WO2019091360A1 - 车辆的状态获取方法、系统和地面综合信息子系统 - Google Patents

车辆的状态获取方法、系统和地面综合信息子系统 Download PDF

Info

Publication number
WO2019091360A1
WO2019091360A1 PCT/CN2018/114065 CN2018114065W WO2019091360A1 WO 2019091360 A1 WO2019091360 A1 WO 2019091360A1 CN 2018114065 W CN2018114065 W CN 2018114065W WO 2019091360 A1 WO2019091360 A1 WO 2019091360A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
data
state
tire
working state
Prior art date
Application number
PCT/CN2018/114065
Other languages
English (en)
French (fr)
Inventor
别海明
孙文灿
陈艳军
张天宇
张升侃
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019091360A1 publication Critical patent/WO2019091360A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles

Definitions

  • the present application relates to the field of rail transit technology, and in particular, to a state acquisition method and system for a vehicle and a ground integrated information subsystem.
  • the technical solution for monitoring the state of the vehicle is generally a scheme and equipment for monitoring the existing fault state of the vehicle and taking corresponding measures for maintenance and maintenance according to the current fault condition.
  • sudden faults of vehicles often have a great impact on the normal operation of the entire line. Once a full-line parking failure occurs during the peak passenger flow, it will seriously affect the passenger's travel experience and operation.
  • the company's social image and will bring a lot of repair and maintenance costs, and may cause casualties in serious cases, but the monitoring system currently used in the industry can only alarm and repair the faults that have occurred.
  • the present application aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present application is to provide a state acquisition method for a vehicle, so as to obtain more comprehensive data of the vehicle, and perform calculation based on the obtained data through a mathematical operation model to obtain the current working state of each system in the vehicle and the next.
  • the analysis result of a working state so that the fault condition of the above vehicle can be predicted according to the current working state of each system in the vehicle and the next working state, for example, predicting the time and cause of the above-mentioned vehicle failure in the future, and realizing the fault prejudging, In turn, maintenance and maintenance can be carried out as early as possible before the vehicle fails.
  • the second object of the present application is to propose a ground integrated information subsystem.
  • the third object of the present application is to propose another ground integrated information subsystem.
  • the first aspect of the present application provides a method for acquiring a state of a vehicle, including: receiving data sent by an information terminal and data sent by a ground collector; and data sent by the information terminal includes the information terminal acquiring
  • the data sent by the ground collector includes a geographical environment variable of the running area of the vehicle;
  • the received data is parsed, and the analysis is obtained
  • the data is extracted by the business field;
  • the extracted business field is calculated according to the preset mathematical operation model to obtain the current working state of the vehicle and the next working state, and the current working state of the vehicle and the next working state are displayed.
  • the preset mathematical operation model is obtained according to historical data modeling, and the historical data includes historical data of an operating state of the vehicle and historical data of a geographical environment variable of the vehicle running area.
  • the received data is parsed, and the data obtained by the parsing is extracted by the service field, and then according to the extracted service.
  • the field and historical data are calculated and analyzed by the mathematical operation model, and the current working state and the next working state of the above vehicle are obtained and displayed, so that the vehicle can obtain more comprehensive data, and the calculation is performed according to the obtained data through the mathematical operation model.
  • the fault pre-judgment can be realized, and then the maintenance and maintenance can be performed as early as possible before the vehicle fails.
  • the second aspect of the present application provides a ground integrated information subsystem, including: a data gateway, a message middleware, a data processing system, a history database, and a data application platform; and the data gateway is configured to receive information.
  • the data sent by the information terminal includes the information
  • the data sent by the ground collector includes a geographical environment variable of a running area of the vehicle;
  • the data processing system is configured to receive Parsing the obtained data, performing business field extraction on the parsed data, and calculating the extracted business field according to a preset mathematical operation model to obtain a current working state of the vehicle and a next working state, where
  • the preset mathematical running model is obtained based on historical data modeling, the calendar Working data includes a state of the vehicle history data and the history data of
  • the third aspect of the present application provides a ground integrated information subsystem, including: a processor, a memory, a display workstation, and a display screen.
  • a memory for storing computer instructions executed by the processor.
  • the processor is configured to read the computer instruction in the memory to perform the method described above;
  • the display workstation is configured to display the current working state of the vehicle and the next working state in the And displaying the current working state of the vehicle and the next working state to the display screen;
  • the display screen is configured to display a current working state of the vehicle and a next working state.
  • FIG. 1 is a flow chart of an embodiment of a method for acquiring a state of a vehicle of the present application
  • FIG. 2 is a flow chart of another embodiment of a method for acquiring a state of a vehicle of the present application
  • FIG. 3 is a flow chart of still another embodiment of a method for acquiring a state of a vehicle of the present application
  • FIG. 4 is a flow chart of still another embodiment of a method for acquiring a state of a vehicle of the present application
  • FIG. 5 is a schematic structural diagram of an embodiment of a ground integrated information subsystem according to the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of an information terminal according to the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a fault prediction system state acquisition system for a vehicle of the present application.
  • FIG. 8 is a schematic diagram of connection of in-vehicle equipment in a fault prediction system state acquisition system of a vehicle of the present application.
  • FIG. 1 is a flowchart of an embodiment of a method for acquiring a state of a vehicle of the present application. As shown in FIG. 1 , the method for acquiring a state of the vehicle may include:
  • Step 101 Receive data sent by the information terminal and data sent by the ground collector.
  • the data sent by the information terminal includes the vehicle message data in the vehicle network acquired by the information terminal and the state data of the vehicle collected by the vehicle sensor, and the data sent by the ground collector includes the geographical environment of the vehicle running area. variable.
  • the data sent by the receiving information terminal may be: receiving data sent by the information terminal according to a customized protocol.
  • Step 102 Parse the received data, and perform service field extraction on the parsed data.
  • the data of the vehicle can be recorded by means of a CAN (Controller Area Network) message (for example, a hexadecimal number).
  • a CAN Controller Area Network
  • the meaning and value of the message can be parsed one by one according to the preset message parsing regulations (for example, the parsing regulations set by a company).
  • business fields such as tire pressure, vehicle traction, braking and other control signals, vehicle battery power, output voltage and current, vehicle interior temperature, vehicle speed and other related information can be extracted.
  • Step 103 Calculate the extracted business field according to the preset mathematical operation model to obtain a current working state of the vehicle and a next working state, and display a current working state of the vehicle and a next working state, wherein the preset mathematical running model is based on Historical data modeling was obtained.
  • the historical data includes historical data of an operating state of the vehicle and historical data of a geographical environment variable of the vehicle operating area.
  • the current working state of the vehicle and the next working state may be saved as historical data in the historical database.
  • the above historical database is set on the distributed cloud server.
  • FIG. 2 is a flowchart of another embodiment of a method for acquiring a state of a vehicle according to the present application. As shown in FIG. 2, after the step 103 is performed in the embodiment shown in FIG.
  • Step 201 predict a fault condition of the vehicle according to the current working state of the vehicle and the next working state.
  • step 102 may be: parsing the received data, and extracting tire state data of the vehicle and a geographical environment variable of the vehicle running area from the data obtained by the parsing; wherein, the vehicle
  • the tire condition data may include: a tire pressure message detected by the tire pressure controller, a tire internal temperature detected by the temperature sensor, a vehicle speed detected by the speed sensor, a vehicle weight detected by the pressure sensor, and an instantaneous wear amount detected by the distance sensor.
  • step 103 may be: establishing a tire state analysis model according to the historical data of the tire state of the vehicle and the historical data of the geographical environment variable of the vehicle running area; and then, by using the tire state analysis model described above, The tire state data of the vehicle and the geographical environment variables of the vehicle operating area are analyzed to obtain a wear state within a predetermined length of time after the current and current time of the tire of the vehicle.
  • the predetermined duration may be set according to system performance and/or implementation requirements, and the length of the predetermined duration is not limited in this embodiment. For example, the predetermined duration may be 30 minutes.
  • a linear regression algorithm can be used to establish a relationship between historical data (history data of the tire state of the vehicle, historical data of the geographical environment variables of the vehicle operating region) and the wear process. Specifically, a formula such as the relationship between the current temperature, the tire pressure, the vehicle speed, the vehicle weight and the instantaneous wear amount, and the bulge probability is obtained by a linear regression algorithm, thereby constructing a feature model in the tire wear process. It should be understood that this example is merely illustrative of how the tire condition analysis model was built and is not a limitation of the tire condition analysis model. Those skilled in the art can also suggest other models, which are not limited thereto.
  • step 201 may be: predicting a puncture probability within a predetermined period of time after the current time of the tire of the vehicle according to the wear state within the predetermined time period after the tire of the vehicle and the current time.
  • step 102 may be: parsing the received data, and extracting data of tire grip force of the vehicle in different operating regions from the data obtained by the parsing;
  • step 103 may be: establishing a tire grip analysis model according to historical data of tire grip of vehicles in different operating regions and historical data of geographical environment variables of different operating regions; and adopting the above tire grip analysis model, The tire grip data of the extracted vehicles in different operating areas and the geographical environment variables of different operating areas are analyzed to obtain the selection criteria of the tire grip parameters of the vehicles in different operating areas and the frequency of tire replacement.
  • the received data is parsed, and the data obtained by the parsing is extracted by the service field, and then according to the data of the extracted service field.
  • the historical data is calculated and analyzed by the mathematical operation model, and the current and next working state of the above vehicle is obtained and displayed, so that the vehicle can obtain more comprehensive data, and the calculation and analysis are performed according to the obtained data through the mathematical operation model.
  • the analysis result of the current working state of each system in the vehicle and the next working state, and then the fault condition of the above vehicle can be predicted according to the analysis result of the current working state of each system in the vehicle and the next working state, for example, predicting that the vehicle will be in the future The time and cause of the failure, the failure pre-judgment, and thus the maintenance and maintenance of the vehicle before the failure of the vehicle.
  • FIG. 3 is a flowchart of still another embodiment of a method for acquiring a state of a vehicle according to the present application. As shown in FIG. 3, the method for acquiring a state of the vehicle may include:
  • Step 301 Obtain vehicle data of the vehicle in the vehicle network, and status data of the vehicle collected by the vehicle sensor.
  • obtaining the vehicle message data in the vehicle network may be: obtaining the vehicle message data in the vehicle network through the Ethernet port and the Controller Area Network (CAN) network port.
  • CAN Controller Area Network
  • Step 302 Send the acquired data to the ground integrated information subsystem, so that the ground integrated information subsystem performs calculation and analysis through the mathematical operation model according to the acquired data and the data sent by the ground collector, combined with the historical data, to obtain and The current working state of the above vehicle and the next working state are displayed.
  • the data to be sent to the terrestrial integrated information subsystem may be: the acquired data is sent to the ground base station according to a customized protocol by using a wireless network antenna, and the acquired data is sent by the foregoing ground base station to the ground integrated information subsystem; Alternatively, the acquired data is directly transmitted to the terrestrial integrated information subsystem according to a customized protocol through the mobile communication antenna.
  • the current location of the vehicle may be obtained by using a Global Positioning System (GPS) antenna, and the current location of the vehicle is sent to the ground integrated information subsystem.
  • GPS Global Positioning System
  • FIG. 4 is a flowchart of still another embodiment of a method for acquiring a state of a vehicle according to the present application. As shown in FIG. 4, in the embodiment shown in FIG. 3 of the present application, after step 301, the method may further include:
  • Step 401 Send the acquired data to the mobile terminal by using a wireless network antenna and/or a Bluetooth antenna.
  • the state acquiring method of the vehicle After acquiring the vehicle message data in the vehicle network and the state data of the vehicle collected by the vehicle sensor, the acquired data is sent to the ground integrated information subsystem, so that the ground integrated information element According to the data obtained by the above and the data sent by the ground collector, combined with the historical data, the system calculates and analyzes through the mathematical operation model, obtains and displays the current working state of the vehicle and the next working state, so that the vehicle can be more comprehensive.
  • the data is calculated and analyzed according to the obtained data through a mathematical operation model, and the analysis results of the current working state and the next working state of each system in the vehicle are obtained, and then the analysis results of the current working state and the next working state of each system in the vehicle can be obtained. Predicting the fault condition of the above vehicle, for example, predicting the time and cause of the above-mentioned vehicle failure, and realizing the fault pre-judgment, and then performing maintenance and maintenance as early as possible before the vehicle fails.
  • FIG. 5 is a schematic structural diagram of an embodiment of a ground integrated information subsystem according to the present application.
  • the above ground integrated information subsystem may include: a data gateway 1001, a message middleware 1002, a data processing system 1003, and a history database 1004.
  • the subsystem also includes a display workstation 1006 and a display screen 1007 in one embodiment of the present application.
  • the data gateway 1001 is configured to receive data sent by the information terminal and data sent by the ground collector, parse the received data, and send the parsed data to the data processing system 1003 through the message middleware 1002; the information terminal
  • the data sent includes the vehicle data in the vehicle network acquired by the information terminal and the state data of the vehicle collected by the vehicle sensor; the data sent by the ground collector includes a geographical environment variable of the running area of the vehicle;
  • the data processing system 1003 is configured to receive the parsed data, perform business field extraction on the parsed data, and perform calculation on the data application platform 1005 according to the preset mathematical operation model to obtain the current vehicle. Working status and the next working status;
  • the display workstation 1006 is configured to display the current working state and the next working state of the vehicle obtained by the data processing system 1003 on the user interface of the display workstation 1006, and send the current working state and the next working state of the vehicle to Display screen 1007.
  • the display screen 1007 is configured to display the current working state of the vehicle and the next working state.
  • the data processing system 1003 is further configured to predict a fault condition of the vehicle according to the current working state of the vehicle and the next working state.
  • the data gateway 1001 is specifically configured to receive data sent by the information terminal according to a customized protocol.
  • the data processing system 1003 is further configured to save the current working state of the vehicle and the next working state, and the geographical environment variable of the vehicle running area as historical data in the history database 1004, where the historical database 1004 is set to be distributed.
  • the cloud server On the cloud server.
  • the preset mathematical operation model includes a tire state analysis model, wherein the tire state is established according to historical data of a tire state of the vehicle and historical data of a geographical environment variable of the vehicle running region. Analyze the model.
  • the data processing system 1003 is specifically configured to extract, from the data obtained by the analysis, the tire state data of the vehicle and the geographical environment variable of the vehicle running area; and the tire state data of the extracted vehicle and the vehicle by using the tire state analysis model
  • the geographical environment variables of the operating area are calculated to obtain the wear state within the predetermined length of time after the current and current time of the tire of the above vehicle.
  • the tire state data of the vehicle may include: a tire pressure message detected by the tire pressure controller, a tire internal temperature detected by the temperature sensor, a vehicle speed detected by the speed sensor, a vehicle weight detected by the pressure sensor, and a distance sensor detection.
  • a tire pressure message detected by the tire pressure controller a tire internal temperature detected by the temperature sensor
  • a vehicle speed detected by the speed sensor a vehicle weight detected by the pressure sensor
  • a distance sensor detection One or a combination of the instantaneous wear amount and the rubber wire bond strength detected by the mechanical sensor.
  • the predetermined duration may be set according to system performance and/or implementation requirements, and the length of the predetermined duration is not limited in this embodiment.
  • the predetermined duration may be 30 minutes.
  • the data processing system 1003 is specifically configured to predict a tire puncture probability within a predetermined period of time after the current time of the tire of the vehicle according to the wear state within the predetermined time period after the tire of the vehicle and the current time.
  • the preset mathematical operation model includes a tire grip analysis model, wherein the historical data of the tire grip of the vehicle in different operating regions and the historical data of the geographical environment variables of different operating regions are established.
  • the tire grip analysis model is described.
  • the data processing system 1003 is specifically configured to extract, from the data obtained by the analysis, the tire grip data of the vehicles in different operating regions; and the tire gripping force data of the extracted vehicles in different operating regions by using the tire grip analysis model;
  • the geographical environment variables of different operating areas are analyzed to obtain the selection criteria of the tire grip parameters of the vehicles in different operating areas and the frequency of tire replacement.
  • the data acquired by the information terminal can be transmitted to the ground data gateway 1001 according to a customized protocol through a 4G or vehicle wireless communication network, and the ground collector transmits the data collected by the ground sensor to the ground through wire or wireless.
  • the data gateway 1001 on the ground parses the data sent by the information terminal and the data sent by the ground collector, and sends the parsed message to the data processing system 1003 through the message middleware 1002.
  • the data processing system 1003 receives the parsed message sent by the message middleware 1002, and performs service field extraction on the received message.
  • the corresponding data is calculated and analyzed according to the corresponding mathematical operation model, and the current working state of the vehicle and the next state are obtained.
  • a working state then displaying the current working state of the vehicle and the next working state on the user interface of the display workstation 1006, thereby real-time analysis and prediction of the vehicle state, and the corresponding result is also sent to the display screen 1007 and / Or display devices such as mobile terminals.
  • the above-mentioned ground comprehensive information subsystem can realize obtaining comprehensive data of the vehicle, and calculating and analyzing by using the mathematical operation model according to the obtained data, obtaining the analysis result of the current working state and the next working state of each system in the vehicle, thereby being able to be based on the vehicle
  • the current working state of each system and the analysis result of the next working state predicting the fault condition of the above vehicle, for example, predicting the time and cause of the above-mentioned vehicle failure in the future, and realizing the fault pre-judgment, and thus can be early before the vehicle fails. Carry out maintenance and maintenance.
  • the present application also provides a non-transitory computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements a state acquisition method for a vehicle provided by the embodiments of FIGS. 1 and 2 of the present application.
  • the above non-transitory computer readable storage medium may employ any combination of one or more computer readable mediums.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium can be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above.
  • a computer readable storage medium can be any tangible medium that can contain or store a program, which can be used by or in connection with an instruction execution system, apparatus or device.
  • a computer readable signal medium may include a data signal that is propagated in the baseband or as part of a carrier, carrying computer readable program code. Such propagated data signals can take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer readable signal medium can also be any computer readable medium other than a computer readable storage medium, which can transmit, propagate, or transport a program for use by or in connection with the instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, fiber optic cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, or a combination thereof, including an object oriented programming language such as Java, Smalltalk, C++, and conventional Procedural programming language—such as the "C" language or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer, partly on the remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or Connect to an external computer (for example, using an Internet service provider to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • an Internet service provider for example, using an Internet service provider to connect via the Internet.
  • the embodiment of the present application further provides a computer program product, when the instructions in the computer program product are executed by the processor, execute the state acquisition method of the vehicle provided by the embodiment shown in FIG. 1 and FIG. 2 of the present application.
  • the information terminal may include a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program,
  • the state acquisition method of the vehicle provided by the embodiment shown in FIG. 3 and FIG. 4 of the present application can be implemented.
  • FIG. 6 shows a block diagram of an exemplary information terminal 1 suitable for implementing embodiments of the present application.
  • the information terminal 1 shown in FIG. 6 is merely an example, and should not impose any limitation on the function and scope of use of the embodiments of the present application.
  • the information terminal 1 is represented in the form of a general-purpose computing device.
  • the components of information terminal 1 may include, but are not limited to, one or more processors or processing units 16, system memory 28, and a bus 18 that connects different system components, including system memory 28 and processing unit 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, an Industry Standard Architecture (hereinafter referred to as ISA) bus, a Micro Channel Architecture (MAC) bus, an enhanced ISA bus, and video electronics.
  • ISA Industry Standard Architecture
  • MAC Micro Channel Architecture
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnection
  • Information terminal 1 typically includes a variety of computer system readable media. These media may be any available media that can be accessed by the information terminal 1, including volatile and non-volatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32.
  • the information terminal 1 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be used to read and write non-removable, non-volatile magnetic media (not shown in Figure 6, commonly referred to as "hard disk drives").
  • a disk drive for reading and writing to a removable non-volatile disk such as a "floppy disk”
  • a removable non-volatile disk for example, a compact disk read-only memory (Compact)
  • each drive can be coupled to bus 18 via one or more data medium interfaces.
  • Memory 28 can include at least one program product having a set (e.g., at least one) of program modules configured to perform the functions of the various embodiments of the present application.
  • a program/utility 40 having a set (at least one) of program modules 42 may be stored, for example, in memory 28, such program modules 42 including, but not limited to, an operating system, one or more applications, other programs Modules and program data, each of these examples or some combination may include an implementation of a network environment.
  • Program module 42 typically performs the functions and/or methods of the embodiments described herein.
  • the information terminal 1 can also communicate with one or more external devices 14 (eg, a keyboard, pointing device, display 24, etc.), and can also communicate with one or more devices that enable the user to interact with the information terminal 1, and/or Any device (e.g., network card, modem, etc.) that enables the information terminal 1 to communicate with one or more other computing devices. This communication can take place via an input/output (I/O) interface 22. Moreover, the information terminal 1 can also pass through the network adapter 20 and one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet. ) Communication. As shown in FIG. 6, the network adapter 20 communicates with other modules of the information terminal 1 via the bus 18.
  • LAN local area network
  • WAN wide area network
  • public network such as the Internet.
  • the processing unit 16 executes various functional applications and data processing by running programs stored in the system memory 28, such as implementing the state acquisition method of the vehicle provided by the embodiment shown in Figs. 3 and 4 of the present application.
  • the present application also provides a non-transitory computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements a state acquisition method for a vehicle provided by the embodiments of FIGS. 3 and 4 of the present application.
  • the above non-transitory computer readable storage medium may employ any combination of one or more computer readable mediums.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium can be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above.
  • a computer readable storage medium can be any tangible medium that can contain or store a program, which can be used by or in connection with an instruction execution system, apparatus or device.
  • a computer readable signal medium may include a data signal that is propagated in the baseband or as part of a carrier, carrying computer readable program code. Such propagated data signals can take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer readable signal medium can also be any computer readable medium other than a computer readable storage medium, which can transmit, propagate, or transport a program for use by or in connection with the instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, fiber optic cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, or a combination thereof, including an object oriented programming language such as Java, Smalltalk, C++, and conventional Procedural programming language—such as the "C" language or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer, partly on the remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or Connect to an external computer (for example, using an Internet service provider to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • an Internet service provider for example, using an Internet service provider to connect via the Internet.
  • the embodiment of the present application further provides a computer program product.
  • the instructions in the computer program product are executed by the processor, the state acquisition method of the vehicle provided by the embodiment shown in FIG. 3 and FIG. 4 of the present application is executed.
  • the state acquisition system of the vehicle may include: an onboard sensor 2, an information terminal 1, a ground integrated information subsystem 10, and a ground collector. 12 and ground sensor 11;
  • the vehicle sensor 2 is configured to collect state data of the entire vehicle
  • the information terminal 1 is configured to acquire vehicle data in the vehicle network and state data of the vehicle collected by the vehicle sensor 2, and send the acquired data to the ground integrated information subsystem 10;
  • a ground sensor 11 for collecting a geographical environment variable of a running area of the vehicle
  • the ground collector 12 is configured to send the geographic environment variable collected by the ground sensor 11 to the ground integrated information subsystem 10;
  • the ground integrated information subsystem 10 is configured to parse the data sent by the information terminal 1 and the data sent by the ground collector 12, and perform service field extraction on the parsed data, and extract the service field according to the preset mathematical operation model. Performing calculations on the data application platform to obtain a current operational state of the vehicle and a next operational state, wherein the predetermined mathematical operational model is obtained from historical data modeling, the historical data including a history of operational status of the vehicle Data and historical data of geographic environment variables of the vehicle's operating area.
  • ground integrated information subsystem 10 is further configured to predict a fault condition of the vehicle according to the current working state of the vehicle and the next working state.
  • the state acquisition system of the above vehicle may further include: a vehicle network 3;
  • the information terminal 1 is connected to the vehicle network 3 through the Ethernet port and the CAN network port;
  • the information terminal 1 is specifically configured to acquire the vehicle message data in the vehicle network 3 through the Ethernet port and the CAN network port.
  • the state acquiring system of the vehicle may further include: a wireless network antenna 4, a Bluetooth antenna 6 and a mobile communication antenna 7, and a ground base station 8; wherein the wireless network antenna 4 may be wireless fidelity (hereinafter referred to as Wireless Fidelity;
  • the antenna 4, the mobile communication antenna 7 may be a fourth generation mobile communication system (Fourth Generation Communication System; 4G) antenna 7, of course, the wireless network antenna 4 may also adopt other forms of wireless network antenna, the above-mentioned mobile
  • the communication antenna 7 can also adopt other forms of mobile communication antennas, which is not limited in this embodiment.
  • the WIFI antenna 4, the Bluetooth antenna 6 and the 4G antenna 7 are connected to the information terminal 1 through respective corresponding interfaces;
  • the information terminal 1 is specifically configured to send the acquired data to the ground base station 8 through the WIFI antenna 4, and the collected data is sent by the ground base station 8 to the ground integrated information subsystem 10; or, the information terminal 1 Specifically, the data acquired by the 4G antenna 7 is directly sent to the ground integrated information subsystem 10 according to a customized protocol.
  • the state acquisition system of the vehicle may further include: a Global Positioning System (GPS) antenna 5, and the GPS antenna 5 is connected to the information terminal 1 through its corresponding interface;
  • GPS Global Positioning System
  • the information terminal 1 is further configured to acquire the current location of the vehicle by the GPS antenna 5, and transmit the current location of the vehicle to the ground integrated information subsystem 10.
  • the information terminal 1, the vehicle sensor 2, the vehicle network 3, the WIFI antenna 4, the GPS antenna 5, the Bluetooth antenna 6 and the 4G antenna 7 belong to the in-vehicle device, and the connection diagram of the in-vehicle device can be as shown in FIG.
  • FIG. 8 is a schematic diagram of connection of in-vehicle equipment in the state acquisition system of the vehicle of the present application.
  • the in-vehicle sensor 2 is connected to the information terminal 1 through a corresponding interface, and the information terminal 1 is connected to the vehicle network 3 through the Ethernet port and the CAN network port, the WIFI antenna 4, the GPS antenna. 5.
  • the Bluetooth antenna 6 and the 4G antenna 7 are respectively connected to the corresponding interfaces of the information terminal 1, so that the information terminal 1 can acquire all the data of the onboard sensor 2 and the vehicle message data from the whole vehicle, and save the information in the information.
  • uploading is performed through a wireless network or a mobile antenna.
  • the state acquisition system of the above vehicle may further include: a mobile terminal 9;
  • the information terminal 1 is further configured to transmit the acquired data to the mobile terminal 9 through the WIFI antenna 4 and the Bluetooth antenna 6 described above.
  • the in-vehicle sensor 2 is connected to the information terminal 1, and the information terminal 1 is connected to the vehicle network 3 through the Ethernet port and the CAN network port, the WIFI antenna 4, the GPS antenna 5, the Bluetooth antenna 6 and the 4G.
  • the antennas 7 are respectively connected to respective interfaces of the information terminal 1.
  • the information terminal 1 collects the state data of the whole vehicle through the in-vehicle sensor 2, and converts the collected state data of the whole vehicle into digital signals and stores them in the information terminal 1; the information terminal 1 can be obtained through an Ethernet interface and a CAN network port.
  • the vehicle message data in the vehicle network 3 is stored in the information terminal 1; the information terminal 1 integrates the collected data through the WIFI antenna 4 to the ground base station 8, and then the ground base station 8 transmits the above data through the local area network.
  • the information terminal 1 can transmit the collected data to the mobile terminal 9 through the WIFI antenna 4 and the Bluetooth antenna 6; the information terminal 1 acquires the location of the current vehicle through the GPS antenna 5; The acquired data can also be directly transmitted to the terrestrial integrated information subsystem 10 via the 4G antenna 7.
  • the ground sensor 11 collects the geographical environment variables of the area where the vehicle is running, and transmits the collected geographical environment variables to the ground collector 12, and the ground collector 12 transmits the received geographical environment variables to the ground integrated information subsystem 10, thereby
  • the ground integrated information subsystem 10 stores, processes, and analyzes all of the received data.
  • the on-vehicle sensor 2 and the information terminal 1 for monitoring the state of the vehicle are installed on the vehicle.
  • these include, but are not limited to, a pressure sensor that monitors the tire pressure, a distance sensor that monitors the thickness of the brake pad, etc., and the information terminal 1 is used to record, store, and transmit the vehicle status data, and at the same time, the WIFI antenna 4 connected to the information terminal 1 needs to be installed.
  • the information terminal 1 receives the data collected by the sensor 2 through the corresponding interface, and the data includes the analog voltage and current values, and also includes the key. The amount of data, etc. At the same time, each subsystem on the whole vehicle also generates a lot of message data during the operation. The data will be transmitted to the information terminal 1 through the Ethernet and CAN of the whole vehicle. The information terminal 1 is connected to the vehicle network through the Ethernet port and the CAN network port. The message data of each controller is received. The information terminal 1 processes the received data, and adopts different coding rules and storage mechanisms for different data. For example, more important data is saved, and if it is not important, it is saved after screening.
  • the data saved during this period is sent to the ground base station 8 through the WIFI antenna 4 vehicle ground communication, and the ground base station 8 transmits the data to the ground integrated information subsystem 10,
  • the information terminal 1 transmits the key data directly to the ground integrated information subsystem 10 through the wireless network through the 4G antenna 7, thereby realizing large data volume transmission through the vehicle ground communication, and at the same time, the 4G transmission information can be ensured in the place where there is no vehicle communication.
  • the transmission and reception of key data, the information transmitted on the two transmission lines are marked with time in advance, to ensure that the data can be correctly transmitted and the time when the data is generated.
  • the information terminal 1 transmits the collected vehicle message data and the data of the in-vehicle sensor 2 to the data gateway 1001 on the ground according to a customized protocol.
  • the protocol includes, but is not limited to, a Transmission Control Protocol (hereinafter referred to as TCP)/Internet Protocol (IP), and Message Queuing Telemetry Transport (MQTT).
  • TCP Transmission Control Protocol
  • IP Internet Protocol
  • MQTT Message Queuing Telemetry Transport
  • the ground sensor 11 collects the environmental parameters of the current running area of the vehicle, and sends the corresponding environmental variables to the ground collector 12 with the time as a mark, and the ground collector 12 sends the data to the data gateway 1001, the data gateway 1001.
  • the data packet transmitted by the information terminal 1 and the data packet sent by the ground collector 12 are parsed, and the data obtained by the parsing is sent to the data processing system 1003 through the message middleware 1002.
  • the data processing system 1003 receives the data of the message middleware 1002 and performs business field extraction on the received data.
  • the corresponding data is calculated and analyzed on the data application platform 1005 according to the corresponding mathematical operation model.
  • the analysis result of the current state and the prediction result of the next working state of the product are saved in the server on one hand, waiting for the next generation report and the vehicle running status log, and directly at the user interface and/or display of the monitoring display workstation 1006.
  • the display is performed on the 1007, and the corresponding data is also sent to the corresponding mobile terminal and other devices through the mobile private network, so that the operation engineer, the visitor, and the design institute engineer can grasp the vehicle state analysis result and the system failure prediction result in real time.
  • the on-site maintenance engineer When the on-site maintenance engineer is in the process of normal maintenance and overhaul of the vehicle, it can also be connected to the Bluetooth antenna 6 or WIFI antenna 4 of the information terminal 1 through a customized mobile maintenance instrument, and the mobile maintenance instrument can read the whole vehicle in real time.
  • the detection amount of the message and various sensors can be retrieved from the server connected to the ground, and the fault prediction result after the calculation of the ground server can be retrieved, thereby greatly saving the maintenance time of the engineer.
  • the real-time data of the vehicle can be viewed through the personal computer (Personal Computer; PC), the display screen, the detector, and the mobile device terminal, whether in the car, on the ground or remotely. Maintenance personnel, monitoring personnel, remote designers, visitors, and operations directors can all view vehicle dynamics in real time and break the limitations of data display.
  • PC Personal Computer
  • the mathematical model calculation can be used to calculate the current operational health of each system in the vehicle and predict the future. The time and cause of the failure, and maintenance and maintenance as soon as the vehicle fails.
  • the ground integrated information subsystem 10 in the state acquisition system of the above vehicle includes a unified data storage database (history database 1004) and a unified analysis platform (data application platform 1005), which can uniformly integrate data of various vehicles in various places. Analysis, at the same time, by synchronously collecting and storing the geographical environment such as temperature and humidity in different regions, and centrally analyzing these data for data analysis, we can understand the impact of different environments on the running state of the vehicle, and then build a mathematical calculation model according to the corresponding system. Adjust the operation and maintenance strategies of different regions to meet local needs. Engineers can also adjust and optimize the equipment of the vehicle in the process of designing the system in different regions, so that the vehicle design and production in different regions can be focused on the corresponding regions. Optimize product design.
  • the state acquisition system of the above vehicle collects and organizes all important information of the vehicle, combines the local environmental data, marks the time, uses the cloud server as the storage device, and passes the big data theory and mathematics when the amount of data reaches a certain level.
  • the algorithm is built for the feature model of the corresponding system, so as to realize the function of state analysis and fault prediction for each vehicle system.
  • the system includes on-board sensor 2, car Ethernet network, vehicle CAN network, information terminal 1 and other vehicle data acquisition and storage devices, WIFI antenna 4, GPS antenna 5, 4G antenna 7, Bluetooth antenna 6 and ground base station 8 and other wireless communication equipment, ground Integrated information subsystem 10, mobile terminal 9 and ground sensor 11, and ground equipment such as ground collector 12.
  • the information terminal 1 receives the status information of the message sent by all the systems of the whole vehicle through the vehicle Ethernet network and the vehicle CAN network, and receives the state quantity that can be used by the sensor during the operation of the whole vehicle through the sensor, and the above data passing information After the first, 1 decomposition and parsing, on the one hand, it is stored in the memory of the information terminal 1 as a backup, and on the other hand, it is transmitted to the ground device and the in-vehicle mobile terminal through the wireless communication module. The information terminal 1 transmits all the data to the ground base station 8 through the WIFI, and then transmits it to the ground integrated information subsystem 10 through the ground base station 8.
  • the data is transmitted to the ground integrated information subsystem in real time through the 4G signal.
  • the terrestrial integrated information subsystem 10 receives the data transmitted by the information terminal 1 via the data gateway 1001.
  • the ground sensor 11 also sends ground environment variables such as temperature, humidity, pressure, etc. to the ground collector 12, and the ground collector 12 also sends the corresponding data to the data gateway 1001 by wire or wirelessly, and then passes through
  • the message middleware 1002 arranges the messages and sends them to the data processing system 1003.
  • the data processing system 1003 classifies the data according to the correspondence of the data and the time of the data generation, and processes the data and stores it in the history database 1004.
  • the data of each region is aggregated and imported into the data application platform 1005.
  • the feature model applicable to the corresponding system is constructed through the big data theory and the corresponding mathematical algorithm, and the data is analyzed and calculated by software programming, thereby Analyze the current operating state of the system and make a prediction of the system's next operating conditions and the next fault.
  • Real-time data and analytically predicted results can be displayed on mobile computers such as local computers, large-scale surveillance centers, and mobile phones to achieve state analysis and fault pre-judgment of vehicle data.
  • the on-site engineers can also use the mobile terminal to connect to the information terminal 1 via Bluetooth or WIFI in the car, thereby directly reading the data acquired by the information terminal 1 in real time, and simultaneously connecting to the server through the wireless network, and the server is obtained through real-time analysis. System failure prediction data.
  • the in-vehicle sensor 2 may include a tire pressure sensor, a current detector, a vibration detector, a temperature monitor, and the like for monitoring various real-time states of the vehicle;
  • the information terminal 1 may be a processor,
  • the communication module, the storage module and the interface are composed, and the interface includes but is not limited to an Ethernet interface, a CAN data interface, an RS485 interface, an RS232 interface, an input/output (Input Output; hereinafter referred to as IO) interface, and/or an analog interface;
  • the ground base station 8 is composed of an open-air antenna and a signal encoder with a wide coverage;
  • the ground integrated information subsystem 10 includes a data gateway 1001, a message middleware 1002, a data processing system 1003, a history database 1004, a data application platform 1005, and a display workstation 1006. And a plurality of functional modules such as the display screen 1007;
  • the ground sensor 11 includes, but is not limited to, a temperature sensor, a pressure sensor,
  • the state acquisition system of the above vehicle is marked with time, and collects and organizes related data of vehicles and environments in various regions for a long time, and then analyzes the data by using the big data method and the mathematical operation model, thereby realizing the next work for the vehicle. State analysis and failure prediction.
  • the existing system only collects the vehicle data, but does not take into account the local environmental factors. Therefore, it is impossible to analyze the vehicle status differently according to the environment, and the data results are not universal.
  • the state acquisition system of the vehicle provided by the embodiment of the present application adds the measurement of the local environmental quantity, including the temperature, humidity, atmospheric pressure, and the like along the line, so that the analysis and judgment of the running state of the vehicle can be corrected according to the environmental impact, so that a system can be Meet the needs of different regions and pre-judgment the operation status of different regions.
  • the existing system only collects, stores, analyzes and displays data for local vehicles in the ground computing storage, but does not consider the multi-computer cloud service architecture. Therefore, vehicle data in different regions and different countries cannot be shared, and it is impossible to achieve Real-time analysis and comparison based on multi-site vehicle data.
  • the ground integrated subsystem 10 in the system is a key component of the system, and has a cloud service architecture such as a data gateway 1001, a message middleware 1002, a data processing system 1003, a history database 1004, and a data application platform 1005, which can be effective on the one hand.
  • the prior art has certain limitations in data acquisition and data display.
  • the data collection only collects some data in the vehicle, and cannot fully utilize the Ethernet interface, serial port, sensor and other channels to monitor the vehicle data, and
  • the obtained data are calculated in isolation, and only the fault information that is desired is collected, and the real-time values of other parameters that generate faults are not paid attention to, and the corresponding feature model is established by using a mathematical algorithm according to the application scenario, and thus the obtained data is obtained. Both quantity and accuracy are affected.
  • the prior art only displays part of the fault state through the PC client or the detector, and the display site has limitations, and the display information is not complete enough.
  • the system collects the key information of the vehicle required by the prediction model through various collection channels such as Ethernet interface, serial port, vehicle sensor 2, and ground environment sensor to ensure the perfectness and accuracy of the data, thereby further ensuring the prediction model.
  • the accuracy
  • the system combines vehicle-to-ground communication, near-field communication, and remote operator communication to ensure that the vehicle, the ground, and the remote can pass through the PC, display the large screen, the detector, and the mobile device.
  • the real-time data of the vehicle can be viewed, so that maintenance personnel, monitoring personnel, remote designers, visitors, and operations directors can view the vehicle dynamics in real time and break the limitations of data display.
  • the existing related technology can only prompt the alarm according to the fault information and then take corresponding maintenance measures only after the vehicle fails, but cannot perform real-time analysis and prediction of the vehicle state before the vehicle fails, and the corresponding forecast information is firstly used.
  • sudden failures of vehicles often have a great impact on the normal operation of the entire line. Once a full-line parking failure occurs during the peak passenger flow, it will seriously affect the passenger's travel experience and Operate the company's social image and bring a lot of repair and maintenance costs. In severe cases, it may cause casualties. Therefore, it is very necessary and valuable to change the urban rail train from “fault repair” to “state repair”.
  • the pre-judgment of the fault requires a lot of support conditions.
  • the data collecting end is connected to the vehicle corresponding controller through the Ethernet and the CAN network to obtain information such as messages, and on the other hand, the specific sensors are arranged to obtain the running of each component. Parameters to obtain the corresponding parameter data required by the mathematical model. After obtaining the corresponding data, considering the large number of data types and the large amount of data, we need to save the corresponding data in the historical database 1004 and set the historical database 1004 in the distributed cloud server to ensure the smooth expansion of the historical database 1004. And valid reading. As time goes by, the data in the cloud server will gradually increase.
  • the current technology can only monitor the tire pressure of the vehicle.
  • the tire pressure of the vehicle tire is too high or too low, the staff is prompted to tire failure.
  • the treatment is carried out, which on the one hand brings hidden dangers to the operation of the vehicle.
  • the maintenance personnel need to be on standby at any time, which also greatly wastes the time of the maintenance personnel.
  • the analysis and prediction of the tire state can be realized by obtaining information sent by the controller and information collected by various corresponding sensors for analysis and modeling.
  • the corresponding mathematical model is run and compared with the state generated by the vehicle in real time, thereby obtaining the current wear state of the vehicle and the risk of the puncture of the vehicle which may exist in the subsequent operation. As new data is continuously applied for comparison, the corresponding mathematical model can be continually corrected to more accurately predict the tire wear and puncture risk.
  • the prior art only collects vehicle data without taking into account local environmental factors, so it is not possible to analyze the vehicle status differently depending on the environment.
  • the system adds measurement of the local environmental quantity, including temperature, humidity, atmospheric pressure, etc., so that the analysis and prediction model of the vehicle operating state can be corrected according to environmental influence factors.
  • the environment in different regions tends to be different.
  • the atmospheric pressure in China and the atmospheric pressure in Shenzhen will be different, especially between different countries.
  • Different geographical environments will have certain impact on the operation of various systems of vehicles, and the reference values and mathematical models of analysis and prediction will also have certain changes.
  • the pressure of the tire will be affected by the temperature. In the higher temperature region, the pressure will increase when the other parameters are unchanged. Therefore, if the image of the regional environment is not considered, only the vehicle model is used to establish the prediction model. There are often certain errors in different regions that cannot be used universally.
  • the present application adds an environmental sensor to the ground system, and collects local environmental variables through the environmental sensor.
  • an environmental sensor When constructing a predictive model, consider the local environmental variables together and further improve the corresponding analysis and prediction models, so that when the vehicle is running in different regions, only the local environmental parameters need to be imported into the corresponding forecast. In the model, more accurate analysis and prediction of locally operated vehicles can be achieved.
  • the prior art only collects, stores, analyzes and displays data for local vehicles on the server side, but does not consider the multi-computer cloud service architecture. Therefore, vehicle data in different regions and different countries cannot be shared, and it is impossible to achieve more based on Real-time analysis and prediction of land data.
  • the ground integrated subsystem 10 in the system is a key component of the system, and has a cloud server architecture such as a data gateway 1001, a message middleware 1002, a data processing system 1003, a history database 1004, and a data application platform 1005, which can be effective on the one hand. It ensures the storage capacity and computational efficiency of a large amount of data.
  • the data can be analyzed and predicted.
  • the environmental factors of different regions can be added to the calculation model in real time to perform calculation and analysis, so that the model is more applicable, the model is more accurate, and it can better meet the status of each component in each region. Analysis and failure prediction.
  • the existing system only collects data for a single area, and does not have the contrast of different regions.
  • the state acquisition system of the vehicle provided by the embodiment of the present application can collect data from multiple dimensions such as the vehicle network and the sensor, so Through the comparative analysis of the data collected in different regions, the operation status of products in different regions is obtained, and then the production and operation of the vehicles are upgraded and modified in a targeted manner. For example, if the vehicle is running in the northeast, because there will be snow and ice on the colder rail surface, the braking speed of the vehicle will be slower, so that the car running in the northeast needs to replace the tires suitable for snow operation, and the data must be passed during production.
  • the analysis shows the selection criteria of the relevant parameters such as the grip of the tire.
  • the prior art has certain limitations in data acquisition and data display.
  • the data collection only collects some data in the vehicle, and can not fully utilize the Ethernet interface, serial port, sensor and other channels to monitor the vehicle data, and The obtained data are calculated in isolation, and the mathematical model is not considered to establish the corresponding feature model according to the application scenario, so the amount and accuracy of the data obtained are affected.
  • the prior art only displays part of the fault state through the PC client or the detector, and the display site has limitations, and the display information is not complete enough.
  • the system collects the key information of the vehicle required by the prediction model through various collection channels such as Ethernet interface, serial port, vehicle sensor and ground environment sensor to ensure the perfectness and accuracy of the data, thereby further ensuring the prediction model. accuracy.
  • the system combines vehicle-to-ground communication, near-field communication, and remote operator communication to ensure that the vehicle, the ground, and the remote can pass through the PC, display the large screen, the detector, and the mobile device.
  • the real-time data of the vehicle can be viewed, so that maintenance personnel, monitoring personnel, remote designers, visitors, and operations directors can view the vehicle dynamics in real time and break the limitations of data display.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with such an instruction execution system, apparatus, or device.
  • Computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (Random Access Memory) (hereinafter referred to as: RAM), Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM) or flash memory, fiber optic devices, and Compact Disc Read Only Memory (hereinafter referred to as CD-ROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the application can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuit, ASIC with suitable combination logic gate, Programmable Gate Array (PGA), Field Programmable Gate Array (FPGA).
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like. While the embodiments of the present application have been shown and described above, it is understood that the above-described embodiments are illustrative and are not to be construed as limiting the scope of the present application. The embodiments are subject to variations, modifications, substitutions and variations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种车辆的状态获取方法,上述车辆的状态获取方法包括:接收信息终端发送的数据和地面采集器发送的数据(101);对接收的数据进行解析,并对解析获得的数据进行业务字段提取(102);据预设数学运算模型对提取的业务字段进行计算以获得车辆的当前工作状态以及下一个工作状态,并显示车辆的当前工作状态以及下一个工作状态(103),其中,预设数学运行模型根据历史数据建模获得,历史数据包括车辆的工作状态的历史数据和车辆运行区域的地理环境变量的历史数据。还提供一种车辆的状态获取系统和地面综合信息子系统。

Description

车辆的状态获取方法、系统和地面综合信息子系统
相关申请的交叉引用
本申请基于申请号为201711082516.5,申请日为2017年11月07日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及轨道交通技术领域,尤其涉及一种车辆的状态获取方法、系统和地面综合信息子系统。
背景技术
相关技术中,提供的对车辆的状态进行监控的技术方案,一般是对车辆现有故障状态进行监控,并根据当前的故障情况,采取相应的措施进行维修和维护的相关方案和设备。在相关的城市轨道列车行业中,车辆的突发故障常常会给全线的正常运行带来很大的影响,一旦在客流高峰期发生全线停车的故障事件,往往会严重影响乘客的出行体验和运营公司社会形象,并且随之会带来大量的抢修维护费用,严重时还可能造成人员伤亡,但是目前行业使用的监控系统仅能针对已经发生的故障进行报警和维修。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种车辆的状态获取方法,以实现获得车辆较为全面的数据,根据获得的数据通过数学运算模型进行计算,获得车辆内各系统当前工作状态以及下一个工作状态的分析结果,从而可以根据车辆内各系统当前工作状态以及下一个工作状态,对上述车辆的故障情况进行预测,例如预测上述车辆将来会发生故障的时间和原因,实现故障预判,进而可以在车辆未发生故障之前及早进行保养和维护。
本申请的第二个目的在于提出一种地面综合信息子系统。
本申请的第三个目的在于提出令另一种地面综合信息子系统。
为达上述目的,本申请第一方面实施例提出一种车辆的状态获取方法,包括:接收信息终端发送的数据和地面采集器发送的数据;所述信息终端发送的数据包括所述信息终端获取的整车网络中的整车报文数据和车载传感器采集的整车的状态数据;所述地面采集器发送的数据包括车辆运行区域的地理环境变量;对接收的数据进行解析,并对解析获得的数据进行业务字段提取;根据预设数学运算模型对提取的业务字段进行计算以获得所述车辆的当前工 作状态以及下一个工作状态,并显示所述车辆的当前工作状态以及下一个工作状态,其中,所述预设数学运行模型根据历史数据建模获得,所述历史数据包括所述车辆的工作状态的历史数据和所述车辆运行区域的地理环境变量的历史数据。
本申请实施例的车辆的状态获取方法中,接收信息终端发送的数据和地面采集器发送的数据之后,对接收的数据进行解析,并对解析获得的数据进行业务字段提取,然后根据提取的业务字段和历史数据,通过数学运算模型进行计算和分析,获得并显示上述车辆的当前工作状态以及下一个工作状态,从而可以实现获得车辆较为全面的数据,根据获得的数据通过数学运算模型进行计算和分析,获得车辆内各系统当前工作状态以及下一个工作状态的分析结果,进而可以根据车辆内各系统当前工作状态以及下一个工作状态的分析结果,对上述车辆的故障情况进行预测,例如预测上述车辆将来会发生故障的时间和原因,实现故障预判,进而可以在车辆未发生故障之前及早进行保养和维护。
为达上述目的,本申请第二方面实施例提出一种地面综合信息子系统,包括:数据网关、消息中间件、数据处理系统、历史数据库、数据应用平台;所述数据网关,用于接收信息终端发送的数据和地面采集器发送的数据,对接收的数据进行解析,以及将解析获得的数据通过所述消息中间件发送给所述数据处理系统;所述信息终端发送的数据包括所述信息终端获取的整车网络中的整车报文数据和车载传感器采集的整车的状态数据;所述地面采集器发送的数据包括车辆运行区域的地理环境变量;所述数据处理系统,用于接收解析获得的数据,对所述解析获得的数据进行业务字段提取,以及根据预设数学运算模型对提取的业务字段进行计算以获得所述车辆的当前工作状态以及下一个工作状态,其中,所述预设数学运行模型根据历史数据建模获得,所述历史数据包括所述车辆的工作状态的历史数据和所述车辆运行区域的地理环境变量的历史数据;以及显示设备,用于显示所述车辆的当前工作状态以及下一个工作状态。
为达上述目的,本申请第三方面实施例提出一种地面综合信息子系统,包括:处理器、存储器、显示工作站以及显示屏。存储器,用于存储所述处理器执行的计算机指令。所述处理器,用于读取所述存储器中的所述计算机指令以执行上述所述的方法;所述显示工作站,用于将所述车辆的当前工作状态以及下一个工作状态,显示在所述显示工作站的用户界面上,以及将所述车辆的当前工作状态以及下一个工作状态发送给所述显示屏;所述显示屏,用于显示所述车辆的当前工作状态以及下一个工作状态。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和 容易理解,其中:
图1为本申请车辆的状态获取方法一个实施例的流程图;
图2为本申请车辆的状态获取方法另一个实施例的流程图;
图3为本申请车辆的状态获取方法再一个实施例的流程图;
图4为本申请车辆的状态获取方法再一个实施例的流程图;
图5为本申请地面综合信息子系统一个实施例的结构示意图;
图6为本申请信息终端一个实施例的结构示意图;
图7为本申请车辆的故障预测系统状态获取系统一个实施例的结构示意图;
图8为本申请车辆的故障预测系统状态获取系统中车内设备的连接示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
图1为本申请车辆的状态获取方法一个实施例的流程图,如图1所示,上述车辆的状态获取方法可以包括:
步骤101,接收信息终端发送的数据和地面采集器发送的数据。
其中,上述信息终端发送的数据包括上述信息终端获取的整车网络中的整车报文数据和车载传感器采集的整车的状态数据,上述地面采集器发送的数据包括上述车辆运行区域的地理环境变量。
具体地,接收信息终端发送的数据可以为:接收上述信息终端根据定制的协议发送的数据。
步骤102,对接收的数据进行解析,并对解析获得的数据进行业务字段提取。
例如,车辆的数据可以通过CAN(Controller Area Network)报文(例如16进制数)的方式进行记录。当车辆的数据被接收到后,仍然以CAN报文的状态存在。因此,可以按照预设的报文解析条例(例如某公司设置的解析条例),逐条对报文的含义和数值进行解析。
数据解析之后,可以提取业务字段,例如,胎压,车辆的牵引、制动等控制信号,车载电池的电量,输出电压电流,车辆室内温度,车速等相关信息。
步骤103,根据预设数学运算模型对提取的业务字段进行计算以获得车辆的当前工作状态以及下一个工作状态,并显示车辆的当前工作状态以及下一个工作状态,其中,预设数学运行模型根据历史数据建模获得。
其中,上述历史数据包括上述车辆的工作状态的历史数据和上述车辆运行区域的地理环境变量的历史数据。
进一步地,获得并显示上述车辆的当前工作状态以及下一个工作状态之后,还可以将上 述车辆当前工作状态以及下一个工作状态,以及上述车辆运行区域的地理环境变量作为历史数据保存在历史数据库中,上述历史数据库设置在分布式云服务器上。
图2为本申请车辆的状态获取方法另一个实施例的流程图,如图2所示,本申请图1所示实施例,步骤103之后,还可以包括:
步骤201,根据上述车辆的当前工作状态以及下一个工作状态,对上述车辆的故障情况进行预测。
本实施例的一种实现方式中,步骤102可以为:对接收的数据进行解析,从解析获得的数据中提取上述车辆的轮胎状态数据和上述车辆运行区域的地理环境变量;其中,上述车辆的轮胎状态数据可以包括:胎压控制器检测到的胎压报文、温度传感器检测到的轮胎内部温度、速度传感器检测到的车速、压力传感器检测到的车重、距离传感器检测到的瞬时磨损量和力学传感器检测到的橡胶钢丝粘合强度之一或组合。
本实现方式中,步骤103可以为:根据上述车辆的轮胎状态的历史数据和上述车辆运行区域的地理环境变量的历史数据建立轮胎状态分析模型;然后,通过上述轮胎状态分析模型,对提取的上述车辆的轮胎状态数据和上述车辆运行区域的地理环境变量进行分析,获得上述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态。其中,上述预定时长可以在具体实现时,根据系统性能和/或实现需求等自行设定,本实施例对上述预定时长的长短不作限定,举例来说,上述预定时长可以为30分钟。
例如,可以利用线性回归算法建立历史数据(车辆的轮胎状态的历史数据、车辆运行区域的地理环境变量的历史数据)与磨损过程之间关系。具体地,通过线性回归算法得出例如当前温度、胎压、车速、车重与瞬时磨损量及鼓包概率之间关系的公式,从而构建轮胎磨损过程中的特征模型。应当理解,该示例仅为举例说明轮胎状态分析模型的建立方式,并不能作为轮胎状态分析模型的限定。本领域技术人员还可以建议其他的模型,对此不进行限定。
这时,步骤201可以为:根据上述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态,预测上述车辆的轮胎在当前时刻之后的预定时长内的爆胎概率。
本实施例的另一种实现方式中,步骤102可以为:对接收的数据进行解析,从解析获得的数据中提取不同运行区域的车辆的轮胎抓地力的数据;
本实现方式中,步骤103可以为:根据不同运行区域的车辆的轮胎抓地力的历史数据和不同运行区域的地理环境变量的历史数据建立轮胎抓地力分析模型;通过上述轮胎抓地力分析模型,对提取的不同运行区域的车辆的轮胎抓地力的数据和不同运行区域的地理环境变量进行分析,获得不同运行区域的车辆的轮胎抓地力参数的选择标准和轮胎的更换频率。
例如,可以综合考虑轨面在不同状态下(如有雨水的时候、有积雪的时候、有结冰的时候)的表面摩擦力,轮胎的材质,轮胎的纹路、轮胎与地面的接触面积、轮胎胎压、轮胎温度等相关参数,通过收集不同时段不同状态下的相关数据之后,通过线性回归等相关数据模 型,对数据进行模拟分析,从而得出相应的轮胎抓地力分析模型。应当理解,该示例仅为举例说明轮胎状态分析模型的建立方式,并不能作为轮胎抓地力分析模型的限定。本领域技术人员还可以建议其他的模型,对此不进行限定。
上述车辆的状态获取方法中,接收信息终端发送的数据和地面采集器发送的数据之后,对接收的数据进行解析,并对解析获得的数据进行业务字段提取,然后根据提取的业务字段的数据和历史数据,通过数学运算模型进行计算和分析,获得并显示上述车辆的当前以及下一个的工作状态,从而可以实现获得车辆较为全面的数据,根据获得的数据通过数学运算模型进行计算和分析,获得车辆内各系统当前工作状态以及下一个工作状态的分析结果,进而可以根据车辆内各系统当前工作状态以及下一个工作状态的分析结果,对上述车辆的故障情况进行预测,例如预测上述车辆将来会发生故障的时间和原因,实现故障预判,进而可以在车辆未发生故障之前及早进行保养和维护。
图3为本申请车辆的状态获取方法再一个实施例的流程图,如图3所示,上述车辆的状态获取方法可以包括:
步骤301,获取整车网络中的整车报文数据,以及车载传感器采集的整车的状态数据。
具体地,获取整车网络中的整车报文数据可以为:通过以太网口和控制器局域网络(Controller Area Network;以下简称:CAN)网口获取整车网络中的整车报文数据。
步骤302,将获取的数据发送给地面综合信息子系统,以便上述地面综合信息子系统根据上述获取的数据和地面采集器发送的数据,结合历史数据,通过数学运算模型进行计算和分析,获得并显示上述车辆的当前工作状态以及下一个工作状态。
具体地,将获取的数据发送给地面综合信息子系统可以为:通过无线网络天线将获取的数据根据定制的协议发送到地面基站,由上述地面基站将获取的数据发送给地面综合信息子系统;或者,通过移动通信天线将获取的数据根据定制的协议直接发送给地面综合信息子系统。
进一步地,本实施例中,还可以通过全球定位系统(Global Positioning System;以下简称:GPS)天线获取上述车辆当前所处的位置,将上述车辆当前所处的位置发送给上述地面综合信息子系统。
图4为本申请车辆的状态获取方法再一个实施例的流程图,如图4所示,本申请图3所示实施例中,步骤301之后,还可以包括:
步骤401,通过无线网络天线和/或蓝牙天线将上述获取的数据发送给移动终端。
上述车辆的状态获取方法中,获取整车网络中的整车报文数据,以及车载传感器采集的整车的状态数据之后,将获取的数据发送给地面综合信息子系统,以便上述地面综合信息子系统根据上述获取的数据和地面采集器发送的数据,结合历史数据,通过数学运算模型进行 计算和分析,获得并显示上述车辆的当前工作状态以及下一个工作状态,从而可以实现获得车辆较为全面的数据,根据获得的数据通过数学运算模型进行计算和分析,获得车辆内各系统当前工作状态以及下一个工作状态的分析结果,进而可以根据车辆内各系统当前工作状态以及下一个工作状态的分析结果,对上述车辆的故障情况进行预测,例如预测上述车辆将来会发生故障的时间和原因,实现故障预判,进而可以在车辆未发生故障之前及早进行保养和维护。
图5为本申请地面综合信息子系统一个实施例的结构示意图,如图5所示,上述地面综合信息子系统可以包括:数据网关1001、消息中间件1002、数据处理系统1003、历史数据库1004、数据应用平台1005。在本申请的一个实施例中子系统还包括显示工作站1006和显示屏1007。
其中,数据网关1001,用于接收信息终端发送的数据和地面采集器发送的数据,对接收的数据进行解析,以及将解析获得的数据通过消息中间件1002发送给数据处理系统1003;上述信息终端发送的数据包括上述信息终端获取的整车网络中的整车报文数据和车载传感器采集的整车的状态数据;上述地面采集器发送的数据包括车辆运行区域的地理环境变量;
数据处理系统1003,用于接收解析获得的数据,对上述解析获得的数据进行业务字段提取,以及根据预设数学运算模型对提取的业务字段在数据应用平台1005上进行计算以获得上述车辆的当前工作状态以及下一个的工作状态;
显示工作站1006,用于将数据处理系统1003获得的上述车辆的当前工作状态以及下一个工作状态,显示在显示工作站1006的用户界面上,以及将上述车辆的当前工作状态以及下一个工作状态发送给显示屏1007。
显示屏1007,用于显示上述车辆的当前工作状态以及下一个工作状态。
进一步地,数据处理系统1003,还用于根据上述车辆的当前工作状态以及下一个工作状态,对上述车辆的故障情况进行预测。
本实施例中,数据网关1001,具体用于接收上述信息终端根据定制的协议发送的数据。
进一步地,数据处理系统1003,还用于将上述车辆当前工作状态以及下一个工作状态,以及上述车辆运行区域的地理环境变量作为历史数据保存在历史数据库1004中,上述历史数据库1004设置在分布式云服务器上。
本实施例的一种实现方式中,预设数学运行模型包括轮胎状态分析模型,其中根据所述车辆的轮胎状态的历史数据和所述车辆运行区域的地理环境变量的历史数据建立所述轮胎状态分析模型。数据处理系统1003,具体用于从解析获得的数据中提取上述车辆的轮胎状态数据和上述车辆运行区域的地理环境变量;通过上述轮胎状态分析模型,对提取的上述车辆的轮胎状态数据和上述车辆运行区域的地理环境变量进行计算以获得上述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态。
其中,上述车辆的轮胎状态数据可以包括:胎压控制器检测到的胎压报文、温度传感器检测到的轮胎内部温度、速度传感器检测到的车速、压力传感器检测到的车重、距离传感器检测到的瞬时磨损量和力学传感器检测到的橡胶钢丝粘合强度之一或组合。
上述预定时长可以在具体实现时,根据系统性能和/或实现需求等自行设定,本实施例对上述预定时长的长短不作限定,举例来说,上述预定时长可以为30分钟。
本实现方式中,数据处理系统1003,具体用于根据上述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态,预测上述车辆的轮胎在当前时刻之后的预定时长内的爆胎概率。
本实施例的另一种实现方式中,预设数学运行模型包括轮胎抓地力分析模型,其中根据不同运行区域的车辆的轮胎抓地力的历史数据和不同运行区域的地理环境变量的历史数据建立所述轮胎抓地力分析模型。数据处理系统1003,具体用于从解析获得的数据中提取不同运行区域的车辆的轮胎抓地力的数据;通过上述轮胎抓地力分析模型,对提取的不同运行区域的车辆的轮胎抓地力的数据和不同运行区域的地理环境变量进行分析,获得不同运行区域的车辆的轮胎抓地力参数的选择标准和轮胎的更换频率。
本实施例中,信息终端获取的数据可以通过4G或者车地无线通信网,根据定制的协议传输到地面的数据网关1001,地面采集器将地面传感器采集的数据通过有线或无线方式传输给地面的数据网关1001。地面的数据网关1001对信息终端发送的数据和地面采集器发送的数据进行解析,并把解析后的报文通过消息中间件1002发给数据处理系统1003。数据处理系统1003接收消息中间件1002发送的解析后的报文,并对接收到的报文进行业务字段提取。同时利用历史数据库1004中的本地历史数据以及其他各地区的相应历史数据,在数据应用平台1005上,根据相应的数学运算模型对相应的数据进行计算和分析,获得上述车辆的当前工作状态以及下一个工作状态,然后将上述车辆的当前工作状态以及下一个工作状态,显示在显示工作站1006的用户界面上,从而实现车辆状态的实时分析和预测,同时相应结果也会发送到显示屏1007和/或移动终端等设备进行展现。
上述地面综合信息子系统可以实现获得车辆较为全面的数据,根据获得的数据通过数学运算模型进行计算和分析,获得车辆内各系统当前工作状态以及下一个工作状态的分析结果,从而可以根据车辆内各系统当前工作状态以及下一个工作状态的分析结果,对上述车辆的故障情况进行预测,例如预测上述车辆将来会发生故障的时间和原因,实现故障预判,进而可以在车辆未发生故障之前及早进行保养和维护。
本申请还提供一种非临时性计算机可读存储介质,其上存储有计算机程序,上述计算机程序被处理器执行时实现本申请图1和图2所示实施例提供的车辆的状态获取方法。
上述非临时性计算机可读存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件, 或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(Read Only Memory;以下简称:ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory;以下简称:EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network;以下简称:LAN)或广域网(Wide Area Network;以下简称:WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本申请实施例还提供一种计算机程序产品,当上述计算机程序产品中的指令由处理器执行时,执行本申请图1和图2所示实施例提供的车辆的状态获取方法。
图6为本申请信息终端一个实施例的结构示意图,上述信息终端可以包括存储器、处理器及存储在上述存储器上并可在上述处理器上运行的计算机程序,上述处理器执行上述计算机程序时,可以实现本申请图3和图4所示实施例提供的车辆的状态获取方法。
图6示出了适于用来实现本申请实施方式的示例性信息终端1的框图。图6显示的信息终端1仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图6所示,信息终端1以通用计算设备的形式表现。信息终端1的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture;以下简称:ISA)总线,微通道体系结构(Micro Channel Architecture;以下简称:MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association;以下简称:VESA)局域总线以及外围组件互连(Peripheral Component Interconnection;以下简称:PCI)总线。
信息终端1典型地包括多种计算机系统可读介质。这些介质可以是任何能够被信息终端1访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory;以下简称:RAM)30和/或高速缓存存储器32。信息终端1可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图6未显示,通常称为“硬盘驱动器”)。尽管图6中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如:光盘只读存储器(Compact Disc Read Only Memory;以下简称:CD-ROM)、数字多功能只读光盘(Digital Video Disc Read Only Memory;以下简称:DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括——但不限于——操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
信息终端1也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该信息终端1交互的设备通信,和/或与使得该信息终端1能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,信息终端1还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network;以下简称:LAN),广域网(Wide Area Network;以下简称:WAN)和/或公共网络,例如因特网)通信。如图6所示,网络适配器20通过总线18与信息终端1的其它模块通信。应当明白,尽管图6中未示出,可以结合信息终端1使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks;以下简称:RAID)系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据 处理,例如实现本申请图3和图4所示实施例提供的车辆的状态获取方法。
本申请还提供一种非临时性计算机可读存储介质,其上存储有计算机程序,上述计算机程序被处理器执行时实现本申请图3和图4所示实施例提供的车辆的状态获取方法。
上述非临时性计算机可读存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(Read Only Memory;以下简称:ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory;以下简称:EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network;以下简称:LAN)或广域网(Wide Area Network;以下简称:WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本申请实施例还提供一种计算机程序产品,当上述计算机程序产品中的指令由处理器执行时,执行本申请图3和图4所示实施例提供的车辆的状态获取方法。
图7为本申请车辆的状态获取系统一个实施例的结构示意图,如图7所示,上述车辆的 状态获取系统可以包括:车载传感器2、信息终端1、地面综合信息子系统10、地面采集器12和地面传感器11;
其中,车载传感器2,用于采集整车的状态数据;
信息终端1,用于获取整车网络中的整车报文数据和车载传感器2采集的整车的状态数据,将获取的数据发送到上述地面综合信息子系统10;
地面传感器11,用于采集车辆运行区域的地理环境变量;
地面采集器12,用于将地面传感器11采集的地理环境变量发送给地面综合信息子系统10;
地面综合信息子系统10,用于对信息终端1发送的数据和上述地面采集器12发送的数据进行解析,对解析获得的数据进行业务字段提取,根据预设数学运算模型对提取的业务字段在数据应用平台上进行计算以获得所述车辆的当前工作状态以及下一个工作状态,其中,所述预设数学运行模型根据历史数据建模获得,所述历史数据包括所述车辆的工作状态的历史数据和所述车辆运行区域的地理环境变量的历史数据。
进一步地,上述地面综合信息子系统10,还用于根据上述车辆的当前工作状态以及下一个工作状态,对上述车辆的故障情况进行预测。
进一步地,上述车辆的状态获取系统还可以包括:整车网络3;
本实施例中,信息终端1通过以太网口和CAN网口连接到上述整车网络3中;
信息终端1,具体用于通过以太网口和CAN网口获取上述整车网络3中的整车报文数据。
进一步地,上述车辆的状态获取系统还可以包括:无线网络天线4、蓝牙天线6和移动通信天线7,以及地面基站8;其中,上述无线网络天线4可以为无线保真(Wireless Fidelity;以下简称:WIFI)天线4,移动通信天线7可以为第4代移动通信系统(Fourth Generation Communication System;以下简称:4G)天线7,当然上述无线网络天线4也可以采用其他形式的无线网络天线,上述移动通信天线7也可以采用其他形式的移动通信天线,本实施例对此不作限定。
WIFI天线4、蓝牙天线6和4G天线7通过各自对应的接口与信息终端1连接;
信息终端1,具体用于通过WIFI天线4将获取的数据根据定制的协议发送到地面基站8,由上述地面基站8将上述收集到的数据发送给地面综合信息子系统10;或者,信息终端1,具体用于通过4G天线7将获取的数据根据定制的协议直接发送给地面综合信息子系统10。
进一步地,上述车辆的状态获取系统还可以包括:全球定位系统(Global Positioning System;以下简称:GPS)天线5,上述GPS天线5通过自身对应的接口与信息终端1连接;
信息终端1,还用于通过GPS天线5获取上述车辆当前所处的位置,将上述车辆当前所处的位置发送给地面综合信息子系统10。
本实施例中,信息终端1、车载传感器2、整车网络3、WIFI天线4、GPS天线5、蓝牙 天线6和4G天线7属于车内设备,车内设备的连接图可以如图8所示,图8为本申请车辆的状态获取系统中车内设备的连接示意图。
从图8可以看出,车内设备中,车载传感器2通过对应接口连接到信息终端1上,信息终端1通过以太网口和CAN网口连接到整车网络3中,WIFI天线4、GPS天线5、蓝牙天线6和4G天线7分别连接到信息终端1的相应接口上,从而信息终端1可以从整车上获取所有的车载传感器2的数据和整车报文数据,并将其保存在信息终端1中,通过无线网络或移动天线进行上传。
进一步地,上述车辆的状态获取系统还可以包括:移动终端9;
信息终端1,还用于通过上述WIFI天线4和蓝牙天线6将上述获取的数据发送给上述移动终端9。
上述车辆的状态获取系统中,车载传感器2连接到信息终端1上,信息终端1通过以太网口和CAN网口连接到整车网络3中,WIFI天线4、GPS天线5、蓝牙天线6和4G天线7分别连接到信息终端1的相应接口上。信息终端1通过车载传感器2采集到整车的状态数据,并将采集到的整车的状态数据转化成数字信号保存在信息终端1中;信息终端1可以通过以太网接口和CAN网口等获取整车网络3中的整车报文数据,并保存在信息终端1中;信息终端1经过整合通过WIFI天线4将收集到的数据发送给地面基站8,然后地面基站8将上述数据通过局域网发送给地面综合信息子系统10;信息终端1可以通过WIFI天线4和蓝牙天线6将收集到的数据发送给移动终端9;信息终端1通过GPS天线5获取到当前车辆所处位置;另外,信息终端1也可以通过4G天线7将获取的数据直接发送给地面综合信息子系统10。地面传感器11采集到车辆运行的区域的地理环境变量,并将采集的地理环境变量传输给地面采集器12,地面采集器12将接收到的地理环境变量发送给地面综合信息子系统10,从而在地面综合信息子系统10中对接收到的所有数据进行保存、处理和分析。
在图7所示的车辆的状态获取系统中,车辆上会安装用于对车辆状态进行监测的车载传感器2和信息终端1。这其中包括但不限于监测胎压的压力传感器,监测刹车片厚度的距离传感器等,信息终端1用于记录、存储和发送整车状态数据,同时需要安装与信息终端1进行连接的WIFI天线4、GPS天线5、蓝牙天线6和4G天线7。整车上电后,车载传感器2实时读取需要监测的数据并将数据发送给信息终端1,信息终端1通过对应接口接收到传感器2采集的数据,本数据包括模拟电压电流值,也包括关键数据量等。同时整车上各个子系统也在运行过程中产生许多报文数据,这些数据会通过整车以太网和CAN传输给信息终端1,信息终端1通过以太网口和CAN网口连接整车网络并对各控制器的报文数据进行接收。信息终端1对接收到的数据进行处理,针对不同的数据采取不同的编码规则和存放机制,如较为重要的数据全部保存,不重要的则筛选后保存。每经过一段时间(此时间可以设置),便将这段时间内保存的数据通过WIFI天线4车地通讯的方式发送给地面基站8,地面基站8再将数据发送给地面综合信息子系统10,同时信息终端1通过4G天线7将关键数据直接通 过无线网络发送给地面综合信息子系统10,从而实现大数据量通过车地通讯发送,同时在没有车地通讯的地方也能通过4G传输信息保证关键数据的发送和接收,两条传输线路上传输的信息都事先以时间作为标记,保证数据能够正确传输并明确数据产生的时间。
进一步,参见图5,信息终端1将收集到的整车报文数据和车载传感器2的数据根据定制的协议传输到地面的数据网关1001。此协议包括但不限于传输控制协议(Transmission Control Protocol;以下简称:TCP)/因特网协议(Internet Protocol;以下简称:IP),消息队列遥测传输(Message Queuing Telemetry Transport;以下简称:MQTT)等协议。于此同时,地面传感器11会采集车辆当前运行区域的环境参数,并将相应的环境变量以时间作为标记发送给地面采集器12,地面采集器12再将数据发送给数据网关1001,数据网关1001对信息终端1发送的数据包和地面采集器12发送过来的数据包进行解析,并把解析获得的数据通过消息中间件1002发给数据处理系统1003。数据处理系统1003接收消息中间件1002的数据,并对接收到的数据进行业务字段提取。同时利用历史数据库1004中的本地历史数据以及各地区的对应的历史数据,在数据应用平台1005上,根据相应的数学运算模型对相应的数据进行计算和分析。运算之后将当前状态的分析结果和产品下一个工作状态的预测结果一方面保存在服务器中,等待下一个生成报表和车辆运行状态日志,同时直接在监控显示工作站1006的用户界面和/或显示屏1007上进行显示,相应数据还会通过移动专网发送给对应的移动终端等设备,进而使得运营工程师、参观人员、设计院工程师都能实时掌握车辆状态分析结果和各系统故障预测结果。
当现场维护工程师在进行车辆正常的维护和检修的过程中也可以通过定制的移动检修仪连接到信息终端1的蓝牙天线6或者WIFI天线4上,移动检修仪便能够实时的读取整车的报文和各种传感器的检测量,在通过连接地面的服务器,便可以调取地面服务器经过计算之后的故障预测结果,从而大大节省工程师检修的检修时间。通过这样的方式,无论在车内、地面或远程都能够通过个人计算机(Personal Computer;以下简称:PC)端、展示大屏端、检测仪端、移动设备终端对车辆的实时数据进行查看,使得检修人员、监控人员、远程设计人员、参观人员、运营总监等都能实时查看车辆动态,打破数据展示的局限性。
通过上述车辆的状态获取系统,可以在得到车辆较为全面的参数数据的情况下,经过一段时间的数据积累,通过数学模型的运算,可以推算出车辆内各系统当前的运行健康情况并预测将来会发生故障的时间和原因,进而在车辆未发生故障之前及早进行保养和维护。
上述车辆的状态获取系统中的地面综合信息子系统10包括一个统一的数据存储数据库(历史数据库1004)和统一分析平台(数据应用平台1005),可以对各地的多种车辆的数据进行统一整合和分析,同时通过对不同地区的温度、湿度等地理环境进行同步采集和存储,将这些数据集中进行数据分析,可以了解到不同环境对车辆的运行状态的影响,再根据相应系统搭建的数学计算模型针对不同地区的运营维修策略做出相应的调整来满足当地的需求。工程师在针对不同地区的系统进行设计的过程中也可以参考不同地区设备的使用参数分析 结果对车辆的设备进行相应的调整和优化,从而使不同地区的车辆设计生产能够针对相应地区有所侧重,实现产品设计的最优化。
上述车辆的状态获取系统通过对车辆各重要信息进行收集和整理,结合当地环境数据,以时间为标记,以云服务器为存储设备,在数据量达到一定程度的情况下,通过大数据理论和数学算法搭建适用于相应系统的特征模型,以此实现对整车各系统进行状态分析和故障预测的功能。
本系统包含车载传感器2、车载以太网络、车载CAN网络、信息终端1等车载数据采集存储设备,WIFI天线4、GPS天线5、4G天线7、蓝牙天线6和地面基站8等无线通讯设备,地面综合信息子系统10、移动终端9和地面传感器11,以及地面采集器12等地面设备。信息终端1通过车载以太网络和车载CAN网络接收整车所有系统发送出来的报文等状态信息,通过传感器接收整车运行过程中产生的可以用来被传感器探测到的状态量,以上数据通过信息终,1分解和解析之后,一方面保存在信息终端1的内存中作为备份,另一方面通过无线通讯模块发送到地面设备和车载移动终端中。信息终端1会将全部数据通过WIFI发送到地面基站8,再通过地面基站8发送给地面综合信息子系统10,在超出地面基站局域网范围的地方数据会通过4G信号实时传输到地面综合信息子系统10,地面综合信息子系统10经过数据网关1001接收到信息终端1发送过来的数据。于此同时,地面传感器11也将地面的环境变量如温度、湿度、压力等发送给地面采集器12,地面采集器12也将相应的数据通过有线或无线的方式发送给数据网关1001,然后经过消息中间件1002对消息进行排列并发送到数据处理系统1003,数据处理系统1003按照数据的对应关系和数据产生的时间等要素对数据进行分类,处理好数据之后存入历史数据库1004。通过一段时间的积累,可以获取大量各地的车辆数据和环境数据。将各地区的数据汇总到一起导入数据应用平台1005,在数据应用平台1005中,通过大数据理论和对应的数学算法搭建适用于相应系统的特征模型并利用软件编程对数据进行分析和推算,从而对当前系统的运行状态进行分析并做出预判系统在接下来的运行情况和下一个故障的预测。实时获取的数据和经过分析预测的结果可以在本地电脑、监控中心大屏和手机等移动终端上进行显示,从而实现对车辆数据的状态分析和故障预判。现场的工程师也可以用移动终端在车上通过蓝牙或者WIFI连接到信息终端1,从而直接读取信息终端1实时获取到的数据,同时通过无线网络连接到服务器,调取服务器经过实时分析得出的系统故障预测数据。
上述车辆的状态获取系统中,车载传感器2可以包括胎压传感器、电流检测器、振动检测器、温度监测器等用于监测整车各种实时状态的传感器设备;信息终端1可以由处理器、通讯模块、存储模块和接口组成,接口包含但不限于以太网口、CAN数据接口、RS485接口、RS232接口、输入输出(Input Output;以下简称:IO)接口和/或模拟量接口等主要接口;地面基站8由覆盖范围较广的露天天线、信号编码器组成;地面综合信息子系统10包含数据网关1001、消息中间件1002、数据处理系统1003、历史数据库1004、数据应用平台 1005、显示工作站1006和显示屏1007等多个功能模块;地面传感器11包含但不限于温度传感器、压力传感器和湿度传感器。
现有相关技术中,仅针对车辆已经发生或正在发生的故障状态进行判断和分析,而无法对将来的运行状态和故障进行预测。而上述车辆的状态获取系统以时间为标记,对各地区车辆和环境的相关数据进行长时间的收集和整理,再利用大数据方法和数学运算模型对数据进行分析,从而实现对车辆下一个工作状态的分析和故障预测。
现有系统仅针对车辆数据进行采集,而没有将当地环境因素考虑进去,因此无法根据环境的不同,有区别的对车辆状态进行分析,数据结果不具备普适性。而本申请实施例提供的车辆的状态获取系统加入了对当地环境量的测量,包括沿线温度、湿度、大气压力等,从而可以根据环境影响修正对车辆运行状态的分析判断,使得一套系统可以满足不同地区的需求,对不同地区的运行状态进行预判。
现有系统在地面计算存储方面仅针对当地车辆进行数据收集、存储、分析和展示,但并没有考虑多地计算机云服务架构,因此不同地区、不同国家之间的车辆数据无法共用,更无法实现基于多地车辆数据的实时分析和对比。而本系统中地面综合子系统10是本系统的关键部件,它具备数据网关1001、消息中间件1002、数据处理系统1003、历史数据库1004、数据应用平台1005等整套云服务架构,一方面能有效保证大数据量的存储和计算,另一方面还可以将不同区域不同地理环境的车辆数据统一进行数据存储和分析,从而进一步扩大了数据分析的原始数据量,同时针对不同环境下的数据进行分析还可以挖掘出环境对车辆所产生影响的具体因素和数学模型,而这些是现有技术无法实现的。
现有技术在数据采集和数据显示方面均存在一定的局限性,数据采集方面仅针对车内部分数据进行采集,不能充分利用以太网接口、串口、传感器等多种渠道对车辆数据进行监测,且得到的数据都是孤立进行计算,仅针对想要得到的故障信息进行采集,而不关注产生故障的其他参数的实时数值,没有考虑根据应用场景运用数学算法建立相应的特征模型,因此得到的数据量和准确性都会受到影响。现有技术仅通过PC客户端或者检测仪进行故障状态的部分显示,显示场地有局限性,显示信息也不够完整。
而本系统通过以太网接口、串口、车载传感器2、地面环境传感器等多种采集渠道对预测模型所需要的整车关键信息进行采集,确保数据的完善性和准确性,从而进一步确保了预测模型的准确性。
在数据显示方面,本系统将车地通讯、近场通讯、远程运营商通讯相结合,保证在车内、地面、远程都能够通过PC端、展示大屏端、检测仪端、移动设备终端都能对车辆的实时数据进行查看,使得检修人员、监控人员、远程设计人员、参观人员、运营总监等都能实时查看车辆动态,打破数据展示的局限性。
现有相关技术仅当车辆出现故障之后才能够根据故障信息提示报警继而采取相应的维修措施,但却无法在车辆未发生故障前对车辆状态进行实时的分析和预测并第一时间将相应 预测信息传达给地面控制人员。在现有的城市轨道列车行业中,车辆的突发故障常常会给全线的正常运行带来很大的影响,一旦在客流高峰期发生全线停车的故障事件,往往会严重影响乘客的出行体验和运营公司社会形象,并且带来大量的抢修维护费用。严重时还可能造成人员伤亡。因此城市轨道列车从“故障修”转变为“状态修”是一件很有必要也很有价值的事。
故障的预判需要的支持条件很多,首先需要采集到与预判对象相关的多种参数,这其中部分参数需要通过车辆现有控制器发送的报文等信息获取,另一部分需要通过布设特定的传感器获取;其次采集的数据需要达到一定的数量后才具备计算和预测的价值,这就要求服务器具备大数据量的采集、存储和处理能力,同时采集上万个数据时服务器不能崩溃,同时处理上亿条数据时也能正常快速运行;最后需要使用大数据理论和数学算法建立相应的运算模型,将获取的各种数据有效的进行结合和运算,才能够实现对系统运行状态和故障的预测。
而在本申请实施例提供的车辆的状态获取系统中,数据采集端一方面通过以太网、CAN网连接车载相应控制器获取报文等信息,另一方面通过布设特定传感器获取各零部件的运行参数,从而获取数学模型所需要的对应参数数据。获得相应数据后,考虑到数据类型多且数据量庞大,我们需要将相应的数据集中保存在历史数据库1004中,并将历史数据库1004设置在分布式云服务器中,以保证历史数据库1004的平滑扩容和有效读取。随着时间的积累,云服务器中的数据会逐渐增加,当数据达到一定数量之后,将不同的参数带入到相应的数学模型中运用编程技术进行运算,进而可以得出该系统目前的运行状态以及对接下来一段时间运行状态的预测,最后通过显示设备将数据呈现给相关人员,以使得相关工作人员时刻了解车辆信息保证车辆的稳定运行。
这里举例如要对车轮磨损状态和爆胎风险进行分析和预测,目前的技术仅能实现对车辆胎压的监测,当车辆轮胎胎压出现过高或者过低的报警时提示工作人员对轮胎故障进行处理,这样一方面为车辆的运行带来隐患,另一方面维修人员需要随时待命,也极大的浪费了维修人员的时间。而本系统中,可以通过获取控制器发送的信息及各种对应传感器采集到的信息进行分析和建模实现对轮胎状态的分析和与预判。如我们可以通过胎压控制器回传检测到的胎压报文、通过温度传感器监测轮胎内部温度、通过速度传感器监测车速、通过压力传感器监测车重、通过距离传感器监测瞬时磨损量,通过力学传感器监测橡胶钢丝粘合强度。然后将这些与整车轮胎磨损量和爆胎相关的参数发送到云服务器中,以时间为基准进行分类整合,当获得了长时间的大量数据之后,根据线性回归等数学算法和计算机仿真等相关技术,搭建用于轮胎磨损量和爆胎风险的特征模型。再通过云服务器的数据应用平台运行相应的数学模型并与车辆实时产生的状态进行对比,从而得出当前车辆的磨损状态和车辆在接下来运行过程中可能存在的爆胎风险有多大。在不断应用新的数据进行比对时,可以不断的对相应数学模型进行修正,从而更加精准的实现轮胎磨损量和爆胎风险的预测。
现有技术仅针对车辆数据进行采集,而没有将当地环境因素考虑进去,因此无法根据环 境的不同,有区别的对车辆状态进行分析。而本系统加入了对当地环境量的测量,包括沿线温度、湿度、大气压力等,从而可以根据环境影响因素修正对车辆运行状态的分析和预测模型。
众所周知,不同地区的环境往往会有差别,如西藏的大气压力和深圳的大气压力就会不同,而不同国家之间的区别更是如此。不同的地理环境对于车辆各系统的运行会产生一定的影响,其分析和预测的基准值和数学模型往往也会产生一定的变化。如轮胎的压力就会受到温度的影响,在温度较高的地区,轮胎在其他参数不变的情况下压力就会增加,因此如果不考虑不同地区地域环境的影像仅通过车辆参数建立预测模型的话,往往在不同地区会存在一定的误差而不能通用。
本申请为了解决这一问题,在地面系统中加入了环境传感器,通过环境传感器对当地的环境变量进行采集。在搭建某预测模型时,将当地的环境变量一并考虑,进一步完善相应的分析和预测模型,这样当车辆运行在不同的地区时,只需要将当地的环境参数一并导入到相应的预测模型中,便可以实现对当地运行车辆更为准确的分析和预测。
现有技术在服务器方面仅针对当地车辆进行数据收集、存储、分析和展示,但并没有考虑多地计算机云服务架构,因此不同地区、不同国家之间的车辆数据无法共用,更无法实现基于多地数据的实时分析和预测。而本系统中地面综合子系统10是本系统的关键部件,它具备数据网关1001、消息中间件1002、数据处理系统1003、历史数据库1004、数据应用平台1005等整套云服务器架构,一方面能有效保证大量数据的存储能力和计算效率,另一方面还可以将不同区域不同地理环境的车辆的数据统一进行数据存储和分析,从而一方面进一步扩大了数据分析的原始数据量,同时针对不同环境下的数据进行分析预测还可以实时的将不同地区的环境因素添加到计算模型中一并进行运算和分析,从而使模型的适用性更大,模型更准确,更能满足各个地区各零部件的状态分析和故障预测。
现有系统仅针对单独地区进行数据采集,不具备不同地区的对比性,而由于本申请实施例提供的车辆的状态获取系统可以从整车网络及传感器等多个维度对数据进行采集,因此可以通过对不同地区采集到的数据进行对比分析,得出不同地区产品的运营状况,进而有针对性的对车辆的生产和运营进行升级和改造。比如车辆运行在东北,由于天气较冷轨面会有积雪结冰,车辆的制动速度会较慢,这样东北运行的车就需要更换适用于雪地运行的轮胎,在生产时就要通过数据分析得出轮胎的抓地力等相关参数的选取标准;同时由于东北气候较冷,所以冬天时轮胎的老化程度要比北京更严重,这样就需要通过数据分析从而得出东北轮胎的更换频率和北京轮胎的更换频率,两者是不同的。这些工作之前都需要通过维修人员每天到现场去对轮胎进行检查来发现,而现在可以通过数据分析就能对其进行预判,从而节省了相应的人力物力。
现有技术在数据采集和数据显示方面均存在一定的局限性,数据采集方面仅针对车内部分数据进行采集,不能充分利用以太网接口、串口、传感器等多种渠道对车辆数据进行监测, 且得到的数据都是孤立进行计算,没有考虑根据应用场景运用数学算法建立相应的特征模型,因此得到的数据量和准确性都会受到影响。现有技术仅通过PC客户端或者检测仪进行故障状态的部分显示,显示场地有局限性,显示信息也不够完整。而本系统通过以太网接口、串口、车载传感器、地面环境传感器等多种采集渠道对预测模型所需要的整车关键信息进行采集,确保数据的完善性和准确性,从而进一步确保了预测模型的准确性。在数据显示方面,本系统将车地通讯、近场通讯、远程运营商通讯相结合,保证在车内、地面、远程都能够通过PC端、展示大屏端、检测仪端、移动设备终端都能对车辆的实时数据进行查看,使得检修人员、监控人员、远程设计人员、参观人员、运营总监等都能实时查看车辆动态,打破数据展示的局限性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(Random Access Memory;以下简称:RAM),只读存储器(Read Only Memory;以下简称:ROM),可擦除可编辑只读存储器(Erasable Programmable Read Only Memory;以下简称:EPROM)或闪速存储器,光纤 装置,以及便携式光盘只读存储器(Compact Disc Read Only Memory;以下简称:CD-ROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(Programmable Gate Array;以下简称:PGA),现场可编程门阵列(Field Programmable Gate Array;以下简称:FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种车辆的状态获取方法,其特征在于,包括:
    接收信息终端发送的数据和地面采集器发送的数据;所述信息终端发送的数据包括所述信息终端获取的整车网络中的整车报文数据和车载传感器采集的整车的状态数据;所述地面采集器发送的数据包括车辆运行区域的地理环境变量;
    对接收的数据进行解析,并对解析获得的数据进行业务字段提取;
    根据预设数学运算模型对提取的业务字段进行计算以获得所述车辆的当前工作状态以及下一个工作状态,并显示所述车辆的当前工作状态以及下一个工作状态,其中,所述预设数学运行模型根据历史数据建模获得,所述历史数据包括所述车辆的工作状态的历史数据和所述车辆运行区域的地理环境变量的历史数据。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    根据所述车辆的当前工作状态以及下一个工作状态,对所述车辆的故障情况进行预测。
  3. 根据权利要求1或2所述的方法,其特征在于,所述接收信息终端发送的数据包括:
    接收所述信息终端根据定制的协议发送的数据。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,还包括:
    将所述车辆当前以及下一个的工作状态,以及所述车辆运行区域的地理环境变量作为历史数据保存在历史数据库中,所述历史数据库设置在分布式云服务器上。
  5. 根据权利要求2所述的方法,其特征在于,所述预设数学运行模型包括轮胎状态分析模型,其中根据所述车辆的轮胎状态的历史数据和所述车辆运行区域的地理环境变量的历史数据建立所述轮胎状态分析模型;
    所述对接收的数据进行解析,并对解析获得的数据进行业务字段提取包括:
    对接收的数据进行解析,从解析获得的数据中提取所述车辆的轮胎状态数据和所述车辆运行区域的地理环境变量;
    所述根据预设数学运算模型对提取的业务字段进行计算以获得所述车辆的当前工作状态以及下一个工作状态包括:
    根据所述轮胎状态分析模型,对提取的所述车辆的轮胎状态数据和所述车辆运行区域的地理环境变量进行计算以获得所述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述车辆的当前工作状态以及下一个工作状态,对所述车辆的故障情况进行预测包括:
    根据所述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态,预测所述车辆的轮胎在当前时刻之后的预定时长内的爆胎概率。
  7. 根据权利要求2所述的方法,其特征在于,所述预设数学运行模型包括轮胎抓地力分析模型,其中根据不同运行区域的车辆的轮胎抓地力的历史数据和不同运行区域的地理环境变量的历史数据建立所述轮胎抓地力分析模型;
    所述对接收的数据进行解析,并对解析获得的数据进行业务字段提取包括:
    对接收的数据进行解析,从解析获得的数据中提取不同运行区域的车辆的轮胎抓地力的数据;
    所述根据预设数学运算模型对提取的业务字段进行计算以获得所述车辆的当前工作状态以及下一个工作状态包括:
    根据所述轮胎抓地力分析模型,对提取的不同运行区域的车辆的轮胎抓地力的数据和不同运行区域的地理环境变量进行计算以获得不同运行区域的车辆的轮胎抓地力参数的选择标准和轮胎的更换频率。
  8. 一种地面综合信息子系统,其特征在于,包括:数据网关、消息中间件、数据处理系统、历史数据库、数据应用平台;
    所述数据网关,用于接收信息终端发送的数据和地面采集器发送的数据,对接收的数据进行解析,以及将解析获得的数据通过所述消息中间件发送给所述数据处理系统;所述信息终端发送的数据包括所述信息终端获取的整车网络中的整车报文数据和车载传感器采集的整车的状态数据;所述地面采集器发送的数据包括车辆运行区域的地理环境变量;
    所述数据处理系统,用于接收解析获得的数据,对所述解析获得的数据进行业务字段提取,以及根据预设数学运算模型对提取的业务字段在数据应用平台上进行计算以获得所述车辆的当前工作状态以及下一个工作状态,其中,所述预设数学运行模型根据历史数据建模获得,所述历史数据包括所述车辆的工作状态的历史数据和所述车辆运行区域的地理环境变量的历史数据;以及
    显示设备,用于显示所述车辆的当前工作状态以及下一个工作状态。
  9. 根据权利要求8所述的系统,其特征在于,
    所述数据处理系统,还用于根据所述车辆的当前工作状态以及下一个工作状态,对所述车辆的故障情况进行预测。
  10. 根据权利要求8或9所述的系统,其特征在于,
    所述数据网关,具体用于接收所述信息终端根据定制的协议发送的数据。
  11. 根据权利要求8至10中任一项所述的系统,其特征在于,
    所述数据处理系统,还用于将所述车辆当前工作状态以及下一个工作状态,以及所述车辆运行区域的地理环境变量作为历史数据保存在历史数据库中,所述历史数据库设置在分布式云服务器上。
  12. 根据权利要求9所述的系统,其特征在于,所述预设数学运行模型包括轮胎状态分析模型,其中根据所述车辆的轮胎状态的历史数据和所述车辆运行区域的地理环境变量的历史数据建立所述轮胎状态分析模型;
    所述数据处理系统,具体用于从解析获得的数据中提取所述车辆的轮胎状态数据和所述车辆运行区域的地理环境变量;通过所述轮胎状态分析模型,对提取的所述车辆的轮胎状态数据和所述车辆运行区域的地理环境变量进行计算以获得所述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态。
  13. 根据权利要求12所述的系统,其特征在于,
    所述数据处理系统,具体用于根据所述车辆的轮胎当前和当前时刻之后的预定时长内的磨损状态,预测所述车辆的轮胎在当前时刻之后的预定时长内的爆胎概率。
  14. 根据权利要求9所述的系统,其特征在于,所述预设数学运行模型包括轮胎抓地力分析模型,其中根据不同运行区域的车辆的轮胎抓地力的历史数据和不同运行区域的地理环境变量的历史数据建立所述轮胎抓地力分析模型;
    所述数据处理系统,具体用于从解析获得的数据中提取不同运行区域的车辆的轮胎抓地力的数据;通过所述轮胎抓地力分析模型,对提取的不同运行区域的车辆的轮胎抓地力的数据和不同运行区域的地理环境变量进行计算以获得不同运行区域的车辆的轮胎抓地力参数的选择标准和轮胎的更换频率。
  15. 一种地面综合信息子系统,其特征在于,包括:
    处理器;
    存储器,用于存储所述处理器执行的计算机指令;
    显示工作站以及
    显示屏,其中
    所述处理器,用于读取所述存储器中的所述计算机指令以执行权利要求1至7中任一项所述的方法;
    所述显示工作站,用于将所述车辆的当前工作状态以及下一个工作状态,显示在所述显示工作站的用户界面上,以及将所述车辆的当前工作状态以及下一个工作状态发送给所述显示屏;
    所述显示屏,用于显示所述车辆的当前工作状态以及下一个工作状态。
  16. 一种车辆的状态获取系统,其特征在于,包括:车载传感器、信息终端、地面采集器、地面传感器和权利要求15所述的地面综合信息分析子系统;
    所述车载传感器,用于采集整车的状态数据;
    所述信息终端,用于获取整车网络中的整车报文数据和所述车载传感器采集的整车的状态数据,将获取的数据发送到所述地面综合信息分析子系统;
    所述地面传感器,用于采集车辆运行区域的地理环境变量;
    所述地面采集器,用于将所述地面传感器采集的地理环境变量发送给所述地面综合信息子系统;
    所述地面综合信息子系统,用于对所述信息终端发送的数据和所述地面采集器发送的数据进行解析,对解析获得的数据进行业务字段提取,根据预设数学运算模型对提取的业务字段进行计算以获得所述车辆的当前工作状态以及下一个工作状态,并显示所述车辆的当前工作状态以及下一个工作状态,其中,所述预设数学运行模型根据历史数据建模获得,所述历史数据包括所述车辆的工作状态的历史数据和所述车辆运行区域的地理环境变量的历史数据。
  17. 根据权利要求16所述的系统,其特征在于,
    所述信息终端通过以太网口和控制器局域网络CAN网口连接到所述整车网络中;
    所述信息终端,具体用于通过以太网口和CAN网口获取所述整车网络中的整车报文数据。
  18. 根据权利要求16或17所述的系统,其特征在于,还包括:无线网络天线、蓝牙天线和移动通信天线,以及地面基站;
    所述无线网络天线、所述蓝牙天线和所述移动通信天线通过各自对应的接口与所述信息终端连接;
    所述信息终端,具体用于通过所述无线网络天线将获取的数据根据定制的协议发送到所述地面基站,由所述地面基站将所述获取的数据发送给所述地面综合信息子系统;或者,所述信息终端,具体用于通过所述移动通信天线将获取的数据根据定制的协议直接发送给所述地面综合信息子系统。
  19. 根据权利要求18所述的系统,其特征在于,还包括:全球定位系统天线,所述全球定位系统天线通过自身对应的接口与所述信息终端连接;
    所述信息终端,还用于通过所述全球定位系统天线获取所述车辆当前所处的位置,将所述车辆当前所处的位置发送给所述地面综合信息子系统。
  20. 根据权利要求18或19所述的系统,其特征在于,还包括:移动终端;
    所述信息终端,还用于通过所述无线网络天线和所述蓝牙天线将所述获取的数据发送给所述移动终端。
PCT/CN2018/114065 2017-11-07 2018-11-06 车辆的状态获取方法、系统和地面综合信息子系统 WO2019091360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711082516.5A CN109752200A (zh) 2017-11-07 2017-11-07 车辆的状态分析方法、系统和地面综合信息分析子系统
CN201711082516.5 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019091360A1 true WO2019091360A1 (zh) 2019-05-16

Family

ID=66400657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114065 WO2019091360A1 (zh) 2017-11-07 2018-11-06 车辆的状态获取方法、系统和地面综合信息子系统

Country Status (2)

Country Link
CN (1) CN109752200A (zh)
WO (1) WO2019091360A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361207B (zh) * 2019-07-25 2021-03-16 中南大学 一种智能列车走行部在线状态预测系统及其方法
CN112671697B (zh) * 2019-10-16 2022-03-18 比亚迪股份有限公司 综合监控系统的数据处理方法、装置和系统
CN111178550A (zh) * 2019-11-26 2020-05-19 恒大智慧科技有限公司 基于智慧社区的车辆维修分析方法、系统、计算机设备及存储介质
CN113511150B (zh) * 2020-04-10 2023-03-31 采埃孚汽车科技(上海)有限公司 一种集成的电子控制单元及车辆的控制方法
CN111538775A (zh) * 2020-04-28 2020-08-14 中车株洲电力机车有限公司 一种列车运行状态数据解析方法、系统及轨道交通车辆
CN111831862B (zh) * 2020-07-20 2023-04-07 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 高质量绝缘评估系统
CN112087500B (zh) * 2020-08-27 2023-04-07 东风小康汽车有限公司重庆分公司 远程车辆数据采集方法和系统
CN112288907A (zh) * 2020-10-28 2021-01-29 山东超越数控电子股份有限公司 一种车辆实时监控方法
CN112364434B (zh) * 2020-11-10 2022-06-14 济南轨道交通集团有限公司 一种基于车辆状态bim模型的故障定位方法及系统
CN113065732B (zh) * 2020-12-04 2021-11-23 深圳泰瑞谷科技有限公司 基于实景分析的轮胎请求系统及方法
CN112862233A (zh) * 2020-12-25 2021-05-28 石家庄开发区天远科技有限公司 一种基于车联网数据的故障关联性分析系统及方法
CN113364657A (zh) * 2021-05-12 2021-09-07 东风汽车集团股份有限公司 基于网关的车辆数据服务系统及方法
CN113704116B (zh) * 2021-08-30 2024-07-05 阿波罗智联(北京)科技有限公司 自动驾驶车辆的数据处理方法、装置、电子设备和介质
CN113788051A (zh) * 2021-10-26 2021-12-14 成都运达科技股份有限公司 列车在站运行状态监测分析系统
CN116244932B (zh) * 2023-01-28 2024-06-14 芯华章科技(北京)有限公司 对车辆进行安全仿真的方法、电子设备及存储介质
CN116424396B (zh) * 2023-05-31 2024-03-08 兰州交通大学 一种列车速度监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065403A (ja) * 1999-08-30 2001-03-16 Denso Corp 自動車用電子制御装置の故障診断装置
US20080034736A1 (en) * 2006-08-08 2008-02-14 Honda Motor Co., Ltd. Control device for an internal combustion engine of a vehicle
CN101826135A (zh) * 2009-03-05 2010-09-08 通用汽车环球科技运作公司 用于增强车辆诊断、预测和维护实践的综合信息融合
CN102141478A (zh) * 2008-01-11 2011-08-03 丰田自动车株式会社 异常检测设备
CN103493019A (zh) * 2011-04-29 2014-01-01 丰田自动车工程及制造北美公司 多代理程序合作车辆故障诊断系统和相关联的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201659894U (zh) * 2010-03-25 2010-12-01 刘梦真 多因素汽车防爆胎预警控制装置
JP5347054B1 (ja) * 2012-09-03 2013-11-20 株式会社ブリヂストン タイヤケースライフ予測システム
CN103293008B (zh) * 2013-06-27 2016-01-27 长城汽车股份有限公司 汽车诊断设备
CN204641278U (zh) * 2015-03-23 2015-09-16 顺丰科技有限公司 一种轮胎管理系统
TWI564176B (zh) * 2015-08-20 2017-01-01 Tire monitoring device
CN106515323A (zh) * 2016-11-25 2017-03-22 大陆汽车投资(上海)有限公司 一种轮胎管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065403A (ja) * 1999-08-30 2001-03-16 Denso Corp 自動車用電子制御装置の故障診断装置
US20080034736A1 (en) * 2006-08-08 2008-02-14 Honda Motor Co., Ltd. Control device for an internal combustion engine of a vehicle
CN102141478A (zh) * 2008-01-11 2011-08-03 丰田自动车株式会社 异常检测设备
CN101826135A (zh) * 2009-03-05 2010-09-08 通用汽车环球科技运作公司 用于增强车辆诊断、预测和维护实践的综合信息融合
CN103493019A (zh) * 2011-04-29 2014-01-01 丰田自动车工程及制造北美公司 多代理程序合作车辆故障诊断系统和相关联的方法

Also Published As

Publication number Publication date
CN109752200A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2019091360A1 (zh) 车辆的状态获取方法、系统和地面综合信息子系统
CN107589695B (zh) 一种列车组故障预测与健康管理系统
US11385137B2 (en) System, method and apparatus for monitoring the health of railcar wheelsets
CN109144014B (zh) 工业设备运行状况的检测系统及方法
CN204515511U (zh) 桥梁建养一体化监测系统
US9478076B2 (en) Systems and methods for executing custom fleet vehicle management scripts
US9053585B2 (en) System and method for monitoring operation of vehicles
RU2608992C2 (ru) Способ диагностики для рельсовых транспортных средств
JP6670745B2 (ja) センサ信号から測定結果を取得する方法
CN107972695A (zh) 一种物联网轨道车辆车轴健康状态智能监测管理系统装置
CN101716945B (zh) 铁路机车车轴红外热像监测方法及系统
CN108648451B (zh) 一种交通数据处理设备和交通态势管理系统
CN108128322A (zh) 一种基于物联网的轨道车辆车轴健康状态智能监测方法
CN103048992A (zh) 汽车故障远程监控和云端诊断方法及系统
CN112141069B (zh) 一种动车组用制动及供风系统的健康管理系统
CN111201176B (zh) 转向架轨道监测
KR20210085168A (ko) 머신러닝 기반 건축 구조물 고유 진동값 학습을 통한 안전 진단 시스템 및 방법
CN106981191A (zh) 一种基于智能车载终端的客车管理系统及方法
KR101488420B1 (ko) 무선 및 자가발전 센서를 이용한 철도 차량 모니터링 시스템 및 방법
CN111746595B (zh) 一种快捷货运列车走行部运行安全智能监测系统
CN203133605U (zh) 一种基于汽车经销商管理系统的远程诊断系统装置
CN103253189A (zh) 一种基于云服务的车辆保养提醒方法及其车载终端装置
CN104408578A (zh) 基于轨迹点的机械化作业的量化考核系统及其方法
CN204085683U (zh) 汽车振动监测系统
CN114359003A (zh) 一种基于云计算的轨道交通网信息化运营管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875969

Country of ref document: EP

Kind code of ref document: A1