WO2022077494A1 - 测量间隔的配置方法及装置 - Google Patents

测量间隔的配置方法及装置 Download PDF

Info

Publication number
WO2022077494A1
WO2022077494A1 PCT/CN2020/121675 CN2020121675W WO2022077494A1 WO 2022077494 A1 WO2022077494 A1 WO 2022077494A1 CN 2020121675 W CN2020121675 W CN 2020121675W WO 2022077494 A1 WO2022077494 A1 WO 2022077494A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
measurement interval
interval configuration
secondary node
trigger
Prior art date
Application number
PCT/CN2020/121675
Other languages
English (en)
French (fr)
Inventor
魏冬冬
彭文杰
秦彦
钱进
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106173.5A priority Critical patent/CN116530131A/zh
Priority to PCT/CN2020/121675 priority patent/WO2022077494A1/zh
Publication of WO2022077494A1 publication Critical patent/WO2022077494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for configuring a measurement interval.
  • the terminal device is connected to the master node and the slave node at the same time.
  • the master node and/or the secondary node needs to perform inter-frequency or inter-system measurement on the terminal device, it will trigger the generation of the measurement interval configuration of the terminal device.
  • the primary node and the secondary node will not schedule the terminal device.
  • the secondary node connected to the terminal device may change. If the master node and the changed secondary node cannot understand the measurement interval in the same way, the changed secondary node may measure the terminal device during the measurement interval. scheduling, resulting in packet loss.
  • the present application provides a method and device for configuring a measurement interval, which are used to prevent packet loss caused by invalid scheduling of the terminal device by the secondary node connected to the terminal device after the secondary node changes.
  • the present application provides a method for configuring a measurement interval.
  • the method includes: a master node acquires a measurement interval configuration of a terminal device before a secondary node changes; the master node sends the measurement interval configuration and a first indication to a first secondary node information, the first indication information is used to inquire whether the measurement interval configuration is valid, and the first secondary node is the secondary node to which the terminal device is connected after the secondary node changes.
  • the master node sends the measurement interval configuration of the terminal device before the secondary node change and the first indication information to the first secondary node, and the first secondary node
  • the measurement interval configuration will take effect, so that the master node and the first auxiliary node have a consistent understanding of the measurement interval and avoid packet loss.
  • signaling overhead is saved and delay is reduced.
  • the measurement interval configuration does not take effect, which can avoid the situation when the first secondary node itself does not have the need for the terminal device to perform inter-frequency or inter-system measurement. , it is still necessary to stop the resource waste caused by the scheduling of the terminal equipment within the measurement interval.
  • the measurement interval configuration is triggered by a second secondary node, and the second secondary node is the secondary node to which the terminal device is connected before the secondary node changes.
  • the method further includes: receiving second indication information sent by the first secondary node, where the second indication information is used to indicate that the measurement interval configuration is valid.
  • the method further includes: receiving second indication information sent by the first secondary node, where the second indication information is used to indicate that the measurement interval configuration is invalid.
  • the present application provides a method for configuring a measurement interval.
  • the method includes: a first secondary node receives, from a primary node, a measurement interval configuration of a terminal device before the secondary node changes and first indication information, where the first indication information is used for Inquire whether the measurement interval configuration is valid, the first secondary node is the secondary node connected to the terminal device after the secondary node changes; the first secondary node determines whether the measurement interval configuration is valid according to the first indication information.
  • the measurement interval configuration is triggered by a second secondary node, and the second secondary node is the secondary node to which the terminal device is connected before the secondary node changes.
  • the first secondary node determines whether the measurement interval configuration is valid according to the first indication information, including: if the first secondary node needs to make the terminal equipment perform inter-frequency or inter-system measurement , it is determined that the measurement interval configuration is valid.
  • the first secondary node determines, according to the first indication information, whether the measurement interval configuration is valid, including: if the first secondary node does not have a device that enables the terminal device to perform inter-frequency or inter-system measurement. requirements, it is determined that the measurement interval configuration is invalid.
  • the method further includes: if the measurement interval configuration is valid, sending second indication information to the master node, where the second indication information is used to indicate that the measurement interval configuration is valid.
  • the method further includes: if the measurement interval configuration is invalid, sending second indication information to the master node, where the second indication information is used to indicate that the measurement interval configuration is invalid.
  • the present application provides a method for configuring a measurement interval.
  • the method includes: a master node acquires a measurement interval configuration of a terminal device before the secondary node changes and information indicating a triggering node for the measurement interval configuration; the master node sends the first The secondary node sends the measurement interval configuration and information indicating the trigger node of the measurement interval configuration, the trigger node includes at least one of the primary node and the second secondary node, and the first secondary node is the secondary node.
  • the terminal device is connected The secondary node is the secondary node to which the terminal device is connected before the secondary node changes.
  • the master node after the secondary node connected to the terminal device changes from the second secondary node to the first secondary node, the master node sends the measurement interval configuration and the information of the trigger node indicating the measurement interval configuration to the first secondary node, if the trigger node is The master node, or the master node and the second slave node, the first slave node takes effect of the measurement interval configuration, so that the master node and the first slave node have a consistent understanding of the measurement interval and avoid packet loss.
  • the secondary node requests the primary node to reconfigure the measurement interval for it, signaling overhead and time delay are saved.
  • the first secondary node further determines whether the first secondary node needs to make the terminal equipment perform inter-frequency or inter-system measurement, which can avoid that the first secondary node itself does not cause the terminal equipment to perform inter-frequency measurement. When there is a need for frequent or inter-system measurement, it is still necessary to stop the resource waste caused by the scheduling of the terminal equipment within the measurement interval.
  • the method further includes: receiving second indication information sent by the first secondary node, where the second indication information is used to indicate that the measurement interval configuration is valid.
  • the method further includes: receiving second indication information sent by the first secondary node, where the second indication information is used to indicate that the measurement interval configuration is invalid.
  • the present application provides a method for configuring a measurement interval, the method comprising: a first secondary node receives, from a master node, a measurement interval configuration of a terminal device before the secondary node changes and information indicating a triggering node for the measurement interval configuration, the The trigger node includes at least one of the primary node and the second secondary node, the first secondary node is the secondary node to which the terminal device is connected after the secondary node changes, and the second secondary node is the secondary node to which the terminal device is connected before the secondary node changes. node; the first secondary node determines whether the measurement interval configuration is valid according to the information of the trigger node indicating the measurement interval configuration.
  • the first secondary node determines whether the measurement interval configuration is valid according to the information of the trigger node indicating the measurement interval configuration, including: if the information of the trigger node indicating the measurement interval configuration indicates the measurement interval configuration. If the trigger node is the master node, it is determined that the measurement interval configuration is valid.
  • the first secondary node determines whether the measurement interval configuration is valid according to the information of the trigger node indicating the measurement interval configuration, including: if the information of the trigger node indicating the measurement interval configuration indicates the measurement interval configuration. If the trigger node includes the master node and the second slave node, it is determined that the measurement interval configuration is valid.
  • the first secondary node determines whether the measurement interval configuration is valid according to the information of the trigger node indicating the measurement interval configuration, including: if the information of the trigger node indicating the measurement interval configuration indicates the measurement interval configuration. If the triggering node is the second secondary node, and the first secondary node needs to make the terminal equipment perform inter-frequency or inter-system measurement, it is determined that the measurement interval configuration is valid.
  • the first secondary node determines whether the measurement interval configuration is valid according to the information of the trigger node indicating the measurement interval configuration, including: if the information of the trigger node indicating the measurement interval configuration indicates the measurement interval configuration. If the triggering node is the second secondary node, and the first secondary node does not have the need to make the terminal equipment perform inter-frequency or inter-system measurement, it is determined that the measurement interval configuration is invalid.
  • second indication information is sent to the master node, where the second indication information is used to indicate that the measurement interval configuration is valid.
  • second indication information is sent to the master node, where the second indication information is used to indicate that the measurement interval configuration is invalid.
  • the present application provides a method for configuring a measurement interval.
  • the method includes: a master node acquires a measurement interval configuration of a terminal device before the secondary node changes and information indicating a trigger node for the measurement interval configuration, where the trigger node includes the master node. at least one of the node and the second auxiliary node; according to the information of the trigger node indicating the measurement interval configuration, determine whether to send the measurement interval configuration to the first auxiliary node, and the first auxiliary node is the terminal after the auxiliary node changes The secondary node to which the device is connected, and the second secondary node is the secondary node to which the terminal device is connected before the secondary node changes.
  • the primary node determines whether to send the measurement interval configuration to the first secondary node according to the information of the trigger node indicating the measurement interval configuration,
  • the trigger node is the master node, or when the trigger node is the master node and the second slave node, the measurement interval configuration is sent to the first slave node, so that the master node and the first slave node have a consistent understanding of the measurement interval, avoiding the need for
  • signaling overhead and delay are saved.
  • the measurement interval configuration is not sent to the first secondary node, which can avoid that when the first secondary node does not have the need to make the terminal equipment perform inter-frequency or inter-system measurement, it is still necessary to Resource waste caused by stopping the scheduling of terminal equipment within the measurement interval.
  • determining whether to send the measurement interval configuration to the first secondary node according to the information of the trigger node indicating the measurement interval configuration includes: if the trigger node indicating the measurement interval configuration If the information indicates that the triggering node is the master node, the measurement interval configuration is sent to the first slave node.
  • determining whether to send the measurement interval configuration to the first secondary node according to the information of the trigger node indicating the measurement interval configuration includes: if the trigger node indicating the measurement interval configuration If the information indicates that the triggering node includes the master node and the second auxiliary node, the measurement interval configuration is sent to the first auxiliary node.
  • determining whether to send the measurement interval configuration to the first secondary node according to the information of the trigger node indicating the measurement interval configuration includes: if the trigger node indicating the measurement interval configuration If the information indicates that the triggering node is the second secondary node, the measurement interval configuration is not sent to the first secondary node.
  • the present application provides an apparatus, comprising: a processor, the processor is coupled to a memory, the memory is used to store program instructions, and the processor is used to call the program instructions in the memory to execute the first aspect. method, or perform the method provided by the third aspect, or perform the method provided by the fifth aspect.
  • the present application provides an apparatus, comprising: a processor, the processor is coupled to a memory, the memory is used for storing program instructions, and the processor is used for calling the program instructions in the memory to execute the program instructions provided in the second aspect method, or execute the method provided by the fourth aspect.
  • the present application provides a readable storage medium on which a computer program is stored; when the computer program is executed, the method provided in the first aspect or the method provided in the second aspect is implemented, Either implement the method provided by the third aspect, or implement the method provided by the fourth aspect, or implement the method provided by the fifth aspect.
  • the present application provides a computer program product that, when the instructions contained in the computer program product are run on a computer, causes the computer to execute the method provided in the first aspect, or the method provided in the second aspect, or execute the The method provided in the third aspect either performs the method provided in the fourth aspect, or performs the method provided in the fifth aspect.
  • the present application provides an apparatus for performing the method provided in the first aspect, or performing the method provided in the third aspect, or performing the method provided in the fifth aspect.
  • the present application provides an apparatus for performing the method provided in the second aspect, or performing the method provided in the fourth aspect.
  • the present application provides a communication system, including the device provided in the sixth aspect and the device provided in the seventh aspect, or the device provided in the tenth aspect and the device provided in the eleventh aspect.
  • the master node sends the measurement interval configuration of the terminal device before the secondary node change to the first secondary node
  • the measurement interval configuration takes effect, so that the primary node and the first secondary node have a consistent understanding of the measurement interval, avoiding lost
  • signaling overhead and time delay are saved.
  • the measurement interval configuration does not take effect, which can avoid the situation when the first secondary node itself does not have the need for the terminal device to perform inter-frequency or inter-system measurement. , it is still necessary to stop the resource waste caused by the scheduling of the terminal equipment within the measurement interval.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by the present application.
  • Embodiment 2 is a schematic flowchart of Embodiment 1 of a method for configuring a measurement interval provided by the present application;
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a method for configuring a measurement interval provided by the present application;
  • Embodiment 4 is a schematic flowchart of Embodiment 3 of a method for configuring a measurement interval provided by the present application;
  • FIG. 5 is a schematic structural diagram of a communication device 500 provided by the present application.
  • FIG. 6 is a schematic structural diagram of a base station provided by the present application.
  • At least one of the following or its similar expression refers to any combination of these items, including a single item (a) or a plurality of items (a) any combination.
  • at least one (a) of a, b, or c can represent: a single a, a single b, a single c, a combination of a and b, a combination of a and c, b and A combination of c, or a combination of a, b, and c, where a, b, and c can be single or multiple.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by the present application.
  • the communication system 100 includes: a primary base station, a secondary base station and terminal equipment.
  • the terminal device is connected to the primary base station and the secondary base station at the same time, and the communication system 100 provided by this application may be, for example, a long term evolution (long term evolution, LTE) system supporting 4G access technology, a new radio (new radio, NR) system supporting 5G access technology ) system, any cellular system related to the 3rd generation partnership project (3GPP), wireless-fidelity (WiFi) system, worldwide interoperability for microwave access (WiMAX) system, multi-radio access technology (Radio Access Technology, RAT) system, or other future-oriented communication technology systems.
  • LTE long term evolution
  • NR new radio
  • 5G access technology 5G access technology
  • 3GPP 3rd generation partnership project
  • WiFi wireless-fidelity
  • WiMAX worldwide interoperability for microwave access
  • RAT multi-radio access technology
  • the terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as without man-machines, planes, balloons and satellites, etc.).
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • Terminal equipment may also sometimes be referred to as terminal, user equipment (UE), access terminal equipment, station, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment , wireless communication device, UE proxy or UE device, or some other suitable term.
  • Terminal devices can also be stationary or mobile.
  • the primary base station and the secondary base station may be devices on the access network side used to support terminal access to the communication system, for example, an evolved base station (evolved nodeB, eNB) in a 4G access technology communication system, and a 5G access technology communication system.
  • Next generation nodeB gNB
  • TRP transmission reception point
  • relay node relay node
  • AP access point
  • the primary base station and the secondary base station may be referred to as a donor node, an IAB donor (IAB donor), a donor IAB, a donor or a donor gNB (DgNB, donor gNB), and the like.
  • the primary base station and the secondary base station can be: macro base station, micro base station, pico base station, small base station, relay station, etc.
  • the primary base station and the secondary base station may support the above-mentioned networks of the same technology, or may support the above-mentioned networks of different technologies.
  • the primary base station and the secondary base station may include one or more co-sited or non-co-sited transmission receiving points (TRPs).
  • TRPs transmission receiving points
  • the primary base station and the secondary base station may also be a wireless controller, a centralized unit (central unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the primary base station and the secondary base station may also be servers, wearable devices, or in-vehicle devices.
  • the primary base station and the secondary base station in the communication system may be the same type of base station, or may be different types of base stations.
  • the primary base station and the secondary base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • the primary base station and the secondary base station have the following combinations:
  • the core network is a 4G core network (Evolved Packet Core, EPC for short)
  • the Long Term Evolution (LTE) base station is the primary base station
  • the New Radio (NR) base station is the secondary base station.
  • the LTE base station There is an X2 interface between the LTE base station and the NR base station, and there is at least a control plane connection between the LTE base station and the NR base station, and there may also be a user plane connection; there is an S1 interface between the LTE base station and the EPC, and there is at least a control plane connection between the LTE base station and the EPC.
  • the LTE base station can provide air interface resources for the terminal device through at least one LTE cell.
  • the at least one LTE cell is called a master cell group (Master Cell Group, MCG for short).
  • the NR base station can also use at least one NR The cell provides air interface resources for the terminal device, and the at least one NR cell is called a secondary cell group (Secondary Cell Group, SCG for short).
  • the LTE base station is the primary base station, and the NR base station is the secondary base station.
  • the LTE base station can provide air interface resources for the terminal device through at least one LTE cell, and at this time, the at least one LTE cell is called an MCG.
  • the NR base station may also provide air interface resources for the terminal device through at least one NR cell, and in this case, the at least one NR cell is called an SCG.
  • the core network is the 5G core network 5GC
  • the NR base station is the primary base station and the LTE base station is the secondary base station.
  • there is an Xn interface between the NR base station and the LTE base station and there is at least a control plane connection between the NR base station and the LTE base station.
  • There is a user plane connection there is an NG interface between the NR base station and the 5GC, and there is at least a control plane connection between the NR base station and the 5GC, and there may be a user plane connection; there is an NG-U interface between the NR base station and the 5GC, and only users can face connection.
  • the NR base station may provide air interface resources for the terminal device through at least one NR cell, and at this time, the at least one NR cell is called an MCG.
  • the LTE base station may also provide air interface resources for the terminal device through at least one LTE cell, where the at least one LTE cell is called an SCG.
  • the primary and secondary base stations are all NR base stations.
  • the interface between the primary and secondary base stations is the Xn interface, and there is at least a control plane connection between the primary and secondary base stations, and there may also be a user plane connection; there is an NG interface between the NR primary base station and 5GC, at least a control plane connection, and there may also be user plane connections.
  • the NR master base station may provide air interface resources for the terminal device through at least one NR cell, and at this time, the at least one NR cell is called an MCG.
  • the NR secondary base station may also provide air interface resources for the terminal device through at least one NR cell, where the at least one NR cell is called an SCG.
  • Primary node and secondary node In the MR-DC scenario, the terminal device is connected to the primary node and secondary node at the same time.
  • the primary node is the primary base station to which the terminal equipment is connected
  • the secondary node is the secondary base station to which the terminal equipment is connected.
  • Measurement interval configuration When the master node or the slave node needs to make the terminal equipment perform inter-frequency or inter-system measurement, the master node sends measurement information, which includes the measurement interval configuration. Specifically, it may include the measurement interval repetition period, the measurement interval length, one or more of the offsets of the measurement interval pattern within the measurement interval repetition period, optionally, it can also be included in the measurement interval calculation, which cell or node frame number/subframe number is used as a reference, The terminal device can obtain a corresponding measurement interval based on the measurement interval configuration, and perform the above-mentioned inter-frequency or inter-system measurement within the measurement interval. Since the terminal equipment may need to switch radio frequency modules when performing inter-frequency or inter-system measurement, the protocol defines that the master node and the secondary node do not schedule the terminal equipment within the measurement interval.
  • the secondary node connected to the terminal device may change. If the master node and the changed secondary node cannot understand the measurement interval in the same way, the changed secondary node may measure the terminal device during the measurement interval. scheduling, resulting in packet loss.
  • FIG. 2 is a schematic flowchart of Embodiment 1 of the method for configuring the measurement interval provided by the present application.
  • the secondary node connected by the terminal device before the node change is called the second secondary node.
  • the method for configuring the measurement interval provided by this embodiment includes:
  • the master node acquires the measurement interval configuration of the terminal device before the change of the slave node.
  • the master node sends the measurement interval configuration and the first indication information to the first slave node.
  • the measurement interval configuration of the terminal device before the change of the secondary node obtained by the primary node in S201 may be triggered by the primary node, may be triggered by the second secondary node, or may be jointly triggered by the primary node and the second secondary node.
  • the master node may simultaneously send first indication information, the first indication information Used to ask if the measurement interval configuration is valid.
  • the first indication information is used to ask whether the measurement interval configuration is valid. It can be understood that the first indication information is used to ask the first secondary node whether the measurement interval configuration is valid, or to ask the first secondary node whether to accept the measurement interval configuration, or for inquiring the first secondary node whether the measurement interval configuration is required, etc., which is not limited in this embodiment of the present application.
  • the second secondary node When the second secondary node needs to make the terminal equipment perform inter-frequency or inter-system measurement, it sends the request to the primary node. After receiving the request, the primary node generates a measurement interval configuration and sends the measurement interval configuration to the second secondary node. node, the second secondary node further sends the measurement interval configuration to the terminal device, or the master node sends the measurement interval configuration to the terminal device, since both the primary node and the second secondary node are equipped with the measurement interval configuration, the master node and the The second secondary node has a consistent understanding of the measurement interval, so that when the terminal device performs inter-frequency or inter-system measurement within the measurement interval, the master node and the second secondary node will not schedule the terminal device, thereby avoiding packet loss.
  • the first secondary node determines whether the measurement interval configuration is valid according to the first indication information.
  • the first secondary node judges whether the first secondary node has a need to make the terminal equipment perform inter-frequency or inter-system measurement, and if so, it is determined that the received measurement interval configuration is valid, because the first secondary node needs to perform inter-frequency or inter-system measurements.
  • Both the master node and the master node are equipped with the measurement interval configuration, and the master node and the first auxiliary node have a consistent understanding of the measurement interval, so that when the terminal device performs inter-frequency or inter-system measurement within the measurement interval, the master node and the first auxiliary node.
  • the terminal device will not be scheduled to avoid packet loss; if it does not exist, it is determined that the received measurement interval configuration is invalid.
  • the setting of the first instruction message allows the first secondary node to have room for judgment, and follow the master node.
  • the method of this embodiment can avoid that the first secondary node itself does not cause the terminal device to perform inter-frequency or inter-system inter-system.
  • the measurement requirements are met, it is still necessary to stop the resource waste caused by the scheduling of the terminal equipment within the measurement interval.
  • the first secondary node sends a second indication message to the primary node.
  • the second indication information is used to indicate that the measurement interval configuration is valid, or to indicate that the first secondary node will take effect of the measurement interval configuration, or to indicate that the measurement interval configuration is valid.
  • a secondary node accepts the measurement interval configuration, or is used to indicate that the first secondary node needs the measurement interval configuration. If the first secondary node determines that the above measurement interval configuration is invalid, the second indication information is used to indicate that the measurement interval configuration is invalid, or to indicate that the first secondary node will not take effect of the measurement interval configuration, or to indicate the first secondary node. The node does not accept the measurement interval configuration, or is used to indicate that the first secondary node does not need the measurement interval configuration.
  • the second indication information may be a certain cell, when the value of the cell is 1, it indicates that the measurement interval configuration is valid, and when the cell value is 0, the measurement interval configuration is invalid.
  • the master node sends the measurement interval configuration of the terminal device before the secondary node change to the first secondary node and
  • the first indication information when the first secondary node needs to make the terminal device perform inter-frequency or inter-system measurement, the measurement interval configuration takes effect, so that the primary node and the first secondary node have a consistent understanding of the measurement interval, avoiding packet loss.
  • the first secondary node requests the master node to reconfigure the measurement interval for it, signaling overhead and delay are saved.
  • the measurement interval configuration does not take effect, which can avoid the situation when the first secondary node itself does not have the need for the terminal device to perform inter-frequency or inter-system measurement. , it is still necessary to stop the resource waste caused by the scheduling of the terminal equipment within the measurement interval.
  • FIG. 3 is a schematic flowchart of Embodiment 2 of the method for configuring the measurement interval provided by the present application. Similar to the above-mentioned embodiment, in this embodiment, the secondary node to which the terminal equipment is connected after the secondary node is changed is called the first secondary node, and the secondary node is referred to as the first secondary node. The secondary node connected to the terminal device before the change is called the second secondary node. As shown in FIG. 3 , the method for configuring the measurement interval provided by this embodiment includes:
  • the master node acquires the measurement interval configuration of the terminal device before the change of the secondary node and the information of the triggering node indicating the measurement interval configuration.
  • the master node sends the measurement interval configuration and information indicating the triggering node of the measurement interval configuration to the first secondary node.
  • the foregoing measurement interval configuration may be triggered by the master node, or may be triggered by the second secondary node, or may be jointly triggered by the primary node and the second secondary node.
  • the above-mentioned information indicating the trigger node of the measurement interval configuration may be used to indicate whether the trigger node is the master node, the second slave node, or the master node and the second slave node.
  • the master node When there is a need for the terminal device to perform inter-frequency or inter-system measurements, the master node generates a measurement interval configuration, and sends the measurement interval configuration to the second secondary node and the terminal device, since both the primary node and the second secondary node are equipped with this configuration.
  • Measurement interval configuration the master node and the second auxiliary node have a consistent understanding of the measurement interval, so that when the terminal device performs inter-frequency or inter-system measurement within the measurement interval, the master node and the second auxiliary node will not schedule the terminal device. , so as to avoid packet loss.
  • the second secondary node When there is a need for the terminal equipment to perform inter-frequency or inter-system measurement, the second secondary node sends the request to the master node, and the master node generates a measurement interval configuration according to the requirement and its own requirements, and sends the measurement interval configuration to For the second secondary node and the terminal device, since both the primary node and the second secondary node are equipped with the measurement interval configuration, the primary node and the second secondary node have a consistent understanding of the measurement interval, so that the terminal device performs inter-frequency or When measuring in different systems, the master node and the second slave node will not schedule the terminal device, thereby avoiding packet loss.
  • the first secondary node determines whether the measurement interval configuration is valid according to the information of the triggering node indicating the measurement interval configuration.
  • the measurement interval configuration is triggered by the primary node, or the primary node If the node and the second auxiliary node are jointly triggered, then the measurement interval configuration is applicable to the first auxiliary node, and S303 can be implemented in the following manner:
  • the measurement interval configuration is valid. If the information of the trigger node indicating the measurement interval configuration indicates that the trigger node is the master node, it is determined that the measurement interval configuration is valid. If the information of the trigger node indicating the measurement interval configuration indicates that the trigger node includes the master node and the second slave node, the measurement interval is also determined. Configuration is valid. Since both the first secondary node and the primary node are equipped with the measurement interval configuration, the primary node and the first secondary node have a consistent understanding of the measurement interval, so that when the terminal device performs inter-frequency or inter-system measurement within the measurement interval, the primary node and the primary node have a consistent understanding of the measurement interval. The first secondary node will not schedule the terminal device, thereby avoiding packet loss.
  • the information of the trigger node indicating the measurement interval configuration indicates that the trigger node is the second secondary node, it is further judged whether the first secondary node has a need to make the terminal equipment perform inter-frequency or inter-system measurement, and if so, it is determined that the measurement interval configuration is valid; If it does not exist, it is determined that the measurement interval configuration is invalid.
  • the method of this embodiment can avoid that when the first secondary node itself does not need to make the terminal equipment perform inter-frequency or inter-system measurement, it still needs to stop the measurement of the terminal equipment within the measurement interval. Waste of resources caused by scheduling.
  • the first secondary node sends a second indication message to the primary node.
  • the second indication information is used to indicate that the measurement interval configuration is valid, or to indicate that the first secondary node will take effect of the measurement interval configuration, or to indicate that the measurement interval configuration is valid.
  • a secondary node accepts the measurement interval configuration, or is used to indicate that the first secondary node needs the measurement interval configuration. If the first secondary node determines that the above measurement interval configuration is invalid, the second indication information is used to indicate that the measurement interval configuration is invalid, or to indicate that the first secondary node will not take effect of the measurement interval configuration, or to indicate the first secondary node. The node does not accept the measurement interval configuration, or is used to indicate that the first secondary node does not need the measurement interval configuration.
  • the second indication information may be a certain cell, when the value of the cell is 1, it indicates that the measurement interval configuration is valid, and when the cell value is 0, the measurement interval configuration is invalid.
  • the master node After the secondary node connected to the terminal device changes from the second secondary node to the first secondary node, the master node sends the measurement interval configuration and the trigger node indicating the measurement interval configuration to the first secondary node. Information. If the trigger node is the master node, or the master node and the second slave node, the first slave node will take effect of the measurement interval configuration, so that the master node and the first slave node have a consistent understanding of the measurement interval, avoiding packet loss, and in addition , compared with the way in which the first secondary node requests the master node to configure a measurement interval for it again, signaling overhead and time delay are saved.
  • the first secondary node further determines whether the first secondary node needs to make the terminal equipment perform inter-frequency or inter-system measurement, which can avoid that the first secondary node itself does not cause the terminal equipment to perform inter-frequency measurement. When there is a need for frequent or inter-system measurement, it is still necessary to stop the resource waste caused by the scheduling of the terminal equipment within the measurement interval.
  • FIG. 4 is a schematic flowchart of Embodiment 3 of the method for configuring the measurement interval provided by the present application. Similar to the above-mentioned embodiment, in this embodiment, the secondary node to which the terminal equipment is connected after the secondary node is changed is called the first secondary node, and the secondary node is referred to as the first secondary node. The secondary node connected to the terminal device before the change is called the second secondary node.
  • the method provided in this embodiment can be applied to the master node. As shown in FIG. 4 , the method for configuring the measurement interval provided by this embodiment includes:
  • the master node acquires the measurement interval configuration of the terminal device before the secondary node changes and the information of the trigger node indicating the measurement interval configuration.
  • the foregoing measurement interval configuration may be triggered by the master node, may also be triggered by the second secondary node, or may be jointly triggered by the primary node and the second secondary node.
  • the above-mentioned information indicating the trigger node of the measurement interval configuration may be used to indicate whether the trigger node is the master node, the second slave node, or the master node and the second slave node.
  • S402. Determine whether to send the measurement interval configuration to the first secondary node according to the information of the triggering node indicating the measurement interval configuration.
  • the measurement interval configuration is triggered by the primary node, or the primary node If the node and the second secondary node are co-triggered, the measurement interval configuration is applicable to the first secondary node, and S402 can be implemented in the following manner:
  • the measurement interval configuration is sent to the first secondary node; if the information of the trigger node indicating the measurement interval configuration indicates that the trigger node is the master node and the second slave node
  • the secondary node also sends the measurement interval configuration to the first secondary node. Since both the first secondary node and the primary node are equipped with the measurement interval configuration, the primary node and the first secondary node have a consistent understanding of the measurement interval, so that when the terminal device performs inter-frequency or inter-system measurement within the measurement interval, the primary node and the primary node have a consistent understanding of the measurement interval.
  • the first secondary node will not schedule the terminal device, thereby avoiding packet loss.
  • the measurement interval configuration is not sent to the first secondary node, which avoids that the first secondary node itself does not cause the terminal equipment to perform inter-frequency or inter-frequency
  • the system measurement requirements are met, it is still necessary to stop the waste of resources caused by the scheduling of the terminal equipment within the measurement interval.
  • the master node determines whether to configure the measurement interval according to the information of the trigger node indicating the measurement interval configuration Send to the first secondary node, when the trigger node is the primary node, or when the trigger node is the primary node and the second secondary node, the measurement interval configuration is sent to the first secondary node, so that the primary node and the first secondary node The measurement interval configuration is sent to the first secondary node.
  • the measurement interval configuration is not sent to the first secondary node, which can avoid that when the first secondary node does not have the need to make the terminal equipment perform inter-frequency or inter-system measurement, it is still necessary to Resource waste caused by stopping the scheduling of terminal equipment within the measurement interval.
  • FIG. 5 is a schematic structural diagram of a communication apparatus 500 provided by this application.
  • the communication apparatus 500 includes: a processing unit 501 and a communication unit 502 .
  • the communication apparatus 500 further includes a storage unit 503 .
  • the processing unit 501 may be a device with processing functions, and may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, or the like.
  • the processor may be a baseband processor, or a central processing unit.
  • the baseband processor may be used to process communication protocols and communication data
  • the central processing unit may be used to control devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of software programs.
  • the communication unit 502 may be a device having signal input (reception) or output (transmission) for transmitting signals with other network devices or other devices in the device.
  • the storage unit 503 may be a device with a storage function, and may include one or more memories.
  • processing unit 501, the communication unit 502 and the storage unit 503 are connected through a communication bus.
  • the storage unit 503 may exist independently and be connected to the processing unit 501 through a communication bus.
  • the storage unit 503 may also be integrated with the processing unit 501 .
  • the communication apparatus 500 may be the master node mentioned above.
  • the processing unit may be used to obtain the measurement interval configuration of the terminal device before the change of the secondary node;
  • the node sends the measurement interval configuration and the first indication information.
  • the first indication information is used to inquire whether the measurement interval configuration is valid, the first secondary node is the secondary node to which the terminal device is connected after the secondary node changes, the measurement interval configuration may be triggered by the second secondary node, and the second secondary node is the secondary node.
  • the secondary node to which the terminal device is connected before the node changes.
  • the communication unit is further configured to receive second indication information sent by the first secondary node, where the second indication information is used to indicate whether the measurement interval configuration is valid.
  • the processing unit may be configured to obtain the measurement interval configuration of the terminal device before the secondary node changes and information indicating the triggering node of the measurement interval configuration; the communication unit may be configured to send the above measurement interval configuration to the first secondary node and information indicating the trigger node for the measurement interval configuration.
  • the triggering node includes at least one of a primary node and a second secondary node, wherein the first secondary node is the secondary node to which the terminal device is connected after the secondary node is changed, and the second secondary node is the secondary node to which the terminal device is connected before the secondary node is changed.
  • the communication unit is further configured to receive second indication information sent by the first secondary node, where the second indication information is used to indicate whether the measurement interval configuration is valid.
  • the processing unit may be configured to acquire the measurement interval configuration of the terminal device before the secondary node changes and the information of the trigger node indicating the measurement interval configuration, where the trigger node includes at least one of the primary node and the second secondary node. It is also used to determine whether to send the measurement interval configuration to the first auxiliary node according to the information of the trigger node indicating the measurement interval configuration, wherein the first auxiliary node is the auxiliary node to which the terminal equipment is connected after the auxiliary node changes, and the second auxiliary node is The secondary node to which the terminal device is connected before the secondary node is changed.
  • the communication unit may be configured to: if the information of the trigger node indicating the measurement interval configuration indicates that the trigger node is the master node, send the measurement interval configuration to the first secondary node; if the information of the trigger node indicating the measurement interval configuration indicates that the trigger node includes the master node and the second secondary node, the measurement interval configuration is sent to the first secondary node; if the information indicating the triggering node for the measurement interval configuration indicates that the triggering node is the second secondary node, the measurement interval configuration is not sent to the first secondary node.
  • the above-mentioned communication apparatus 500 may be the second auxiliary node mentioned above, and the second auxiliary node is the auxiliary node to which the terminal device is connected after the change of the auxiliary node.
  • the communication unit may be used for Receive from the master node the measurement interval configuration of the terminal device before the secondary node changes and the first indication information, where the first indication information is used to inquire whether the measurement interval configuration is valid; the processing unit can be configured to determine whether the measurement interval configuration is valid according to the first indication information .
  • the above-mentioned measurement interval configuration may be triggered by a second secondary node, and the second secondary node is the secondary node to which the terminal device is connected before the secondary node changes.
  • the processing unit can be specifically configured to: if the first secondary node has the requirement to make the terminal equipment perform inter-frequency or inter-system measurement, determine that the measurement interval configuration is valid; If the measurement requirements are met, it is determined that the measurement interval configuration is invalid.
  • the communication unit is further configured to: if the measurement interval configuration is valid, send second indication information to the master node, where the second indication information is used to indicate that the measurement interval configuration is valid; if the measurement interval configuration is invalid, send the first indication to the master node. Second indication information, the second indication information is used to indicate that the measurement interval configuration is invalid.
  • the communication unit may be configured to receive, from the master node, the measurement interval configuration of the terminal device before the secondary node changes and information indicating a trigger node for the measurement interval configuration, where the trigger node includes the primary node and the second secondary node.
  • the processing unit may be specifically configured to: if the information of the trigger node indicating the measurement interval configuration indicates that the trigger node is the master node, determine that the measurement interval configuration is valid; if the information of the trigger node indicating the measurement interval configuration indicates that the trigger node includes the master node and the first node If the information of the triggering node indicating the measurement interval configuration indicates that the triggering node is the second secondary node, and the first secondary node needs to make the terminal equipment perform inter-frequency or inter-system measurement, then Determine that the measurement interval configuration is valid; if the information of the trigger node indicating the measurement interval configuration indicates that the trigger node is the second secondary node, and the first secondary node does not have the need to make the terminal equipment perform inter-frequency or inter-system measurement, then determine the measurement interval configuration invalid.
  • the communication unit is further configured to: if the measurement interval configuration is valid, send second indication information to the master node, where the second indication information is used to indicate that the measurement interval configuration is valid; if the measurement interval configuration is invalid, send the first indication to the master node. Second indication information, the second indication information is used to indicate that the measurement interval configuration is invalid.
  • FIG. 6 is a schematic structural diagram of a base station provided by the present application.
  • the base station includes at least one processor 111 , at least one memory 112 , at least one transceiver 113 , at least one network interface 114 and one or more antennas 115 .
  • the processor 111, the memory 112, the transceiver 113 and the network interface 114 are connected, for example, connected through a bus. In this application, the connection may include various interfaces, transmission lines, or buses, which are not limited in this application.
  • the antenna 115 is connected to the transceiver 113 .
  • the network interface 114 is used to connect the access network device with other communication devices through a communication link.
  • the network interface 114 may include a network interface between a base station and a core network element, such as an S1 interface, and the network interface may include an access network A network interface between the device and other network devices (such as other access network devices or core network network elements), such as X2 or Xn interfaces.
  • the processor 111 is mainly used to process the communication protocol and communication data, control the entire base station, execute software programs, and process data of the software programs, for example, to support the base station to perform the actions described in the embodiments.
  • the base station may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire base station, execute software programs, and process data of software programs.
  • the processor 111 in FIG. 6 may integrate the functions of the baseband processor and the central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a base station may include multiple baseband processors to adapt to different network standards, a base station may include multiple central processors to enhance its processing capability, and various components of the base station may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 112 may exist independently and be connected to the processor 111 .
  • the memory 112 may be integrated with the processor 111, for example, in one chip.
  • the memory 112 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 111 .
  • Figure 6 shows only one memory and one processor. In an actual base station, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 113 may be used to support the reception or transmission of radio frequency signals between the base station and the terminal device, and the transceiver 113 may be connected to the antenna 115 .
  • the transceiver 113 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 115 may receive radio frequency signals
  • the receiver Rx of the transceiver 113 is configured to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 111, so that the processor 1111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a The radio frequency signal is transmitted by the antenna or antennas 1115.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • a transceiver may also be referred to as a transceiver unit, a transceiver, a transceiver, or the like.
  • the device used for realizing the receiving function in the transceiver unit may be regarded as the receiving unit
  • the device used for realizing the sending function in the transceiver unit may be regarded as the sending unit, that is, the transceiver unit includes a receiving unit and a sending unit, and the receiving unit also It can be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the base station may be the master node mentioned in this application, or the secondary node mentioned in this application.
  • the steps performed when the base station is the master node reference may be made to the steps on the master node side in the embodiments shown in FIG. 2 , FIG. 3 , and FIG. 4 , and details are not described herein again.
  • the steps performed when the base station is the secondary node reference may be made to the steps on the side of the second secondary node in the embodiments shown in FIG. 2 , FIG. 3 , and FIG. 4 , and details are not described herein again.
  • the present application provides a readable storage medium on which a computer program is stored; when the computer program is executed, it implements the master node side or the third one in any of the embodiments shown in FIGS. 2 , 3 and 4 . Steps on the secondary node side.
  • the present application provides a computer program product.
  • the computer is made to execute the master node side or the second slave node in any of the above-mentioned embodiments shown in FIG. 2 , FIG. 3 and FIG. 4 . side steps.
  • FIG. 2 , FIG. 3 , and FIG. 4 side steps.
  • the present application provides a communication system including a master node having the structure shown in FIG. 5 and a second secondary node having the structure shown in FIG. 5 .
  • a master node having the structure shown in FIG. 5
  • a second secondary node having the structure shown in FIG. 5 .
  • FIG. 2 , FIG. 3 , and FIG. 4 For the specific implementation process of the primary node and the second secondary node, reference may be made to the embodiments shown in FIG. 2 , FIG. 3 , and FIG. 4 , and details are not described herein again in this application.
  • the processor in this application may include, but is not limited to, at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (MCU), or Artificial intelligence processors and other types of computing devices that run software, each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be a separate semiconductor chip, or can be integrated with other circuits into a semiconductor chip. on a chip), or can also be integrated in the ASIC as a built-in processor of an application-specific integrated circuit (ASIC), which can be packaged separately or can be combined with Other circuits are packaged together.
  • ASIC application-specific integrated circuit
  • the processor may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), programmable logic devices (programmable logic devices), in addition to cores for executing software instructions to perform operations or processing. device, PLD), or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate arrays
  • programmable logic devices programmable logic devices
  • PLD programmable logic circuit that implements dedicated logic operations.
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, and can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the bus may also include a power bus, a control bus, a status signal bus, and the like.
  • the various buses are labeled as buses in the figure.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital versatile discs (DVDs)), or semiconductor media (eg, solid state drives), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量间隔的配置方法及装置,配置方法包括:主节点获取辅节点变化前终端设备的测量间隔配置(S201);主节点向第一辅节点发送测量间隔配置以及第一指示信息(S202),第一指示信息用于询问测量间隔配置是否有效,第一辅节点为辅节点变化后终端设备连接的辅节点。配置方法使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,还可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。

Description

测量间隔的配置方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种测量间隔的配置方法及装置。
背景技术
在多空口双连接(Multi-Radio DC,简称MR-DC)场景下,终端设备同时与主节点和辅节点连接。当主节点和/或辅节点存在使终端设备进行异频或者异系统测量的需求时,会触发生成终端设备的测量间隔配置,在测量间隔内,主节点和辅节点不会对终端设备进行调度。
随着终端设备的移动,终端设备所连接的辅节点可能会发生变化,如果主节点和变化后的辅节点不能就测量间隔理解一致,变化后的辅节点可能会在测量间隔内对终端设备进行调度,从而导致丢包。
发明内容
本申请提供一种测量间隔的配置方法及装置,用于防止辅节点变化后终端设备连接的辅节点对终端设备进行无效调度导致的丢包。
第一方面,本申请提供一种测量间隔的配置方法,该方法包括:主节点获取辅节点变化前终端设备的测量间隔配置;该主节点向第一辅节点发送该测量间隔配置以及第一指示信息,该第一指示信息用于询问该测量间隔配置是否有效,该第一辅节点为辅节点变化后该终端设备连接的辅节点。
上述方法,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点向第一辅节点发送辅节点变化前终端设备的测量间隔配置以及第一指示信息,第一辅节点存在使终端设备进行异频或者异系统测量的需求时,生效该测量间隔配置,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔的方式相比,节省了信令开销,减少了时延。第一辅节点不存在使终端设备进行异频或者异系统测量的需求时,不生效该测量间隔配置,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
一种可能的实现方式中,该测量间隔配置是第二辅节点触发的,该第二辅节点为辅节点变化前该终端设备连接的辅节点。
一种可能的实现方式中,该方法还包括:接收该第一辅节点发送的第二指示信息,该第二指示信息用于指示该测量间隔配置有效。
一种可能的实现方式中,该方法还包括:接收该第一辅节点发送的第二指示信息,该第二指示信息用于指示该测量间隔配置无效。
第二方面,本申请提供一种测量间隔的配置方法,该方法包括:第一辅节点从主节点接收辅节点变化前终端设备的测量间隔配置以及第一指示信息,该第一指示信息 用于询问该测量间隔配置是否有效,该第一辅节点为辅节点变化后该终端设备连接的辅节点;该第一辅节点根据该第一指示信息,确定该测量间隔配置是否有效。
一种可能的实现方式中,该测量间隔配置是第二辅节点触发的,该第二辅节点为辅节点变化前该终端设备连接的辅节点。
一种可能的实现方式中,该第一辅节点根据该第一指示信息,确定该测量间隔配置是否有效,包括:若该第一辅节点存在使该终端设备进行异频或者异系统测量的需求,则确定该测量间隔配置有效。
一种可能的实现方式中,该第一辅节点根据该第一指示信息,确定该测量间隔配置是否有效,包括:若该第一辅节点不存在使该终端设备进行异频或者异系统测量的需求,则确定该测量间隔配置无效。
一种可能的实现方式中,该方法还包括:若该测量间隔配置有效,则向该主节点发送第二指示信息,该第二指示信息用于指示该测量间隔配置有效。
一种可能的实现方式中,该方法还包括:若该测量间隔配置无效,则向该主节点发送第二指示信息,该第二指示信息用于指示该测量间隔配置无效。
第三方面,本申请提供一种测量间隔的配置方法,该方法包括:主节点获取辅节点变化前终端设备的测量间隔配置以及指示该测量间隔配置的触发节点的信息;该主节点向第一辅节点发送该测量间隔配置以及指示该测量间隔配置的触发节点的信息,该触发节点包括该主节点和第二辅节点中的至少一个,该第一辅节点为辅节点变化后该终端设备连接的辅节点,该第二辅节点为辅节点变化前该终端设备连接的辅节点。
上述方法,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点向第一辅节点发送测量间隔配置以及指示该测量间隔配置的触发节点的信息,若触发节点为主节点,或者为主节点和第二辅节点,第一辅节点则生效该测量间隔配置,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔的方式相比,节省了信令开销和时延。若触发节点为第二辅节点,第一辅节点则进一步判断第一辅节点是否存在使终端设备进行异频或者异系统测量的需求,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
一种可能的实现方式中,该方法还包括:接收该第一辅节点发送的第二指示信息,该第二指示信息用于指示该测量间隔配置有效。
一种可能的实现方式中,该方法还包括:接收该第一辅节点发送的第二指示信息,该第二指示信息用于指示该测量间隔配置无效。
第四方面,本申请提供一种测量间隔的配置方法,该方法包括:第一辅节点从主节点接收辅节点变化前终端设备的测量间隔配置以及指示该测量间隔配置的触发节点的信息,该触发节点包括该主节点和第二辅节点中的至少一个,该第一辅节点为辅节点变化后该终端设备连接的辅节点,该第二辅节点为辅节点变化前该终端设备连接的辅节点;该第一辅节点根据指示该测量间隔配置的触发节点的信息,确定该测量间隔配置是否有效。
一种可能的实现方式中,该第一辅节点根据该指示该测量间隔配置的触发节点的信息,确定该测量间隔配置是否有效,包括:若该指示该测量间隔配置的触发节点的 信息指示该触发节点为该主节点,则确定该测量间隔配置有效。
一种可能的实现方式中,该第一辅节点根据该指示该测量间隔配置的触发节点的信息,确定该测量间隔配置是否有效,包括:若该指示该测量间隔配置的触发节点的信息指示该触发节点包括该主节点和该第二辅节点,则确定该测量间隔配置有效。
一种可能的实现方式中,该第一辅节点根据该指示该测量间隔配置的触发节点的信息,确定该测量间隔配置是否有效,包括:若该指示该测量间隔配置的触发节点的信息指示该触发节点为该第二辅节点,且该第一辅节点存在使该终端设备进行异频或者异系统测量的需求,则确定该测量间隔配置有效。
一种可能的实现方式中,该第一辅节点根据该指示该测量间隔配置的触发节点的信息,确定该测量间隔配置是否有效,包括:若该指示该测量间隔配置的触发节点的信息指示该触发节点为该第二辅节点,且该第一辅节点不存在使该终端设备进行异频或者异系统测量的需求,则确定该测量间隔配置无效。
一种可能的实现方式中,若该测量间隔配置有效,则向该主节点发送第二指示信息,该第二指示信息用于指示该测量间隔配置有效。
一种可能的实现方式中,若该测量间隔配置无效,则向该主节点发送第二指示信息,该第二指示信息用于指示该测量间隔配置无效。
第五方面,本申请提供一种测量间隔的配置方法,该方法包括:主节点获取辅节点变化前终端设备的测量间隔配置以及指示该测量间隔配置的触发节点的信息,该触发节点包括该主节点和第二辅节点中的至少一个;根据指示该测量间隔配置的触发节点的信息,确定是否将该测量间隔配置发送给该第一辅节点,该第一辅节点为辅节点变化后该终端设备连接的辅节点,该第二辅节点为辅节点变化前该终端设备连接的辅节点。
上述方法,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点根据指示测量间隔配置的触发节点的信息,确定是否将该测量间隔配置发送给第一辅节点,当触发节点为主节点,或者当触发节点为主节点和第二辅节点时,将测量间隔配置发送给第一辅节点,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔的方式相比,节省了信令开销和时延。当触发节点为第二辅节点时,则不将测量间隔配置发送给第一辅节点,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
一种可能的实现方式中,该根据该指示该测量间隔配置的触发节点的信息,确定是否将该测量间隔配置发送给该第一辅节点,包括:若该指示该测量间隔配置的触发节点的信息指示该触发节点为该主节点,则将该测量间隔配置发送给该第一辅节点。
一种可能的实现方式中,该根据该指示该测量间隔配置的触发节点的信息,确定是否将该测量间隔配置发送给该第一辅节点,包括:若该指示该测量间隔配置的触发节点的信息指示该触发节点包括该主节点和该第二辅节点,则将该测量间隔配置发送给该第一辅节点。
一种可能的实现方式中,该根据该指示该测量间隔配置的触发节点的信息,确定是否将该测量间隔配置发送给该第一辅节点,包括:若该指示该测量间隔配置的触发 节点的信息指示该触发节点为该第二辅节点,则不将该测量间隔配置发送给该第一辅节点。
第六方面,本申请提供一种装置,包括:处理器,该处理器和存储器耦合,该存储器用于存储程序指令,该处理器用于调用该存储器中的程序指令,以执行第一方面提供的方法,或者执行第三方面提供的方法,或者执行第五方面提供的方法。
第七方面,本申请提供一种装置,包括:处理器,该处理器和存储器耦合,该存储器用于存储程序指令,该处理器用于调用该存储器中的程序指令,以执行第二方面提供的方法,或者执行第四方面提供的方法。
第八方面,本申请提供一种可读存储介质,该可读存储介质上存储有计算机程序;该计算机程序在被执行时,实现第一方面提供的方法,或者实现第二方面提供的方法,或者实现第三方面提供的方法,或者实现第四方面提供的方法,或者实现第五方面提供的方法。
第九方面,本申请提供一种计算机程序产品,当该计算机程序产品包含的指令在计算机上运行时,使得该计算机执行上述第一方面提供的方法,或者执行第二方面提供的方法,或者执行第三方面提供的方法,或者执行第四方面提供的方法,或者执行第五方面提供的方法。
第十方面,本申请提供一种装置,用于执行第一方面提供的方法,或者执行第三方面提供的方法,或者执行第五方面提供的方法。
第十一方面,本申请提供一种装置,用于执行第二方面提供的方法,或者执行第四方面提供的方法。
第十二方面,本申请提供一种通信系统,包括第六方面提供的装置以及第七方面提供的装置,或者包括第十方面提供的装置以及第十一方面提供的装置。
本申请提供的测量间隔的配置方法及装置,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点向第一辅节点发送辅节点变化前终端设备的测量间隔配置以及第一指示信息,第一辅节点存在使终端设备进行异频或者异系统测量的需求时,生效该测量间隔配置,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔的方式相比,节省了信令开销和时延。第一辅节点不存在使终端设备进行异频或者异系统测量的需求时,不生效该测量间隔配置,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
附图说明
图1为本申请提供的一种通信系统100的架构示意图;
图2为本申请提供的测量间隔的配置方法的实施例一的流程示意图;
图3为本申请提供的测量间隔的配置方法的实施例二的流程示意图;
图4为本申请提供的测量间隔的配置方法的实施例三的流程示意图;
图5为本申请提供的通信装置500的结构示意图;
图6为本申请提供的基站的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,需要解释的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“以是一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:单独a,单独b,单独c,a和b的组合,a和c的组合,b和c的组合,或a、b以及c的组合,其中a,b,c可以是单个,也可以是多个。
图1为本申请提供的一种通信系统100的架构示意图。通信系统100包括:主基站,辅基站和终端设备。终端设备同时与主基站和辅基站连接,本申请提供的通信系统100例如可以是支持4G接入技术的长期演进(long term evolution,LTE)系统,5G接入技术的新无线(new radio,NR)系统,任何与第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,无线保真(wireless-fidelity,WiFi)系统,全球微波互联接入(worldwide interoperability for microwave access,WiMAX)系统,多无线接入技术(Radio Access Technology,RAT)系统,或者其他面向未来的通信技术系统。本申请中终端设备是具有无线收发功能的设备,可以部署在陆地上,包括室内或室外,手持,穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如无人机、飞机、气球和卫星上等)。终端设备可以是手机(mobile phone),平板电脑(Pad),带无线收发功能的电脑,虚拟现实(virtual reality,VR)终端设备,增强现实(augmented reality,AR)终端设备,工业控制(industrial control)中的无线终端,无人驾驶(self driving)中的无线终端,远程医疗(remote medical)中的无线终端,智能电网(smart grid)中的无线终端,运输安全(transportation safety)中的无线终端,智慧城市(smart city)中的无线终端,智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为终端,用户设备(user equipment,UE),接入终端设备,站,UE单元,UE站,移动站,移动台,远方站,远程终端设备,移动设备,UE终端设备,无线通信设备,UE代理或UE装置,或某种其他合适的术语。终端设备也可以是固定的或者移动的。
主基站和辅基站可以是接入网侧用于支持终端接入通信系统的设备,例如,4G接入技术通信系统中的演进型基站(evolved nodeB,eNB),5G接入技术通信系统中的下一代基站(next generation nodeB,gNB),收发点(transmission reception point,TRP),中继节点(relay node),接入点(access point,AP),WiFi系统中的接入节点,无线回传节点等等。主基站和辅基站可以称为宿主节点,IAB宿主(IAB donor),宿主IAB,宿主或宿主gNB(DgNB,donor gNB)等。主基站和辅基站可以是:宏基 站,微基站,微微基站,小站,中继站等。主基站和辅基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。主基站和辅基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。主基站和辅基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,集中单元(central unit,CU),和/或分布单元(distributed unit,DU)。主基站和辅基站还可以是服务器,可穿戴设备,或车载设备等。通信系统中的主基站和辅基站可以为同一类型的基站,也可以为不同类型的基站。主基站和辅基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。
在MR-DC场景下,主基站和辅基站有以下几种组合形式:
1)核心网为4G核心网(Evolved Packet Core,简称EPC)时,长期演进(Long Term Evolution,简称LTE)基站做主基站,新空口(New Radio,简称NR)基站做辅基站,此时LTE基站和NR基站之间存在X2接口,LTE基站和NR基站之间至少有控制面连接,可以还有用户面连接;LTE基站和EPC之间存在S1接口,LTE基站和EPC之间至少有控制面连接,可以还有用户面连接;NR基站和EPC之间存在S1-U接口,只可以有用户面连接。此时LTE基站可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为主小区组(Master Cell Group,简称MCG),相应的,NR基站也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为辅小区组(Secondary Cell Group,简称SCG)。
2)核心网为5G核心网5GC时,LTE基站做主基站,NR基站做辅基站,此时LTE基站和NR基站之间存在Xn接口,LTE基站和NR基站之间至少有控制面连接,可以还有用户面连接;LTE基站和5GC之间存在NG接口,LTE基站和5GC之间至少有控制面连接,可以还有用户面连接;NR基站和5GC之间存在NG-U接口,只可以有用户面连接。此时LTE基站可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为MCG。相应的,NR基站也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为SCG。
3)核心网为5G核心网5GC时,NR基站做主基站,LTE基站做辅基站,此时NR基站和LTE基站之间存在Xn接口,NR基站和LTE基站之间至少有控制面连接,可以还有用户面连接;NR基站和5GC之间存在NG接口,NR基站和5GC之间至少有控制面连接,可以还有用户面连接;NR基站和5GC之间存在NG-U接口,只可以有用户面连接。此时NR基站可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为MCG。相应的,LTE基站也可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为SCG。
4)核心网为5G核心网5GC时,主辅基站都是NR基站。主辅基站之间的接口为Xn接口,主辅基站之间至少有控制面连接,可以还有用户面连接;NR主基站和5GC之间存在NG接口,至少有控制面连接,可以还有用户面连接;NR辅基站和5GC之间存在NG-U接口,只可以有用户面连接。此时NR主基站可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为MCG。相应的,NR辅基站也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为SCG。
下面对本申请中的一些用语进行解释:
主节点和辅节点:在MR-DC场景下,终端设备同时与主节点和辅节点连接。主节点为终端设备连接的主基站,辅节点为终端设备连接的辅基站。
测量间隔配置:主节点或者辅节点存在使终端设备进行异频或者异系统测量的需求时主节点下发测量信息,该信息中包含测量间隔配置,具体的,可以包括测量间隔重复周期,测量间隔长度,在测量间隔重复周期内的测量间隔图案的偏置中的一个或者多个,可选的,还可以包含在测量间隔计算时,以哪个小区或节点的帧号/子帧号作为参考,终端设备基于测量间隔配置可计算得到相应的测量间隔,并在该测量间隔内执行上述异频或者异系统测量。由于终端设备在执行异频或者异系统测量时,可能需要切换射频模块,因此,协议定义主节点和辅节点在该测量间隔内不对终端设备进行调度。
随着终端设备的移动,终端设备所连接的辅节点可能会发生变化,如果主节点和变化后的辅节点不能就测量间隔理解一致,变化后的辅节点可能会在测量间隔内对终端设备进行调度,从而导致丢包。
为了解决上述技术问题,图2为本申请提供的测量间隔的配置方法的实施例一的流程示意图,本实施例中将辅节点变化后终端设备连接的辅节点称为第一辅节点,将辅节点变化前终端设备连接的辅节点称为第二辅节点。如图2所示,本实施例提供的测量间隔的配置方法,包括:
S201、主节点获取辅节点变化前终端设备的测量间隔配置。
S202、主节点向第一辅节点发送测量间隔配置以及第一指示信息。
其中,当节点存在使终端设备进行异频或者异系统测量的需求时,就会触发生成终端设备的测量间隔配置。S201中主节点所获取的辅节点变化前终端设备的测量间隔配置可能是主节点触发的,也可能是第二辅节点触发的,也可能是主节点和第二辅节点共同触发的。
若S201中提到的测量间隔配置是第二辅节点触发的,如S202所描述,主节点在向第一辅节点发送该测量间隔配置时,可同时发送第一指示信息,该第一指示信息用于询问测量间隔配置是否有效。第一指示信息用于询问测量间隔配置是否有效,可以理解为,第一指示信息用于询问第一辅节点是否生效该测量间隔配置,或者用于询问所述第一辅节点是否接受该测量间隔配置,或者用于询问所述第一辅节点是否需要该测量间隔配置等等,本申请实施方式对此不作限定。
下面对第二辅节点触发生成上述测量间隔配置的过程进行介绍:
第二辅节点存在使终端设备进行异频或者异系统测量的需求时,将该需求发给主节点,主节点接收到需求后,生成测量间隔配置,并将该测量间隔配置发给第二辅节点,第二辅节点进一步将该测量间隔配置发给终端设备,或者由主节点将该测量间隔配置发给终端设备,由于主节点和第二辅节点都配有该测量间隔配置,主节点和第二辅节点对测量间隔有一致的理解,使得终端设备在测量间隔内执行异频或者异系统测量时,主节点和第二辅节点就不会对终端设备进行调度,从而避免发生丢包。
S203、第一辅节点根据第一指示信息,确定测量间隔配置是否有效。
一种可能的实现方式中,第一辅节点判断第一辅节点是否存在使终端设备进行异 频或者异系统测量的需求,若存在,则确定接收到的测量间隔配置有效,由于第一辅节点和主节点都配有该测量间隔配置,主节点和第一辅节点对测量间隔有一致的理解,使得终端设备在测量间隔内执行异频或者异系统测量时,主节点和第一辅节点就不会对终端设备进行调度,避免了丢包;若不存在,则确定接收到的测量间隔配置无效,可见,该第一指示消息的设置使得第一辅节点有了判断的空间,跟主节点仅向第一辅节点发送测量间隔配置,第一辅节点直接生效该测量间隔配置的方式相比,本实施例的方法可以避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
S204、第一辅节点向主节点发送第二指示消息。
具体的,若第一辅节点确定上述测量间隔配置有效,则该第二指示信息用于指示该测量间隔配置有效,或者用于指示第一辅节点将生效该测量间隔配置,或者用于指示第一辅节点接受该测量间隔配置,或者用于指示第一辅节点需要该测量间隔配置。若第一辅节点确定上述测量间隔配置无效,则该第二指示信息用于指示测量间隔配置无效,或者用于指示第一辅节点将不会生效该测量间隔配置,或者用于指示第一辅节点不接受该测量间隔配置,或者用于指示第一辅节点不需要该测量间隔配置。
一种可能的实现方式中,上述第二指示信息可以为某个信元,该信元的值为1时表示上述测量间隔配置有效,该信元的值为0时表示上述测量间隔配置无效。
本实施例提供的测量间隔的配置方法,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点向第一辅节点发送辅节点变化前终端设备的测量间隔配置以及第一指示信息,第一辅节点存在使终端设备进行异频或者异系统测量的需求时,生效该测量间隔配置,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔的方式相比,节省了信令开销和时延。第一辅节点不存在使终端设备进行异频或者异系统测量的需求时,不生效该测量间隔配置,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
图3为本申请提供的测量间隔的配置方法的实施例二的流程示意图,同上述实施例,本实施例中将辅节点变化后终端设备连接的辅节点称为第一辅节点,将辅节点变化前终端设备连接的辅节点称为第二辅节点。如图3所示,本实施例提供的测量间隔的配置方法,包括:
S301、主节点获取辅节点变化前终端设备的测量间隔配置以及指示测量间隔配置的触发节点的信息。
S302、主节点向第一辅节点发送测量间隔配置以及指示测量间隔配置的触发节点的信息。
参见上述实施例中S202的描述,上述测量间隔配置可能是主节点触发的,也可能是第二辅节点触发的,也可能是主节点和第二辅节点共同触发的。上述指示测量间隔配置的触发节点的信息可用于指示触发节点是主节点,还是第二辅节点,还是主节点和第二辅节点。
其中,第二辅节点触发生成测量间隔配置的过程参见上述实施例中的S202,本申请在此不再赘述。
下面对主节点触发生成测量间隔配置的过程进行介绍:
主节点存在使终端设备进行异频或者异系统测量的需求时,生成测量间隔配置,并将该测量间隔配置发给第二辅节点和终端设备,由于主节点和第二辅节点都配有该测量间隔配置,主节点和第二辅节点对测量间隔有一致的理解,使得终端设备在测量间隔内执行异频或者异系统测量时,主节点和第二辅节点就不会对终端设备进行调度,从而避免发生丢包。
下面对主节点和第二辅节点共同触发生成测量间隔配置的过程进行介绍:
第二辅节点存在使终端设备进行异频或者异系统测量的需求时,将该需求发给主节点,主节点根据该需求和自身的需求,生成测量间隔配置,并将该测量间隔配置发给第二辅节点和终端设备,由于主节点和第二辅节点都配有该测量间隔配置,主节点和第二辅节点对测量间隔有一致的理解,使得终端设备在测量间隔内执行异频或者异系统测量时,主节点和第二辅节点就不会对终端设备进行调度,从而避免发生丢包。
S303、第一辅节点根据指示测量间隔配置的触发节点的信息,确定测量间隔配置是否有效。
由于本实施例提供的方法是在终端设备连接的辅节点发生变化这一场景下提出的,该场景默认终端设备连接的主节点没有变化,因此,如果测量间隔配置是主节点触发的,或者主节点和第二辅节点共触发的,那么该测量间隔配置对于第一辅节点来说是适用的,则S303可通过如下方式实现:
若指示测量间隔配置的触发节点的信息指示触发节点为主节点,则确定测量间隔配置有效,若指示测量间隔配置的触发节点的信息指示触发节点包括主节点和第二辅节点,同样确定测量间隔配置有效。由于第一辅节点和主节点都配有该测量间隔配置,主节点和第一辅节点对测量间隔有一致的理解,使得终端设备在测量间隔内执行异频或者异系统测量时,主节点和第一辅节点就不会对终端设备进行调度,避免了丢包。若指示测量间隔配置的触发节点的信息指示触发节点为第二辅节点,进一步判断第一辅节点是否存在使终端设备进行异频或者异系统测量的需求,若存在,则确定测量间隔配置有效;若不存在,则确定测量间隔配置无效。可见,主节点向第一辅节点发送的指示测量间隔配置的触发节点的信息使得第一辅节点有了判断的空间,跟主节点仅向第一辅节点发送测量间隔配置,第一辅节点直接生效该测量间隔配置的方式相比,本实施例的方法可以避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
S304、第一辅节点向主节点发送第二指示消息。
具体的,若第一辅节点确定上述测量间隔配置有效,则该第二指示信息用于指示该测量间隔配置有效,或者用于指示第一辅节点将生效该测量间隔配置,或者用于指示第一辅节点接受该测量间隔配置,或者用于指示第一辅节点需要该测量间隔配置。若第一辅节点确定上述测量间隔配置无效,则该第二指示信息用于指示测量间隔配置无效,或者用于指示第一辅节点将不会生效该测量间隔配置,或者用于指示第一辅节点不接受该测量间隔配置,或者用于指示第一辅节点不需要该测量间隔配置。
一种可能的实现方式中,上述第二指示信息可以为某个信元,该信元的值为1时表示上述测量间隔配置有效,该信元的值为0时表示上述测量间隔配置无效。
本实施提供的测量间隔的配置方法,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点向第一辅节点发送测量间隔配置以及指示该测量间隔配置的触发节点的信息。若触发节点为主节点,或者为主节点和第二辅节点,第一辅节点则生效该测量间隔配置,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔的方式相比,节省了信令开销和时延。若触发节点为第二辅节点,第一辅节点则进一步判断第一辅节点是否存在使终端设备进行异频或者异系统测量的需求,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
图4为本申请提供的测量间隔的配置方法的实施例三的流程示意图,同上述实施例,本实施例中将辅节点变化后终端设备连接的辅节点称为第一辅节点,将辅节点变化前终端设备连接的辅节点称为第二辅节点。本实施例提供的方法可应用于主节点。如图4所示,本实施例提供的测量间隔的配置方法,包括:
S401、主节点获取辅节点变化前终端设备的测量间隔配置以及指示测量间隔配置的触发节点的信息。
其中,参见上述实施例中S202的描述,上述测量间隔配置可能是主节点触发的,也可能是第二辅节点触发的,也可能是主节点和第二辅节点共同触发的。上述指示测量间隔配置的触发节点的信息可用于指示触发节点是主节点,还是第二辅节点,还是主节点和第二辅节点。
S402、根据指示测量间隔配置的触发节点的信息,确定是否将测量间隔配置发送给第一辅节点。
由于本实施例提供的方法是在终端设备连接的辅节点发生变化这一场景下提出的,该场景默认终端设备连接的主节点没有变化,因此,如果测量间隔配置是主节点触发的,或者主节点和第二辅节点共触发的,那么该测量间隔配置对于第一辅节点来说是适用的,S402可通过如下方式实现:
若指示测量间隔配置的触发节点的信息指示触发节点为所述主节点,则将测量间隔配置发送给第一辅节点,若指示测量间隔配置的触发节点的信息指示触发节点为主节点和第二辅节点,同样将测量间隔配置发送给第一辅节点。由于第一辅节点和主节点都配有该测量间隔配置,主节点和第一辅节点对测量间隔有一致的理解,使得终端设备在测量间隔内执行异频或者异系统测量时,主节点和第一辅节点就不会对终端设备进行调度,避免了丢包。若指示测量间隔配置的触发节点的信息指示触发节点为第二辅节点,则不将测量间隔配置发送给第一辅节点,避免了第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
本实施提供的测量间隔的配置方法,终端设备所连接的辅节点从第二辅节点变为第一辅节点后,主节点根据指示测量间隔配置的触发节点的信息,确定是否将该测量间隔配置发送给第一辅节点,当触发节点为主节点,或者当触发节点为主节点和第二辅节点时,将测量间隔配置发送给第一辅节点,使得主节点和第一辅节点对测量间隔有一致的理解,避免了丢包,另外,跟第一辅节点请求主节点为其再配一次测量间隔 的方式相比,节省了信令开销和时延。当触发节点为第二辅节点时,则不将测量间隔配置发送给第一辅节点,可避免第一辅节点本身并不存在使终端设备进行异频或者异系统测量的需求时,仍然要在测量间隔内停止对终端设备的调度所造成的资源浪费。
图5为本申请提供的通信装置500的结构示意图,通信装置500包括:处理单元501和通信单元502。可选的,通信装置500还包括存储单元503。
处理单元501可以是具有处理功能的装置,可以包括一个或者多个处理器。处理器可以是通用处理器或者专用处理器等。处理器可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
通信单元502可以是具有信号的输入(接收)或者输出(发送)的装置,用于与其他网络设备或者设备中的其他器件进行信号的传输。
存储单元503可以是具有存储功能的装置,可以包括一个或者多个存储器。
可选的,处理单元501、通信单元502和存储单元503通过通信总线相连。
可选的,存储单元503可以独立存在,通过通信总线与处理单元501相连。存储单元503也可以与处理单元501集成在一起。
通信装置500可以是上文提到的主节点,这种情况下,一种可能的实现方式中,处理单元可用于获取辅节点变化前终端设备的测量间隔配置;通信单元可用于向第一辅节点发送该测量间隔配置以及第一指示信息。第一指示信息用于询问该测量间隔配置是否有效,上述第一辅节点为辅节点变化后终端设备连接的辅节点,上述测量间隔配置可以是第二辅节点触发的,第二辅节点为辅节点变化前终端设备连接的辅节点。
可选的,通信单元还可用于接收第一辅节点发送的第二指示信息,该第二指示信息用于指示测量间隔配置是否有效。
本实现方式中处理单元和通信单元的详细实现过程可参见图2所示实施例中主节点侧的步骤,本申请在此不再赘述。
另一种可能的实现方式中,处理单元可用于获取辅节点变化前终端设备的测量间隔配置以及指示该测量间隔配置的触发节点的信息;通信单元可用于向第一辅节点发送上述测量间隔配置以及指示测量间隔配置的触发节点的信息。上述触发节点包括主节点和第二辅节点中的至少一个,其中第一辅节点为辅节点变化后终端设备连接的辅节点,第二辅节点为辅节点变化前终端设备连接的辅节点。
可选的,通信单元还可用于接收第一辅节点发送的第二指示信息,第二指示信息用于指示测量间隔配置是否有效。
本实现方式中处理单元和通信单元的详细实现过程可参见图3所示实施例中主节点侧的步骤,本申请在此不再赘述。
又一种可能的实现方式中,处理单元可用于获取辅节点变化前终端设备的测量间隔配置以及指示该测量间隔配置的触发节点的信息,触发节点包括主节点和第二辅节点中的至少一个;还用于根据指示测量间隔配置的触发节点的信息,确定是否将测量间隔配置发送给第一辅节点,其中第一辅节点为辅节点变化后终端设备连接的辅节点,第二辅节点为辅节点变化前终端设备连接的辅节点。通信单元可用于:若指示测量间隔配置的触发节点的信息指示触发节点为主节点,则将测量间隔配置发送给第一辅节 点;若指示测量间隔配置的触发节点的信息指示触发节点包括主节点和第二辅节点,则将测量间隔配置发送给第一辅节点;若指示测量间隔配置的触发节点的信息指示触发节点为第二辅节点,则不将测量间隔配置发送给第一辅节点。
本实现方式中处理单元和通信单元的详细实现过程可参见图4所示实施例中主节点侧的步骤,本申请在此不再赘述。
上述通信装置500可以是上文提到的第二辅节点,该第二辅节点为辅节点变化后终端设备连接的辅节点,这种情况下,一种可能的实现方式中,通信单元可用于从主节点接收辅节点变化前终端设备的测量间隔配置以及第一指示信息,该第一指示信息用于询问测量间隔配置是否有效;处理单元可用于根据第一指示信息,确定测量间隔配置是否有效。
其中,上述测量间隔配置可以是第二辅节点触发的,第二辅节点为辅节点变化前终端设备连接的辅节点。
其中,处理单元具体可用于:若第一辅节点存在使终端设备进行异频或者异系统测量的需求,则确定测量间隔配置有效;若第一辅节点不存在使终端设备进行异频或者异系统测量的需求,则确定测量间隔配置无效。
可选的,通信单元还用于:若测量间隔配置有效,则向主节点发送第二指示信息,第二指示信息用于指示测量间隔配置有效;若测量间隔配置无效,则向主节点发送第二指示信息,第二指示信息用于指示测量间隔配置无效。
本实现方式中处理单元和通信单元的详细实现过程可参见图2所示实施例中第一辅节点侧的步骤,本申请在此不再赘述。
另一种可能的实现方式中,通信单元可用于从主节点接收辅节点变化前终端设备的测量间隔配置以及指示测量间隔配置的触发节点的信息,触发节点包括主节点和第二辅节点中的至少一个,第二辅节点为辅节点变化前终端设备连接的辅节点;处理单元可用于根据指示测量间隔配置的触发节点的信息,确定测量间隔配置是否有效。
其中,处理单元具体可用于:若指示测量间隔配置的触发节点的信息指示触发节点为主节点,则确定测量间隔配置有效;若指示测量间隔配置的触发节点的信息指示触发节点包括主节点和第二辅节点,则确定测量间隔配置有效;若指示测量间隔配置的触发节点的信息指示触发节点为第二辅节点,且第一辅节点存在使终端设备进行异频或者异系统测量的需求,则确定测量间隔配置有效;若指示测量间隔配置的触发节点的信息指示触发节点为第二辅节点,且第一辅节点不存在使终端设备进行异频或者异系统测量的需求,则确定测量间隔配置无效。
可选的,通信单元还用于:若测量间隔配置有效,则向主节点发送第二指示信息,第二指示信息用于指示测量间隔配置有效;若测量间隔配置无效,则向主节点发送第二指示信息,第二指示信息用于指示测量间隔配置无效。
本实现方式中处理单元和通信单元的详细实现过程可参见图3所示实施例中第一辅节点侧的步骤,本申请在此不再赘述。
图6为本申请提供的基站的结构示意图,该基站包括至少一个处理器111、至少一个存储器112、至少一个收发器113、至少一个网络接口114和一个或多个天线115。处理器111、存储器112、收发器113和网络接口114相连,例如通过总线相连,在本 申请中,所述连接可包括各类接口、传输线或总线等,本申请对此不做限定。天线115与收发器113相连。网络接口114用于使得接入网设备通过通信链路,与其它通信设备相连,例如网络接口114可以包括基站与核心网网元之间的网络接口,例如S1接口,网络接口可以包括接入网设备和其他网络设备(例如其他接入网设备或者核心网网元)之间的网络接口,例如X2或者Xn接口。
处理器111主要用于对通信协议以及通信数据进行处理,以及对整个基站进行控制,执行软件程序,处理软件程序的数据,例如用于支持基站执行实施例中所描述的动作。基站可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个基站进行控制,执行软件程序,处理软件程序的数据。图6中的处理器111可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,基站可以包括多个基带处理器以适应不同的网络制式,基站可以包括多个中央处理器以增强其处理能力,基站的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器112可以是独立存在,与处理器111相连。可选的,存储器112可以和处理器111集成在一起,例如集成在一个芯片之内。其中,存储器112能够存储执行本申请实施例的技术方案的程序代码,并由处理器111来控制执行,被执行的各类计算机程序代码也可被视为是处理器111的驱动程序。
图6仅示出了一个存储器和一个处理器。在实际的基站中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器113可以用于支持基站与终端设备之间射频信号的接收或者发送,收发器113可以与天线115相连。收发器113包括发射机Tx和接收机Rx。具体地,一个或多个天线115可以接收射频信号,该收发器113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器111,以便处理器1111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1113中的发射机Tx还用于从处理器1111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
需要说明的是:基站可以为本申请提到的主节点,也可为本申请提到的辅节点。基站为主节点时所执行的步骤可参见图2、图3以及图4所示实施例中主节点侧的步骤,本申请在此不再赘述。基站为辅节点时所执行的步骤可参见图2、图3以及图4所示实施例中第二辅节点侧的步骤,本申请在此不再赘述。
本申请提供一种可读存储介质,该可读存储介质上存储有计算机程序;该计算机程序在被执行时,实现图2、图3以及图4所示任一实施例中主节点侧或者第二辅节点侧的步骤。
本申请提供一种计算机程序产品,当该计算机程序产品包含的指令在计算机上运行时,使得计算机执行上述图2、图3以及图4所示任一实施例中主节点侧或者第二辅节点侧的步骤。具体实现过程可参见上述图2、图3以及图4所示实施例,本申请在此不再赘述。
本申请提供一种通信系统,包括具有图5所示结构的主节点以及具有图5所示结构的第二辅节点。主节点和第二辅节点具体实现过程可参见上述图2、图3以及图4所示实施例,本申请在此不再赘述。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(system on a chip,片上系统),或者也可以作为一个专用集成电路(application-specific integrated circuit,ASIC)的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用磁盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种测量间隔的配置方法,其特征在于,所述方法包括:
    主节点获取辅节点变化前终端设备的测量间隔配置;
    所述主节点向第一辅节点发送所述测量间隔配置以及第一指示信息,所述第一指示信息用于询问所述测量间隔配置是否有效,所述第一辅节点为辅节点变化后所述终端设备连接的辅节点。
  2. 根据权利要求1所述的方法,其特征在于,所述测量间隔配置是第二辅节点触发的,所述第二辅节点为辅节点变化前所述终端设备连接的辅节点。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述第一辅节点发送的第二指示信息,所述第二指示信息用于指示所述测量间隔配置有效。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述第一辅节点发送的第二指示信息,所述第二指示信息用于指示所述测量间隔配置无效。
  5. 一种测量间隔的配置方法,其特征在于,所述方法包括:
    第一辅节点从主节点接收辅节点变化前终端设备的测量间隔配置以及第一指示信息,所述第一指示信息用于询问所述测量间隔配置是否有效,所述第一辅节点为辅节点变化后所述终端设备连接的辅节点;
    所述第一辅节点根据所述第一指示信息,确定所述测量间隔配置是否有效。
  6. 根据权利要求5所述的方法,其特征在于,所述测量间隔配置是第二辅节点触发的,所述第二辅节点为辅节点变化前所述终端设备连接的辅节点。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一辅节点根据所述第一指示信息,确定所述测量间隔配置是否有效,包括:
    若所述第一辅节点存在使所述终端设备进行异频或者异系统测量的需求,则确定所述测量间隔配置有效。
  8. 根据权利要求5或6所述的方法,其特征在于,所述第一辅节点根据所述第一指示信息,确定所述测量间隔配置是否有效,包括:
    若所述第一辅节点不存在使所述终端设备进行异频或者异系统测量的需求,则确定所述测量间隔配置无效。
  9. 根据权利要求5-8中任一项所述的方法,其特征在于,所述方法还包括:
    若所述测量间隔配置有效,则向所述主节点发送第二指示信息,所述第二指示信息用于指示所述测量间隔配置有效。
  10. 根据权利要求5-8中任一项所述的方法,其特征在于,所述方法还包括:
    若所述测量间隔配置无效,则向所述主节点发送第二指示信息,所述第二指示信息用于指示所述测量间隔配置无效。
  11. 一种测量间隔的配置方法,其特征在于,所述方法包括:
    主节点获取辅节点变化前终端设备的测量间隔配置以及指示所述测量间隔配置的触发节点的信息;
    所述主节点向第一辅节点发送所述测量间隔配置以及所述指示所述测量间隔配置 的触发节点的信息,所述触发节点包括所述主节点和第二辅节点中的至少一个,所述第一辅节点为辅节点变化后所述终端设备连接的辅节点,所述第二辅节点为辅节点变化前所述终端设备连接的辅节点。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述第一辅节点发送的第二指示信息,所述第二指示信息用于指示所述测量间隔配置有效。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述第一辅节点发送的第二指示信息,所述第二指示信息用于指示所述测量间隔配置无效。
  14. 一种测量间隔的配置方法,其特征在于,所述方法包括:
    第一辅节点从主节点接收辅节点变化前终端设备的测量间隔配置以及指示所述测量间隔配置的触发节点的信息,所述触发节点包括所述主节点和第二辅节点中的至少一个,所述第一辅节点为辅节点变化后所述终端设备连接的辅节点,所述第二辅节点为辅节点变化前所述终端设备连接的辅节点;
    所述第一辅节点根据所述指示所述测量间隔配置的触发节点的信息,确定所述测量间隔配置是否有效。
  15. 根据权利要求14所述的方法,其特征在于,所述第一辅节点根据所述指示所述测量间隔配置的触发节点的信息,确定所述测量间隔配置是否有效,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点为所述主节点,则确定所述测量间隔配置有效。
  16. 根据权利要求14所述的方法,其特征在于,所述第一辅节点根据所述指示所述测量间隔配置的触发节点的信息,确定所述测量间隔配置是否有效,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点包括所述主节点和所述第二辅节点,则确定所述测量间隔配置有效。
  17. 根据权利要求14所述的方法,其特征在于,所述第一辅节点根据所述指示所述测量间隔配置的触发节点的信息,确定所述测量间隔配置是否有效,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点为所述第二辅节点,且所述第一辅节点存在使所述终端设备进行异频或者异系统测量的需求,则确定所述测量间隔配置有效。
  18. 根据权利要求14所述的方法,其特征在于,所述第一辅节点根据所述指示所述测量间隔配置的触发节点的信息,确定所述测量间隔配置是否有效,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点为所述第二辅节点,且所述第一辅节点不存在使所述终端设备进行异频或者异系统测量的需求,则确定所述测量间隔配置无效。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,
    若所述测量间隔配置有效,则向所述主节点发送第二指示信息,所述第二指示信息用于指示所述测量间隔配置有效。
  20. 根据权利要求14-18任一项所述的方法,其特征在于,
    若所述测量间隔配置无效,则向所述主节点发送第二指示信息,所述第二指示信 息用于指示所述测量间隔配置无效。
  21. 一种测量间隔的配置方法,其特征在于,所述方法包括:
    主节点获取辅节点变化前终端设备的测量间隔配置以及指示所述测量间隔配置的触发节点的信息,所述触发节点包括所述主节点和第二辅节点中的至少一个;
    根据所述指示所述测量间隔配置的触发节点的信息,确定是否将所述测量间隔配置发送给所述第一辅节点,所述第一辅节点为辅节点变化后所述终端设备连接的辅节点,所述第二辅节点为辅节点变化前所述终端设备连接的辅节点。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述指示所述测量间隔配置的触发节点的信息,确定是否将所述测量间隔配置发送给所述第一辅节点,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点为所述主节点,则将所述测量间隔配置发送给所述第一辅节点。
  23. 根据权利要求21所述的方法,其特征在于,所述根据所述指示所述测量间隔配置的触发节点的信息,确定是否将所述测量间隔配置发送给所述第一辅节点,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点包括所述主节点和所述第二辅节点,则将所述测量间隔配置发送给所述第一辅节点。
  24. 根据权利要求21所述的方法,其特征在于,所述根据所述指示所述测量间隔配置的触发节点的信息,确定是否将所述测量间隔配置发送给所述第一辅节点,包括:
    若所述指示所述测量间隔配置的触发节点的信息指示所述触发节点为所述第二辅节点,则不将所述测量间隔配置发送给所述第一辅节点。
  25. 一种装置,其特征在于,包括处理器,所述处理器和存储器耦合,
    所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令,以执行权利要求1-4任一项所述的方法,或者执行权利要求11-13任一项所述的方法,或者执行权利要求21-24任一项所述的方法。
  26. 一种装置,其特征在于,包括处理器,所述处理器和存储器耦合,
    所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令,以执行权利要求5-10任一项所述的方法,或者执行权利要求14-20任一项所述的方法。
  27. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现上述权利要求1-24任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,当所述计算机程序产品包含的指令在计算机上运行时,使得所述计算机执行上述权利要求1-24任一项所述的方法。
  29. 一种装置,其特征在于,用于执行权利要求1-4任一项所述的方法,或者执行权利要求11-13任一项所述的方法,或者执行权利要求21-24任一项所述的方法。
  30. 一种装置,其特征在于,用于执行权利要求5-10任一项所述的方法,或者执行权利要求14-20任一项所述的方法。
  31. 一种通信系统,其特征在于,包括权利要求25所述的装置以及权利要求26所述的装置,或者包括权利要求29所述的装置以及权利要求30所述的装置。
PCT/CN2020/121675 2020-10-16 2020-10-16 测量间隔的配置方法及装置 WO2022077494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106173.5A CN116530131A (zh) 2020-10-16 2020-10-16 测量间隔的配置方法及装置
PCT/CN2020/121675 WO2022077494A1 (zh) 2020-10-16 2020-10-16 测量间隔的配置方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121675 WO2022077494A1 (zh) 2020-10-16 2020-10-16 测量间隔的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2022077494A1 true WO2022077494A1 (zh) 2022-04-21

Family

ID=81207626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121675 WO2022077494A1 (zh) 2020-10-16 2020-10-16 测量间隔的配置方法及装置

Country Status (2)

Country Link
CN (1) CN116530131A (zh)
WO (1) WO2022077494A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888987A (zh) * 2014-03-21 2014-06-25 电信科学技术研究院 一种数据传输及其控制方法及装置
CN109788492A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 测量间隔的配置方法和设备
CN110381532A (zh) * 2018-04-13 2019-10-25 中兴通讯股份有限公司 测量间隔的配置方法及装置、存储介质、电子装置
CN110636519A (zh) * 2018-06-21 2019-12-31 中国移动通信有限公司研究院 一种配置测量间隔的方法及设备
CN110913415A (zh) * 2018-09-18 2020-03-24 华为技术有限公司 测量配置信息、测量报告信息的发送方法及装置
WO2020061984A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Measurement gap configuration and coordination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888987A (zh) * 2014-03-21 2014-06-25 电信科学技术研究院 一种数据传输及其控制方法及装置
CN109788492A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 测量间隔的配置方法和设备
CN110381532A (zh) * 2018-04-13 2019-10-25 中兴通讯股份有限公司 测量间隔的配置方法及装置、存储介质、电子装置
CN110636519A (zh) * 2018-06-21 2019-12-31 中国移动通信有限公司研究院 一种配置测量间隔的方法及设备
CN110913415A (zh) * 2018-09-18 2020-03-24 华为技术有限公司 测量配置信息、测量报告信息的发送方法及装置
WO2020061984A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Measurement gap configuration and coordination

Also Published As

Publication number Publication date
CN116530131A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
JP2021529474A (ja) 通信方法及び機器
WO2022016473A1 (zh) 一种用于接入回传一体化iab系统中的通信方法和通信装置
WO2019214333A1 (zh) 通信方法及装置
CN109479220A (zh) 路径切换方法和装置
CN110557837A (zh) 通信方法和装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2021134636A1 (zh) 随机接入方法及通信装置
WO2022077494A1 (zh) 测量间隔的配置方法及装置
CN114175840B (zh) 随机接入方法和装置
WO2024021972A1 (zh) 定位资源的配置方法、通信装置以及通信系统
WO2023125343A1 (zh) 一种随机接入方法及装置
WO2024016942A1 (zh) 通信方法、装置、设备以及存储介质
WO2024061268A1 (zh) 资源的配置方法与通信装置
WO2024093939A1 (zh) 信号配置方法、系统以及通信装置
WO2021243614A1 (zh) 信息处理方法及装置
CN117544989B (zh) 重定向方法、接入网设备和终端设备
WO2022141503A1 (zh) 一种通信方法及装置
CN115066930B (zh) 一种网络设备切换的方法及装置
WO2021259346A1 (zh) 一种传输数据的方法、通信装置及网络设备
WO2023151612A1 (zh) 通信方法以及通信装置
WO2024093735A1 (zh) 一种调度请求处理方法及装置
WO2024065429A1 (zh) 一种通信方法、终端设备以及网络设备
WO2022082708A1 (zh) 通信方法及其相关装置
WO2024093607A1 (zh) 一种通信方法及装置
WO2023205938A1 (zh) 通信方法、终端以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106173.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957272

Country of ref document: EP

Kind code of ref document: A1