and the network elements.
  • each network element such as a terminal, a communication device, etc.
  • each network element includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及通信装置。该方法包括:第一通信装置向第二通信装置发送服务质量QoS流信息,所述QoS流信息指示的QoS流对应至少一个承载类型;所述第一通信装置接收所述第二通信装置基于所述QoS流信息发送的QoS流列表,任意一个所述QoS流列表均映射为一个无线承载;和所述第一通信装置向所述第二通信装置发送所述QoS流列表的无线承载标识。本申请实施例由基站自行决定用于传输上述QoS流的无线承载或DRB,从而提升基站的灵活配置。

Description

通信方法及通信设备 技术领域
本发明涉及无线通信技术领域,尤其涉及一种通信方法及通信设备。
背景技术
随着无线通信技术的发展,衍生出面向未来的通信系统,如第五代移动通信(the 5th Generation mobile communication,5G)系统或新无线(new radio,NR)系统。以长期演进(long term evolution,LTE)LTE和NR做双连接(dual connectivity,DC)为例,终端可以同时基于LTE和NR进行数据传输。
在现有技术中,网络设备与终端间的业务数据的传输直接由核心网设备配置,通过演进型分组系统(evolved packet system,EPS)承载得以实现。如何基于新的通信系统,实现终端同时与多个网络设备基于无线资源进行数据传输,是业界企待解决的问题。
发明内容
本申请描述了一种通信方法及通信设备,以实现终端同时与多个网络设备基于无线资源进行数据传输。
一方面,本申请的实施例提供一种通信方法,该方法包括第一通信装置向第二通信装置发送服务质量QoS流信息,所述QoS流信息指示的QoS流对应至少一个承载类型;所述第一通信装置接收所述第二通信装置基于所述QoS流信息发送的QoS流列表,任意一个所述QoS流列表映射为一个无线承载;和所述第一通信装置向所述第二通信装置发送所述QoS流列表的无线承载标识。该方法中,由基站自行决定用于传输上述QoS流的无线承载或DRB,从而提升基站的灵活配置。
在一个可能的设计中,所述QoS流信息包括所述承载类型及对应所述承载类型的所有QoS流。
在一个可能的设计中,所述无线承载标识具有与所述QoS流列表相同的排列顺序;或
所述方法还包括:
所述第一通信装置向所述第二通信装置发送所述无线承载标识与所述QoS流列表的映射关系。
在一个可能的设计中,所述QoS流信息还包括以下至少一种:
QoS流标识、QoS流参数、QoS流对应的分组数据单元会话标识PUD session ID和分层slicing信息。
在一个可能的设计中,所述方法还包括:
所述第一通信装置接收所述第二通信装置发送的以下至少一种信息:
所述QoS流列表的无线承载的承载类型;
所述QoS流列表的无线承载的QoS参数。
在一个可能的设计中,所述第一通信装置为主基站,所述第二通信装置为辅基站;或,
所述第一通信装置为集中式单元CU,所述第二通信装置为分布式单元DU。
在一个可能的设计中,所述第一通信装置为主基站,所述第二通信装置为辅基站:
当所述承载类型为辅小区组分流SCG split承载或SCG-MCG承载时,所述方法还包括:
所述主基站向所述辅基站发送第一GTP-U隧道端点标识,用于所述主基站接收所述辅基站分流的所述SCG split承载或SCG-MCG承载的下行数据;
所述主基站接收所述辅基站发送的第二GTP-U隧道端点标识,用于所述主基站向所述辅基站发送所述SCG split承载或SCG-MCG承载的上行数据。
在一个可能的设计中,所述方法还包括:
所述主基站接收所述辅基站发送的第三GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由主小区组MCG承载、MCG分流split承载、或MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、或SCG-MCG承载中的至少一个的上行数据;或
所述主基站接收所述辅基站发送的第四GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由MCG承载、MCG分流split承载、或MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、或SCG-MCG承载中的至少一个的下行数据。
在一个可能的设计中,所述QoS流为具有相同QoS参数的上行数据或下行数据。
另一方面,本申请的实施例提供一种第一通信装置,包括:
发送单元,用于向第二通信装置发送服务质量QoS流信息,所述QoS流信息指示的QoS流对应至少一个承载类型;
接收单元,用于接收所述第二通信装置基于所述QoS流信息发送的QoS流列表,任意一个所述QoS流列表映射为一个无线承载;和
所述发送单元,还用于向所述第二通信装置发送所述QoS流列表的无线承载标识。
在一个可能的设计中,所述QoS流信息包括所述承载类型及对应所述承载类型的所有QoS流。
在一个可能的设计中,所述无线承载标识具有与所述QoS流列表相同的排列顺序;或
所述发送单元还用于向所述第二通信装置发送所述无线承载标识与所述QoS流列表的映射关系。
在一个可能的设计中,所述QoS流信息还包括以下至少一种:
QoS流标识、QoS流参数、QoS流对应的分组数据单元会话标识PUD session ID和分层slicing信息。
在一个可能的设计中,所述接收单元还用于接收所述第二通信装置发送的以下至少一种信息:
所述QoS流列表的无线承载的承载类型;
所述QoS流列表的无线承载的QoS参数。
在一个可能的设计中,所述第一通信装置为主基站,所述第二通信装置为辅基站;或,
所述第一通信装置为集中式单元CU,所述第二通信装置为分布式单元DU。
在一个可能的设计中,所述第一通信装置为主基站,所述第二通信装置为辅基站,且所述承载类型为辅小区组分流SCG split承载或SCG-MCG承载时:
所述发送单元还用于向所述辅基站发送第一GTP-U隧道端点标识,用于所述主基站接收所述辅基站分流的所述SCG split承载或SCG-MCG承载的下行数据;或
所述接收单元还用于接收所述辅基站发送的第二GTP-U隧道端点标识,用于所述主基站向所述辅基站发送所述SCG split承载或SCG-MCG承载的上行数据。
在一个可能的设计中,当所述承载类型还包括主小区组MCG承载、MCG分流split承载、辅小区组SCG承载中的至少一个时,所述接收单元还用于:
接收所述辅基站发送的第三GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由主小区组MCG承载、MCG分流split承载、或MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、或SCG-MCG承载中的至少一个的上行数据;或
接收所述辅基站发送的第四GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由MCG承载、MCG分流split承载、或MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、或SCG-MCG承载中的至少一个的下行数据。
在一个可能的设计中,所述QoS流为具有相同QoS参数的上行数据或下行数据。
另一方面,本发明实施例提供了网络侧设备,该网络侧设备可以是一种基站,也可以是一种控制节点。
另一方面,本发明实施例提供了一种通信装置,该装置具有实现上述方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,上述通信装置的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述收发器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者指令,或接收终端所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的再一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1a为本申请实施例提供的一种通信系统示意图;
图1b为本申请实施例提供的一种通信系统示意图;
图1c为本申请实施例提供的一种通信系统示意图;
图2为本申请实施例提供的一种用户面协议栈的示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整 地描述。
为了解决现有技术中无法针对不同通信系统同时与终端进行数据传输的问题,本发明实施例基于图1a-图1c所述的通信系统提出了一种技术方案,用于提高系统系统中数据传输的有效性。
如图1a-图1c所示,本申请实施例至少提供了3种通信系统,详述如下:
图1a-图1b基于LTE与NR或LTE与终端做双连接。为简化描述,以下均以LTE与NR双连接为例进行描述。例如以图1a为例,该通信系统至少包括一个NR核心网设备10a、一个LTE基站11a、和一个NR基站12a。上述LTE基站11a、NR基站12a同时与终端13a通信。其中,NR基站12a为主基站(master node,MN或primary base station),LTE基站11a为辅基站(secondary node,SN或secondary base station)。以图1b为例,该通信系统b至少包括一个NR核心网设备10b,一个LTE基站11b和一个NR基站12b。上述LTE基站11b、NR基站12b同时与终端13b通信。其中,LTE基站11b为主基站,NR基站12b为辅基站。上述不同通信系统的主基站与核心网设备之间可以为终端建立控制面和用户面连接。上述不同通信系统的辅基站与核心网设备可以建立用户面连接,不建立控制面连接。本领域的技术人员可以理解,上述主、辅基站均为LTE基站或均为NR基站的通信系统同样适用于本发明实施例的技术方案。
如图1c所示,该通信系统至少包括集中式单元(centralized unit,CU)10c和分布式单元(distributed,DU)11c。上述DU11c与终端12c通信。例如,将NR基站的部分功能部署在CU,将剩余功能部署在DU。此时,DU数量可以为一个或多个,多个DU可以共用一个CU,以节省成本,易于网络扩展。具体而言,CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将以下协议层中的至少一个部署在CU:无线资源控制(Radio Resource Control,RRC)层、服务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层。其余协议层中的至少一个部署在DU:无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access Control,MAC)层或、物理层。CU和DU之间可以通过F1接口连接。CU代表NR基站和NR核心网连接。本领域的技术人员可以理解,上述CU和DU可以位于不同物理实体或独立于NR基站。换言之,CU和DU结合,可以得以实现NR基站的功能或取代NR基站。
本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
在本发明实施例中,所述通信系统可以为各种无线接入技术(radio access technology,RAT)系统,譬如例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、长期演进(long term evolution,LTE)和基于LTE演进的其它系统等。例如,所述通信系统100还可以适用于面向未来的通信技术,如第五代移动通信(the 5th Generation mobile communication,5G),只要采用新通信技术的通信系统,都适用本发明实施例提供的技术方案。
本发明实施例中,通信装置是一种部署在无线接入网中用以为终端提供无线通信功能的装置。该通信装置可以包括各种形式的宏基站,微基站(也称为小站或微站),中继节点(relay node,RN),接入点(access point)等。在采用不同的无线接入技术的系统中,具备上述功能的设备的名称可能会有所不同,例如,在NR或5G中,称为g节点B(g NodeB,gNB)或ng演进的节点B(ng-eNB)。在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB)。在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。本发明实施例中,以下任一设备可以统称为网络侧设备或通信装置:基站、与基站连接的控制节点、具有资源配置或资源调度或资源复用决策功能的任意网络侧的设备。为方便描述,本发明所有实施例中,上述为终端提供无线通信功能的装置或网络侧设备统称为通信系统。
本发明实施例中,通信系统还可以包括控制节点,该控制节点可以连接至少一个基站,并对系统中的资源进行统一调度。例如,该控制节点可以给终端配置资源,进行资源复用决策,或者干扰协调等。例如,该基站可以为UMTS系统中的Node B,该控制节点可以为网络控制器。又例如,该基站可以为小站为微基站,则该控制节点可以为覆盖小站或微基站的宏基站。再例如,该控制节点可以为无线网络跨制式协同控制器等,该基站为无线网络中的基站,在本发明实施例中不作限定说明。
本发明实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端也可以称为移动台(mobile station,简称MS),用户设备(user equipment,UE),终端设备(terminal equipment),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、具有无线通信功能的计算设备或连接到无线调制解调器的处理设备、车载设备、可穿戴设备等。为方便描述,本发明所有实施例中,上面提到的设备统称为终端。
为了便于理解本申请,在介绍本申请提供的通信方法前,首先对本申请涉及的概念做简要介绍。
承载:以图1a的通信系统a为例,如图2所示,主基站的承载至少包括以下任一一种或任意组合:主小区组(master cell group,MCG)承载,MCG分流承载。辅基站的承载至少包括以下任一一种或任意组合:辅小区组(second cell group,SCG)承载,SCG分流承载。其中,MCG承载的数据可以全部由主基站发送给终端,或由终端发送给主基站。上述MCG承载的数据不需要辅基站的协助。SCG承载的数据可以全部由辅基站发送给终端,或由终端发送给辅基站。上述SCG承载的数据不需要主基站的协助。就下行而言,主基站确定核心网下发的QoS流的承载类型为MCG分流承载,主基站进行分流,将部分QoS流的数据发送到辅基站,由辅基站向终端发送,剩余QoS流的数据由主基站向终端发送。就上行而言,MCG分流承载的数据部分由终端直接发送给主基站,剩余部分通过辅基站发送给主基站。就下行而言,主基站确定核心网下发的QoS流的承载类型为SCG分流 承载,辅基站进行分流,将部分QoS流的数据发送到主基站,由主基站向终端发送,剩余QoS流的数据由辅基站向终端发送。就上行而言,SCG分流承载的数据部分由终端直接发送给辅基站,剩余部分通过主基站发送给辅基站。可选的,本发明实施例中,另外可能会存在一个承载类型是QoS流的数据从核心网下发到主基站,然后全部经由主基站分流到辅基站,由辅基站向终端发送,对应的上行则是从终端直接发送给辅基站,再由辅基站发送给主基站(以下为描述方便,将该承载类型称为MCG-SCG承载)。该MCG-SCG承载可以认为是主基站承载的一种。可选的,另外还可能存在一种承载类型是QoS流数据从核心网下发到辅基站,由辅基站分流到主基站,通过主基站向终端发送,对应的上行则是从终端直接发送给主基站,再由主基站发送给辅基站(以下为描述方便,将该承载类型称为SCG-MCG承载)。该SCG-MCG承载可以认为是辅基站承载的一种。上述6种承载类型所对应的承载均可以统称为无线承载或数据无线承载(data radio bearer,DRB)。在本实施例中,主、辅基站可以各自确定不同承载类型所对应的无线承载。例如,主基站可以确定MCG、MCG split或MCG-SCG对应的无线承载,辅基站可以确定SCG、SCG split或SCG-MCG对应的无线承载。
服务质量(quality of service,QoS)流由具有相同或相似QoS参数的数据流或数据包组成。基于基站与终端间的通信,该QoS流可以理解为具有相同QoS参数的上行数据和/或下行数据。例如,核心网设备将因特网协议(internet prototol,IP)包或IP流映射为QoS流,该QoS流中的IP包或IP流可以具有相同或相似的QoS参数。随后,基站将同一个分组数据单元(packet data unit,PDU)会话(session)中的至少一个QoS流映射成一个DRB,该DRB中的数据在基站与终端之间进行传输时可以使用相同QoS参数。QoS参数可用于降低数据传输的时延和错误率。上述PDU session可以是终端和通信网络之间的链接以提供分组数据单元链接服务。该PDU(packet data unit)包含多种类型的数据单元,例如可包含IP包,不可信的分组数据单元(unstructured PDU)或Ethernet frames(以太网帧)等。
协议栈:终端与基站通信可以基于无线空口,根据用途分为用户面和控制面。如图2所示的主、辅基站用户面协议栈,可以依次包括:服务数据适配协议(service data adaptation protocol,SDAP)层,分组数据汇聚协议(packet data convergence protocol,PDCP)层,无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层。以基站为例,该SDAP层可以对应一个或多个PDCP实体,也可以拆分成多个SDAP实体以分别对应数量相同的PDCP实体。该SDAP实体可以具有如下任一或功能组合:传输用户面数据;就上下行数据而言,将QoS流映射到相应的DRB;添加上下行数据的QoS流标识;向上行SDAP PDU反映QoS流和DRB的映射关系。RLC实体与MAC层之间可以由逻辑信道连通。又如,MAC层提供逻辑信道上的数据传输,根据不同业务类型的数据定义了不同逻辑信道。PDCP层的主要功能为用户面数据的包头压缩和解压缩,安全性功能如用户和控制面的加密和解密、控制面数据的完整性保护和验证。
现有技术中,核心网设备首先将IP包或IP流映射成EPS承载。其中,多个IP包可以组成一个IP流。基于该EPS承载,核心网设备在与基站间的S1接口上建立S1承载,基站在与终端间建立数据无线承载(data radio bearer,DRB)。换言之,EPS承载、S1承载、DRB、E-RAB具有映射关系,为一一对应。随后,核心网设备向基站传递的是由S1bearer承载的数据,基站向终端传递的是由DRB承载的数据。故,核心网统一分配EPS承 载,导致基站与终端间的资源分配没有多样性,降低了基站与终端间数据传输的有效性
在NR网络中,引入了超高可靠性低时延通信(Ultra Reliable Low Latency Communications,URLLC)技术,其对数据传输时延及传输可靠性有严格要求,例如URLLC业务数据时延小于0.5ms,或URLLC业务数据传输成功率不小于99.999%。由于终端可对应有上述多种上行业务,终端与基站间针对不同业务时所需要的承载类型同样需要实现多样性。在本发明实施例中,该业务可以为物联网业务、语音业务、MBB业务、URLLC业务等等。为方便描述,本发明所有实施例中,上面提到的业务或业务数据统称为上行数据即终端向基站传输的数据,或者下行数据即基站向终端传输的数据。
在本发明实施例中,基于核心网设备发送的QoS流或核心网设备接收的QoS流,可以由基站自行决定用于传输上述QoS流的无线承载或DRB,从而提升基站的灵活配置。例如,基站可以决定DRB的个数、或决定QoS流与DRB的映射关系。
图3是本申请提供的一种通信方法的示意性流程图。其中,在DC场景中,以下第一通信装置为主基站,第二通信装置为辅基站;在CU-DU场景中,第一通信装置为CU,第二通信装置为DU。上述主、辅基站、CU、DU均可为芯片,或由芯片实现,本申请实施例对此不做限定。该方法包括:
301,第一通信装置向第二通信装置发送QoS流信息。
302,第二通信装置向第一通信装置发送QoS流列表或无线承载数量。
303,第一通信装置向第一通信装置发送对应QoS流列表的无线承载标识或对应无线承载数量的无线承载标识。
在301中,该QoS流信息指示QoS流,该QoS流可以为具有相同QoS参数的上行数据或下行数据。该QoS流信息指示的QoS流对应至少一个承载类型。上述QoS流信息可以包括以下至少一种或任意组合:QoS流标识,QoS流的QoS流参数,QoS流所属的PDU会话标识、或分层slicing信息。例如,第一通信装置向第二通信装置发送QoS流标识,用于第二通信装置确定该QoS流标识所对应的QoS流。
上述QoS流参数可以针对映射到同一个QoS流的业务数据,用于基站或终端对该业务数据进行相同或相似处理,如调度策略、排队管理策略、速率调整策略、RLC配置等。该QoS流参数可以包括以下至少一种或任意组合:QoS指示、分配和保留优先级、资源类型、优先级水平、包时延预算、包错误率、平均窗、下行最大流比特率、上行最大流比特率、下行保证比特率、上行保证比特率、通知控制、发射QoS属性。
上述QoS流所属的PDU会话可以理解为若干个QoS流可以属于一个PDU会话。核心网设备与基站之间建立至少一个PDU会话,每个PDU会话包括至少一个QoS流。随后,基站会将上述QoS流映射成无线承载,每个无线承载至少对应一个QoS流。
针对DC场景中,可以由主基站确定QoS流所对应的承载类型。例如,主基站将部分QoS流映射为MCG-SCG承载、MCG承载、MCG split承载中的至少一个,将剩余QoS流映射为SCG-MCG、SCG承载、SCG split承载中的至少一个。上述映射可以理解为:映射为MCG-SCG承载、MCG承载、MCG split承载的QoS流,和映射为SCG-MCG承载、SCG承载、SCG split承载的QoS流可以是属于同一个PDU会话,也可以属于不同的PDU会话。随后,主、辅基站分别针对不同承载类型进行QoS流与无线承载的映射。相对现有技术中核心网设备直接进行QoS流与无线承载间的映射,本发明实施例的技术方案可以提升基 站决策的自由度和配置的灵活性。
针对CU-DU场景,可以由CU统一管理,将QoS流映射至无线承载,并通过至少一个DU与终端通信。
以下针对不同承载类型,就DC场景和CU-DU场景进行详细描述:
1、MCG split承载:在本发明实施例的DC场景中,MCG split承载可以由主基站的PDCP层分流至辅基站,向终端进行下行传输;或者由主基站直接向终端进行传输。同样,终端可以基于辅基站向主基站进行MCG split承载的上行传输;或者由终端直接向主基站进行传输。主基站可以向辅基站发送以下至少一种或任意组合:QoS流与无线承载的映射关系、PDU session标识、无线承载的QoS流参数。其中,至少一个QoS流可以映射至一个无线承载。
2、SCG-MCG承载、SCG承载、或SCG split承载:在本发明实施例的DC场景中,当QoS流的承载类型为SCG承载时,该QoS流对应的业务数据可以经由辅基站与终端通信;当QoS流的承载类型为SCG split承载时,该QoS流对应的业务数据可以由辅基站与终端通信,或辅基站协同主基站与终端通信;当QoS流的承载类型为SCG-MCG承载时,该QoS流对应的业务数据可以全部由辅基站协同主基站与终端通信。上述业务数据可以包括终端与网络设备间的上下行传输。
可选的,在DC场景中,主基站还可以向辅基站发送上述QoS流的承载类型。在本发明实施例中,主基站可以向辅基站发送承载类型及对应该承载类型的所有QoS流。例如,主基站向辅基站发送SCG承载类型并关联该类型所有的QoS流、SCG split承载并关联该类型所有的QoS流、或SCG-MCG承载类型并关联该类型所有的QoS流。上述关联方式可以通过列表形式,如列表1中的QoS流均标识为SCG承载,列表2中的QoS流均标识为SCG split承载,列表3中的QoS流均标识为SCG-MCG承载。又如,列表1的表头标识为SCG承载,该列表中所有的QoS流均可认为是SCG承载;列表2的表头为SCG split承载,该列表中所有的QoS流均可认为是SCG split承载;列表3的表头为SCG-MCG承载,该列表中所有的QoS流均可认为是SCG-MCG承载。当上述QoS流对应不同无线承载如SCG承载、SCG split承载、或SCG-MCG承载时,辅基站可以根据主基站发送的不同承载类型,将上述QoS流分别映射至不同的QoS流列表,从而提升辅基站的通信效率。例如,辅基站将具有相同承载类型的QoS流映射至至少一个QoS流列表,将具有不同承载类型的QoS流映射至不同的QoS流列表。本领域的技术人员可以理解,上述主基站发送的列表或辅基站发送的QoS流列表,可以通过不同形式呈现,包括但不限于清单、比特地图(bitmap)、索引等,只要是能让接收方接收或识别上述QoS流的方式,均在本申请实施例保护范围之内。
可选的,在CU-DU场景中,因为CU需协同DU与终端进行通信,不涉及CU单独与终端通信的方案,CU可以无需向DU发送上述QoS流的承载类型。
在本发明实施例的DC场景中,当需要新增辅基站或辅基站的小区与终端通信时,主基站可以通过辅基站增加请求(SN addition request)或辅站增加请求消息之前的请求消息向辅基站发送上述QoS流信息和/或QoS流的承载类型。
在本发明实施例的CU-DU场景中,CU通过用户设备上下文建立请求(UE context setup request)向DU发送上述QoS流信息。该请求可以适用于终端初始接入网络、附着、跟踪区域更新、随机接入等过程,本发明对此不做限定。
针对302,以下描述两种不同的实现方式:
方式一、第二通信装置向第一通信装置发送QoS流列表。
在该方式中,第二通信装置根据接收到的QoS流信息,将对应的QoS流映射至至少一个QoS流列表,任意一个QoS流列表映射为一个无线承载。或者,同一QoS流列表可以包括具有相同承载类型的QoS流。例如,第二通信装置向第一通信装置发送第一、第二和第三QoS流列表。第一通信装置接收的第一QoS流列表中所有QoS流的无线承载具有同一种承载类型,第二QoS流列表中所有QoS流的无线承载具有同一种承载类型,以及第三QoS流列表中的所有QoS流的无线承载具有同一种承载类型。上述第一至第三QoS流列表中,任意一个QoS流列表中的所有QoS流均可以统一由第二通信装置配置为SCG承载、SCG split承载、或SCG-MCG承载中的任意一种。例如,第一QoS流列表中的所有QoS流为SCG承载,第二QoS流列表中的所有QoS流为SCG split承载,第三QoS流列表中的所有QoS流为SCG-MCG承载。因此,第一通信装置可以根据接收到的QoS流列表,确定向第二基站分配一一对应该QoS流列表的无线承载。例如,第一通信装置根据收到的第一至第三QoS流列表,分别一一映射至三个无线承载。本领域的技术人员可以理解,第二通信装置配置的任意QoS流列表,以QoS流列表为单位,同一个QoS流列表内的QoS流具有相同的承载类型,不同QoS流列表可以具有相同或不同的承载类型。例如,第一至第三QoS流列表的承载类型,以QoS流列表为单位,可以均不相同、两两相同、或全部相同。
在本发明实施例中,任一QoS流列表可以映射为任一无线承载。具体而言,当第一QoS流列表为一个时,第一QoS流列表映射为一个无线承载;当第二QoS流列表为一个时,第二QoS流列表映射为一个无线承载。当第一QoS流列表为至少两个时,该至少两个第一QoS流列表映射为数量相同的至少两个无线承载;当第二QoS流列表为至少两个时,至少两个第一QoS流列表映射为数量相同的至少两个无线承载。
方式二、第二通信装置向第一通信装置发送无线承载数量。
在该方式中,上述无线承载数量可以对应第二通信装置确定的QoS流列表数量。换言之,该无线承载与QoS流列表的数量相同,用于分别承载不同QoS流列表中的QoS流所对应的业务数据。具体而言,上述无线承载数量所对应的无线承载可以具有上述QoS流列表中的承载类型。该方式中,第一通信装置可以根据获取的无线承载数量,直接为第一通信装置配置相同数量的无线承载,从而简化了第一通信装置的操作和配置。
可选的,针对DC场景的更新辅基站或辅基站的小区,辅基站可以通过辅基站更新请求(SN modification request)向主基站发送上述QoS流列表或无线承载数量;针对DC场景的新增辅基站或辅基站的小区,辅基站通过辅基站增加请求确认(SN addition request ack)或辅基站增加请求确认之前的消息向主基站发送上述QoS流列表或无线承载数量。
可选的,在CU-DU场景中,DU通过用户设备上下文建立响应(UE context setup response)向CU发送上述QoS流列表或无线承载数量。
在本发明实施例中,第二通信装置还可以向第一通信装置发送以下至少一种或任意组合:
QoS流列表对应的无线承载的QoS参数,该参数由第二通信装置确定或更新;
QoS流列表对应的无线承载的承载类型;或
第二通信装置还可以拒绝第一通信装置发送的QoS流,该QoS流可以通过QoS流标识 或其他指示信息发送至第一通信装置。本领域的技术人员可以理解,只要让第一通信装置可以识别出的QoS流的信息均在本发明实施例保护范围之内。
可选的,上述第二通信装置可以根据QoS流的QoS参数、第二通信装置当前负载情况、或第二通信装置当前空口状况,确定是否将QoS流的QoS参数更新为QoS流列表对应的无线承载的QoS参数。
在303中,以下描述第一通信装置向第二通信装置发送无线承载标识的不同实现方式:
方式一、基于第二通信装置向第一通信装置发送QoS流列表的方案,以多个第一QoS流列表为例,以下列举两种可能:
1、第一通信装置向第二通信装置发送的无线承载标识具有与第一QoS流列表相同的排列顺序。例如,第一通信装置可以将该等第一QoS流列表一一映射至无线承载或一一分配无线承载标识,即第一QoS流列表与对应的无线承载标识具有相同数量。基于与QoS流列表相同的排列顺序,第二通信装置可以识别第一通信装置发送的无线承载标识所对应的第一QoS流列表,从而将该第一QoS流列表中的QoS流均通过该无线承载标识对应的无线承载进行传输。该方式节省了第一、第二通信装置间的通信资源,提升了系统效率。
2、第一通信装置可以向第二通信装置发送无线承载标识与第一QoS流列表的映射关系。第一通信装置向第二通信装置发送与第一QoS流列表数量相同的多个无线承载标识,以及该等无线承载标识与第一QoS流列表的映射关系,用于第二通信装置识别收到的无线承载标识所对应的无线承载,以及该无线承载具体对应的第一QoS流列表。
上述两种情况下,第二QoS流列表与无线承载的映射方式或无线承载标识分配方式可参考第一QoS流列表与无线承载的映射方式,此处不再赘述。如前文所述,上述第一、第二oS流列表可以分别对应相同或不同的承载类型。
方式二、基于第二通信装置向第一通信装置发送无线承载标识数量的方案。
第二通信装置反馈的是需要的无线承载标识数量时,第一通信装置提供相应的无线承载标识列表。在本发明实施例中,DC场景中主、辅基站之间可以采用通用分组无线业务(general packet radio service,GPRS)隧道协议(GPRS tunneling protocol,GTP)进行承载的数据传输。该数据传输包括在承载类型变化过程中主辅基站之间进行的数据前传,和MCG-SCG承载、SCG-MCG承载、MCG分流承载、SCG分流承载中的至少一个在正常传输过程中的数据分流和汇聚。
数据前传以MCG-SCG承载、MCG承载、MCG split承载中的任意一个调整为SCG-MCG承载、SCG承载或SCG分流承载中的任意一个为例。就下行数据而言,主基站需要将新接收或未成功发送下行数据前传到辅基站,由辅站向终端发送。针对上行数据,主基站需要将从终端收到的还未向上层发送的数据前传到辅站,由辅站向上层发送。以下就上下行传输进行描述:
当辅基站根据主基站请求,建立SCG-MCG承载、SCG承载、SCG分流承载,或其他PDCP实体在辅基站的承载时,需要为上述承载分配用于数据前传的GTP-U隧道端点标识(tunnel endpoint identifier,TEID)。其中,针对上行数据和下行数据,辅基站会分配不同的TEID,用于区分上行或下行传输。基于上述TEID,主基站向辅基站发送需要前传的数据。上述用于数据前传的GTP-U TEID可以在辅基站向主基站发送QoS流列表或数据无 线承载标识数量时,一并发送给主基站;或者在辅基站向主基站发送辅基站为终端分配的配置信息时一并发送给主基站。
在本发明实施例中,针对DC中的SCG split承载、SCG-MCG承载、PDCP实体在辅基站,或RLC实体在主基站的承载,辅基站将至少一个上述承载的QoS流映射至无线承载,以下就无线承载对应的上下行数据进行描述:
基于上行数据,辅基站可以为相应的承载分配一个GTP-U TEID并发送给主基站,用于辅基站接收终端经由主基站发送的业务数据。上述GTP-U TEID可以在辅基站向主基站发送QoS流列表或数据无线承载标识数量时,一并发送给主基站;或者在辅基站向主基站发送辅基站为终端分配的配置信息时一并发送给主基站。例如,当增加辅基站或辅基站的小区时,辅基站在SN addition request ack或辅基站增加请求确认消息之前的消息中携带上述TEID;当更新辅基站或辅基站的小区时,辅基站在辅基站更新需求(SN modification required)或辅基站更新请求确认(SN modification request ack)中携带上述TEID。
基于下行数据,主基站可以为相应的承载分配一个GTP-U TEID并发送给辅基站,用于辅基站经由主基站向终端发送业务数据。上述GTP-U TEID可以在主基站向辅基站发送无线承载标识时,一并发送给辅基站。例如,当增加辅基站或辅基站的小区时,主基站在SN配置完成(SN configuration complete)或SN addition request中携带上述TEID;当更新辅基站或辅基站的小区时,主基站在辅基站更新请求(SN modification request)中携带上述TEID。具体而言,辅基站基于主基站发送的QoS流,根据不同承载类型生成至少一个QoS流列表。其中,每一个QoS流列表中的QoS流均具有相同的承载类型,不同QoS流列表可以具有相同或不同的承载类型。就SCG split承载而言,辅基站将每个承载类型为SCG split承载的QoS流列表映射为无线承载,且每个无线承载对应一个TEID。
在本发明实施例中,针对DC中的MCG split承载、MCG-SCG承载、PDCP实体在辅基站,或RLC实体在主基站的承载,辅基站将至少一个上述承载映射至无线承载,以下就无线承载对应的上下行数据进行描述:
基于下行数据,辅基站可以为相应的承载分配一个GTP-U TEID并发送给主基站,用于辅基站接收终端经由主基站发送的业务数据。上述GTP-U TEID可以在辅基站向主基站发送QoS流列表或数据无线承载标识数量时,一并发送给主基站;或者在辅基站向主基站发送辅基站为终端分配的配置信息时一并发送给主基站。例如,当增加辅基站或辅基站的小区时,辅基站在SN addition request ack或SN addition request ack消息之前的消息中携带上述TEID;当更新辅基站或辅基站的小区时,辅基站在辅基站更新需求(SN modification required)或辅基站更新请求确认(SN modification request ack)中携带上述TEID。
基于上行数据,主基站可以为相应的承载分配一个GTP-U TEID并发送给辅基站,用于辅基站经由主基站向终端发送业务数据。上述GTP-U TEID可以在主基站向辅基站发送无线承载标识时,一并发送给辅基站。例如,当增加辅基站或辅基站的小区时,主基站在SN配置完成(SN configuration complete)或SN addition request或SN addition request消息之前的消息中携带上述TEID;当更新辅基站或辅基站的小区时,主基站在辅基站更新请求(SN modification request)中携带上述TEID。具体而言,辅基站基于主基站发送的QoS 流,根据不同承载类型生成至少一个QoS流列表。其中,每一个QoS流列表中的QoS流均具有相同的承载类型。就SCG split承载而言,辅基站将每个承载类型为SCG split承载的QoS流列表映射为无线承载,且每个无线承载对应一个TEID。
在本发明实施例中,以下针对CU-DU场景中CU与DU间传输无线承载对应的上下行数据进行描述:
基于下行数据,DU向CU发送无线承载标识对应的TEID,用于CU经由DU向终端传输业务数据。上述TEID可以在DU向CU发送QoS流列表或数据无线承载标识数量时,一并发送给CU;或者在DU向CU发送DU为终端分配的配置信息时一并发送给CU。例如,该TEID可以携带在UE context setup response中由DU向CU发送,或当DU接收到CU发送的UE context setup ack后,携带在用户设备上下文建立完成(UE context setup complete)中由DU向CU发送。
基于上行数据,CU向DU发送无线承载标识对应的TEID,用于终端经由DU向CU传输业务数据。上述GTP-U TEID可以在CU向DU发送无线承载标识时,一并发送给DU。该TEID可以携带在UE context setup ack中由CU向DU发送。
在本发明实施例中,CU基于GTP-U隧道可以向DU发送QoS流标识,例如CU在向DU发送的GTP-U数据包的GTP-U头(header)中增加QoS流标识,用于DU获取上述数据包所对应的QoS流信息。本领域的技术人员可以理解,不论QoS流列表与无线承载的映射由CU或DU确定,CU均可在GTP-U头上增加QoS流标识。
如图4所示,为本申请实施例提供的一种通信装置40的硬件结构示意图。该通信装置40包括至少一个处理器401,通信总线402,存储器403以及至少一个通信接口404。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的应用程序代码,并由处理器401来控制执行。处理器401用于执行存储器403中存储的应用程序代码,从而实现本申请上述实施例提供的通信方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请上述实施例提供的通信方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置40可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。可以理解的是,图4仅仅示出了通信装置40的简化设计。在实际应用中,该通信装置可以包含任意数量的输入设备,输出设备,处理器,存储器,通信接口,该任意数量的通信单元可以单独提供或以组合方式提供上述功能。
在具体实现中,作为一种实施例,通信装置40还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
此外,如上所述,本申请实施例提供的通信装置40可以为芯片、基站、CU或DU,或者有图4中类似结构的设备。本申请实施例不限定通信装置40的类型。
图5为本申请实施例提供的第一通信装置的结构示意图。以下出现的术语或名词,可以结合上文的描述理解其含义或功能;以下出现的步骤或动作,同样可以结合上文的描述理解其具体细节或实现方式。如图5所示,该第一通信装置500可以包括:发送单元510和接收单元530。上述发送单元510和接收单元530可以分别与天线连接。
发送单元510和接收单元530可以用于支持第一通信装置与第二通信装置之间收发信息。或者,上述发送单元510和接收单元530可以用于执行上述实施例描述的通信方法中由第一通信装置进行的处理。
例如,上述发送单元510用于向第二通信装置发送服务质量QoS流信息,还用于向第二通信装置发送QoS流列表的无线承载标识或对应无线承载数量的无线承载标识。上述接收单元530用于接收第二通信装置发送的QoS流列表或无线承载数量。
可选的,上述发送单元510还用于向第二通信装置发送无线承载标识与QoS流列表的映射关系,或用于向第二通信装置发送与QoS流列表具有相同排列顺序的无线承载标识。
可选的,上述接收单元530还用于接收第二通信装置发送的以下至少一种信息:QoS流列表的无线承载的承载类型;QoS流列表的无线承载的QoS参数。
可选的,当第一通信装置为主基站,第二通信装置为辅基站时:
上述发送单元510还用于向辅基站发送第一GTP-U隧道端点标识,用于主基站接收辅基站分流的所述SCG split承载的下行数据;或
上述接收单元530还用于接收辅基站发送的第二GTP-U隧道端点标识,用于主基站 向辅基站发送SCG split承载的上行数据;或
上述接收单元530还用于接收辅基站发送的第三GTP-U隧道端点标识,用于主基站向辅基站发送由主小区组MCG承载或MCG分流split承载中的至少一个转换至SCG承载或SCG split承载的上行数据;或
上述接收单元530还用于接收辅基站发送的第四GTP-U隧道端点标识,用于主基站向辅基站发送由MCG承载或MCG分流split承载中的至少一个转换至SCG承载或SCG split承载的下行数据。
图6为本申请实施例提供的第二通信装置的结构示意图。以下出现的术语或名词,可以结合上文的描述理解其含义或功能;以下出现的步骤或动作,同样可以结合上文的描述理解其具体细节或实现方式。如图6所示,该第二通信装置600可以包括:发送单元610和接收单元630。上述发送单元610和接收单元630可以分别与天线连接。
发送单元610和接收单元630可以用于支持第二通信装置与第一通信装置之间收发信息。或者,上述发送单元610和接收单元630可以用于执行上述实施例描述的通信方法中由第一通信装置进行的处理。
例如,上述接收单元630用于接收第一通信装置发送的服务质量QoS流信息,还可以用于接收第一通信装置发送的对应QoS流列表的无线承载标识或对应无线承载数量的无线承载标识。上述发送单元510用于基于QoS流信息向第一通信装置发送QoS流列表或无线承载数量。
可选的,上述接收单元630还用于接收第一通信装置发送的无线承载标识与QoS流列表的映射关系。
可选的,上述发送单元610还用于向第一通信装置发送以下至少一种信息:QoS流列表的无线承载类型;QoS流列表的无线承载的QoS参数。
可选的,当第一通信装置为主基站,第二通信装置为辅基站时:
上述接收单元630还用于接收主基站发送的第一GTP-U隧道端点标识,用于主基站接收辅基站分流的所述SCG split承载的下行数据;或
上述发送单元610还用于向主基站发送第二GTP-U隧道端点标识,用于主基站向辅基站发送SCG split承载的上行数据;或
上述发送单元610还用于向主基站发送第三GTP-U隧道端点标识,用于主基站向辅基站发送由主小区组MCG承载或MCG分流split承载中的至少一个转换至SCG承载或SCG split承载的上行数据;或
上述发送单元610还用于向主基站发送第四GTP-U隧道端点标识,用于主基站向辅基站发送由MCG承载或MCG分流split承载中的至少一个转换至SCG承载或SCG split承载的下行数据。
在本实施例中,上述第一通信装置或第二通信装置以采用集成的方式划分各个功能模块或单元的形式来呈现。这里的“模块”或“单元”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到通信装置500或600可以分别采用图4所示的形式。比如,图5中的发送单元510/接收单元530的功能/实现过程可以通过图4的处理器401 和存储器403来实现。具体的,可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,可选的,图5中的发送单元510/接收单元530的功能/实现过程可以通过图4的处理器401来实现,或通过图4的通信接口404来实现,本申请实施例对此不作任何限制。又如,图6中的发送单元610/接收单元630的功能/实现过程可以通过图4的处理器401和存储器403来实现。具体的,可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,可选的,图6中的发送单元610/接收单元630的功能/实现过程可以通过图4的处理器401来实现,或通过图4的通信接口404来实现,本申请实施例对此不作任何限制。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置实现上述的通信方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
用于执行本发明上述基站、终端、基站或终端的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或基站中。当然,处理器和存储介质也可以作为分立组件存在于终端或基站中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上述本发明提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本发明实施例提供的通信方法进行了介绍。可以理解的是,各个网元,例如终端、通信装置等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条 件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (22)

  1. 一种通信方法,其特征在于:
    第一通信装置向第二通信装置发送服务质量QoS流信息,所述QoS流信息指示的QoS流对应至少一个承载类型;
    所述第一通信装置接收所述第二通信装置基于所述QoS流信息发送的QoS流列表,任意一个所述QoS流列表均映射为一个无线承载;和
    所述第一通信装置向所述第二通信装置发送所述QoS流列表的无线承载标识。
  2. 如权利要求1所述的方法,其特征在于:
    所述QoS流信息包括所述承载类型及对应所述承载类型的所有QoS流。
  3. 如权利要求1或2所述的方法,其特征在于:
    所述无线承载标识具有与所述QoS流列表相同的排列顺序;或
    所述方法还包括:
    所述第一通信装置向所述第二通信装置发送所述无线承载标识与所述QoS流列表的映射关系。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述QoS流信息还包括以下至少一种:
    QoS流标识、QoS流参数、QoS流对应的分组数据单元会话标识PUD session ID和分层slicing信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收所述第二通信装置发送的以下至少一种信息:
    所述QoS流列表的无线承载的承载类型;
    所述QoS流列表的无线承载的QoS参数。
  6. 如权利要求1-5任一项所述的方法,其特征在于:
    所述第一通信装置为主基站,所述第二通信装置为辅基站;或,
    所述第一通信装置为集中式单元CU,所述第二通信装置为分布式单元DU。
  7. 如权利要求6所述的方法,其特征在于,所述第一通信装置为主基站,所述第二通信装置为辅基站:
    当所述承载类型为辅小区组分流SCG split承载或SCG-主小区组MCG承载时,所述方法还包括:
    所述主基站向所述辅基站发送第一GTP-U隧道端点标识,用于所述主基站接收所述辅基站分流的所述SCG split承载或SCG-MCG承载的下行数据;
    所述主基站接收所述辅基站发送的第二GTP-U隧道端点标识,用于所述主基站向所述辅基站发送所述SCG split承载或SCG-MCG承载的上行数据。
  8. 如权利要求7所述的方法,其特征在于,还包括:
    所述主基站接收所述辅基站发送的第三GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由MCG承载、MCG分流split承载、MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、SCG-MCG承载中的至少一个的上行数据;或
    所述主基站接收所述辅基站发送的第四GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由MCG承载、MCG分流split承载、MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、SCG-MCG承载中的至少一个的下行数据。
  9. 如权利要求1-8任一项所述的方法,其特征在于:
    所述QoS流为具有相同QoS参数的上行数据或下行数据。
  10. 一种第一通信装置,其特征在于,包括:
    发送单元,用于向第二通信装置发送服务质量QoS流信息,所述QoS流信息指示的QoS流对应至少一个承载类型;
    接收单元,用于接收所述第二通信装置基于所述QoS流信息发送的QoS流列表,任意一个所述QoS流列表映射为一个无线承载;和
    所述发送单元,还用于向所述第二通信装置发送所述QoS流列表的无线承载标识。
  11. 如权利要求10所述的第一通信装置,其特征在于:
    所述QoS流信息包括所述承载类型及对应所述承载类型的所有QoS流。
  12. 如权利要求10或11所述的第一通信装置,其特征在于:
    所述无线承载标识具有与所述QoS流列表相同的排列顺序;或
    所述发送单元还用于向所述第二通信装置发送所述无线承载标识与所述QoS流列表的映射关系。
  13. 如权利要求10-12任一项所述的第一通信装置,其特征在于,所述QoS流信息还包括以下至少一种:
    QoS流标识、QoS流参数、QoS流对应的分组数据单元会话标识PUD session ID和分层slicing信息。
  14. 如权利要求10-13任一项所述的第一通信装置,其特征在于,所述接收单元还用于接收所述第二通信装置发送的以下至少一种信息:
    所述QoS流列表的无线承载的承载类型;
    所述QoS流列表的无线承载的QoS参数。
  15. 如权利要求10-14任一项所述的第一通信装置,其特征在于:
    所述第一通信装置为主基站,所述第二通信装置为辅基站;或,
    所述第一通信装置为集中式单元CU,所述第二通信装置为分布式单元DU。
  16. 如权利要求15所述的第一通信装置,其特征在于,所述第一通信装置为主基站,所述第二通信装置为辅基站,且所述承载类型为辅小区组分流SCG split承载或SCG-主小区组MCG承载时:
    所述发送单元还用于向所述辅基站发送第一GTP-U隧道端点标识,用于所述主基站接收所述辅基站分流的所述SCG split承载或SCG-MCG承载的下行数据;或
    所述接收单元还用于接收所述辅基站发送的第二GTP-U隧道端点标识,用于所述主基站向所述辅基站发送所述SCG split承载或SCG-MCG承载的上行数据。
  17. 如权利要求16所述的第一通信装置,其特征在于,所述接收单元还用于:
    接收所述辅基站发送的第三GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由MCG承载、MCG分流split承载、MCG-SCG承载中的至少一个转换至SCG承载、SCG  split承载、SCG-MCG承载中的至少一个的上行数据;或
    接收所述辅基站发送的第四GTP-U隧道端点标识,用于所述主基站向所述辅基站发送由MCG承载、MCG分流split承载、MCG-SCG承载中的至少一个转换至SCG承载、SCG split承载、SCG-MCG承载中的至少一个的下行数据。
  18. 如权利要求10-17任一项所述的第一通信装置,其特征在于:
    所述QoS流为具有相同QoS参数的上行数据或下行数据。
  19. 一种通信装置,其特征在于,所述装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器连接,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求1-9中任意一项所述的通信方法。
  20. 一种基站,其特征在于,包括如权利要求10-18任一项所述的第一通信装置。
  21. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-9任意一项所述的通信方法。
  22. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1-9任意一项所述的通信方法。
PCT/CN2018/114315 2017-11-10 2018-11-07 通信方法及通信设备 WO2019091396A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112020009214-2A BR112020009214A2 (pt) 2017-11-10 2018-11-07 método de comunicação e dispositivo de comunicações
EP18876562.2A EP3606276B1 (en) 2017-11-10 2018-11-07 Radio bearer determination in dual connectivity
JP2020526011A JP7038815B2 (ja) 2017-11-10 2018-11-07 通信方法および通信デバイス
KR1020207015480A KR102364595B1 (ko) 2017-11-10 2018-11-07 통신 방법 및 통신 디바이스
US16/708,965 US11212698B2 (en) 2017-11-10 2019-12-10 Communication method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711105266.2 2017-11-10
CN201711105266.2A CN109787791B (zh) 2017-11-10 2017-11-10 通信方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/708,965 Continuation US11212698B2 (en) 2017-11-10 2019-12-10 Communication method and communications device

Publications (1)

Publication Number Publication Date
WO2019091396A1 true WO2019091396A1 (zh) 2019-05-16

Family

ID=66438714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114315 WO2019091396A1 (zh) 2017-11-10 2018-11-07 通信方法及通信设备

Country Status (7)

Country Link
US (1) US11212698B2 (zh)
EP (1) EP3606276B1 (zh)
JP (1) JP7038815B2 (zh)
KR (1) KR102364595B1 (zh)
CN (1) CN109787791B (zh)
BR (1) BR112020009214A2 (zh)
WO (1) WO2019091396A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055423A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 一种通信方法及相关设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060538A1 (en) * 2016-09-27 2018-04-05 Nokia Technologies Oy Multi-cell allocation
CN109982391B (zh) * 2017-12-28 2023-04-11 华为技术有限公司 数据的处理方法及装置
EP3627895B1 (en) * 2018-09-20 2023-05-31 Nokia Technologies Oy Uplink bearer binding in handover
WO2021012260A1 (zh) * 2019-07-25 2021-01-28 Oppo广东移动通信有限公司 用于传输数据的方法、发送端设备和接收端设备
CN113596929A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 一种通信方法及装置
CN113676907B (zh) * 2020-04-30 2023-08-04 华为技术有限公司 一种确定服务质量流的方法,装置,设备及计算机可读存储介质
US11265751B1 (en) * 2020-05-19 2022-03-01 Sprint Spectrum L.P. Dynamic air-interface reconfiguration based on inter-access-node data flow for dual-connectivity service
CN113747521B (zh) * 2020-05-29 2023-02-17 维沃移动通信有限公司 网络切换方法、装置、通信设备及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062873A2 (en) * 2013-11-01 2015-05-07 Nokia Solutions And Networks Oy A method and apparatus for uplink prioritization using dual connectivity
CN106304411A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 用于双连接系统中的上行链路分割承载的方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295575B (zh) 2016-04-01 2020-02-28 中兴通讯股份有限公司 一种服务质量的控制方法和装置
US10834772B2 (en) * 2016-09-30 2020-11-10 Samsung Electronics Co., Ltd. Method and apparatus for establishing dual-connectivity to transmit data in new radio communication architecture
CN110248382B (zh) * 2017-01-05 2020-09-08 华为技术有限公司 信息传输的方法和装置
CN108366391B (zh) * 2017-01-26 2023-08-25 中兴通讯股份有限公司 一种通信方法、网络设备及系统
CN108632910B (zh) * 2017-03-24 2019-07-02 电信科学技术研究院 一种QoS处理方法和设备
EP3589069B1 (en) * 2017-03-25 2021-09-01 LG Electronics Inc. Method and apparatus for improving procedure for lte/nr interworking in wireless communication system
CN109246844B (zh) * 2017-06-16 2022-07-15 中兴通讯股份有限公司 无线承载的配置方法及系统
EP4236591A3 (en) * 2017-08-09 2023-11-22 Nec Corporation Pdu session resource set up request message indicating either permission for pdu session or possibility to perform pdu session split
US11399401B2 (en) * 2017-09-29 2022-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Handling dual connectivity in new radio
WO2020032844A1 (en) * 2018-08-07 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Tunnel modification for split bearers in multi-rat dual connectivity (mr-dc) and nr-nr dual connectivity (nr-dc)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062873A2 (en) * 2013-11-01 2015-05-07 Nokia Solutions And Networks Oy A method and apparatus for uplink prioritization using dual connectivity
CN106304411A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 用于双连接系统中的上行链路分割承载的方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "QoS Information Transfer Over Fl", 3GPP TSG RAN WG3 MEETING #97BIS, R3-173722, 13 October 2017 (2017-10-13), XP051356627 *
NOKIA ET AL.: "Network Interfaces for EPC -Based LTE-NR DC", 3GPP TSG-RAN WG3 MEETING #96, R3-171448, 17 May 2017 (2017-05-17), XP051265315 *
See also references of EP3606276A4 *
ZTE CORPORATION ET AL.: "QoS Remaining Aspects for NR-NR DC", 3GPP TSG-RAN WG2 MEETING #99BIS, R2-1710440, 13 October 2017 (2017-10-13), XP051354578 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055423A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 一种通信方法及相关设备
EP3958644A4 (en) * 2019-06-06 2022-06-15 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND ASSOCIATED DEVICE

Also Published As

Publication number Publication date
EP3606276A1 (en) 2020-02-05
EP3606276B1 (en) 2024-05-29
CN109787791A (zh) 2019-05-21
KR20200078608A (ko) 2020-07-01
KR102364595B1 (ko) 2022-02-17
CN109787791B (zh) 2024-04-12
BR112020009214A2 (pt) 2020-10-20
JP2021502770A (ja) 2021-01-28
US20200112875A1 (en) 2020-04-09
EP3606276A4 (en) 2020-06-10
US11212698B2 (en) 2021-12-28
JP7038815B2 (ja) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2019091396A1 (zh) 通信方法及通信设备
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
CN113038528B (zh) 用于在无线通信系统中将数据分组路由到用户设备的基站
CN111586749B (zh) 一种下行缓存状态反馈方法及装置
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
WO2021062803A1 (zh) 一种数据包传输方法及装置
WO2021197269A1 (zh) 一种临近服务的数据传输方法、设备及系统
US20220159771A1 (en) Communication control method and relay apparatus
WO2020063401A1 (zh) 一种模式切换方法、数据流分流方法及装置
US20220217549A1 (en) Communication Method, Apparatus, and System
WO2021238318A1 (zh) 一种通信方法及装置
WO2021204270A1 (zh) 通信方法及装置
JP7478749B2 (ja) 無線ベアラ確立方法及び装置
CN112135329B (zh) 参数传输方法、装置及系统
WO2021026936A1 (zh) 一种处理回传链路发生链路失败的方法及装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2019212546A1 (en) Self-backhaul with enhanced signaling
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2023217009A1 (zh) 数据传输方法、装置及通信设备
US20240073736A1 (en) Communication control method
WO2020164614A1 (zh) 一种辅助信息及其传递的方法和装置
CN116801263A (zh) 一种网络节点、方法及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018876562

Country of ref document: EP

Effective date: 20191029

ENP Entry into the national phase

Ref document number: 2020526011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207015480

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009214

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009214

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200508