WO2019091311A1 - 测量间隔的配置方法和设备 - Google Patents

测量间隔的配置方法和设备 Download PDF

Info

Publication number
WO2019091311A1
WO2019091311A1 PCT/CN2018/112933 CN2018112933W WO2019091311A1 WO 2019091311 A1 WO2019091311 A1 WO 2019091311A1 CN 2018112933 W CN2018112933 W CN 2018112933W WO 2019091311 A1 WO2019091311 A1 WO 2019091311A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
network node
user equipment
measurement
measurement interval
Prior art date
Application number
PCT/CN2018/112933
Other languages
English (en)
French (fr)
Inventor
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/763,198 priority Critical patent/US11528619B2/en
Priority to EP18875819.7A priority patent/EP3709699A4/en
Publication of WO2019091311A1 publication Critical patent/WO2019091311A1/zh
Priority to US17/979,697 priority patent/US20230077686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a method and a device for configuring a measurement interval.
  • LTE Long Term Evolution
  • the so-called measurement interval mainly refers to the interruption time caused by the need to re-tune from one radio frequency (RF) to another RF during the measurement process to measure the corresponding reference signal.
  • RF radio frequency
  • the pattern of measurement intervals in LTE is fixed.
  • the network side is configured by the measurement interval configuration (measGapConfig) parameter.
  • the base station is configured to report the measurement interval of the UE according to the capability of the user equipment (UE).
  • the length of the measurement interval configured in this manner is a fixed value (for example, 6 ms), and the period is also Relatively limited to several options, it is not suitable for the flexible measurement interval configuration in the 5th Generation (5G) mobile communication New Radio (NR) system.
  • 5G 5th Generation
  • NR New Radio
  • an embodiment of the present disclosure provides a method for configuring a measurement interval, which is applied to a first network node, where the configuration method includes:
  • the measurement interval is configured for the user equipment according to the first configuration.
  • an embodiment of the present disclosure further provides a method for configuring a measurement interval, which is applied to a user equipment, including:
  • an embodiment of the present disclosure further provides a first network node, including:
  • a determining module configured to determine a first configuration configured by the second network node for the user equipment
  • a configuration module configured to configure a measurement interval for the user equipment according to the first configuration.
  • the embodiment of the present disclosure further provides a user equipment, including:
  • a second receiving module configured to receive a measurement interval sent by the first network node, where the measurement interval is configured by the first network node according to the first configuration, and the first configuration is configured by the second network
  • the node is configured for the user equipment.
  • an embodiment of the present disclosure further provides a first network node, including: a processor, a memory, and a program stored on the memory and executable on the processor, where the program is processed
  • the steps of the configuration method of the measurement interval as described in the first aspect are implemented when the device is executed.
  • an embodiment of the present disclosure further provides a user equipment, including: a processor, a memory, and a program stored on the memory and executable on the processor, where the program is executed by the processor.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the program is stored on a computer readable storage medium, and the program is executed by the processor to implement the first aspect or the second aspect.
  • the steps of the configuration method of the measurement interval are not limited to:
  • Figure 1 is a schematic view showing the structure of a double connection
  • FIG. 2 is a flowchart of a method for configuring a measurement interval according to an embodiment of the present disclosure
  • FIG. 3 is a second flowchart of a method for configuring a measurement interval according to an embodiment of the present disclosure
  • FIG. 5 is a fourth flowchart of a method for configuring a measurement interval according to an embodiment of the present disclosure
  • FIG. 6 is a fifth flowchart of a method for configuring a measurement interval according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a first network node according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a second schematic structural diagram of a first network node according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in the disclosed embodiments should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • the measurement is divided into Intra-frequency measurement and Inter-frequency measurement.
  • the so-called intra-frequency measurement means that the cell where the UE is currently located and the target cell to be measured are at the same carrier frequency (for example, the center frequency point).
  • the inter-frequency measurement means that the cell where the UE is currently located and the target cell are not at a carrier frequency.
  • Inter-frequency measurement including Inter Radio Access Technology (Inter-RAT) or Inter-RAT
  • a simple way is to install two kinds of radio receiving in the UE device.
  • the machine separately measures the frequency of the cell and the frequency of the target cell, but this will bring about cost increase and mutual interference between different frequency points. Therefore, the 3rd Generation Partnership Project (3GPP) proposes a measurement interval in which a part of the time (ie, measurement interval time) is reserved during normal data transmission and reception, during which the UE No data will be sent and received, and the RF receiver will be adjusted to the target cell frequency point for inter-frequency (or heterogeneous) measurement. When the measurement interval ends, it will be transferred to the current serving cell to continue data transmission and reception.
  • Inter-RAT Inter Radio Access Technology
  • Inter-RAT Inter Radio Access Technology
  • the carrier frequency of the current cell and the target cell are different, the target cell bandwidth is smaller than the current cell bandwidth, and the target cell bandwidth is within the current cell bandwidth: the scenario belongs to the inter-frequency measurement, and the measurement interval is required.
  • the carrier frequency of the current cell and the target cell are different, the target cell bandwidth is greater than the current cell bandwidth, and the current cell bandwidth is within the target cell bandwidth: the scenario belongs to the inter-frequency measurement, and the measurement interval is required.
  • this scenario belongs to the inter-frequency measurement and requires a measurement interval.
  • the UE and the network must agree on the configuration of the measurement interval (for example, the configuration of the measurement interval includes: interval start position, interval length, number of intervals, etc.), the measurement
  • the configuration of the interval may be defined by a Measurement Interval Configuration (MeasGapConfig) Information Element (IE) of a Radio Resource Control (Re-) configuration (RRC (Re-) configuration) message.
  • MeasGapConfig Measurement Interval Configuration
  • IE Radio Resource Control
  • Re- Radio Resource Control
  • RRC (Re-) configuration Radio Resource Control
  • each component carrier measurement interval is configured with one measurement interval.
  • the primary cell group (MCG) and the secondary cell group (Secondary Cell Group) under the primary base station (MeNB) and the secondary base station (Secondary eNB, SeNB) Each cell in the SCG is a different component carrier, and each component carrier measurement interval is a measurement interval configured separately for each cell.
  • each cell group per-cell group measurement gap. That is, the MCG and the SCG can respectively configure one measurement interval for the same UE, that is, all the cells (or component carriers) under the MCG (or SCG) use this measurement interval.
  • each UE per-UE
  • per cell group Per-CG
  • per component carrier Per-CC
  • the so-called measurement interval mainly refers to the interruption time caused by the need to retreat from one radio frequency (RF) to another RF during the measurement process to measure the corresponding reference signal.
  • RF radio frequency
  • the pattern of measurement intervals in LTE is fixed.
  • the starting position of the measurement interval for example, the system frame number (SFN) or subframe information
  • the network side can be configured by the measGapConfig parameter. details as follows:
  • the UE After receiving the information of the gap offset, the UE calculates the starting position of the interval according to the following formula:
  • the length of the interval is fixed to 6 ms, and the period is relatively only two options, which is not suitable for the flexible measurement interval configuration in the NR system.
  • the first phase mainly uses the LTE base station as the primary base station (MeNB) and the NR base station (gNB) as the secondary base station ( SeNB).
  • the LTE base station is used as the primary base station and the LTE base station is used as the secondary base station
  • the NR-NR DC is similar to this, and will not be described here.
  • CA Carrier Aggregation
  • the CA technology can aggregate multiple component carriers (CCs) to achieve a large transmission bandwidth and effectively improve the uplink and downlink transmission rates.
  • the terminal determines that up to several carriers can be used for uplink and downlink transmission according to the size of its own capabilities.
  • the CA function can support continuous or non-contiguous carrier aggregation.
  • CA technology can be used in LTE or NR or other systems.
  • the 5G NR system supports a maximum system bandwidth of 400MHz, which is much larger than the system bandwidth of LTE up to 20MHz to support larger system and user throughput.
  • supporting such a large system bandwidth will be a huge challenge for the implementation of the UE, which is not conducive to the implementation of low-cost UE. Therefore, the 5G NR system also supports dynamic and flexible bandwidth allocation, which divides the system bandwidth into multiple bandwidth parts (BWP) to support the access of narrowband user equipment or user equipment in energy-saving mode.
  • BWP bandwidth parts
  • the 5G NR system supports operating bands above 6 GHz and provides greater throughput for data transmission.
  • the high-frequency signal has a short wavelength. Compared with the low-frequency band, more antenna elements can be arranged on the same size panel, and beamforming technology is used to form multiple beams with stronger directivity and narrower lobe.
  • the 5G NR system transmits a broadcast signal or system information to user equipments in a cell through beam scanning technology.
  • the embodiment of the present disclosure provides a configuration method and device for measuring a measurement interval, in which a measurement interval configured by a related art cannot meet a flexible reference signal configuration.
  • the execution body of the method is a first network node, including steps 201 to 202.
  • Step 201 Determine a first configuration that the second network node configures for the user equipment.
  • the first configuration may be that the second network node configures the UE according to the capability indication reported by the UE, where the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the BWP location and the BWP bandwidth are of course not limited to this.
  • the first network node and the second network node may be network nodes in a dual connectivity architecture, and the dual connectivity architecture may be applicable to a 5G system or other system with similar measurement interval configuration requirements.
  • the configuration method of the measurement interval of the embodiment of the present disclosure is also applicable to a Carrier Aggregation (CA) architecture or other similar DC or CA architecture.
  • CA Carrier Aggregation
  • the first network node is an NR-LTE architecture or an NR-LTE DC architecture or a primary base station in an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC architecture
  • the secondary base station, or the first network node is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR
  • the first network node may be a primary node (MN), and the second network node may be a secondary node (SN); or the first network node may also be an SN, and the second network node For MN.
  • MN primary node
  • SN secondary node
  • MN primary node
  • SN secondary node
  • the SN may have more capabilities, including the ability to configure the measurement interval.
  • the measurement interval of the UE can be coordinated with the MN to implement the MN dynamic.
  • the measurement interval is configured such that the dynamically configured measurement interval of the MN can be adapted to 5G NR or flexible measurement interval configuration in an EN-DC system with LTE.
  • the first configuration may include one or more of the following: a measurement configuration, a configured bandwidth portion (BWP), an activated BWP, a Synchronization Signal Block pattern (SSB pattern), and a deployed configuration.
  • a measurement configuration refers to a configuration of a measurement interval.
  • the measurement interval may include: a measurement object and/or a measurement configuration, and is not limited thereto.
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • Step 202 Configure a measurement interval for the user equipment according to the first configuration.
  • the measurement interval is directly configured for the UE according to the first configuration, or the measurement interval is configured for the UE according to the first configuration and the capability indication reported by the UE.
  • the capability indication may include: a frequency point, a bandwidth, a BWP location, and a BWP bandwidth supported by the UE.
  • the measurement interval may include one or more of the following: a per-UE measurement gap; a per-CC measurement gap; Per-CG measurement gap; per-BWP measurement gap; per-band measurement gap; combined measurement interval per band (per- Band combination measurement gap); an indication corresponding to each per-channel measurement gap; an indication corresponding to each per-channel combination measurement gap; per-measurement object measurement
  • a per-UE measurement gap a per-CC measurement gap; Per-CG measurement gap; per-BWP measurement gap; per-band measurement gap; combined measurement interval per band (per- Band combination measurement gap); an indication corresponding to each per-channel measurement gap; an indication corresponding to each per-channel combination measurement gap; per-measurement object measurement
  • the indication corresponding to the gap; and the indication corresponding to each of the per-frequency measurement gaps are of course not limited thereto.
  • the user equipment that is, the terminal, does not need to measure the interval, but is not limited to the following situations:
  • the synchronization signal block is in the frequency center, the frequency domain position of the synchronization signal block of the current cell and the neighboring area is the same, and the working frequency band width covers all the reference signals to be measured;
  • the synchronization signal block is offset from the frequency center, the frequency domain of the synchronization signal block of the cell and the neighboring cell is in the same position, and the working frequency band width covers multiple or all reference signals to be measured;
  • Multiple synchronization signal blocks are configured in the working bandwidth, correspondingly configured with multiple measurement objects, the frequency domain of the current cell and the neighboring area SSB are in the same position, and the working frequency band width covers all the reference signals to be measured;
  • the working frequency band where the terminal is located does not include the reference signal position to be tested;
  • the terminal needs to measure other synchronization signal block reference signals on the carrier, which exceeds its working frequency band;
  • the synchronization signal block of the neighboring cell still needs to be measured, but the subcarrier space (SCS) of the synchronization signal block of the neighboring cell is different from the serving cell;
  • SCS subcarrier space
  • the data of the current cell and the SSB of the neighboring cell overlap in time and frequency, but the data and the SCS of the synchronization signal block are inconsistent, and when it is necessary to measure the synchronization signal block at the frequency, the measurement interval is also required;
  • the measurement interval may be required according to the terminal capability.
  • the first network node can coordinate the configuration measurement interval for the user equipment according to the first configuration of the second network node to the user equipment, thereby implementing the first network node dynamic configuration measurement interval, so that the first network node Dynamically configured measurement intervals meet flexible measurement interval configuration requirements.
  • the execution body of the method is a first network node, and includes steps 301 to 303.
  • Step 301 Send a request message to the second network node requesting the first configuration configured by the second network node for the user equipment.
  • the first configuration may be that the second network node is configured for the UE according to the capability indication reported by the UE, and the capability indication may include one or more of the following: a frequency point and a bandwidth supported by the UE. , BWP location and BWP bandwidth, of course, are not limited to this.
  • the first network node and the second network node may be network nodes in a dual connectivity architecture, and the dual connectivity architecture may be applicable to a 5G system or other system with similar measurement interval configuration requirements.
  • the configuration method of the measurement interval of the embodiment of the present disclosure is also applicable to a Carrier Aggregation (CA) architecture or other similar DC or CA architecture.
  • CA Carrier Aggregation
  • the first network node may be a primary node (MN), and the second network node may be a secondary node (SN); or the first network node may also be an SN, and the second network node For MN.
  • MN primary node
  • SN secondary node
  • the first network node is an NR-LTE architecture or an NR-LTE DC architecture or a primary base station in an NR-NR DC architecture
  • the second network node is in an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC architecture.
  • the secondary base station, or the first network node is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC
  • the primary base station in the architecture is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the primary base station in the architecture is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC
  • the SN may have more capabilities, including the ability to configure the measurement interval.
  • the measurement interval of the UE can be coordinated with the MN to implement the MN dynamic.
  • the measurement interval is configured such that the dynamically configured measurement interval of the MN can be adapted to 5G NR or flexible measurement interval configuration in an EN-DC system with LTE.
  • the first configuration may include one or more of the following: a measurement configuration, a configured bandwidth portion (BWP), an activated BWP, a synchronization signal block pattern (SSB pattern), a deployed frequency point, and a deployed Bandwidth, working frequency and working bandwidth are of course not limited to this.
  • the measurement configuration refers to a configuration of a measurement interval.
  • the measurement interval may include: a measurement object and/or a measurement configuration, and is not limited thereto.
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • step 301 is an optional step.
  • Step 302 Receive a first configuration that is configured by the second network node for the user equipment.
  • the first configuration configured by the second network node for the user equipment is received in the following manners.
  • Manner 1 The first configuration configured by the second network node for the user equipment is received from the second network node.
  • the first configuration configured by the second network node for the user equipment is received from an interface between the base stations of the second network node (for example, an X2 interface or an Xn interface) or an Operation Administration and Maintenance (OAM).
  • an interface between the base stations of the second network node for example, an X2 interface or an Xn interface
  • OAM Operation Administration and Maintenance
  • the second configuration receives the first configuration of the second network node for the user equipment, and the first configuration is reported by the user equipment to the second network node, that is, the user equipment reports the first configuration to the second
  • the network node sends the first configuration to the first network node by the second network node.
  • the first configuration configured for the user equipment by the second network node is received from an interface between the base stations of the second network node (for example, an X2 interface or an Xn interface) or an operation management and maintenance OAM.
  • an interface between the base stations of the second network node for example, an X2 interface or an Xn interface
  • OAM operation management and maintenance
  • the second network node receives the second network node as the user. a first configuration of the device configuration; or when the second network node changes the first configuration configured for the user equipment by the second network node, receiving, by the second network node, the first configuration configured by the second network node for the user equipment, That is, when there is a first configuration or a change in the first configuration, the second network node sends the first configuration of the user equipment to the first network node.
  • the third configuration of the second network node reported by the user equipment is configured for the user equipment.
  • the first configuration is configured by the first network node or the second network node to be sent to the user equipment by the first network node or the second network node.
  • Step 303 Configure a measurement interval directly for the user equipment according to the first configuration.
  • the measurement interval may include one or more of the following: a per-UE measurement gap; a per-CC measurement gap; Per-CG measurement gap; per-BWP measurement gap; per-band measurement gap; combined measurement interval per band (per- Band combination measurement gap); an indication corresponding to each per-channel measurement gap; an indication corresponding to each per-channel combination measurement gap; per-measurement object measurement
  • a per-UE measurement gap a per-CC measurement gap; Per-CG measurement gap; per-BWP measurement gap; per-band measurement gap; combined measurement interval per band (per- Band combination measurement gap); an indication corresponding to each per-channel measurement gap; an indication corresponding to each per-channel combination measurement gap; per-measurement object measurement
  • the indication corresponding to the gap; and the indication corresponding to each of the per-frequency measurement gaps are of course not limited thereto.
  • the measurement interval may include one or more of the following:
  • Measurement interval information corresponding to all or part of the configured BWPs
  • Measurement interval information corresponding to all or part of the activated BWP
  • the measurement interval information corresponding to the measurement configuration of the user equipment.
  • the measurement interval information may include one or more of the following: a time start position, a duration, a period, an aperiodic indication, a one-time indication, and an offset.
  • the first network node can coordinate the configuration measurement interval for the user equipment according to the first configuration configured by the second network node for the user equipment; and further, the first network node dynamically configures the measurement interval, so that the measurement interval dynamically configured by the first network node can be Meet flexible measurement interval configuration requirements.
  • the execution body of the method is a first network node, and includes steps 401 to 405.
  • Step 401 Send, to the second network node, a request message requesting the first configuration configured by the second network node for the user equipment.
  • the first configuration may be that the second network node configures the UE according to the capability indication reported by the UE, where the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the BWP location and the BWP bandwidth are of course not limited to this.
  • the first network node may be a primary node (MN), and the second network node may be a secondary node (SN); or the first network node may also be an SN, and the second network node For MN.
  • MN primary node
  • SN secondary node
  • MN primary node
  • SN secondary node
  • the first network node and the second network node may be network nodes in a dual connectivity architecture, and the dual connectivity architecture may be applicable to a 5G system or other system with similar measurement interval configuration requirements.
  • the configuration method of the measurement interval of the embodiment of the present disclosure is also applicable to a Carrier Aggregation (CA) architecture or other similar DC or CA architecture.
  • CA Carrier Aggregation
  • the first network node is an NR-LTE architecture or an NR-LTE DC architecture or a primary base station in an NR-NR DC architecture
  • the second network node is in an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC architecture
  • the secondary base station, or the first network node is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC
  • the SN may have more capabilities, including the ability to configure the measurement interval.
  • the measurement interval of the UE can be coordinated with the MN to implement the MN dynamic.
  • the measurement interval is configured such that the dynamically configured measurement interval of the MN can be adapted to 5G NR or flexible measurement interval configuration in an EN-DC system with LTE.
  • the first configuration may include one or more of the following: a measurement configuration, a configured bandwidth portion (BWP), an activated BWP, a synchronization signal block pattern (SSB pattern), a deployed frequency point, and a deployed Bandwidth, working frequency and working bandwidth are of course not limited to this.
  • the measurement configuration may include: a measurement object and/or a measurement configuration, and is not limited thereto.
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • step 401 is an optional step.
  • Step 402 Receive a first configuration that the second network node configures for the user equipment.
  • the first configuration configured by the second network node for the user equipment is received in the following manners.
  • Manner 1 The first configuration configured by the second network node for the user equipment is received from the second network node.
  • the first configuration configured for the user equipment by the second network node is received from an interface between the base stations of the second network node (for example, an X2 interface or an Xn interface) or an operation management and maintenance OAM.
  • an interface between the base stations of the second network node for example, an X2 interface or an Xn interface
  • OAM operation management and maintenance
  • the second configuration receives the first configuration of the second network node for the user equipment, and the first configuration is reported by the user equipment to the second network node, that is, the user equipment reports the first configuration to the second
  • the network node sends the first configuration to the first network node by the second network node.
  • the first configuration configured for the user equipment by the second network node is received from an interface between the base stations of the second network node (for example, an X2 interface or an Xn interface) or an operation management and maintenance OAM.
  • an interface between the base stations of the second network node for example, an X2 interface or an Xn interface
  • OAM operation management and maintenance
  • the second network node receives the second network node as the user. a first configuration of the device configuration; or when the second network node changes the first configuration configured for the user equipment by the second network node, receiving, by the second network node, the first configuration configured by the second network node for the user equipment, That is, when there is a first configuration or a change in the first configuration, the second network node sends the first configuration of the user equipment to the first network node.
  • the third configuration of the second network node reported by the user equipment is configured for the user equipment.
  • the first configuration is configured by the first network node or the second network node to be sent to the user equipment by the first network node or the second network node.
  • Step 403 Send a first configuration to the user equipment.
  • the first configuration may be sent to the user equipment in the following manner.
  • Manner 1 The first configuration is directly sent to the user equipment.
  • the first configuration is directly sent to the user equipment; or when the first configuration changes, the (changed) first configuration is directly sent to the user equipment.
  • the second configuration sends a first configuration to the second network node, where the second network node sends the first configuration to the user equipment, that is, the first configuration is sent to the user equipment by using the second network node, for example, sent to the second network node.
  • the first configuration is included in a container, which in turn transmits the first configuration to the user equipment.
  • the first configuration is sent to the second network node, and the second configuration is sent by the second network node to the user equipment; or when the first configuration changes, Sending a first configuration to the second network node, and transmitting, by the second network node, the first configuration to the user equipment.
  • Step 404 Receive a first indication of whether a measurement interval is required to be reported by the user equipment.
  • the first indication is used to indicate one or more of the following:
  • the measurement interval is required for each configured BWP, that is, whether the measurement interval is required by the user equipment according to the configured BWP;
  • each activated BWP requires a measurement interval, that is, whether the measurement interval is required by the user equipment according to the activated BWP;
  • the measurement bandwidth is required for each deployed bandwidth, that is, whether the measurement interval is required by the user equipment according to the deployed bandwidth;
  • Whether the measurement interval is required for each working bandwidth that is, whether the measurement interval is required by the user equipment according to the current working bandwidth of the user equipment;
  • the first indication is used to indicate one or more of the following:
  • the first indication may be indicated by:
  • the first mode includes: indicating whether the first indicator bit of the measurement interval is required, for example, using 1 bit to indicate whether a measurement interval is required;
  • the second indication includes: a second indication bit (for example, 1 bit) and a third indication bit (for example, 1 bit), wherein the second indication bit indicates whether a measurement interval is needed; the third indication bit indicates the following item Or multiple: whether it is necessary to confirm with the user equipment whether a measurement interval is required; whether it is necessary to confirm with the first network node whether a measurement interval is required; whether it is necessary to confirm with the second network node whether a measurement interval is required; and whether the first configuration needs to be requested.
  • a second indication bit for example, 1 bit
  • a third indication bit for example, 1 bit
  • the user equipment or the first network node or the second network node after receiving the request, sends a measurement interval to the second network node or the first network node, or sends the first configuration.
  • the first configuration includes at least one of the following: a configured BWP, an activated BWP, a deployed bandwidth, and a working bandwidth.
  • the user equipment reports to the first network node whether the first indication of the measurement interval is required according to the foregoing first configuration, the user equipment reports at least one of: determining whether a measurement interval is required according to the configured BWP; determining whether the activated BWP is determined according to the activated BWP A measurement interval is required; whether a measurement interval is required according to the deployed bandwidth; and whether a measurement interval is required according to the current working bandwidth of the user equipment.
  • Step 405 Configure a measurement interval for the user equipment according to the specific parameter, where the specific parameter includes one or more of the following: a capability indication of the user equipment, a first indication, and a first configuration.
  • the capability indication of the user equipment includes: a frequency point, a bandwidth, a BWP location, and a BWP bandwidth supported by the UE.
  • the measurement interval may include one or more of the following: a per-UE measurement gap; a per-CC measurement gap; Per-CG measurement gap; per-BWP measurement gap; per-band measurement gap; combined measurement interval per band (per- Band combination measurement gap); an indication corresponding to each per-channel measurement gap; an indication corresponding to each per-channel combination measurement gap; per-measurement object measurement
  • a per-UE measurement gap a per-CC measurement gap; Per-CG measurement gap; per-BWP measurement gap; per-band measurement gap; combined measurement interval per band (per- Band combination measurement gap); an indication corresponding to each per-channel measurement gap; an indication corresponding to each per-channel combination measurement gap; per-measurement object measurement
  • the indication corresponding to the gap; and the indication corresponding to each of the per-frequency measurement gaps are of course not limited thereto.
  • the measurement interval may include one or more of the following:
  • Measurement interval information corresponding to all or part of the configured BWPs
  • Measurement interval information corresponding to all or part of the activated BWP
  • the measurement interval information corresponding to the measurement configuration of the user equipment.
  • the measurement interval information may include one or more of the following: a time start position, a duration, a period, an aperiodic indication, a one-time indication, and an offset.
  • the first network node can coordinate the configuration measurement interval for the user equipment according to the capability indication of the user equipment reported by the user equipment and the first configuration, so as to implement the measurement interval of the dynamic configuration of the first network node, so that the measurement interval of the first network node is dynamically configured. Capable of meeting flexible measurement interval configuration requirements.
  • the execution body of the method is a user equipment, and includes step 501.
  • Step 501 Receive a measurement interval sent by the first network node, where the measurement interval is configured by the first network node according to the first configuration, and the first configuration is configured by the second network node for the user equipment.
  • the first configuration may be that the second network node configures the UE according to the capability indication reported by the UE, where the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the BWP location and the BWP bandwidth are of course not limited to this.
  • the first network node and the second network node may be network nodes in a dual connectivity architecture, and the dual connectivity architecture may be applicable to a 5G system or other system with similar measurement interval configuration requirements.
  • the configuration method of the measurement interval of the embodiment of the present disclosure is also applicable to a Carrier Aggregation (CA) architecture or other similar DC or CA architecture.
  • CA Carrier Aggregation
  • the first network node may be a primary node (MN), and the second network node may be a secondary node (SN); or the first network node may also be an SN, and the second network node For MN.
  • MN primary node
  • SN secondary node
  • MN primary node
  • SN secondary node
  • the first network node is an NR-LTE architecture or an NR-LTE DC architecture or a primary base station in an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC architecture
  • the secondary base station, or the first network node is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR
  • the SN may have more capabilities, including the ability to configure the measurement interval.
  • the measurement interval of the UE can be coordinated with the MN to implement the MN dynamic.
  • the measurement interval is configured such that the dynamically configured measurement interval of the MN can be adapted to 5G NR or flexible measurement interval configuration in an EN-DC system with LTE.
  • the first configuration may include one or more of the following: a measurement configuration, a configured bandwidth portion (BWP), an activated BWP, a synchronization signal block pattern (SSB pattern), a deployed frequency point, and a deployed Bandwidth, working frequency and working bandwidth are of course not limited to this.
  • the measurement configuration refers to a configuration of a measurement interval.
  • the measurement interval may include: a measurement object and/or a measurement configuration, and is not limited thereto.
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • the execution body of the method is a user equipment, and includes steps 601 to 603.
  • Step 601 Receive a first configuration that is configured by the second network node for the user equipment.
  • the first configuration may be that the second network node configures the UE according to the capability indication reported by the UE, where the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the capability indication includes one or more of the following: a frequency point, a bandwidth, and a UE support.
  • the BWP location and the BWP bandwidth are of course not limited to this.
  • the first network node and the second network node may be network nodes in a dual connectivity architecture, and the dual connectivity architecture may be applicable to a 5G system or other system with similar measurement interval configuration requirements.
  • the configuration method of the measurement interval of the embodiment of the present disclosure is also applicable to other similar architectures.
  • the first network node is an NR-LTE architecture or an NR-LTE DC architecture or a primary base station in an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR DC architecture
  • the secondary base station, or the first network node is an NR-LTE architecture or a secondary base station in an NR-LTE DC architecture or an NR-NR DC architecture
  • the second network node is an NR-LTE architecture or an NR-LTE DC architecture or an NR-NR
  • the first network node may be a primary node (MN), and the second network node may be a secondary node (SN); or the first network node may also be an SN, and the second network node For MN.
  • MN primary node
  • SN secondary node
  • MN primary node
  • SN secondary node
  • the SN may have more capabilities, including the ability to configure the measurement interval.
  • the measurement interval of the UE can be coordinated with the MN to implement the MN dynamic.
  • the measurement interval is configured such that the dynamically configured measurement interval of the MN can be adapted to 5G NR or flexible measurement interval configuration in an EN-DC system with LTE.
  • the first configuration may include one or more of the following: a measurement configuration, a configured bandwidth portion (BWP), an activated BWP, a synchronization signal block pattern (SSB pattern), a deployed frequency point, and a deployed Bandwidth, working frequency and working bandwidth are of course not limited to this.
  • the measurement configuration refers to the configuration of the measurement interval.
  • the measurement interval may include: a measurement object and/or a measurement configuration, and is not limited thereto.
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • step 601 is an optional step.
  • Step 602 Report to the first network node whether a first indication of the measurement interval is needed.
  • the first network node is reported to the first network node according to the first configuration whether a first indication of the measurement interval is needed.
  • the first indication is used to indicate one or more of the following:
  • the first indication includes one or more of the following: an indication corresponding to the per-UE measurement gap; an indication corresponding to the per-CC measurement gap; an indication corresponding to the per-CG measurement gap; - an indication corresponding to the BWP measurement gap; an indication corresponding to the per-band measurement gap; an indication corresponding to the per-band combination measurement gap; an indication corresponding to the per-channel measurement gap; an indication corresponding to the per-channel combination measurement gap; the per-measurement object An indication corresponding to the measurement gap; and an indication corresponding to the per-frequency measurement gap.
  • the first indication includes: a first indication bit indicating whether a measurement interval is required; or the first indication includes: a second indication bit and a third indication bit, wherein the second indication The bit indicates whether a measurement interval is required; the third indicator bit indicates one or more of the following: whether it is necessary to confirm with the user equipment whether a measurement interval is required; whether it is necessary to confirm with the first network node whether a measurement interval is required; whether it needs to be the second The network node confirms whether a measurement interval is required; and whether the first configuration needs to be requested.
  • Step 603 Receive a measurement interval sent by the first network node, where the measurement interval is configured by the first network node according to the first configuration, and the first configuration is performed by the second network node.
  • User device configured.
  • a first network node is also provided in the embodiment of the present disclosure.
  • the principle of the first network node is similar to the configuration method of the measurement interval in the embodiment of the present disclosure. Therefore, the implementation of the first network node may refer to the implementation of the method. , the repetition is no longer described.
  • the first network node 700 includes:
  • a determining module 701, configured to determine a first configuration that the second network node configures for the user equipment
  • the configuration module 702 is configured to configure a measurement interval for the user equipment according to the first configuration.
  • the configuration module 702 is further configured to: directly configure a measurement interval for the user equipment according to the first configuration, or report the report according to the first configuration and the user equipment.
  • the capability indication configures a measurement interval for the user equipment.
  • the first configuration includes one or more of the following: a measurement configuration, a configured bandwidth portion BWP, an activated BWP, a synchronization signal block pattern SSB pattern, a deployed frequency point, and a deployment. Bandwidth, working frequency and working bandwidth.
  • the first network node 700 further includes: a first receiving module 703, configured to receive the first configuration that the second network node configures for the user equipment.
  • the first receiving module 703 and the determining module 701 may be two independent functional modules, or may be integrally configured as one functional module.
  • the first receiving module 703 is further configured to: receive, from the second network node, a first configuration that is configured by the second network node for a user equipment; or Receiving, by the second network node, the first configuration that is configured by the second network node for the user equipment, where the first configuration is reported by the user equipment to the second network node; or receiving the a first configuration configured by the second network node for the user equipment; or a first configuration configured by the second network node that is reported by the user equipment to be configured by the user equipment, where the first configuration is performed by the first network The node or the second network node sends to the user equipment.
  • the first receiving module 703 is further configured to: when the second network node has the first configuration configured by the second network node for the user equipment, Receiving, by the second network node, the first configuration configured by the second network node for the user equipment; or receiving, when the first configuration of the second network node for the user equipment changes, receiving the The first configuration configured by the network node for the user equipment.
  • the first receiving module 703 is further configured to: receive the second network node as a user equipment from an interface between the base stations of the second network node or an operation management and maintenance OAM.
  • the first configuration of the configuration is further configured to: receive the second network node as a user equipment from an interface between the base stations of the second network node or an operation management and maintenance OAM.
  • the first network node 700 further includes: a first sending module 704, configured to send, to the second network node, a request that the second network node is configured for a user equipment A configured request message.
  • the first receiving module 703 is further configured to: receive, by the user equipment, a first indication of whether a measurement interval is required.
  • the configuration module 702 is further configured to: configure a measurement interval for the user equipment according to the specific parameter, where the specific parameter includes one or more of the following: a capability indication of the user equipment, The first indication and the first configuration.
  • the first sending module 704 is further configured to: send the first configuration to the user equipment.
  • the first sending module 704 is further configured to: directly send the first configuration to the user equipment; or send the location to the user equipment by using the second network node.
  • the first configuration is described.
  • the first sending module 704 is further configured to: when the first configuration is determined, directly send the first configuration to the user equipment; or when the first When a configuration changes, directly transmitting the changed first configuration to the user equipment; or
  • the first sending module 704 is further configured to: when the first configuration is determined, send the first configuration to the user equipment by using the second network node; or when the first configuration changes Transmitting, by the second network node, the first configuration to the user equipment.
  • the first indication is used to indicate one or more of the following:
  • the first indication includes one or more of the following:
  • Each user equipment measures an indication corresponding to the interval per-UE measurement gap
  • Each cell group measures an indication corresponding to the interval per-CG measurement gap
  • Each bandwidth portion measures an indication corresponding to the interval per-BWP measurement gap
  • Each frequency measurement interval corresponds to an indication of a per-frequency measurement gap.
  • the first indication includes: a first indication bit indicating whether a measurement interval is required; or
  • the first indication includes: a second indicator bit and a third indicator bit, wherein the second indicator bit indicates whether a measurement interval is required;
  • the third indicator bit indicates one or more of the following:
  • the measurement interval includes one or more of the following:
  • the measurement interval includes one or more of the following:
  • Measurement interval information corresponding to all or part of the configured BWPs
  • Measurement interval information corresponding to all or part of the activated BWP
  • the measurement interval information corresponding to the measurement configuration of the user equipment.
  • the measurement interval information includes one or more of the following: a time start position, a duration, a period, an aperiodic indication, a one-time indication, and an offset.
  • the first network node is a master node MN, and the second network node is a secondary node SN; or the first network node is an SN, and the second network node is MN.
  • the first network node provided by the embodiment of the present disclosure may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again in this embodiment.
  • the user equipment is also provided in the embodiment of the present disclosure.
  • the principle of the user equipment is similar to the configuration method of the measurement interval in the embodiment of the present disclosure. Therefore, the implementation of the user equipment can refer to the implementation of the method, and the repetition is no longer Description.
  • the user equipment 800 includes:
  • the second receiving module 801 is configured to receive a measurement interval sent by the first network node, where the measurement interval is configured by the first network node according to the first configuration, and the first configuration is performed by the second A network node is configured for the user equipment.
  • the first configuration includes one or more of the following: a measurement configuration, a configured bandwidth portion BWP, an activated BWP, a synchronization signal block pattern SSB pattern, a deployed frequency point, and a deployment. Bandwidth, working frequency and working bandwidth.
  • the user equipment 800 further includes:
  • the second sending module 802 is configured to report, to the first network node, whether a first indication of a measurement interval is required.
  • the second sending module 802 is further configured to: report, according to the first configuration, a first indication of whether a measurement interval is required to the first network node.
  • the second receiving module 801 is further configured to: receive the first configuration that is configured by the second network node for the user equipment.
  • the first indication is used to indicate one or more of the following:
  • the first indication includes one or more of the following:
  • Each user equipment measures an indication corresponding to the interval per-UE measurement gap
  • Each cell group measures an indication corresponding to the interval per-CG measurement gap
  • Each bandwidth portion measures an indication corresponding to the interval per-BWP measurement gap
  • Each frequency measurement interval corresponds to an indication of a per-frequency measurement gap.
  • the first indication includes: a first indication bit indicating whether a measurement interval is required; or
  • the first indication includes: a second indicator bit and a third indicator bit, wherein the second indicator bit indicates whether a measurement interval is required;
  • the third indicator bit indicates one or more of the following:
  • the user equipment provided by the embodiment of the present disclosure may perform the foregoing method embodiments, and the implementation principles and technical effects are similar.
  • FIG. 9 is a structural diagram of a first network node according to an embodiment of the present disclosure.
  • the first network node 900 includes a processor 901, a transceiver 902, a memory 903, and a bus interface. :
  • the first network node 900 further includes: a computer program stored on the memory 903 and executable on the processor 901, and the computer program is executed by the processor 901 to perform the following steps: determining the second network node a first configuration configured for the user equipment; and configuring a measurement interval for the user equipment according to the first configuration.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 901 and various circuits of memory represented by memory 903.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 902 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium. For different user devices.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 903 can store data used by the processor 901 in performing operations.
  • the following steps may be implemented: configuring a measurement interval directly for the user equipment according to the first configuration, or according to the first configuration and the capability indication reported by the user equipment A measurement interval is configured for the user equipment.
  • the following step may be further implemented: receiving the first configuration that the second network node configures for the user equipment.
  • the method further includes: receiving, by the second network node, the first configuration that is configured by the second network node for the user equipment, where the first configuration is The user equipment is reported to the second network node.
  • the following steps may be further implemented: receiving, by the second network node, the user equipment by using an interface between the base stations or by using the second network node sent by the operation management and maintenance OAM configuration.
  • the first configuration when executed by the processor 903, the following steps may be further implemented: receiving, by the second network node, the user equipment by using an interface between the base stations or by using the second network node sent by the operation management and maintenance OAM configuration.
  • the first configuration when the computer program is executed by the processor 903, the following steps may be further implemented: receiving, by the second network node, the user equipment by using an interface between the base stations or by using the second network node sent by the operation management and maintenance OAM configuration.
  • the first configuration when executed by the processor 903, the following steps may be further implemented: receiving, by the second network node, the user equipment by using an interface between the base stations or by using the second network node sent by the operation management and maintenance OAM configuration.
  • the following steps may be implemented: receiving a first configuration that is configured by the user equipment, where the second network node is configured for the user equipment; or receiving, by the user equipment, The first configuration of the user equipment is configured by the second network node, where the first configuration is sent by the first network node or the second network node to the user equipment.
  • the following steps may be further: receiving the first configuration that is sent when the second network node is configured by the second network node to configure the first configuration of the user equipment Or receiving a first configuration sent when the second network node changes the first configuration configured for the user equipment by the second network node.
  • the following step may be further implemented: sending, to the second network node, a request message requesting the first configuration configured by the second network node for the user equipment.
  • the following step may be implemented: receiving a first indication of whether the measurement interval is required by the user equipment.
  • the following steps may be further implemented: configuring a measurement interval for the user equipment according to the specific parameter, where the specific parameter includes one or more of the following: a capability indication of the user equipment, the a first indication and the first configuration.
  • the following steps may be further implemented: when the first configuration is determined, the first configuration is directly sent to the user equipment; or when the first configuration changes Transmitting, by the user equipment, the changed first configuration directly; or when determining the first configuration, sending the first configuration to the user equipment by using the second network node; or when the first When the configuration changes, the first configuration is sent to the user equipment by the second network node.
  • the user equipment 1000 shown in FIG. 10 includes at least one processor 1001, a memory 1002, at least one network interface 1004, and a user interface 1003.
  • the various components in user device 1000 are coupled together by bus system 1005.
  • bus system 1005 is used to implement connection communication between these components.
  • the bus system 1005 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1005 in FIG.
  • the user interface 1003 may include a display, a keyboard, a pointing device (eg, a mouse, a trackball), a touch panel, or a touch screen.
  • a pointing device eg, a mouse, a trackball
  • a touch panel e.g., a touch screen.
  • the memory 1002 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 1002 of the systems and methods described in the embodiments of the present disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the memory 1002 maintains elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 10021 and an application 10022.
  • the operating system 10021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 10022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 10022.
  • the program or the instruction saved by the memory 1002 may be a program or an instruction saved in the application 10022.
  • the following steps are implemented: receiving a measurement interval sent by the first network node, where The measurement interval is that the first network node is configured for the user equipment according to the first configuration, and the first configuration is configured by the second network node for the user equipment.
  • the following step may be further implemented: reporting, to the first network node, whether a first indication of a measurement interval is required.
  • the following step may be further implemented: reporting, according to the first configuration, to the first network node, whether a first indication of a measurement interval is required.
  • the following step may be further implemented: receiving the first configuration that the second network node configures for the user equipment.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, removable hard disk, read-only optical disk, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in this disclosure can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product.
  • embodiments of the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • embodiments of the present disclosure may take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • Embodiments of the present disclosure are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the present disclosure. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种测量间隔的配置方法和设备,该配置方法包括:确定第二网络节点为用户设备配置的第一配置;以及根据第一配置为用户设备配置测量间隔。

Description

测量间隔的配置方法和设备
相关申请的交叉引用
本申请主张在2017年11月10日在中国提交的中国专利申请号No.201711107857.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种测量间隔的配置方法和设备。
背景技术
长期演进(Long Term Evolution,LTE)在异频/异制式测量中引入了测量间隔。所谓测量间隔,主要指在测量过程中,需要从一个射频(Radio Frequency,RF)重调整(retune)到另外一个RF,进行对应参考信号的测量,所引起的中断时间。
LTE中测量间隔的图样(pattern)是固定的。对于测量间隔的起始位置(包括所在系统帧号(System Frame Number,SFN)、子帧(subframe)信息),网络侧通过测量间隔配置(measGapConfig)参数配置。
在相关技术中的LTE中,基站是根据用户设备(User Equipment,UE)的能力上报配置该UE的测量间隔,这种方式配置的测量间隔的时间长度为一固定值(例如6ms),周期也相对只有有限的几种选择,已不适合第五代(5th Generation,5G)移动通信新无线(New Radio,NR)系统中灵活的测量间隔的配置。
发明内容
第一方面,本公开实施例提供了一种测量间隔的配置方法,应用于第一网络节点,所述配置方法包括:
确定第二网络节点为用户设备配置的第一配置;以及
根据所述第一配置为所述用户设备配置测量间隔。
第二方面,本公开实施例还提供了一种测量间隔的配置方法,应用于用户设备,包括:
接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
第三方面,本公开实施例还提供了一种第一网络节点,包括:
确定模块,用于确定第二网络节点为用户设备配置的第一配置;以及
配置模块,用于根据所述第一配置为所述用户设备配置测量间隔。
第四方面,本公开实施例还提供了一种用户设备,包括:
第二接收模块,用于接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
第五方面,本公开实施例还提供了一种第一网络节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的测量间隔的配置方法的步骤。
第六方面,本公开实施例还提供了一种用户设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面所述的测量间隔的配置方法的步骤。
第七方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如第一方面或第二方面所述的测量间隔的配置方法的步骤。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为双连接的结构示意图;
图2为本公开实施例的测量间隔的配置方法的流程图之一;
图3为本公开实施例的测量间隔的配置方法的流程图之二;
图4为本公开实施例的测量间隔的配置方法的流程图之三;
图5为本公开实施例的测量间隔的配置方法的流程图之四;
图6为本公开实施例的测量间隔的配置方法的流程图之五;
图7为本公开实施例的第一网络节点的结构示意图之一;
图8为本公开实施例的用户设备的结构示意图之一;
图9为本公开实施例的第一网络节点的结构示意图之二;
图10为本公开实施例的用户设备的结构示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面首先介绍几个技术点:
(1)关于测量间隔(Measurement Gap,MG)的介绍:
在通信协议中,测量分为同频测量(Intra-frequency measurement)和异频测量(Inter-frequency measurement)。所谓同频测量,是指UE当前所在的小区和待测量的目标小区在同一个载波频点(例如:中心频点)上。而异频测量,是指UE当前所在的小区和目标小区不在一个载波频点上。
如果UE需要进行异频测量(包括异制式不同无线接入技术(Inter Radio Access Technology,Inter-RAT,或者称为异系统)测量),一种简单的方式是在UE设备中安装两种射频接收机,分别测量本小区的频点和目标小区的频点,但这样会带来成本提升和不同频点之间相互间干扰的问题。因此,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了测量间隔这种方式,即在正常收发数据过程中,预留一部分时间(即测量间隔时间),在这段时间内,UE不会发送和接收任何数据,而调整射频接收机到目标小区频点,进行异频(或称为异制式)的测量,测量间隔时间结束时再转到当前服务小区,继续进行数据收发。
当前所在小区和目标小区的载波频点不同,目标小区带宽小于当前小区带宽且目标小区带宽在当前小区带宽内:这种场景属于异频测量,需要测量间隔。
当前所在小区和目标小区的载波频点不同,目标小区带宽大于当前小区带宽且当前小区带宽在目标小区带宽内:这种场景属于异频测量,需要测量间隔。
当前所在小区和目标小区的载波频点不同,目标小区带宽和当前小区带宽不重叠:这种场景属于异频测量,需要测量间隔。
为了使UE能确定何时进行异频测量或进行数据收发,UE和网络必须对测量间隔的配置理解一致(例如,测量间隔的配置包括:间隔开始位置、间隔长度、间隔数量等),该测量间隔的配置可以通过无线资源控制配置(Radio Resource Control(Re-)configuration,RRC(Re-)configuration)消息的测量间隔配置(MeasGapConfig)信息元素(Information Element,IE)定义。
上述的测量间隔都是每个UE(per-UE)配的,即每个UE有自己单独的测量间隔。在LTE后续演进中,提出了每个成分载波测量间隔(Per-CC  measurement gap),即每个成分载波(component carrier)配置一个测量间隔。在双连接(Dual connectivity,DC)架构下,对于主基站(Main eNB,MeNB)和辅基站(Secondary eNB,SeNB)下的主小区群(Main Cell Group,MCG)和辅小区群(Secondary Cell Group,SCG)中的每一个小区(cell),都是不同的成分载波,每个成分载波测量间隔就是每个小区都单独配置测量间隔。
在第五代移动通信(fifth-generation,5G)NR中,每个小区组(Per-CG):每个小区组测量间隔(per-cell group measurement gap)。即MCG和SCG可以为同一个UE分别配置一个测量间隔,即MCG(或SCG)下的所有小区(或者成分载波)都使用此测量间隔。
从颗粒度(granularity)的角度看,每个UE(per-UE)、每个小区组(Per-CG)、每个成分载波(Per-CC)测量间隔分别对应从粗到细。
(2)关于测量间隔配置的介绍:
LTE在异频测量中引入了测量间隔。所谓测量间隔,主要指在测量过程中,需要从一个射频(RF)重调整(retune)到另外一个RF,进行对应参考信号的测量,所引起的中断时间。
LTE中测量间隔的图样(pattern)是固定的。测量间隔的起始位置(例如:所在系统帧号(SFN)或者子帧(subframe)信息),网络侧可以通过measGapConfig参数配置。具体如下:
Figure PCTCN2018112933-appb-000001
表一 间隔图样(Gap pattern)
Figure PCTCN2018112933-appb-000002
UE当收到间隔偏移量(gap offset)的信息后,根据如下公式计算出间隔的起始位置:
SFN mod T=FLOOR(gapOffset/10);
subframe=gapOffset mod 10;
with T=MGRP/10as defined in TS 36.133[16];
从上述内容可知,间隔的时间长度固定为6ms,周期也相对只有两种选择,已不适合NR系统中灵活的测量间隔的配置。
(3)关于LTE和NR的EN-DC(LTE-NR Dual Connection)的介绍:
在5G NR与LTE互操作(interworking)的非独立(non-standalone)场 景的讨论中,第一阶段主要是将LTE的基站作为主基站(MeNB),而NR的基站(gNB)作为辅基站(SeNB)。但是未来也会继续讨论NR的基站作为主基站,而LTE的基站作为辅基站的场景,参见图1,需要说明的是NR-NR DC与此类似,在此不再敷述。
(4)关于载波聚合(Carrier Aggregation,CA)的介绍:
CA技术可以将多个成分载波(Component Carrier,CC)聚合在一起,实现大的传输带宽,有效提高了上下行传输速率。终端根据自己的能力大小决定最多可以同时利用几个载波进行上下行传输。CA功能可以支持连续或非连续载波聚合。可以在LTE或者NR或者其它系统中使用CA技术。
(5)关于大带宽Bandwidth Part(带宽部分)的介绍:
5G NR系统支持最大400MHz系统带宽,远大于LTE最大20MHz的系统带宽,以支持更大的系统与用户吞吐量。然而,支持如此之大的系统带宽对于UE的实现将是一个巨大的挑战,不利于低成本UE的实现。因此,5G NR系统也支持动态灵活的带宽分配,将系统带宽划分成多个带宽部分(Band Width Part,BWP),以支持窄带用户设备,或节能模式的用户设备的接入。
5G NR系统支持6GHz以上的工作频段,可以为数据传输提供更大的吞吐量。高频信号的波长短,同低频段相比,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的多个波束。5G NR系统通过波束扫描技术,为小区内的用户设备发送广播信号或系统信息。
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
针对通过相关技术配置的测量间隔无法满足灵活的参考信号配置,本公开实施例提供一种测量间隔的配置方法和设备。
参见图2,图中示出了测量间隔的配置方法的流程,该方法的执行主体为第一网络节点,包括步骤201至202。
步骤201、确定第二网络节点为用户设备配置的第一配置。
在本公开实施例中,可选地,第一配置可以是第二网络节点根据UE上报的能力指示为该UE配置,该能力指示包括以下一项或多项:UE支持的频点、带宽、BWP位置和BWP带宽,当然并不限于此。
在本公开实施例中,第一网络节点和第二网络节点可以是双连接架构中网络节点,该双连接架构可以适用于5G系统或者其他有类似测量间隔配置需求的系统,当然可以理解的是,本公开实施例的测量间隔的配置方法也可适用于载波聚合(Carrier Aggregation,CA)架构或者其他类似DC或CA架构。
例如:第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,或者第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站。
在本公开实施例中,第一网络节点可以为主节点(Main Node,MN),第二网络节点为辅节点(Secondary Node,SN);或者第一网络节点也可以为SN,第二网络节点为MN。
在5G NR或者与LTE的EN-DC架构中,SN可能将有更多的能力,包括配置测量间隔的能力,SN配置测量间隔后,可以与MN之间协调配置UE的测量间隔进而实现MN动态配置测量间隔,使得MN动态配置的测量间隔能够适应5G NR或者与LTE的EN-DC系统中灵活的测量间隔配置。
在本公开实施例中,第一配置可以包括以下一项或多项:测量配置、配置的带宽部分(BWP)、激活的BWP、同步信号块图样(Synchronization Signal Block pattern,SSB pattern)、部署的频点、部署的带宽、工作频点和工作带宽,当然也并不限于此。其中,测量配置是指测量间隔的配置,可选地,测量间隔可以包括:测量目标(measurement object)和/或测量参数(measurement configuration),当然也并不限于此。
需要说明的是,上述用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
步骤202、根据第一配置为用户设备配置测量间隔。
例如:根据第一配置直接为UE配置测量间隔,或者根据第一配置和UE上报的能力指示为UE配置测量间隔。可选地,其中,能力指示可以包括:UE支持的频点、带宽、BWP位置和BWP带宽。
在本公开实施例中,可选地,测量间隔可以包括以下一项或多项:每个用户设备测量间隔(per-UE measurement gap);每个成分载波测量间隔(per-CC measurement gap);每个小区组测量间隔(per-CG measurement gap);每个带宽部分测量间隔(per-BWP measurement gap);每个频段测量间隔(per-band measurement gap);每个频段组合测量间隔(per-band combination measurement gap);每个信道测量间隔(per-channel measurement gap)对应的指示;每个信道组合测量间隔(per-channel combination measurement gap)对应的指示;每个测量目标(per-measurement object measurement gap)对应的指示;以及每个频率测量间隔(per-frequency measurement gap)对应的指示,当然也并不限于此。
举例说明,在一些情况下,用户设备,即终端,不需要测量间隔的情况包含但是不限于下列情况:
C1、同步信号块在频率中心,本小区和邻区同步信号块所在频域位置一致,且工作频带宽度覆盖了所有的待测量的参考信号;
C2、同步信号块距频率中心有所偏移,本小区和邻区同步信号块所在频域位置一致,且工作频带宽度覆盖了多个或者所有待测量的参考信号;
C3、多个同步信号块在工作带宽内,相应配置多个测量对象,本小区和邻区SSB所在频域位置一致,且工作频带宽度覆盖了所有的待测量的参考信号;
C4、多个载波小区中心频点不一致,参考信号和配置的测量对象中心频点有偏移,但是最终所有待测量参考信号所在位置一致;
需要说明的是,在C4这种情况下,载波之间可以存在如下的关系:载波之间互相部分重叠或者载波之间存在包含关系。
同理,对于终端需要测量间隔的情况也可以举例说明如下,但是所属领域技术人员可以理解,下列情况仅为例子,不为限制:
D1、终端所在的工作频段不包含待测的参考信号位置;
D2、终端需测量所在载波上其他的同步信号块参考信号,超出其工作频段;
D3、终端所在的工作频段内,除了服务小区的SSB,仍需测量邻区的同步信号块,但是邻区的同步信号块的子载波间隔(Subcarrier Space,SCS)和本服务小区不同;
D4、本小区的数据(data)和邻区的SSB在时间和频率上重合,但是数据和同步信号块的SCS不一致,当需要测量该频率下同步信号块时,也需要测量间隔;
D5、当处于同频但是属于不同的波束时,根据终端能力可能需要测量间隔。
这样,在本公开实施例中,第一网络节点能够根据第二网络节点给用户设备的第一配置为用户设备协调配置测量间隔,进而实现第一网络节点动态配置测量间隔,使得第一网络节点动态配置的测量间隔能够满足灵活的测量间隔配置需求。
参见图3,图中示出了测量间隔的配置方法的流程,该方法的执行主体为第一网络节点,包括步骤301至303。
步骤301、向第二网络节点发送请求第二网络节点为用户设备配置的第一配置的请求消息。
在本公开实施例中,可选地,第一配置可以是第二网络节点根据UE上报的能力指示为该UE配置,该能力指示可以包括以下一项或多项:UE支持的频点、带宽、BWP位置和BWP带宽,当然并不限于此。
在本公开实施例中,第一网络节点和第二网络节点可以是双连接架构中网络节点,该双连接架构可以适用于5G系统或者其他有类似测量间隔配置需求的系统,当然可以理解的是,本公开实施例的测量间隔的配置方法也可适用于载波聚合(Carrier Aggregation,CA)架构或者其他类似DC或CA架构。
在本公开实施例中,第一网络节点可以为主节点(Main Node,MN),第二网络节点为辅节点(Secondary Node,SN);或者第一网络节点也可以 为SN,第二网络节点为MN。例如第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,或者第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站。
在5G NR或者与LTE的EN-DC架构中,SN可能将有更多的能力,包括配置测量间隔的能力,SN配置测量间隔后,可以与MN之间协调配置UE的测量间隔进而实现MN动态配置测量间隔,使得MN动态配置的测量间隔能够适应5G NR或者与LTE的EN-DC系统中灵活的测量间隔配置。
在本公开实施例中,第一配置可以包括以下一项或多项:测量配置、配置的带宽部分(BWP)、激活的BWP、同步信号块图样(SSB pattern)、部署的频点、部署的带宽、工作频点和工作带宽,当然也并不限于此。其中,测量配置是指测量间隔的配置,可选地,测量间隔可以包括:测量目标(measurement object)和/或测量参数(measurement configuration),当然也并不限于此。
需要说明的是,上述用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
需要说明的是,步骤301为可选步骤。
步骤302、接收第二网络节点为用户设备配置的第一配置。
在本公开实施例中,有以下几种方式接收第二网络节点为用户设备配置的第一配置。
方式一、从第二网络节点接收第二网络节点为用户设备配置的第一配置。
例如:从第二网络节点的基站间的接口(例如X2接口或Xn接口)或者运营管理与维护(Operation Administration and Maintenance,OAM)接收所述第二网络节点为用户设备配置的第一配置。
方式二、从第二网络节点接收第二网络节点为用户设备配置的第一配置,第一配置是由用户设备上报给所述第二网络节点的,即用户设备将第一配置上报给第二网络节点,由第二网络节点将该第一配置发送给第一网络节点。
例如:从第二网络节点的基站间的接口(例如X2接口或Xn接口)或者运营管理与维护OAM接收所述第二网络节点为用户设备配置的第一配置。
需要说明的是,在上述方式一和方式二中,可选地,当第二网络节点有第二网络节点为用户设备配置的第一配置时,从第二网络节点接收第二网络节点为用户设备配置的第一配置;或者当第二网络节点在第二网络节点为用户设备配置的第一配置发生变化时,从第二网络节点接收第二网络节点为用户设备配置的第一配置,也就是,当有第一配置或第一配置发生变化时,第二网络节点会将用户设备的第一配置发送给第一网络节点。
方式三、接收用户设备上报的第二网络节点为用户设备配置的第一配置。
方式四、接收用户设备上报的第二网络节点为用户设备配置的第一配置,第一配置是由第一网络节点或第二网络节点发送给用户设备的。
步骤303、根据第一配置直接为用户设备配置测量间隔。
在本公开实施例中,可选地,测量间隔可以包括以下一项或多项:每个用户设备测量间隔(per-UE measurement gap);每个成分载波测量间隔(per-CC measurement gap);每个小区组测量间隔(per-CG measurement gap);每个带宽部分测量间隔(per-BWP measurement gap);每个频段测量间隔(per-band measurement gap);每个频段组合测量间隔(per-band combination measurement gap);每个信道测量间隔(per-channel measurement gap)对应的指示;每个信道组合测量间隔(per-channel combination measurement gap)对应的指示;每个测量目标(per-measurement object measurement gap)对应的指示;以及每个频率测量间隔(per-frequency measurement gap)对应的指示,当然也并不限于此。
在本公开实施例中,可选地,测量间隔可以包括以下一项或多项:
对配置的所有或者部分BWP对应的测量间隔信息;
对激活的所有或者部分BWP对应的测量间隔信息;
对部署的带宽对应的测量间隔信息;
对用户设备当前的工作带宽对应的测量间隔信息;以及
对用户设备的测量配置对应的测量间隔信息。
在本公开实施例中,可选地,测量间隔信息可以包括以下一项或多项:时间起始位置、持续时长、周期、非周期指示、一次性指示和偏移量。
这样,第一网络节点能够根据第二网络节点为用户设备配置的第一配置为用户设备协调配置测量间隔;进而实现第一网络节点动态配置测量间隔,使得第一网络节点动态配置的测量间隔能够满足灵活的测量间隔配置需求。
参见图4,图中示出了测量间隔的配置方法的流程,该方法的执行主体为第一网络节点,包括步骤401至405。
步骤401、向第二网络节点发送请求第二网络节点为用户设备配置的第一配置的请求消息。
在本公开实施例中,可选地,第一配置可以是第二网络节点根据UE上报的能力指示为该UE配置,该能力指示包括以下一项或多项:UE支持的频点、带宽、BWP位置和BWP带宽,当然并不限于此。
在本公开实施例中,第一网络节点可以为主节点(Main Node,MN),第二网络节点为辅节点(Secondary Node,SN);或者第一网络节点也可以为SN,第二网络节点为MN。
在本公开实施例中,第一网络节点和第二网络节点可以是双连接架构中网络节点,该双连接架构可以适用于5G系统或者其他有类似测量间隔配置需求的系统,当然可以理解的是,本公开实施例的测量间隔的配置方法也可适用于载波聚合(Carrier Aggregation,CA)架构或者其他类似DC或CA架构。
例如第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,或者第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站。
在5G NR或者与LTE的EN-DC架构中,SN可能将有更多的能力,包括配置测量间隔的能力,SN配置测量间隔后,可以与MN之间协调配置UE的测量间隔进而实现MN动态配置测量间隔,使得MN动态配置的测量间隔能够适应5G NR或者与LTE的EN-DC系统中灵活的测量间隔配置。
在本公开实施例中,第一配置可以包括以下一项或多项:测量配置、配置的带宽部分(BWP)、激活的BWP、同步信号块图样(SSB pattern)、部署的频点、部署的带宽、工作频点和工作带宽,当然也并不限于此。其中,测量配置可以包括:测量目标(measurement object)和/或测量参数(measurement configuration),当然也并不限于此。
需要说明的是,上述用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
需要说明的是,步骤401为可选步骤。
步骤402、接收第二网络节点为用户设备配置的第一配置。
在本公开实施例中,有以下几种方式接收第二网络节点为用户设备配置的第一配置。
方式一、从第二网络节点接收第二网络节点为用户设备配置的第一配置。
例如:从第二网络节点的基站间的接口(例如X2接口或Xn接口)或者运营管理与维护OAM接收所述第二网络节点为用户设备配置的第一配置。
方式二、从第二网络节点接收第二网络节点为用户设备配置的第一配置,第一配置是由用户设备上报给所述第二网络节点的,即用户设备将第一配置上报给第二网络节点,由第二网络节点将该第一配置发送给第一网络节点。
例如:从第二网络节点的基站间的接口(例如X2接口或Xn接口)或者运营管理与维护OAM接收所述第二网络节点为用户设备配置的第一配置。
需要说明的是,在上述方式一和方式二中,可选地,当第二网络节点有第二网络节点为用户设备配置的第一配置时,从第二网络节点接收第二网络节点为用户设备配置的第一配置;或者当第二网络节点在第二网络节点为用户设备配置的第一配置发生变化时,从第二网络节点接收第二网络节点为用户设备配置的第一配置,也就是,当有第一配置或第一配置发生变化时,第二网络节点会将用户设备的第一配置发送给第一网络节点。
方式三、接收用户设备上报的第二网络节点为用户设备配置的第一配置。
方式四、接收用户设备上报的第二网络节点为用户设备配置的第一配置,第一配置是由第一网络节点或第二网络节点发送给用户设备的。
步骤403、向用户设备发送第一配置。
在本公开实施例中,可以通过以下方式向用户设备发送第一配置。
方式一、直接向用户设备发送所述第一配置。
在上述方式一中,可选地,当确定有第一配置时,直接向用户设备发送第一配置;或者当第一配置发生变化时,直接向用户设备发送(变化后的)第一配置。
方式二、向第二网络节点发送第一配置,由第二网络节点向用户设备发送第一配置,即通过第二网络节点向用户设备发送所述第一配置,例如向第二网络节点发送的第一配置包括在一个容器(container)中,该第二网络节点再将第一配置发送给用户设备。
在上述方式二中,可选地,当确定有第一配置时,向第二网络节点发送第一配置,由第二网络节点向用户设备发送第一配置;或者当第一配置发生变化时,向第二网络节点发送第一配置,由第二网络节点向用户设备发送第一配置。
步骤404、接收用户设备上报的是否需要测量间隔的第一指示。
在本公开实施例中,可选地,第一指示用于指示以下一项或多项:
每个配置的BWP是否需要测量间隔,即用户设备根据配置的BWP确定的是否需要测量间隔;
每个激活的BWP是否需要测量间隔,即用户设备根据激活的BWP确定的是否需要测量间隔;
每个部署的带宽是否需要测量间隔,即用户设备根据部署的带宽确定的是否需要测量间隔;
每个工作带宽是否需要测量间隔,即用户设备根据用户设备当前的工作带宽确定的是否需要测量间隔;
每个测量目标是否需要测量间隔;以及
用户设备是否需要测量间隔。
在本公开实施例中,可选地,第一指示用于指示以下一项或多项:
每个用户设备测量间隔(per-UE measurement gap)对应的指示;
每个成分载波测量间隔(per-CC measurement gap)对应的指示;
每个小区组测量间隔(per-CG measurement gap)对应的指示;
每个带宽部分测量间隔(per-BWP measurement gap)对应的指示;
每个频段测量间隔(per-band measurement gap)对应的指示;
每个频段组合测量间隔(per-band combination measurement gap)对应的指示;
每个信道测量间隔(per-channel measurement gap)对应的指示;
每个信道组合测量间隔(per-channel combination measurement gap)对应的指示;
每个测量目标(per-measurement object measurement gap)对应的指示;以及
每个频率测量间隔(per-frequency measurement gap)对应的指示。
在本公开实施例中,可选地,第一指示可以通过以下方式指示:
方式一、第一指示包括:指示是否需要测量间隔的第一指示位,例如用1bit指示是否需要测量间隔;
方式二、第一指示包括:第二指示位(例如1bit)和第三指示位(例如1bit),其中,所述第二指示位指示是否需要测量间隔;所述第三指示位指示以下一项或多项:是否需要与用户设备确认是否需要测量间隔;是否需要与第一网络节点确认是否需要测量间隔;是否需要与第二网络节点确认是否需要测量间隔;以及是否需要请求第一配置。
对于上述方式二、可选地,用户设备或者第一网络节点或者第二网络节点收到请求后,向第二网络节点或者第一网络节点发送是否需要测量间隔,或者发送上述第一配置。
也就是,在步骤404中,如果第一配置包括以下至少一项:配置的BWP、激活的BWP、部署的带宽和工作带宽。当用户设备根据上述第一配置向第一网络节点上报是否需要测量间隔的第一指示时,用户设备将上报如下至少一项:根据配置的BWP确定是否需要测量间隔;根据激活的BWP确定的是否需要测量间隔;根据部署的带宽确定的是否需要测量间隔;以及根据用户设备当前的工作带宽确定的是否需要测量间隔。
步骤405、根据特定参数为用户设备配置测量间隔,其中,特定参数包括以下一项或多项:用户设备的能力指示、第一指示和第一配置。
在本实施例中,可选地,用户设备的能力指示包括:UE支持的频点、带宽、BWP位置和BWP带宽。
在本公开实施例中,可选地,测量间隔可以包括以下一项或多项:每个用户设备测量间隔(per-UE measurement gap);每个成分载波测量间隔(per-CC measurement gap);每个小区组测量间隔(per-CG measurement gap);每个带宽部分测量间隔(per-BWP measurement gap);每个频段测量间隔(per-band measurement gap);每个频段组合测量间隔(per-band combination measurement gap);每个信道测量间隔(per-channel measurement gap)对应的指示;每个信道组合测量间隔(per-channel combination measurement gap)对应的指示;每个测量目标(per-measurement object measurement gap)对应的指示;以及每个频率测量间隔(per-frequency measurement gap)对应的指示,当然也并不限于此。
在本公开实施例中,可选地,测量间隔可以包括以下一项或多项:
对配置的所有或者部分BWP对应的测量间隔信息;
对激活的所有或者部分BWP对应的测量间隔信息;
对部署的带宽对应的测量间隔信息;
对用户设备当前的工作带宽对应的测量间隔信息;
对用户设备的测量配置对应的测量间隔信息。
在本公开实施例中,可选地,测量间隔信息可以包括以下一项或多项:时间起始位置、持续时长、周期、非周期指示、一次性指示和偏移量。
这样,第一网络节点能够根据用户设备上报的用户设备的能力指示和第一配置为用户设备协调配置测量间隔,进而实现第一网络节点动态配置测量间隔,使得第一网络节点动态配置的测量间隔能够满足灵活的测量间隔配置需求。
参见图5,图中示出了测量间隔的配置方法的流程,该方法的执行主体为用户设备,包括步骤501。
步骤501、接收第一网络节点发送的测量间隔,测量间隔是第一网络节点根据第一配置为用户设备配置的,第一配置是由第二网络节点为用户设备配置的。
在本公开实施例中,可选地,第一配置可以是第二网络节点根据UE上报的能力指示为该UE配置,该能力指示包括以下一项或多项:UE支持的频点、带宽、BWP位置和BWP带宽,当然并不限于此。
在本公开实施例中,第一网络节点和第二网络节点可以是双连接架构中网络节点,该双连接架构可以适用于5G系统或者其他有类似测量间隔配置需求的系统,当然可以理解的是,本公开实施例的测量间隔的配置方法也可适用于载波聚合(Carrier Aggregation,CA)架构或者其他类似DC或CA架构。
在本公开实施例中,第一网络节点可以为主节点(Main Node,MN),第二网络节点为辅节点(Secondary Node,SN);或者第一网络节点也可以为SN,第二网络节点为MN。
例如:第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,或者第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站。
在5G NR或者与LTE的EN-DC架构中,SN可能将有更多的能力,包括配置测量间隔的能力,SN配置测量间隔后,可以与MN之间协调配置UE的测量间隔进而实现MN动态配置测量间隔,使得MN动态配置的测量间隔能够适应5G NR或者与LTE的EN-DC系统中灵活的测量间隔配置。
在本公开实施例中,第一配置可以包括以下一项或多项:测量配置、配置的带宽部分(BWP)、激活的BWP、同步信号块图样(SSB pattern)、部署的频点、部署的带宽、工作频点和工作带宽,当然也并不限于此。其中,测量配置是指测量间隔的配置,可选地,测量间隔可以包括:测量目标(measurement object)和/或测量参数(measurement configuration),当然也并不限于此。
需要说明的是,上述用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
参见图6,图中示出了测量间隔的配置方法的流程,该方法的执行主体为用户设备,包括步骤601至603。
步骤601、接收第二网络节点为用户设备配置的第一配置。
在本公开实施例中,可选地,第一配置可以是第二网络节点根据UE上报的能力指示为该UE配置,该能力指示包括以下一项或多项:UE支持的频点、带宽、BWP位置和BWP带宽,当然并不限于此。
在本公开实施例中,第一网络节点和第二网络节点可以是双连接架构中网络节点,该双连接架构可以适用于5G系统或者其他有类似测量间隔配置需求的系统,当然可以理解的是,本公开实施例的测量间隔的配置方法也可适用于其他类似架构。
例如:第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,或者第一网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的辅基站,第二网络节点为NR-LTE架构或者NR-LTE DC架构或者NR-NR DC架构中的主基站。
在本公开实施例中,第一网络节点可以为主节点(Main Node,MN),第二网络节点为辅节点(Secondary Node,SN);或者第一网络节点也可以为SN,第二网络节点为MN。
在5G NR或者与LTE的EN-DC架构中,SN可能将有更多的能力,包括配置测量间隔的能力,SN配置测量间隔后,可以与MN之间协调配置UE的测量间隔进而实现MN动态配置测量间隔,使得MN动态配置的测量间隔能够适应5G NR或者与LTE的EN-DC系统中灵活的测量间隔配置。
在本公开实施例中,第一配置可以包括以下一项或多项:测量配置、配置的带宽部分(BWP)、激活的BWP、同步信号块图样(SSB pattern)、部署的频点、部署的带宽、工作频点和工作带宽,当然也并不限于此。其中,测量配置是指测量间隔的配置,可选地,测量间隔可以包括:测量目标 (measurement object)和/或测量参数(measurement configuration),当然也并不限于此。
需要说明的是,上述用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
需要说明的是,上述步骤601为可选步骤。
步骤602、向第一网络节点上报是否需要测量间隔的第一指示。
例如:根据第一配置向所述第一网络节点上报是否需要测量间隔的第一指示。
在本公开实施例中,可选地,第一指示用于指示以下一项或多项:
每个配置的BWP是否需要测量间隔;
每个激活的BWP是否需要测量间隔;
每个部署的带宽是否需要测量间隔;
每个工作带宽是否需要测量间隔;
每个测量目标是否需要测量间隔;以及
用户设备是否需要测量间隔。
在本公开实施例中,可选地,第一指示包括以下一项或多项:per-UE measurement gap对应的指示;per-CC measurement gap对应的指示;per-CG measurement gap对应的指示;per-BWP measurement gap对应的指示;per-band measurement gap对应的指示;per-band combination measurement gap对应的指示;per-channel measurement gap对应的指示;per-channel combination measurement gap对应的指示;per-measurement object measurement gap对应的指示;以及per-frequency measurement gap对应的指示。
在本公开实施例中,可选地,第一指示包括:指示是否需要测量间隔的第一指示位;或者第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;所述第三指示位指示以下一项或多项:是否需要与用户设备确认是否需要测量间隔;是否需要与第一网络节点确认是否需要测量间隔;是否需要与第二网络节点确认是否需要测量间隔;以及是否需要请求所述第一配置。
步骤603、接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
本公开实施例中还提供了一种第一网络节点,由于第一网络节点解决问题的原理与本公开实施例中测量间隔的配置方法相似,因此该第一网络节点的实施可以参见方法的实施,重复之处不再敷述。
参见图7,图中示出了第一网络节点的结构,该第一网络节点700包括:
确定模块701,用于确定第二网络节点为用户设备配置的第一配置;以及
配置模块702,用于根据所述第一配置为所述用户设备配置测量间隔。
在本公开实施例中,可选地,所述配置模块702进一步用于:根据所述第一配置直接为所述用户设备配置测量间隔,或者根据所述第一配置和所述用户设备上报的能力指示为所述用户设备配置测量间隔。
在本公开实施例中,可选地,所述第一配置包括以下一项或多项:测量配置、配置的带宽部分BWP、激活的BWP、同步信号块图样SSB pattern、部署的频点、部署的带宽、工作频点和工作带宽。
在本公开实施例中,可选地,继续参见图7,第一网络节点700还包括:第一接收模块703,用于接收所述第二网络节点为用户设备配置的第一配置。
需要说明的是,在本公开实施例中第一接收模块703和确定模块701可以是两个独立的功能模块,或者也可以集成设置为一个功能模块。
在本公开实施例中,可选地,所述第一接收模块703进一步用于:从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置;或者从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置,所述第一配置是由所述用户设备上报给所述第二网络节点的;或者接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置;或者接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置,所述第一配置是由第一网络节点或第二网络节点发送给所述用户设备的。
在本公开实施例中,可选地,所述第一接收模块703进一步用于:当所述第二网络节点有所述第二网络节点为用户设备配置的第一配置时,从所述 第二网络节点接收所述第二网络节点为用户设备配置的第一配置;或者当所述第二网络节点为用户设备配置的第一配置发生变化时,从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置。
在本公开实施例中,可选地,所述第一接收模块703进一步用于:从所述第二网络节点的基站间的接口或者运营管理与维护OAM接收所述第二网络节点为用户设备配置的第一配置。
在本公开实施例中,可选地,所述第一网络节点700还包括:第一发送模块704,用于向所述第二网络节点发送请求所述第二网络节点为用户设备配置的第一配置的请求消息。
在本公开实施例中,可选地,所述第一接收模块703还用于:接收所述用户设备上报的是否需要测量间隔的第一指示。
在本公开实施例中,可选地,所述配置模块702进一步用于:根据特定参数为用户设备配置测量间隔,其中,所述特定参数包括以下一项或多项:用户设备的能力指示、所述第一指示和所述第一配置。
在本公开实施例中,可选地,所述第一发送模块704还用于:向所述用户设备发送所述第一配置。
在本公开实施例中,可选地,所述第一发送模块704进一步用于:直接向所述用户设备发送所述第一配置;或者通过所述第二网络节点向所述用户设备发送所述第一配置。
在本公开实施例中,可选地,所述第一发送模块704进一步用于:当确定有所述第一配置时,直接向所述用户设备发送所述第一配置;或者当所述第一配置发生变化时,直接向用户设备发送变化后的第一配置;或者
所述第一发送模块704进一步用于:当确定有所述第一配置时,通过所述第二网络节点向所述用户设备发送所述第一配置;或者当所述第一配置发生变化时,通过所述第二网络节点向所述用户设备发送所述第一配置。
在本公开实施例中,可选地,所述第一指示用于指示以下一项或多项:
每个配置的BWP是否需要测量间隔;
每个激活的BWP是否需要测量间隔;
每个部署的带宽是否需要测量间隔;
每个工作带宽是否需要测量间隔;
每个测量目标是否需要测量间隔;以及
用户设备是否需要测量间隔。
在本公开实施例中,可选地,所述第一指示包括以下一项或多项:
每个用户设备测量间隔per-UE measurement gap对应的指示;
每个成分载波测量间隔per-CC measurement gap对应的指示;
每个小区组测量间隔per-CG measurement gap对应的指示;
每个带宽部分测量间隔per-BWP measurement gap对应的指示;
每个频段测量间隔per-band measurement gap对应的指示;
每个频段组合测量间隔per-band combination measurement gap对应的指示;
每个信道测量间隔per-channel measurement gap对应的指示;
每个信道组合测量间隔per-channel combination measurement gap对应的指示;
每个测量目标per-measurement object measurement gap对应的指示;以及
每个频率测量间隔per-frequency measurement gap对应的指示。
在本公开实施例中,可选地,所述第一指示包括:指示是否需要测量间隔的第一指示位;或者
所述第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;
所述第三指示位指示以下一项或多项:
是否需要与用户设备确认是否需要测量间隔;
是否需要与第一网络节点确认是否需要测量间隔;
是否需要与第二网络节点确认是否需要测量间隔;以及
是否需要请求所述第一配置。
在本公开实施例中,可选地,所述测量间隔包括以下一项或多项:
per-UE measurement gap;
per-CC measurement gap;
per-CG measurement gap;
per-BWP measurement gap;
per-band measurement gap;
per-band combination measurement gap;
per-channel measurement gap;
per-channel combination measurement gap;
per-measurement object measurement gap;以及
per-frequency measurement gap。
在本公开实施例中,可选地,所述测量间隔包括以下一项或多项:
对配置的所有或者部分BWP对应的测量间隔信息;
对激活的所有或者部分BWP对应的测量间隔信息;
对部署的带宽对应的测量间隔信息;
对用户设备当前的工作带宽对应的测量间隔信息;以及
对用户设备的测量配置对应的测量间隔信息。
在本公开实施例中,可选地,所述测量间隔信息包括以下一项或多项:时间起始位置、持续时长、周期、非周期指示、一次性指示和偏移量。
在本公开实施例中,可选地,所述第一网络节点为主节点MN,所述第二网络节点为次节点SN;或者所述第一网络节点为SN,所述第二网络节点为MN。
本公开实施例提供的第一网络节点,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本公开实施例中还提供了一种用户设备,由于用户设备解决问题的原理与本公开实施例中测量间隔的配置方法相似,因此该用户设备的实施可以参见方法的实施,重复之处不再敷述。
参见图8,图中示出了用户设备的结构,该用户设备800包括:
第二接收模块801,用于接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
在本公开实施例中,可选地,所述第一配置包括以下一项或多项:测量配置、配置的带宽部分BWP、激活的BWP、同步信号块图样SSB pattern、部署的频点、部署的带宽、工作频点和工作带宽。
在本公开实施例中,可选地,所述用户设备800还包括:
第二发送模块802,用于向所述第一网络节点上报是否需要测量间隔的第一指示。
在本公开实施例中,可选地,所述第二发送模块802进一步用于:根据所述第一配置向所述第一网络节点上报是否需要测量间隔的第一指示。
在本公开实施例中,可选地,所述第二接收模块801还用于:接收所述第二网络节点为所述用户设备配置的所述第一配置。
在本公开实施例中,可选地,所述第一指示用于指示以下一项或多项:
每个配置的BWP是否需要测量间隔;
每个激活的BWP是否需要测量间隔;
每个部署的带宽是否需要测量间隔;
每个工作带宽是否需要测量间隔;
每个测量目标是否需要测量间隔;以及
用户设备是否需要测量间隔。
在本公开实施例中,可选地,所述第一指示包括以下一项或多项:
每个用户设备测量间隔per-UE measurement gap对应的指示;
每个成分载波测量间隔per-CC measurement gap对应的指示;
每个小区组测量间隔per-CG measurement gap对应的指示;
每个带宽部分测量间隔per-BWP measurement gap对应的指示;
每个频段测量间隔per-band measurement gap对应的指示;
每个频段组合测量间隔per-band combination measurement gap对应的指示;
每个信道测量间隔per-channel measurement gap对应的指示;
每个信道组合测量间隔per-channel combination measurement gap对应的指示;
每个测量目标per-measurement object measurement gap对应的指示;以及
每个频率测量间隔per-frequency measurement gap对应的指示。
在本公开实施例中,可选地,所述第一指示包括:指示是否需要测量间隔的第一指示位;或者
所述第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;
所述第三指示位指示以下一项或多项:
是否需要与用户设备确认是否需要测量间隔;
是否需要与第一网络节点确认是否需要测量间隔;
是否需要与第二网络节点确认是否需要测量间隔;以及
是否需要请求所述第一配置。
本公开实施例提供的用户设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
请参阅图9,图9是本公开实施例应用的第一网络节点的结构图,如图9所示,第一网络节点900包括:处理器901、收发机902、存储器903和总线接口,其中:
在本公开实施例中,第一网络节点900还包括:存储在存储器上903并可在处理器901上运行的计算机程序,计算机程序被处理器901、执行时实现如下步骤:确定第二网络节点为用户设备配置的第一配置;以及根据所述第一配置为所述用户设备配置测量间隔。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器903代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机902可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备。
处理器901负责管理总线架构和通常的处理,存储器903可以存储处理器901在执行操作时所使用的数据。
可选的,计算机程序被处理器903执行时还可实现如下步骤:根据所述第一配置直接为所述用户设备配置测量间隔,或者根据所述第一配置和所述用户设备上报的能力指示为所述用户设备配置测量间隔。
可选的,计算机程序被处理器903执行时还可实现如下步骤:接收所述第二网络节点为用户设备配置的第一配置。
可选的,计算机程序被处理器903执行时还可实现如下步骤:接收所述第二网络节点发送的所述第二网络节点为用户设备配置的第一配置,所述第一配置是由所述用户设备上报给所述第二网络节点的。
可选的,计算机程序被处理器903执行时还可实现如下步骤:接收所述第二网络节点通过基站间的接口或者通过运营管理与维护OAM配置发送的所述第二网络节点为用户设备配置的第一配置。
可选的,计算机程序被处理器903执行时还可实现如下步骤:接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置;或者接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置,所述第一配置是由第一网络节点或第二网络节点发送给所述用户设备的。
可选的,计算机程序被处理器903执行时还可实现如下步骤:接收当所述第二网络节点在有所述第二网络节点为用户设备配置的第一配置时发送的所述第一配置;或者接收当所述第二网络节点在所述第二网络节点为用户设备配置的第一配置发生变化时发送的第一配置。
可选的,计算机程序被处理器903执行时还可实现如下步骤:向所述第二网络节点发送请求所述第二网络节点为用户设备配置的第一配置的请求消息。
可选的,计算机程序被处理器903执行时还可实现如下步骤:接收所述用户设备上报的是否需要测量间隔的第一指示。
可选的,计算机程序被处理器903执行时还可实现如下步骤:直接向所述用户设备发送所述第一配置;或者通过所述第二网络节点向所述用户设备发送所述第一配置。
可选的,计算机程序被处理器903执行时还可实现如下步骤:根据特定参数为用户设备配置测量间隔,其中,所述特定参数包括以下一项或多项:用户设备的能力指示、所述第一指示和所述第一配置。
可选的,计算机程序被处理器903执行时还可实现如下步骤:直接向所述用户设备发送所述第一配置;或者通过所述第二网络节点向所述用户设备发送所述第一配置。
可选的,计算机程序被处理器903执行时还可实现如下步骤:当确定有所述第一配置时,直接向所述用户设备发送所述第一配置;或者当所述第一配置发生变化时,直接向用户设备发送变化后的第一配置;或者当确定有所述第一配置时,通过所述第二网络节点向所述用户设备发送所述第一配置;或者当所述第一配置发生变化时,通过所述第二网络节点向所述用户设备发送所述第一配置。
如图10所示,图10所示的用户设备1000包括:至少一个处理器1001、存储器1002、至少一个网络接口1004和用户接口1003。用户设备1000中的各个组件通过总线系统1005耦合在一起。可理解,总线系统1005用于实现这些组件之间的连接通信。总线系统1005除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统1005。
其中,用户接口1003可以包括显示器、键盘、点击设备(例如,鼠标、轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1002可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM) 和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器1002旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1002保存了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统10021和应用程序10022。
其中,操作系统10021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序10022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序10022中。
在本公开实施例中,通过调用存储器1002保存的程序或指令,具体的,可以是应用程序10022中保存的程序或指令,执行时实现以下步骤:接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
可选的,计算机程序被处理器1001执行时还可实现如下步骤:向所述第一网络节点上报是否需要测量间隔的第一指示。
可选的,计算机程序被处理器1001执行时还可实现如下步骤:根据所述第一配置向所述第一网络节点上报是否需要测量间隔的第一指示。
可选的,计算机程序被处理器1001执行时还可实现如下步骤:接收所述第二网络节点为所述用户设备配置的所述第一配置。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位 于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,本公开也意图包含这些改动和变型在内。

Claims (59)

  1. 一种测量间隔的配置方法,应用于第一网络节点,包括:
    确定第二网络节点为用户设备配置的第一配置;以及
    根据所述第一配置为所述用户设备配置测量间隔。
  2. 根据权利要求1所述的配置方法,其中,所述根据所述第一配置为所述用户设备配置测量间隔,包括:
    根据所述第一配置直接为所述用户设备配置测量间隔,或者根据所述用户设备上报的能力指示和所述第一配置为所述用户设备配置测量间隔。
  3. 根据权利要求1所述的配置方法,其中,所述第一配置包括以下一项或多项:测量配置、配置的带宽部分BWP、激活的BWP、同步信号块图样SSB pattern、部署的频点、部署的带宽、工作频点和工作带宽。
  4. 根据权利要求1所述的配置方法,其中,所述确定所述第二网络节点为用户设备配置的第一配置,包括:
    接收所述第二网络节点为用户设备配置的第一配置。
  5. 根据权利要求4所述的配置方法,其中,所述接收所述第二网络节点为用户设备配置的第一配置,包括:
    从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置;或者
    从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置,所述第一配置是由所述用户设备上报给所述第二网络节点的;或者
    接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置;或者
    接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置,所述第一配置是由第一网络节点或第二网络节点发送给所述用户设备的。
  6. 根据权利要求5所述的配置方法,其中,所述接收第二网络节点发送的所述第二网络节点为用户设备配置的第一配置,包括:
    当所述第二网络节点有所述第二网络节点为用户设备配置的第一配置时, 从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置;或者
    当所述第二网络节点为用户设备配置的第一配置发生变化时,从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置。
  7. 根据权利要求5或6所述的配置方法,其中,所述从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置,包括:
    从所述第二网络节点的基站间的接口或者运营管理与维护OAM接收所述第二网络节点为用户设备配置的第一配置。
  8. 根据权利要求4所述的配置方法,其中,在所述接收所述第二网络节点发送的所述第二网络节点为用户设备配置的第一配置的步骤之前,还包括:
    向所述第二网络节点发送请求所述第二网络节点为用户设备配置的第一配置的请求消息。
  9. 根据权利要求2所述的方法,还包括:
    接收所述用户设备上报的是否需要测量间隔的第一指示。
  10. 根据权利要求9所述的配置方法,其中,所述根据所述用户设备上报的用户设备的能力指示和所述第一配置为所述用户设备配置测量间隔,包括:
    根据特定参数为所述用户设备配置测量间隔,其中,所述特定参数包括以下一项或多项:用户设备的能力指示、所述第一指示和所述第一配置。
  11. 根据权利要求9所述的配置方法,其中,在所述接收所述用户设备上报的是否需要测量间隔的第一指示的步骤之前,所述配置方法还包括:
    向所述用户设备发送所述第一配置。
  12. 根据权利要求11所述的配置方法,其中,所述向所述用户设备发送所述第一配置,包括:
    直接向所述用户设备发送所述第一配置;或者
    通过所述第二网络节点向所述用户设备发送所述第一配置。
  13. 根据权利要求11所述的配置方法,其中,所述直接向所述用户设备发送所述第一配置,包括:
    当确定有所述第一配置时,直接向所述用户设备发送所述第一配置;或 者
    当所述第一配置发生变化时,直接向用户设备发送变化后的第一配置;
    所述通过所述第二网络节点向所述用户设备发送所述第一配置,包括:
    当确定有所述第一配置时,通过所述第二网络节点向所述用户设备发送所述第一配置;或者
    当所述第一配置发生变化时,通过所述第二网络节点向所述用户设备发送所述第一配置。
  14. 根据权利要求9所述的配置方法,其中,所述第一指示包括以下一项或多项:
    每个配置的BWP是否需要测量间隔;
    每个激活的BWP是否需要测量间隔;
    每个部署的带宽是否需要测量间隔;
    每个工作带宽是否需要测量间隔;
    每个测量目标是否需要测量间隔;以及
    用户设备是否需要测量间隔。
  15. 根据权利要求9所述的配置方法,其中,所述第一指示包括以下一项或多项:
    每个用户设备测量间隔per-UE measurement gap对应的指示;
    每个成分载波测量间隔per-CC measurement gap对应的指示;
    每个小区组测量间隔per-CG measurement gap对应的指示;
    每个带宽部分测量间隔per-BWP measurement gap对应的指示;
    每个频段测量间隔per-band measurement gap对应的指示;
    每个频段组合测量间隔per-band combination measurement gap对应的指示;
    每个信道测量间隔per-channel measurement gap对应的指示;
    每个信道组合测量间隔per-channel combination measurement gap对应的指示;
    每个测量目标per-measurement object measurement gap对应的指示;以及
    每个频率测量间隔per-frequency measurement gap对应的指示。
  16. 根据权利要求9所述的配置方法,其中,所述第一指示包括:指示是否需要测量间隔的第一指示位;或者
    所述第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;
    所述第三指示位指示以下一项或多项:
    是否需要与用户设备确认是否需要测量间隔;
    是否需要与第一网络节点确认是否需要测量间隔;
    是否需要与第二网络节点确认是否需要测量间隔;以及
    是否需要请求所述第一配置。
  17. 根据权利要求1~16任一项所述的配置方法,其中,所述测量间隔包括以下一项或多项:
    per-UE measurement gap;
    per-CC measurement gap;
    per-CG measurement gap;
    per-BWP measurement gap;
    per-band measurement gap;
    per-band combination measurement gap;
    per-channel measurement gap;
    per-channel combination measurement gap;
    per-measurement object measurement gap;以及
    per-frequency measurement gap。
  18. 根据权利要求1~16任一项所述的配置方法,其中,所述测量间隔至少包括以下一项或多项:
    对配置的所有或部分BWP对应的测量间隔信息;
    对激活的所有或部分BWP对应的测量间隔信息;
    对部署的带宽对应的测量间隔信息;
    对用户设备当前的工作带宽对应的测量间隔信息;以及
    对用户设备的测量配置对应的测量间隔信息。
  19. 根据权利要求18所述的配置方法,其中,所述测量间隔信息包括以 下一项或多项:时间起始位置、持续时长、周期、非周期指示、一次性指示和偏移量。
  20. 根据权利要求1~19任一项所述的配置方法,其中,
    所述第一网络节点为主节点MN,所述第二网络节点为次节点SN;或者所述第一网络节点为SN,所述第二网络节点为MN。
  21. 一种测量间隔的配置方法,应用于用户设备,包括:
    接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
  22. 根据权利要求21所述的配置方法,其中,所述第一配置包括以下一项或多项:测量配置、配置的带宽部分BWP、激活的BWP、同步信号块图样SSB pattern、部署的频点、部署的带宽、工作频点和工作带宽。
  23. 根据权利要求21所述的配置方法,还包括:
    向所述第一网络节点上报是否需要测量间隔的第一指示。
  24. 根据权利要求23所述的配置方法,其中,所述向所述第一网络节点上报是否需要测量间隔的第一指示,包括:
    根据所述第一配置向所述第一网络节点上报是否需要测量间隔的第一指示。
  25. 根据权利要求24所述的配置方法,还包括:
    接收所述第二网络节点为所述用户设备配置的所述第一配置。
  26. 根据权利要求23所述的配置方法,其中,所述第一指示包括以下一项或多项:
    每个配置的BWP是否需要测量间隔;
    每个激活的BWP是否需要测量间隔;
    每个部署的带宽是否需要测量间隔;
    每个工作带宽是否需要测量间隔;
    每个测量目标是否需要测量间隔;以及
    用户设备是否需要测量间隔。
  27. 根据权利要求23所述的配置方法,其中,所述第一指示包括以下一 项或多项:
    每个用户设备测量间隔per-UE measurement gap对应的指示;
    每个成分载波测量间隔per-CC measurement gap对应的指示;
    每个小区组测量间隔per-CG measurement gap对应的指示;
    每个带宽部分测量间隔per-BWP measurement gap对应的指示;
    每个频段测量间隔per-band measurement gap对应的指示;
    每个频段组合测量间隔per-band combination measurement gap对应的指示;
    每个信道测量间隔per-channel measurement gap对应的指示;
    每个信道组合测量间隔per-channel combination measurement gap对应的指示;
    每个测量目标per-measurement object measurement gap对应的指示;以及
    每个频率测量间隔per-frequency measurement gap对应的指示。
  28. 根据权利要求23所述的配置方法,其中,所述第一指示包括:指示是否需要测量间隔的第一指示位;或者
    所述第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;
    所述第三指示位指示以下一项或多项:
    是否需要与用户设备确认是否需要测量间隔;
    是否需要与第一网络节点确认是否需要测量间隔;
    是否需要与第二网络节点确认是否需要测量间隔;以及
    是否需要请求所述第一配置。
  29. 一种第一网络节点,包括:
    确定模块,用于确定第二网络节点为用户设备配置的第一配置;以及
    配置模块,用于根据所述第一配置为所述用户设备配置测量间隔。
  30. 根据权利要求29所述的第一网络节点,其中,所述配置模块进一步用于:根据所述第一配置直接为所述用户设备配置测量间隔,或者根据所述第一配置和所述用户设备上报的能力指示为所述用户设备配置测量间隔。
  31. 根据权利要求29所述的第一网络节点,其中,所述第一配置包括以 下一项或多项:测量配置、配置的带宽部分BWP、激活的BWP、同步信号块图样SSB pattern、部署的频点、部署的带宽、工作频点和工作带宽。
  32. 根据权利要求29所述的第一网络节点,还包括:第一接收模块,用于接收所述第二网络节点为用户设备配置的第一配置。
  33. 根据权利要求32所述的第一网络节点,其中,所述第一接收模块进一步用于:
    从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置;或者
    从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置,所述第一配置是由所述用户设备上报给所述第二网络节点的;或者
    接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置;或者
    接收所述用户设备上报的所述第二网络节点为所述用户设备配置的第一配置,所述第一配置是由第一网络节点或第二网络节点发送给所述用户设备的。
  34. 根据权利要求32所述的第一网络节点,其中,所述第一接收模块进一步用于:当所述第二网络节点有所述第二网络节点为用户设备配置的第一配置时,从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置;或者当所述第二网络节点为用户设备配置的第一配置发生变化时,从所述第二网络节点接收所述第二网络节点为用户设备配置的第一配置。
  35. 根据权利要求33或34所述的第一网络节点,其中,所述第一接收模块进一步用于:从所述第二网络节点的基站间的接口或者运营管理与维护OAM接收所述第二网络节点为用户设备配置的第一配置。
  36. 根据权利要求32所述的第一网络节点,还包括:第一发送模块,用于向所述第二网络节点发送请求所述第二网络节点为用户设备配置的第一配置的请求消息。
  37. 根据权利要求30所述的第一网络节点,其中,所述第一接收模块还用于:接收所述用户设备上报的是否需要测量间隔的第一指示。
  38. 根据权利要求37所述的第一网络节点,其中,所述配置模块进一步 用于:根据特定参数为用户设备配置测量间隔,其中,所述特定参数包括以下一项或多项:用户设备的能力指示、所述第一指示和所述第一配置。
  39. 根据权利要求37所述的第一网络节点,其中,所述第一发送模块还用于:向所述用户设备发送所述第一配置。
  40. 根据权利要求39所述的第一网络节点,其中,所述第一发送模块进一步用于:直接向所述用户设备发送所述第一配置;或者通过所述第二网络节点向所述用户设备发送所述第一配置。
  41. 根据权利要求39所述的第一网络节点,其中,所述第一发送模块进一步用于:当确定有所述第一配置时,直接向所述用户设备发送所述第一配置;或者当所述第一配置发生变化时,直接向用户设备发送变化后的第一配置;或者
    所述第一发送模块进一步用于:当确定有所述第一配置时,通过所述第二网络节点向所述用户设备发送所述第一配置;或者当所述第一配置发生变化时,通过所述第二网络节点向所述用户设备发送所述第一配置。
  42. 根据权利要求37所述的第一网络节点,其中,所述第一指示用于指示以下一项或多项:
    每个配置的BWP是否需要测量间隔;
    每个激活的BWP是否需要测量间隔;
    每个部署的带宽是否需要测量间隔;
    每个工作带宽是否需要测量间隔;
    每个测量目标是否需要测量间隔;以及
    用户设备是否需要测量间隔。
  43. 根据权利要求37所述的第一网络节点,其中,所述第一指示包括以下一项或多项:
    每个用户设备测量间隔per-UE measurement gap对应的指示;
    每个成分载波测量间隔per-CC measurement gap对应的指示;
    每个小区组测量间隔per-CG measurement gap对应的指示;
    每个带宽部分测量间隔per-BWP measurement gap对应的指示;
    每个频段测量间隔per-band measurement gap对应的指示;
    每个频段组合测量间隔per-band combination measurement gap对应的指示;
    每个信道测量间隔per-channel measurement gap对应的指示;
    每个信道组合测量间隔per-channel combination measurement gap对应的指示;
    每个测量目标per-measurement object measurement gap对应的指示;以及
    每个频率测量间隔per-frequency measurement gap对应的指示。
  44. 根据权利要求37所述的第一网络节点,其中,所述第一指示包括:指示是否需要测量间隔的第一指示位;或者
    所述第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;
    所述第三指示位指示以下一项或多项:
    是否需要与用户设备确认是否需要测量间隔;
    是否需要与第一网络节点确认是否需要测量间隔;
    是否需要与第二网络节点确认是否需要测量间隔;以及
    是否需要请求所述第一配置。
  45. 根据权利要求29~44任一项所述的第一网络节点,其中,所述测量间隔包括以下一项或多项:
    per-UE measurement gap;
    per-CC measurement gap;
    per-CG measurement gap;
    per-BWP measurement gap;
    per-band measurement gap;
    per-band combination measurement gap;
    per-channel measurement gap;
    per-channel combination measurement gap;
    per-measurement object measurement gap;以及
    per-frequency measurement gap。
  46. 根据权利要求29~44任一项所述的第一网络节点,其中,所述测量 间隔包括以下一项或多项:
    对配置的所有或部分BWP对应的测量间隔信息;
    对激活的所有或部分BWP对应的测量间隔信息;
    对部署的带宽对应的测量间隔信息;
    对用户设备当前的工作带宽对应的测量间隔信息;以及
    对用户设备的测量配置对应的测量间隔信息。
  47. 根据权利要求46所述的第一网络节点,其中,所述测量间隔信息包括以下一项或多项:时间起始位置、持续时长、周期、非周期指示、一次性指示和偏移量。
  48. 根据权利要求29~47任一项所述的第一网络节点,其中,
    所述第一网络节点为主节点MN,所述第二网络节点为次节点SN;或者所述第一网络节点为SN,所述第二网络节点为MN。
  49. 一种用户设备,包括:
    第二接收模块,用于接收第一网络节点发送的测量间隔,所述测量间隔是所述第一网络节点根据第一配置为所述用户设备配置的,所述第一配置是由第二网络节点为所述用户设备配置的。
  50. 根据权利要求49所述的用户设备,其中,所述第一配置包括以下一项或多项:测量配置、配置的带宽部分BWP、激活的BWP、同步信号块图样SSB pattern、部署的频点、部署的带宽、工作频点和工作带宽。
  51. 根据权利要求50所述的用户设备,其中,所述用户设备还包括:第二发送模块,用于向所述第一网络节点上报是否需要测量间隔的第一指示。
  52. 根据权利要求51所述的用户设备,其中,所述第二发送模块进一步用于:根据所述第一配置向所述第一网络节点上报是否需要测量间隔的第一指示。
  53. 根据权利要求52所述的用户设备,其中,所述第二接收模块还用于:接收所述第二网络节点为所述用户设备配置的所述第一配置。
  54. 根据权利要求51所述的用户设备,其中,所述第一指示用于指示以下一项或多项:
    每个配置的BWP是否需要测量间隔;
    每个激活的BWP是否需要测量间隔;
    每个部署的带宽是否需要测量间隔;
    每个工作带宽是否需要测量间隔;
    每个测量目标是否需要测量间隔;以及
    用户设备是否需要测量间隔。
  55. 根据权利要求51所述的用户设备,其中,所述第一指示包括以下一项或多项:
    每个用户设备测量间隔per-UE measurement gap对应的指示;
    每个成分载波测量间隔per-CC measurement gap对应的指示;
    每个小区组测量间隔per-CG measurement gap对应的指示;
    每个带宽部分测量间隔per-BWP measurement gap对应的指示;
    每个频段测量间隔per-band measurement gap对应的指示;
    每个频段组合测量间隔per-band combination measurement gap对应的指示;
    每个信道测量间隔per-channel measurement gap对应的指示;
    每个信道组合测量间隔per-channel combination measurement gap对应的指示;
    每个测量目标per-measurement object measurement gap对应的指示;以及
    每个频率测量间隔per-frequency measurement gap对应的指示。
  56. 根据权利要求51所述的用户设备,其中,所述第一指示包括:指示是否需要测量间隔的第一指示位;或者
    所述第一指示包括:第二指示位和第三指示位,其中,所述第二指示位指示是否需要测量间隔;
    所述第三指示位指示以下一项或多项:
    是否需要与用户设备确认是否需要测量间隔;
    是否需要与第一网络节点确认是否需要测量间隔;
    是否需要与第二网络节点确认是否需要测量间隔;以及
    是否需要请求所述第一配置。
  57. 一种第一网络节点,包括:处理器、存储器及存储在所述存储器上 并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至20中任一项所述的测量间隔的配置方法的步骤。
  58. 一种用户设备,其中,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求21至28中任一项所述的测量间隔的配置方法的步骤。
  59. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至20中任一项所述的测量间隔的配置方法的步骤;或者实现如权利要求21至28中任一项所述的测量间隔的配置方法的步骤。
PCT/CN2018/112933 2017-11-10 2018-10-31 测量间隔的配置方法和设备 WO2019091311A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/763,198 US11528619B2 (en) 2017-11-10 2018-10-31 Measurement gap configuration method and apparatus
EP18875819.7A EP3709699A4 (en) 2017-11-10 2018-10-31 MEASUREMENT DEVIATION CONFIGURATION PROCESS AND DEVICE
US17/979,697 US20230077686A1 (en) 2017-11-10 2022-11-02 Measurement gap configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711107857.3A CN109788492A (zh) 2017-11-10 2017-11-10 测量间隔的配置方法和设备
CN201711107857.3 2017-11-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/763,198 A-371-Of-International US11528619B2 (en) 2017-11-10 2018-10-31 Measurement gap configuration method and apparatus
US17/979,697 Continuation US20230077686A1 (en) 2017-11-10 2022-11-02 Measurement gap configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2019091311A1 true WO2019091311A1 (zh) 2019-05-16

Family

ID=66438699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112933 WO2019091311A1 (zh) 2017-11-10 2018-10-31 测量间隔的配置方法和设备

Country Status (4)

Country Link
US (2) US11528619B2 (zh)
EP (1) EP3709699A4 (zh)
CN (1) CN109788492A (zh)
WO (1) WO2019091311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737060B2 (en) 2018-01-19 2023-08-22 Nokia Technologies Oy Methods, devices and computer readable medium for new radio management measurement

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831053B (zh) * 2018-08-07 2021-06-25 维沃移动通信有限公司 测量间隔的配置方法及网络节点
CN113596882B (zh) * 2018-11-01 2024-04-02 中兴通讯股份有限公司 用于频率测量和间隙配置的方法和装置
US11419169B2 (en) * 2019-03-21 2022-08-16 Qualcomm Incorporated Uplink power control for dual connectivity
CN113924797A (zh) * 2019-06-14 2022-01-11 Oppo广东移动通信有限公司 一种测量间隔的确定方法及装置、终端
CN112788678B (zh) * 2019-11-08 2022-05-13 华为技术有限公司 一种测量配置方法及装置
CN112867029A (zh) * 2019-11-28 2021-05-28 华为技术有限公司 一种测量配置方法及装置
CN113498096B (zh) * 2020-03-20 2023-07-14 华为技术有限公司 一种测量方法及装置
WO2022077494A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 测量间隔的配置方法及装置
WO2022141599A1 (zh) * 2020-12-31 2022-07-07 华为技术有限公司 测量方法、调度方法及相关装置
CN115208523A (zh) * 2021-04-09 2022-10-18 维沃移动通信有限公司 信息获取、配置方法、装置及通信设备
CN115913493A (zh) * 2021-09-30 2023-04-04 展讯通信(上海)有限公司 通信方法和通信装置
WO2023070463A1 (en) * 2021-10-28 2023-05-04 Nokia Shanghai Bell Co., Ltd. Concurrent measurement gap configuration
CN116112133A (zh) * 2021-11-11 2023-05-12 中国移动通信有限公司研究院 测量方法及装置
CN116170121A (zh) * 2021-11-24 2023-05-26 维沃移动通信有限公司 预配置Gap的激活状态确定方法、终端及网络侧设备
CN116471671A (zh) * 2022-01-07 2023-07-21 维沃移动通信有限公司 间隙Gap信息传输方法、装置和网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
US20120252487A1 (en) * 2011-04-04 2012-10-04 Iana Siomina Radio network node and method for using positioning gap indication for enhancing positioning performance
CN103888987A (zh) * 2014-03-21 2014-06-25 电信科学技术研究院 一种数据传输及其控制方法及装置
CN106211230A (zh) * 2015-05-07 2016-12-07 中兴通讯股份有限公司 一种计算辅小区组测量间隔的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378370B (zh) 2010-08-13 2014-10-29 电信科学技术研究院 一种载波聚合能力的处理方法和设备
US20150327104A1 (en) * 2014-05-08 2015-11-12 Candy Yiu Systems, methods, and devices for configuring measurement gaps for dual connectivity
EP4262292A3 (en) * 2015-04-09 2023-12-20 Apple Inc. Signalling for per component carrier based enhanced measurement gap configuration
WO2016182527A1 (en) * 2015-05-14 2016-11-17 Intel IP Corporation Measurement gap configuration in dual connectivity enhancement
US20170066110A1 (en) 2015-09-08 2017-03-09 Baker Hughes Incorporated Polycrystalline diamond, methods of forming same, cutting elements, and earth-boring tools
CN111108796B (zh) * 2017-09-28 2024-04-05 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
US20120252487A1 (en) * 2011-04-04 2012-10-04 Iana Siomina Radio network node and method for using positioning gap indication for enhancing positioning performance
CN103888987A (zh) * 2014-03-21 2014-06-25 电信科学技术研究院 一种数据传输及其控制方法及装置
CN106211230A (zh) * 2015-05-07 2016-12-07 中兴通讯股份有限公司 一种计算辅小区组测量间隔的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709699A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737060B2 (en) 2018-01-19 2023-08-22 Nokia Technologies Oy Methods, devices and computer readable medium for new radio management measurement

Also Published As

Publication number Publication date
US20230077686A1 (en) 2023-03-16
EP3709699A1 (en) 2020-09-16
CN109788492A (zh) 2019-05-21
US11528619B2 (en) 2022-12-13
US20210076230A1 (en) 2021-03-11
EP3709699A4 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
WO2019091311A1 (zh) 测量间隔的配置方法和设备
EP3958604A1 (en) Communication method and apparatus
CN109151884B (zh) 一种测量配置方法、终端和基站
KR20220005543A (ko) 신호 전송, 신호 측정 보고, 측위 방법 및 장치
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
CN110831053B (zh) 测量间隔的配置方法及网络节点
CN109803304A (zh) 测量间隔的指示方法和设备
US20160157116A1 (en) Methods, apparatuses, and computer-readable storage media for inter-frequency small cell detection and reporting
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
WO2019062581A1 (zh) 一种测量方法及装置
WO2020215922A1 (zh) 直流分量的频域位置的确定方法及装置、存储介质、终端、基站
US20200313991A1 (en) Service receiving or transmitting method and device, and communication system
US10397856B2 (en) Method and system for signal transmission with network assistance
WO2019047666A1 (zh) 一种移动性测量方法、装置及系统
US11368984B2 (en) Random access method and user equipment
US20230031500A1 (en) Measurement method and apparatus
US20200359321A1 (en) Signal transmission method and apparatus
EP3618498A1 (en) Method for processing measurement information, terminal and access network node
WO2018196850A1 (zh) 测量上报的处理方法、网络侧设备和用户设备
TWI759500B (zh) 無線資源管理測量的方法和設備
EP4213529A1 (en) Method and apparatus for carrier configuration
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
JP6564061B2 (ja) 通信方法及びデバイス
WO2021031004A1 (zh) 载波测量方法和装置
WO2020015537A1 (zh) 信号处理方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875819

Country of ref document: EP

Effective date: 20200610