WO2019091096A1 - 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用 - Google Patents

纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用 Download PDF

Info

Publication number
WO2019091096A1
WO2019091096A1 PCT/CN2018/088824 CN2018088824W WO2019091096A1 WO 2019091096 A1 WO2019091096 A1 WO 2019091096A1 CN 2018088824 W CN2018088824 W CN 2018088824W WO 2019091096 A1 WO2019091096 A1 WO 2019091096A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sample
metal oxide
dimensional
voltage
Prior art date
Application number
PCT/CN2018/088824
Other languages
English (en)
French (fr)
Inventor
吉科猛
Original Assignee
吉科猛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉科猛 filed Critical 吉科猛
Publication of WO2019091096A1 publication Critical patent/WO2019091096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a nanoporous metal-oxide hybrid structural material and a manufacturing method thereof, and belongs to the field of nanometer functional materials.
  • a nanomaterial refers to a material that is at least one dimension in a three-dimensional space at a nanometer scale (1-100 nm) or composed of it as a basic unit. These basic units generally include zero-dimensional nanoparticles, one-dimensional nanowires, nanotubes or nanorods, and two-dimensional nanosheets or nanofilms.
  • a nanoporous material refers to a porous solid material having a remarkable surface effect, a pore diameter of 0.1 to 100 nm, a porosity of more than 40%, and a high specific surface area.
  • the pores can be subdivided into three types: a pore size of less than 2 nm, a mesopores of between 2 and 50 nm, and a macropore of more than 50 nm.
  • Porous materials can be classified into a variety of components, such as metals, carbons, metal oxides, inorganic-organic composite materials, and high molecular polymers.
  • nanoporous materials Compared with the usual powder or bulk materials, nanoporous materials have extremely high specific surface area and unique physical, chemical and even mechanical properties due to their three-dimensional, interpenetrating, bicontinuous structure of nanopores. It has shown great application potential in the fields of catalysis, sensors, energy storage and so on.
  • the preparation methods of nanoporous metal and metal oxide materials, hydrothermal/solvent thermal synthesis and soft/hard template synthesis are common methods for preparing nanoporous metal oxide materials, while templates for preparing nanoporous metal materials are mostly used.
  • the method and the de-alloying method, especially the latter, show its unique advantages.
  • De-alloying to prepare a porous metal material in principle, is to utilize the difference in chemical activity between the different components of the alloy, and to selectively or selectively move one or more groups in the alloy by free etching or electrochemical etching.
  • the process of forming a bicontinuous porous structure by atomic diffusion, migration, aggregation, or the like.
  • gold-silver alloy can be used to conveniently and controllably prepare nanoporous gold (Chinese invention patent, application number: 201180061953.3), and like nanoporous copper, CuAl 2 , Cu-Al-Zn and Cu-Si alloy can be used through NaOH. Corrosion is obtained, and can also be obtained by de-alloying CuMn, CuMg, CuZr, CuAlMg or the like. (Application of Nanoporous Metals and Complexes in Glucose Detection, 2013, Master's thesis of Jilin University, Yao Lijun)
  • a single material often cannot meet the requirements of a certain occasion. Therefore, many researchers have tried to combine two or more nanostructured materials organically into one piece by various methods.
  • a hybrid material having multiple functions that is, a nanohybrid structure.
  • Such a structure is an ordered or disordered hybrid system in which nanoparticles or their structural units are constructed or combined in a one-dimensional, two-dimensional and three-dimensional space according to certain rules, and the entire nanostructure belt can be made according to the designer's wishes.
  • nano-hybrid electrode materials with good performance have been reported in the literature, such as Au/PANI (with a charge and discharge rate of 1 A/cm 3 , a capacitance of about 1500 F/cm 3 ) (J.
  • CoO@Ni(OH) 2 with a charge and discharge rate of 40 to 5 mA/cm 2 , a capacitance of about 6.49 to 11.5 F/cm 2 ) (Energy Environ. Sci. 4, 4496-4499 (2011)), C / MnO 2 (charge-discharge rate of 0.4A / cm 3 a capacitance of about 135 ⁇ 160F / cm 3) or MWNT / MnO 2 (charge-discharge rate of 1.8A / cm 3, the capacitance of about 246F / cm 3) ( J.
  • the active loading and electrode thickness are difficult to meet the commercial demand standard, and due to the limitation of nanometer scale, especially when nanoporous materials are present, various implementations
  • the method is also not capable or easy to achieve the desired effect. Therefore, it is necessary and urgent to prepare a multi-functional nano-hybrid material with ideal structure and to find a simple hybrid material preparation method in the field of new materials and nanotechnology research, which is also for future economic and social development. Pioneering research work of great importance.
  • the method described in the present invention is a method for preparing a low-dimensional nanostructured transition metal oxide and a three-dimensional mesoporous metal-metal oxide core shell in situ by a simple electrochemical alloying route in a common salt solution.
  • Nanoporous hybrid material By changing the composition of the alloy, the solute component of the salt solution, the voltage and current of the alloying process, and the post-treatment steps of the material, it is convenient to regulate the composition of the nanoporous hybrid structure and the low-dimensional nanostructures constituting the hybrid material. Morphology.
  • the Cu-Mn nanohybrid material of this structure prepared by this method exhibits an exceptionally excellent performance in electrochemical energy storage, and thus can be a novel energy storage material.
  • the object of the present invention is to provide a simple, rapid, inexpensive and green electrochemical alloying route for in-situ preparation of three-dimensional nanoporous metal-metal oxide hybrid structural materials, and various methods obtained by the method and the post-treatment method.
  • the nanoporous hybrid material with morphology and composition, the obtained material is basically a core-shell structure or a load structure
  • the outer shell or the supported material is composed of nano material
  • the inner core or carrier is a three-dimensional double continuous mesoporous material, especially metal and Hybrid material for metal oxides.
  • the outer shell or supported material is a relatively low potential metal oxidizing species
  • the inner core or carrier comprises at least a hybrid material of a relatively high potential metal and metal oxidizing species.
  • Further outer shell or loaded material which is a low dimensional nanostructure, may be a one-dimensional nanowire or nanorod, a two-dimensional nanosheet-like structure, or a stack of two low-dimensional nanostructures. If it is a buildup layer, it has a large pore structure.
  • the zero-dimensional nanoparticles of the oxidizing substance corresponding to the low electrochemical potential metal are distributed on the mesoporous wall of the inner porous structure.
  • the initially formed low-dimensional nanostructured oxide material has an amorphous crystalline state, and the core-shell structure constituting the mesoporous pore wall is a single crystal phase.
  • the present invention adopts the following technical solutions.
  • the invention relates to a method for preparing a nanoporous metal/metal oxide hybrid structural material, which is characterized in that it is prepared in situ by an electrochemical alloying method, and specifically comprises the following steps: using an alloy foil containing at least two metal elements as a raw material, In the aqueous solution in which the dissolved salt is an electrolyte, a three-electrode system is used, and the alloy foil is a working electrode, and an electrochemical reaction is performed by passing a current in a working range of the corrosion voltage.
  • the relatively high potential metal element A of the metal element in the alloy foil can be fixed on the working electrode in the electrochemical process, and the relatively low potential metal element B forms the metal cation B in the electrochemical process, dissolved in the electrolyte, and electrolyzed.
  • the anion contained in the liquid can react with the metal cation B to form a precipitate, thereby forming a metal oxide compound nano material assembled or loaded on the surface of the metal foil of the working electrode under the action of current;
  • Some metal elements A are partially or completely oxidized to oxides under the reaction system and air conditions.
  • the current density range is not limited, and the current density is preferably in the range of 5 to 50 mA/cm 2 .
  • the corrosion voltage (bit) is determined by the nature of the metal itself in the reaction system. Given a solution system, its voltage (bit) is determined by the potential of the metal to the metal oxide; the working range of the corrosion voltage in the present invention Corroding potential containing at least one metal element in the alloy, and at least another metal element in the alloy has a corrosion voltage (bit) higher than a cut-off voltage of the corrosion voltage operating range of the present invention (ie, a voltage of the highest value of the voltage range) .
  • the working range of corrosion voltage is -0.9V ⁇ -0.01V
  • the cutoff voltage refers to -0.01V.
  • the whole working voltage range is set by the specific corrosion potential according to the above, so as to control the progress of the reaction.
  • the metal if the metal is in its corrosion voltage range and is oxidized to metal oxide; when the set operating voltage range (ie, the cut-off voltage) is lower than the corrosion potential of the metal, the metal can be stably existed and not oxidized. .
  • the inert soluble salt is a soluble salt which does not participate in the electrochemical reaction itself, and is one or more of a normal salt, a basic salt or an acid salt, preferably a normal salt, a basic salt, and further preferably a normal salt.
  • Inert soluble salts such as NaCl, Na 2 SO 4 , NaNO 3 , Sr(NO 3 ) 2 , (NH 4 ) 2 SO 4 , etc.; in aqueous electrolyte solutions, other soluble organic substances, surfactants, etc. may also be added.
  • the working voltage curve obtained in the basic salt solution system is relatively high, relatively difficult to operate, and the metal is easily oxidized.
  • the obtained product is similar to that in Example 7, Cu Oxidized.
  • the salt is positive, the whole obtained is a core-shell structure, the outer shell is an oxidizing material nano material of a relatively low electrochemical potential metal, and the inner core is a three-dimensional double continuous mesoporous material, especially a hybrid of metal and metal oxide. Material, and is composed of a material with a core-shell structure.
  • the metal in the alloy foil may be selected from the group consisting of a main group metal, a transition metal, an alkaline earth metal, and a rare earth metal, such as gold (Au), silver (Ag), copper (Cu), iron (Fe), cobalt (Co), and nickel.
  • the alloy foil may further contain a non-metal, a metalloid or a halogen element;
  • the preparation method of the present invention further comprises: post-treating the obtained product, including drying at different temperatures, air or vacuum dryer or vacuum oven, or baking in an inert gas or air at a high temperature (for example, 400 ° C), the effect of which is The composition or local topography of the final hybrid material is altered.
  • the starting material alloy serves as a donor of the mesoporous framework structure material and the low-dimensional nanostructure oxidizing substance
  • the electrolyte solution serves as a conductive medium while providing an anion or a metal cation required for deposition conditions such as precipitation, and is continuous.
  • the current action is a necessary condition for the formation of the method and the target material of the present invention.
  • the electrolyte environment, electrochemical parameters and post-treatment methods affect the final morphology and composition of the specific material, and the initial alloy material composition has multiple selectivity and determines the final hybrid material.
  • the function, especially the Cu-Mn hybrid material with such structure exhibits exceptionally excellent electrochemical energy storage performance.
  • due to the built-in current collector and good mechanical strength the material of this structure can greatly simplify its assembly.
  • the preparation process in the battery process greatly reduces the cost of the material in the product conversion process.
  • Fig. 3 is a pore size distribution map, and the two curves correspond to the pore size distribution maps of Sample 2 and Sample 10 obtained by the BJH method, respectively.
  • sample 8 is a related image of sample 10
  • (a)-(c) are SEM images and EDS results of sample 10
  • (d)-(f) are TEM, SAED, STEM, and EELS of sample 10 obtained by TEM technique, respectively. image.
  • Figure 10 is a related image of Sample 12, and (a) - (i) shows the microstructure and surface composition of Sample 12.
  • Fig. 11 XRD images of Sample 12 and Sample 13 are shown, and (a) and (b) are XRD patterns of Sample 13 and Sample 12, respectively.
  • Figure 12 is a related image of Sample 13 - Sample 17,
  • (a) - (c) is an SEM image of Sample 13;
  • (d), (e), and (f) are SEMs of the surface of Sample 14, Sample 15, and Sample 16, respectively.
  • (g)-(i) are SEM images of sample 17 and EDS component analysis results.
  • Figure 13 is a graph showing the results of electrochemical performance tests of Sample 2 and Sample 5 as lithium ion battery and supercapacitor electrode materials; Li + /Li was subjected to a charge and discharge test between 0.01 V and 3.0 V.
  • Figures (A) and (B) show the charge and discharge curves and the specific charge for the first three times of the sample 2 and the sample 5 at the charging rate of 0.2 mA/cm 2 , respectively.
  • Figure 2 (C) shows the sample 2 and the sample 5 respectively.
  • Figure 14 is a graph showing the results of electrochemical performance tests of Sample 10 as a lithium ion battery and a supercapacitor electrode material; a charge and discharge test was performed on Li + /Li between 0.01 V and 3.0 V.
  • Figures (A) and (B) show the charge and discharge curves and specific charge of the first three samples at a charge rate of 0.2 and 2.0 mA/cm 2 respectively;
  • Figure (C) shows the charge rate of sample 10 at 0.2.
  • Figure (D) shows the ratio of volume, area and total mass of sample 10 at different charge rates in the range of 2-42 mA/cm 2 Capacity curve
  • Figure (E) shows the CV cycle performance curve of sample 10 at a scan rate of 50 mV/s
  • Figure (F) shows the output power density versus energy density of sample 10. Ragone diagram of density; for comparison, performance data of other electrode materials or energy storage devices documented in the literature are given.
  • Figure 15 is a graph showing the results of electrochemical performance tests of lithium ion batteries and supercapacitor electrode materials. Unless otherwise specified, Li + /Li was subjected to a charge and discharge test between 0.01 V and 2.5 V.
  • Figure (A) shows the charge and discharge curves and cycle performance curves of sample 12 at the charging rate of 2.0 mA/cm 2 for the first time;
  • Figure (B) shows the charge rate of sample 12 at 0.3, 1.0 and 2.0 mA/ The charge and discharge curve and coulombic efficiency of the first round at cm 2 ;
  • Fig. (C) shows the area specific power, specific capacitance and volume specific capacitance of sample 12 at different charging rates in the charging rate of 2-50 mA/cm 2 .
  • Figure (D) shows the CV cycle performance curve and the corresponding capacitance retention curve of sample 10000 at a scan rate of 50 mV/s;
  • the CV cycle curve of sample 12 at different voltage intervals after completion of 10,000 CV cycles is given;
  • Figure (F) shows the output power density of sample 12 after fresh and completed long-term cycle performance test. (power density) Ragone plot of energy density; for comparison, performance data for other electrode materials or energy storage devices documented in the literature are given.
  • XRD SmartLab X-ray diffractometer
  • SEM field emission scanning electron microscope
  • Cs-TEM JEOL JEM–2100F spherical aberration corrected field emission transmission electron microscope
  • Micromeritics ASAP 2020 physics The structure and morphology of the obtained nano-hybrid materials were measured by an apparatus such as an adsorption instrument.
  • the present invention provides novel hybrid materials of MnOOH nanowires and nanosheets intertwined into a nanofilm layer encapsulating a three-dimensional mesoporous Cu@Cu 2 O-MnO x core-shell structure, MnOOH nanosheets.
  • the intertwined nano-film layer encloses a three-dimensional mesoporous Ni@NiO-MnO x core-shell hybrid material, and the MnO x nanosheet or nanorod intertwined nano-film layer encapsulates three-dimensional mesoporous Cu@Cu 2 O-MnO x -
  • the hybrid material of the Cu-C core-shell structure further provides the respective preparation methods and the energy storage properties of the three Cu-Mn nano-hybrid materials as electrode materials.
  • Cu@Cu 2 O-MnO x three-dimensional mesoporous structure material was prepared in the same way in acidic salt solution, and its performance was evaluated.
  • Example 1 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Cu 30 Mn 70 alloy foil having a thickness of 50 ⁇ m at a concentration of 1.0 mol/L.
  • the (NH 4 ) 2 SO 4 solution had an operating current density of 100 mA/cm 2 or was placed in a (NH 4 ) 2 SO 4 solution having a concentration of 0.2 mol/L, and the working current density was 50 mA/cm 2 .
  • Set the electrochemical workstation cut-off voltage to 0V. When the operating voltage gradually rises to the cutoff voltage, the reaction ends.
  • the obtained sample was sufficiently washed in deionized water and then sufficiently dried in a vacuum oven to obtain a Cu@Cu 2 O-MnO x nanohybrid structure having a three-dimensional mesoporous core-shell structure, which was designated as Sample 1 and Sample 2.
  • the microstructure of the sample 1 is shown in Fig. 1(a)
  • the microstructure of the sample 2 is shown in Fig. 1(b)-(g)
  • the XRD spectrum is shown in Fig. 2 (a)
  • the pore size distribution is shown in Fig. 3.
  • the main phase composition of the three-dimensional nano-mesoporous materials obtained in both cases is Cu 2 O and Cu; specific to sample 2, it can be seen that the three-dimensional double-continuous mesoporous skeleton is mainly composed of a single crystal Cu@Cu 2 O core-shell structure.
  • the mesoporous pore size is mainly distributed between 3 and 30 nm, and MnO x ions are distributed on the mesoporous wall.
  • the ratio of Mn/Cu is about 2 to 4 wt.%, and the ratio of Cu/Cu 2 O is about 2/3.
  • Example 2 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Cu 30 Mn 70 alloy foil having a thickness of 50 ⁇ m at a concentration of 0.2 mol/L. In a Na 2 SO 4 solution.
  • the electrochemical workstation has a cut-off voltage of 0 V and an operating current density of 50, 20, and 10 mA/cm 2 , respectively. When the operating voltage reaches the cutoff voltage, the reaction ends.
  • the O nanohybrid structure was designated as Sample 3, Sample 4, and Sample 5.
  • the microstructure of the sample 3 is shown in Fig. 4(a) and (b), and the XRD spectrum is shown in Fig. 5 (a).
  • the microstructure of the sample 4 is shown in Fig. 4(c) and (d).
  • Fig. 5 curve (b); the microstructure of the sample 5 is shown in Fig. 4(e)-(m), and the XRD spectrum is shown in Fig.
  • the main phase compositions of the three-dimensional nanoporous MnOOH/Cu@MnO x -Cu 2 O hybrid materials obtained at three current densities are Cu and Cu 2 O, which are composed of two main structures: the outer cladding layer is a single layer MnOOH low-dimensional The nano-film layer intertwined by the nanostructure; the inner three-dimensional double continuous mesoporous skeleton is mainly formed by a single crystal Cu@Cu 2 O core-shell structure.
  • the diameter of the nanowire is as small as 5 nm
  • the mesoporous pore size and the pore wall thickness are mainly distributed in the range of 10 to 40 nm
  • the MnO x nanoparticles having a size smaller than 10 nm are distributed on the mesoporous wall
  • the thickness of the overall structure is larger than that of the original alloy.
  • the thickness of the material is slightly smaller, and the ratio of Mn/Cu in the surface layer of the hybrid material and the mesoporous structure is about 7 to 10 wt.% and 2 to 4 wt.%, and the ratio of Cu/Cu 2 O is about 1/2 to 1/1.5.
  • Example 3 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Cu 30 Mn 70 alloy foil having a thickness of 10 ⁇ m at a concentration of 0.2 mol/L. In a NaCl solution. The electrochemical workstation operating current density was set to 6 mA/cm 2 , and when the operating voltage gradually rose to the set cutoff voltage point (as shown in FIG. 6A), the reaction was completed.
  • the photomicrograph of sample 6 is shown in Figures 7(a)-(d), the XRD spectrum is shown in Figure 6(B) curve (a); the photomicrograph of sample 7 is shown in Figure 7(e), (f), XRD.
  • the spectrum is shown in Fig. 6(B) curve (b); the microstructure of sample 8 is shown in Fig. 7(g)-(i), the XRD spectrum is shown in Fig. 6(B) curve (c); the microstructure photo of sample 9 See Fig. 7(j)-(l), and the XRD spectrum is shown in Fig. 6(B) curve (d).
  • the main phase composition of the three-dimensional nanoporous MnOOH/Cu@MnO x -Cu 2 O hybrid material obtained at different cutoff voltages or different drying temperatures is Cu and Cu 2 O, but Cu/Cu 2 O and Mn/Cu
  • the ratio varies with the cut-off voltage. They also have similar morphology. They are composed of two main structures: the outer cladding layer is a nano-film layer intertwined with single-layer MnOOH nanosheets, and the inner three-dimensional double-continuous mesoporous skeleton is mainly Cu@Cu 2 O-MnO x core-shell structure is formed.
  • Example 4 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Cu 30 Mn 70 alloy foil having a thickness of 50 ⁇ m at a concentration of 0.2 mol/L. In a NaCl solution.
  • the electrochemical workstation has a cut-off voltage of 0 V and an operating current density of 10 mA/cm 2 . When the operating voltage gradually rises to the cutoff voltage, the reaction ends.
  • the obtained sample was thoroughly washed in deionized water and then sufficiently dried in a vacuum oven at 40 ° C to obtain a Cu@MnO x -Cu 2 O nanometer having a three-dimensional mesoporous core-shell structure with uniformly supported MnOOH hexagonal nanosheets.
  • the hybrid structure is referred to as sample 10.
  • the microstructure photo is shown in Figure 8, and the XRD spectrum is shown in Figure 2 curve (c).
  • the amorphous MnOOH nanosheets have a regular hexagonal shape, and the hexagonal thickness and side length are about 20-40 nm and 500-700 nm, respectively.
  • the mesoporous pore size and pore wall thickness are mainly distributed in the range of 10-40 nm, and the macropore pore size is concentrated. At 80 nm, the amorphous form of MnO x is distributed on the mesoporous wall of single crystal Cu@Cu 2 O.
  • the thickness of the whole hybrid structure is slightly smaller than the thickness of the original alloy material, and the thickness of the outer monolayer film is not more than 1 ⁇ m.
  • the ratio of Mn/Cu in the cross section of the hybrid material surface layer and the mesoporous structure is about 6 wt.% and 3 wt.%, and the ratio of Cu/Cu 2 O in the structure is about 11/9.
  • Example 5 The sample prepared in Example 3 was calcined in an air atmosphere at 400 ° C for 2 hours and then cooled to room temperature, and the temperature was raised at 3 ° C / min, thereby obtaining a nano film composed of a single layer of MnO x nanosheets uniformly coated on the surface.
  • the MnO x @CuO nanohybrid structure of the three-dimensional mesoporous core-shell structure of the layer is designated as sample 11.
  • the microstructure photo is shown in Figure 9, and the XRD spectrum is shown in Figure 2 curve (d). At this time, the sample still maintains the overall structure of the sample 10, the thickness shrinkage is about 30 to 35 ⁇ m, and the crystal phase appears as a single CuO.
  • Example 6 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Cu 30 Mn 70 alloy foil having a thickness of 50 ⁇ m, and was placed at 0.1 mol/L. Glucose in a 0.2 mol/L NaCl solution.
  • the electrochemical workstation has a cut-off voltage of -0.09V and an operating current density of 10 mA/cm 2 . When the operating voltage gradually rises to the cutoff voltage, the reaction ends.
  • the obtained sample was thoroughly washed in a 0.1 mol/L glucose solution and preliminarily dried in a vacuum oven, placed in a tube furnace with a flowing nitrogen gas stream, and raised at a rate of 1 ° C/min to 400 ° C for 1 h.
  • a Cu@C-Cu-MnO x -Cu 2 O nanohybrid structure with a three-dimensional mesoporous core-shell structure with uniformly supported MnO x nanosheets or nanorods on the surface is recorded as sample 12, and before roasting
  • the sample is recorded as sample 13.
  • the microstructure of the sample 12 is shown in Fig. 10
  • the XRD spectrum is shown in Fig.
  • crystalline MnO x nanosheets and a few nanorods are interwoven into a nano-film layer wrapped on the surface of a three-dimensional double continuous mesoporous structure.
  • the diameter of the nanorods is about 50 nm, in addition to a small amount of MnO x nanoparticles, mesoporous pore size.
  • the thickness of the pore wall is mainly distributed at 20-40 nm.
  • Crystalline MnO x is distributed on the mesoporous wall of single crystal Cu@Cu 2 O, accompanied by a small amount of Cu and C substances on the pore wall, and the overall hybrid structure
  • the thickness of the original alloy material is slightly smaller than that of the original alloy material, and the thickness of the outer monolayer film is not more than 1 ⁇ m, and the ratio of Mn/Cu on the surface of the hybrid material and the mesoporous structure is about 8 wt.% and 25 wt.%; for the sample 13,
  • the outer wrap layer is a nano-film layer intertwined by a single layer of MnOOH nanosheets, and the inner three-dimensional double continuous mesoporous skeleton is mainly formed by a Cu@Cu 2 O-MnO x core-shell structure.
  • Example 7 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Cu 30 Mn 70 alloy foil having a thickness of 50 ⁇ m at a concentration of 0.2 mol/ Sr(NO 3 ) 2 , NaNO 3 of L and a mixed solution of Na 2 SO 4 and NaNO 3 in a molar ratio of 1:1.
  • the electrochemical workstation has a cut-off voltage of 0 V and an operating current density of 10 mA/cm 2 . When the operating voltage gradually rises to the cutoff voltage, the reaction ends.
  • sample 14 sample 15
  • sample 16 sample 16
  • the main phase composition of the obtained three-dimensional nanoporous hybrid material is Cu 2 O and consists of two main structures: the outer cladding layer is a nano-film layer interwoven by single-layer MnOOH nanosheets, and the inner layer
  • the three-dimensional double continuous mesoporous skeleton is mainly formed by a Cu 2 O@MnO x core-shell structure.
  • Example 8 At room temperature, a three-electrode system was used, a saturated calomel electrode was used as a reference electrode, a platinum plate was used as a counter electrode, and a working electrode was connected with a Ni 30 Mn 70 alloy foil having a thickness of 10 ⁇ m at a concentration of 0.2 mol/L. In a NaCl solution. The working voltage of the electrochemical workstation is set to -1.0V, and the reaction is completed after the working reaction time is 2 to 3 hours.
  • the sample obtained was thoroughly washed in deionized water and then sufficiently dried in a vacuum desiccator to obtain a Ni@MnO x -NiO nanohybrid structure of a three-dimensional mesoporous core-shell structure uniformly supported on the surface of the MnOOH nanosheet.
  • Sample 17. The photomicrograph of the structure is shown in Fig. 12(g)-(i). The sample thickness is close to the initial alloy thickness, and the mesoporous pore size is approximately 20 to 30 nm.
  • Example 9 A simulated battery assembled with Sample 2 and Sample 5 was subjected to various electrochemical performance tests using a two-electrode system in a voltage range of 0.01-3.0 V. The test results are shown in FIG.
  • both samples showed good cycle performance, in which the first-round discharge specific energy of sample 2 reached 4.36 mAh/cm 2 , the sample 5 reach 5.50mAh / cm 2, which are much higher than the values reported in the literature, such as the power ratio at a rate of 0.016 ⁇ 0.8mA / cm 2 is of 0.06 ⁇ 1.3mAh / cm 2 (Adv.Mater.24,5166- 5180 (2012)); the area ratio of the sample is related to the charge and discharge rate, especially sample 5.
  • the sample In the performance test as a supercapacitor, the sample exhibited a large specific capacitance at a low charge and discharge rate, wherein at 1 mA/cm 2 , the specific capacity of sample 2 was 120 F/cm 3 , and the sample of sample 5 was sample. 8 times the 2, both exhibit similar power densities to other capacitors but much higher than the latter's energy density, especially for sample 5.
  • Example 10 The simulated battery assembled into the sample 10 was subjected to various electrochemical performance tests using a two-electrode system in a voltage range of 0.01-3.0 V, and the test results are shown in FIG.
  • the charge ratio of the first-round discharge of sample 2 reached 7.19 mAh/cm 2 at a charging rate close to the reported value of the literature, which is about 3 to 10 times of the literature value.
  • the specific power of the sample decreases slightly, which is still much higher than the value reported in the literature (Adv. Mater. 24, 5166–5180 (2012)), and shows a fairly superior cycle at this rate.
  • Example 11 The simulated battery assembled into the sample 12 was subjected to various electrochemical performance tests using a two-electrode system in a voltage range of 0.01-2.5 V, and the test results are shown in FIG.
  • sample 12 Even if the application is much larger than the charge and discharge rate reported in the literature, sample 12 still shows a large area specific power, and the first-round discharge specific power is in a wide range of rates (0.3 to 2.0 mA).
  • the sample has a close resistance at each charge and discharge rate in an atmosphere of 2 to 50 mA/cm 2 (this resistance is smaller than reported in the literature), but has a large value at a low charge and discharge rate.
  • the specific capacitance such as the specific capacitance at 2 mA / cm 2 exceeds 1300 F / cm 3 , the capacity retention rate after the 1000 CV cycle test is about 75%, still higher than 50% after 10,000 times, the CV cycle curve is Different voltage ranges have similar shapes, and they also exhibit relatively high power density and energy density, and even have superior energy storage performance over other materials after long-term charge and discharge cycle testing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用,属于纳微米功能材料领域。材料基本为核壳结构或负载结构;外层壳或负载的材料为纳米材料;内部核或载体为三维双连续介孔材料,尤其是金属和金属氧化物的杂化材料。采用电化学合金途径原位制备,成功制备出具有独特结构特征的纳米多孔金属/金属氧化物杂化功能材料,该材料在作为超级电容器或锂离子电池负极材料方面均表现出优异的储能性能。

Description

纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用 技术领域
本发明涉及纳米多孔金属-氧化物杂化结构材料及其制造方法,属于纳微米功能材料领域。
背景技术
纳米材料是指在三维空间中至少有一维处在纳米尺度(1-100nm)或者由其作为基本单元所构成的材料。这些基本单元一般包括零维纳米粒子,一维纳米线、纳米管或纳米棒,以及二维纳米片或纳米薄膜。纳米多孔(Nanoporous)材料是指具有显著表面效应、孔径介于0.1~100nm、孔隙率大于40%、具有高比表面积的多孔固体材料。根据孔尺寸的大小又可将孔细分为三类:孔尺寸小于2nm的称为微孔,处于2~50nm之间的称为介孔,大于50nm的称为大孔。多孔材料按其组分可以分为很多种,例如:金属、碳、金属氧化物、无机-有机复合材料以及高分子聚合物等等。相较于通常的粉体或块体材料,纳米多孔材料由于具有三维、相互贯通的双连续结构的纳米孔道,因而具有极高的比表面积和独特的物理、化学效应乃至力学性能,这也使得其在催化、传感器、能量存储等领域都展现出了巨大的应用潜力。而目前涉及纳米多孔金属及金属氧化物材料的制备方法,水热/溶剂热合成法以及软/硬模板合成法是制备纳米多孔金属氧化物材料的常用方法,而制备纳米多孔金属材料则多用模板法和去/脱合金法,尤其是后者更显示出其独特优势。去合金化制备多孔金属材料,原理上是利用组成合金的不同组分之间化学活性的差异性,通过自由腐蚀或者电化学腐蚀有目的有选择的将合金中的相对活泼的一个或者多个组元除去,残余的组元通过原子扩散、迁移、聚集等方式形成双连续多孔结构的过程。此方法不但简便易行,绿色无污染,经过合理调控,制备出的材料更是可以具有一系列特别优异的结构特性,已在许多领域显示了其不同寻常的应用价值。如可以通过金-银合金来方便可控地制备纳米多孔金(中国发明专利,申请号:201180061953.3),再如纳米多孔铜,可以利用CuAl 2、Cu-Al-Zn以及Cu-Si合金经过NaOH腐蚀获得,也可通过CuMn、CuMg、CuZr、CuAlMg等去合金制备得到。(纳米多孔金属及复合物在葡萄糖检测中的应用研究,2013,吉林大学硕士学位论文,姚丽君)
然而,随着科技的发展进步,单一的材料往往不能很好地满足一定场合对其的要求,因此很多研究者都尝试着用各种方法将两种或多种纳米结构的材料有机地结合到一块,进而可以得到一种具有多种功能的杂化材料,即纳米杂化结构。此种结构是纳米微粒或它们组成的结构单元在一维、二维和三维空间按照一定规律构建或者组合而成的有序抑或无序的混合体系,可以按照设计者的意愿使整个纳米结构带有所期望的特点;组成纳米结构的各个单元之间存在相互作用,这使得纳米结构不仅具有构成单元的特殊功能,而且还可能具有结构单元间量子耦合或协同增强所产生的新效应。目前,文献上已报导多种性能良好的纳米杂化电极材料,如Au/PANI(充放电速率为1A/cm 3时,电容量约1500F/cm 3)(J.Power Sources 197,325–329(2012))、CoO@Ni(OH) 2(充放电速率为40~5mA/cm 2时,电容量约6.49~11.5F/cm 2)(Energy Environ.Sci.4,4496-4499(2011)),C/MnO 2(充放电速率为0.4A/cm 3电容量约135~160F/cm 3)或MWNT/MnO 2(充放电速率为1.8A/cm 3时,电容量约246F/cm 3)(J.Power Sources 197,325–329(2012)),以及其它一些用于超级电容器的设计良好的杂化材料(充放电速率为0.2~40mA/cm 2时,电容量约0.002~2.6F/cm 2)(Adv.Mater.24,5166–5180(2012))。显然,这种有针对性的对纳米结构材料进行设计对于构造纳米功能器件具有十分重要的意义,但除了Au的价格昂贵,碳材料的低电容量,纯氧化物材料的低电导性等材料本身的缺陷外,无疑制备上述这些结构复杂的材料的方法十分繁琐,活性负载量以及电极厚度均难易达到商业需求标准,又由于纳米尺度的限制,特别是当存在纳米多孔材料时,各种实施方法也并非都能或容易取得预想效果。因此,制备出理想结构的多功能纳米杂化材料以及寻求一种简单地杂化材料制备方法,在新材料和纳米科技研究领域中便显得十分必要和迫切,这也是对未来经济和社会发展有着十分重要影响的开创性研究工作。
本发明描述的方法是通过简单的电化学去合金途径,在普通的盐溶液中原位制备出低维纳米结构的过渡金属氧化物与三维介孔结构的金属-金属氧化物核壳组装而成的纳米多孔杂化材料。通过改变合金的组成,盐溶液的溶质组分,去合金过程的电压、电流,以及材料的后处理步骤,即可方便调控纳米多孔杂化结构的组成和构成此杂化材料低维纳米结构的形貌。以此方法制备出的这种结构的Cu-Mn纳米杂化材料,在电化学储能方面显示出了异常优异的性能,因而可以成 为一种新颖的储能材料。
发明内容
本发明的目的在于提供一种简易、快速、廉价和绿色的电化学去合金途径原位制备三维纳米多孔金属-金属氧化物杂化结构材料,以及由此方法和后处理的方法得到的多种形貌及组成的纳米多孔杂化材料,所得材料基本为核壳结构或负载结构,外层壳或负载的材料为纳米材料组成,内部核或载体为三维双连续介孔材料,尤其是金属和金属氧化物的杂化材料。外层壳或负载的材料为相对较低电势的金属氧化物质,内部核或载体至少包括电势相对较高的金属和金属氧化物质的杂化结构材料。
进一步外层壳或负载的材料,为低维度纳米结构可以是一维纳米线或纳米棒、二维纳米片状结构,或者两种低维度纳米结构的堆积层。若为堆积层则具有大孔结构。内层多孔架构的介孔孔壁上分布有低电化学势金属所对应的氧化物质的零维纳米粒子。初始形成的低维度纳米结构的氧化物材料呈不定形晶态,组成介孔孔壁的核壳结构为单晶晶相。
为实现上述目的,本发明采用了以下技术方案。
纳米多孔金属/金属氧化物杂化结构材料的制备方法,其特征在于,采用电化学合金途径原位制备,具体包括以下步骤:以包含至少两种金属元素的合金箔为原料,在以惰性易溶盐为电解质的水溶液中,利用三电极体系,所述的合金箔为工作电极,在腐蚀电压的工作范围内通电流进行电化学反应。
合金箔中金属元素中相对高电势的金属元素A在电化学过程中可以固定在工作电极上,而电势相对较低的金属元素B在电化学过程中形成金属阳离子B溶解在电解液中,电解液中含有的阴离子能够与金属阳离子B反应生成沉淀,进而在电流的作用下形成金属氧化化合物纳米材料组装或负载在工作电极的金属箔表面;
而有的金属元素A在反应体系和空气条件下,会部分或全部被氧化成氧化物。
电流密度范围没有一定的限制,优选电流密度范围为5-50mA/cm 2
腐蚀电压(位)是由金属本身在反应体系的性质决定,给定一个溶液体系,它的电压(位)即由金属变为金属氧化物的电位就已经确定;本发明中腐蚀电压的工作范围至少包含合金中一种种金属元素的腐蚀电位,且合金中至少还有另一 种金属元素的腐蚀电压(位)高于本发明腐蚀电压工作范围的截止电压(即电压范围的最高值的电压)。比如腐蚀电压工作范围为-0.9V~-0.01V,截止电压指的就是其中的-0.01V,整个工作电压范围由自己根据上述这些特定的腐蚀电位来设置,以此来控制反应的进行程度,即是否让该金属处于其腐蚀电压范围内而被氧化成金属氧化物;当设置的工作电压范围(即截至电压)低于该金属的腐蚀电位时,这种金属就能稳定存在,不被氧化。
惰性易溶盐为:本身不参与所述的电化学反应的可溶性盐,为正盐、碱式盐或酸式盐中的一种或几种,优选正盐、碱式盐,进一步优选正盐。惰性易溶盐如NaCl,Na 2SO 4,NaNO 3,Sr(NO 3) 2,(NH 4) 2SO 4等;在电解质水溶液中,还可以添加其它可溶性有机物质、表面活性剂等中的一种或几种,如葡萄糖、蔗糖等。一般碱式盐溶液体系中得到的工作电压曲线相对较高,相对不易运行,且使得金属易被氧化,如用Na 2CO 3作为电解液时,得到的产物和实施例7中的类似,Cu被氧化。进一步优选正盐时,得到的整体是核壳结构,外层壳为相对低电化学势金属的氧化物质纳米材料,内部核为三维双连续介孔材料,尤其是金属和金属氧化物的杂化材料,且是采用核壳结构的材料组成。
合金箔中的金属可以从主族金属、过渡金属、碱土金属以及稀土金属等中选择,诸如金(Au),银(Ag),铜(Cu),铁(Fe),钴(Co),镍(Ni),锡(Sn),锰(Mn),铬(Cr),钼(Mo),钒(V),钛(Ti),锆(Zr),镁(Mg),铝(Al),铂(Pt),钌(Ru),铑(Rh),钯(Pd)等合金元素,初始合金中元素不同,最终获得的纳米杂化材料的功能不同,材料所应用的领域和范围也将不同。进而合金箔中还可以含有非金属、类金属或卤族元素;
本发明的制备方法,进一步还包括,对所得的产品进行后处理,包括不同温度下、空气或真空干燥器或真空烘箱中干燥,或惰性气体或空气中高温(如400℃)焙烧,其效果改变最终杂化材料的组成或局部形貌特征。
本发明中起始材料合金同时作为介孔骨架结构材质的和低维纳米结构氧化物质的供体,电解质溶液作为导电介质的同时提供沉积条件如沉淀作用发生所需的阴离子或金属阳离子,持续的电流作用是本发明方法和目标材料形成的必要条件,电解液环境、电化学参数和后处理方式影响具体材料的最终形貌及组成,初始合金材料成份具有多重选择性并决定最终杂化材料的功能,尤其具备此种结构 的Cu-Mn杂化材料表现出异常优异的电化学储能性能,此外由于具备内置的集流体及较好的机械强度,此结构的材料可以大大简化其在组装成为电池过程中的制备工艺,大大降低该种材料在产品转化过程中的成本。
附图说明
图1为样品1和样品2相关图像,(a)为样品1的SEM图像,(b)、(c)为样品2表面和截面的SEM图像,(d)-(f)中所示分别为TEM技术下得到的样品2的HRTEM、SAED及EELS图像。
图2为样品2、样品5、样品10和样品11的XRD图谱,(a)-(d)分别为样品2、样品5、样品10和样品11的XRD图谱。
图3孔径分布图谱,两条曲线分别对应应用BJH法得到的样品2和样品10的孔径分布图谱。
图4为样品3、样品4、样品5相关图像,(a)、(b)为样品3表面和截面的SEM图像,(c)、(d)为样品4表面和截面的SEM图像,(e)-(h)为样品5表面和截面的SEM图像,(i)-(m)分别为TEM技术下得到的样品5的TEM、HRTEM-SAED、STEM和EELS图像。
图5为样品3、样品4、和样品5的XRD图,(a)-(c)分别为样品3、样品4、和样品5的XRD图谱。
图6化学腐蚀曲线(A)和XRD图谱(B),(A)、(B)图中(a)、(b)、(c)、(d)分别代表样品6、样品7、样品8和样品9的电化学腐蚀曲线和XRD图谱。
图7为样品6、样品7、样品8、样品9的SEM图像,(a)-(d)为样品6的SEM图像,(e)、(f)为样品7的SEM图像,(g)-(i)为样品8的SEM图像,(j)-(l)为样品9的SEM图像。
图8为样品10的相关图像,(a)-(c)为样品10的SEM图像和EDS结果,(d)-(f)分别为TEM技术下得到的样品10的TEM、SAED、STEM和EELS图像。
图9为样品11的SEM图像,(a)-(c)为样品11的SEM图像。
图10为样品12的相关图像,(a)-(i)显示了样品12的微观结构及表面组成。
图11中为样品12和的样品13的XRD图像,(a)、(b)分别为样品13 和样品12的XRD图谱。
图12为样品13-样品17的相关图像,(a)-(c)为样品13的SEM图像;(d)、(e)和(f)分别为样品14、样品15和样品16表面的SEM图像;(g)-(i)为样品17的SEM图像及EDS成分分析结果。
图13为样品2和样品5作为锂离子电池和超级电容器电极材料的电化学性能测试结果图;在0.01V至3.0V之间对Li +/Li实施充放电试验。图(A)、(B)分别给出了样品2、样品5在充电速率为0.2mA/cm 2时前三次的充放电曲线和比电量;图(C)分别给出了样品2、样品5在充电速率为0.2mA/cm 2和5.0mA/cm 2的循环性能;图(D)分别给出了样品2、样品5在充电速率为1-52mA/cm 2区间不同充电速率下的面积比电量曲线;图(E)分别给出了样品2、样品5在充电速率为1-52mA/cm 2区间不同充电速率下的体积、面积及总质量对应的比容量曲线;图(F)分别给出了样品2、样品5的输出功率密度(power density)对能量密度(energy density)的Ragone图;作为比较,图中给出了文献记载的其它电极材料或储能器件的性能数据。
图14为样品10作为锂离子电池和超级电容器电极材料的电化学性能测试结果图;在0.01V至3.0V之间对Li +/Li实施充放电试验。图(A)、(B)分别给出了样品10在充电速率为0.2和2.0mA/cm 2时前三次的充放电曲线和比电量;图(C)给出了样品10在充电速率为0.2mA/cm 2和2.0mA/cm 2的不完全循环性能;图(D)给出了样品10在充电速率为2-42mA/cm 2区间不同充电速率下的体积、面积及总质量对应的比容量曲线;图(E)给出了样品10在扫描速率为50mV/s时1000次的CV循环性能曲线;图(F)给出了样品10的输出功率密度(power density)对能量密度(energy density)的Ragone图;作为比较,图中给出了文献记载的其它电极材料或储能器件的性能数据。
图15样品12作为锂离子电池和超级电容器电极材料的电化学性能测试结果图。若非特殊说明,均为在0.01V至2.5V之间对Li +/Li实施充放电试验。图(A)给出了样品12在充电速率为2.0mA/cm 2时前三次的充放电曲线和循环性能曲线;图(B)给出了样品12在充电速率为0.3、1.0和2.0mA/cm 2时首轮的充放电曲线和库伦效率;图(C)给出了样品12在充电速率为2-50mA/cm 2区间内不同充电速率下的面积比电量、比电容和体积比电容,以及根据不同速率下的 充放电曲线所计算的电阻;图(D)给出了样品12在扫描速率为50mV/s时10000次的CV循环性能曲线和相对应的电容保持率曲线;图(E)给出了样品12在完成10000次CV循环后的在不同电压区间进行的CV循环曲线;图(F)给出了新鲜的和完成上述长时间的循环性能测试后的样品12的输出功率密度(power density)对能量密度(energy density)的Ragone图;作为比较,图中给出了文献记载的其它电极材料或储能器件的性能数据。
具体实施方式
下面举实例具体说明本发明,但该实施例仅对本发明进行举例说明,其具体方式也应理解为为进行参考而提供,而不表示对本申请公开的发明范围进行限定或限制。除详细说明外,全部实施例均使用标准技术进行了实施或者能够使用标准技术进行实施,这对本领域技术人员来说为公知常用的。
对实施例中所提供的样品,均无需涂布及压片过程,直接切取一定面积的材料作为电极并在充满高纯氩气的手套箱中完成CR 2032型模拟电池的装配,其中对电极为金属锂,以溶解在体积比为1:1的乙烯碳酸酯(EC)和二甲基碳酸酯(DMC)混合溶剂中浓度为1mol/L的LiPF 6为电解液,以Whatman玻璃纤维作为隔膜,以上为全部的电池组件,不需要通常电池所用的支撑体或集流体。全部的电化学性能测定均是基于此组装成的CR 2032型模拟电池进行的,包括循环伏安法Cyclic voltammetry,CV)以及恒电流模式下(Galvanostatic charge/discharge)的充/放电试验。由于材料由含有不同理论电容量的活性材料杂化构成,故对测试结果的分析均是基于对材料的面积或体积进行的,计算方法遵循文献资料中的通用方法;值得注意的是,文献中制备电极时需要植入额外的集流体,在计算过程中往往只考虑单纯活性材料的体积,而在本发明的计算过程及计算结果中,所用体积均为包含集流体金属在内的整个电极的总体积。
利用SmartLab型X射线衍射仪(XRD)、JEOL JIB–4600F型场发射扫描电子显微镜(SEM)、JEOL JEM–2100F型球差校正的场发射透射电子显微镜(Cs-TEM)以及Micromeritics ASAP 2020型物理吸附仪等仪器测定所得纳米多杂化材料的结构形貌。
在具体的实施方式中,本发明提供了新颖的MnOOH纳米线和纳米片交织成的纳米薄膜层包裹三维介孔Cu@Cu 2O-MnO x核壳结构的两种杂化材料,MnOOH纳米片 交织成的纳米薄膜层包裹三维介孔Ni@NiO-MnO x核壳结构的杂化材料,MnO x纳米片或纳米棒交织成的纳米薄膜层包裹三维介孔Cu@Cu 2O-MnO x-Cu-C核壳结构的杂化材料,进而还提供了各自的制备方法、以及三种Cu-Mn纳米杂化材料作为电极材料的储能性能。同时,还在酸性盐溶液中采用同样的途径制备了Cu@Cu 2O-MnO x三维介孔结构材料,并评价了它的性能。
实施例1:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为50μm的Cu 30Mn 70合金箔,置于浓度为1.0mol/L的(NH 4) 2SO 4溶液中,工作电流密度为100mA/cm 2,或者置于浓度为0.2mol/L的(NH 4) 2SO 4溶液中,工作电流密度为50mA/cm 2。设置电化学工作站截止电压为0V,当工作电压逐渐升至截止电压时,反应结束。将得到的样品在去离子水中充分清洗后,于真空烘箱中充分干燥,此时得到三维介孔核壳构造的Cu@Cu 2O-MnO x纳米杂化结构,记作样品1和样品2。其中样品1的微观结构照片见图1(a),样品2的微观结构照片见图1(b)-(g),XRD谱图见图2曲线(a),孔径分布见图3。两种情况下所得的三维纳米介孔材料的主要相组成均为Cu 2O和Cu;具体到样品2,可见该三维双连续介孔骨架主要为单晶Cu@Cu 2O核壳结构形成,介孔孔径主要分布在3~30nm之间,介孔孔壁上分布有MnO x离子,Mn/Cu比例约为2~4wt.%,Cu/Cu 2O比例约为2/3。
实施例2:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为50μm的Cu 30Mn 70合金箔,置于浓度为0.2mol/L的Na 2SO 4溶液中。设置电化学工作站截止电压为0V,工作电流密度分别为50、20和10mA/cm 2,当工作电压达到截止电压时,反应结束。将得到的样品在去离子水中充分清洗后,于真空氛围中充分干燥,即分别得到表面均匀担载MnOOH纳米片、纳米网和纳米线的三维介孔核壳构造的Cu@MnO x-Cu 2O纳米杂化结构,记作样品3、样品4和样品5。其中样品3的微观结构照片见图4(a)、(b),XRD谱图见图5曲线(a);样品4的微观结构照片见图4(c)、(d),XRD谱图见图5曲线(b);样品5的微观结构照片见图4(e)-(m),XRD谱图见图2曲线(b)或图5曲线(c)。三种电流密度下所得三维纳米多孔MnOOH/Cu@MnO x-Cu 2O杂化材料的主要相组成均为Cu和Cu 2O,由两种主要结构构成:外包裹层为单层MnOOH低维纳米结构交织而成的纳米薄膜层;内层三维双连续介孔骨架主要为单 晶Cu@Cu 2O核壳结构形成。具体到样品5,纳米线的直径小至5nm,介孔孔径及孔壁厚度主要分布在10~40nm,介孔孔壁上分布有尺寸小于10nm的MnO x纳米粒子,整体结构的厚度比原始合金材料的厚度略小,杂化材料表层和介孔结构截面上Mn/Cu比例约为7~10wt.%和2~4wt.%,Cu/Cu 2O比例约为1/2~1/1.5。
实施例3:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为10μm的Cu 30Mn 70合金箔,置于浓度为0.2mol/L的NaCl溶液中。设置电化学工作站工作电流密度为6mA/cm 2,当工作电压逐渐升至所设置的截止电压点时(如附图6A所示),反应结束。将得到的各样品在去离子水中充分清洗后,于真空氛围中80~90℃的温度下充分干燥,即分别得到表面均匀担载MnOOH纳米片的三维介孔核壳构造的Cu@MnO x-Cu 2O纳米杂化结构,记作样品6(a:0V,90℃)、样品7(b:1st,80℃)、样品8(c:2nd,80℃)和样品9(d:0V,80℃)。其中样品6的微观结构照片见图7(a)-(d),XRD谱图见图6(B)曲线(a);样品7的微观结构照片见图7(e)、(f),XRD谱图见图6(B)曲线(b);样品8的微观结构照片见图7(g)-(i),XRD谱图见图6(B)曲线(c);样品9的微观结构照片见图7(j)-(l),XRD谱图见图6(B)曲线(d)。不同截止电压处或不同干燥温度下所获得的三维纳米多孔MnOOH/Cu@MnO x-Cu 2O杂化材料主要相组成均为Cu和Cu 2O,但Cu/Cu 2O及Mn/Cu的比例随截止电压变化而变化,它们也具有相似的形貌,由两种主要结构构成:外包裹层为单层MnOOH纳米片交织而成的纳米薄膜层,内层三维双连续介孔骨架主要为Cu@Cu 2O-MnO x核壳结构形成。
实施例4:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为50μm的Cu 30Mn 70合金箔,置于浓度为0.2mol/L的NaCl溶液中。设置电化学工作站截止电压为0V,工作电流密度为10mA/cm 2,当工作电压逐渐升至截止电压时,反应结束。将得到的样品在去离子水中充分清洗后,于40℃真空烘箱中充分干燥,即得到表面均匀担载MnOOH六边形纳米片的三维介孔核壳构造的Cu@MnO x-Cu 2O纳米杂化结构,记作样品10。其微观结构照片见图8,XRD谱图见图2曲线(c)。非晶态的MnOOH纳米片呈规则六边形形状,六边形厚度和边长分别约为20~40nm和500~700nm,介孔孔径及孔壁厚度主要分布在10~40nm,大孔孔径集中在80nm左右,在单晶Cu@Cu 2O 介孔孔壁上分布有不定形态的MnO x,整体杂化结构的厚度比原始合金材料的厚度略小,其外包单层膜的厚度不超过1μm,杂化材料表层和介孔结构截面上Mn/Cu比例约为6wt.%和3wt.%,结构中Cu/Cu 2O比例约为11/9。
实施例5:将实施例3中所制备的样品在400℃的空气氛围中焙烧2h后降至室温,升温速率为3℃/min,即得到表面均匀包裹单层MnO x纳米片构成的纳米薄膜层的三维介孔核壳构造的MnO x@CuO纳米杂化结构,记作样品11。其微观结构照片见图9,XRD谱图见图2曲线(d)。此时样品仍保持样品10的整体结构,厚度收缩约为30~35μm,晶相表现为单一CuO。
实施例6:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为50μm的Cu 30Mn 70合金箔,置于掺有0.1mol/L葡萄糖的0.2mol/L的NaCl溶液中。设置电化学工作站截止电压为-0.09V,工作电流密度为10mA/cm 2,当工作电压逐渐升至截止电压时,反应结束。将得到的样品在0.1mol/L的葡萄糖溶液中充分清洗和在真空烘箱进行初步干燥后置于具有流动氮气气流的管式炉中,以1℃/min的速率升至400℃恒温1h后降至室温;即得到表面均匀担载MnO x纳米片或纳米棒的三维介孔核壳构造的Cu@C-Cu-MnO x-Cu 2O纳米杂化结构,记作样品12,另外将焙烧前的样品记作样品13。其中样品12的微观结构照片见图10,XRD谱图见图11曲线(b);样品13的微观结构照片见图12(a)-(c),XRD谱图见图11曲线(a)。对于样品12,晶态的MnO x纳米片及少许纳米棒交织成纳米薄膜层包裹在三维双连续介孔结构表面,纳米棒的直径约为50nm,此外还有少许MnO x纳米粒子,介孔孔径及孔壁厚度主要分布在20~40nm,在单晶Cu@Cu 2O介孔孔壁上分布有结晶态的MnO x,亦伴有少量金属Cu及C物质在孔壁上,整体杂化结构的厚度比原始合金材料的厚度略小,其外包单层膜的厚度不超过1μm,杂化材料表层和介孔结构截面上Mn/Cu比例约为8wt.%和25wt.%;对于样品13,外包裹层为单层MnOOH纳米片交织而成的纳米薄膜层,内层三维双连续介孔骨架主要为Cu@Cu 2O-MnO x核壳结构形成。
实施例7:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为50μm的Cu 30Mn 70合金箔,置于浓度分别为0.2mol/L的Sr(NO 3) 2、NaNO 3和摩尔比为1:1的Na 2SO 4和NaNO 3的混合溶液中。设置 电化学工作站截止电压为0V,工作电流密度为10mA/cm 2,当工作电压逐渐升至截止电压时,反应结束。将得到的各样品在去离子水中充分清洗后,于40℃真空烘箱中充分干燥,即得到表面均匀担载MnOOH纳米片的三维介孔核壳构造的Cu 2O@MnO x纳米杂化结构,记作样品14、样品15和样品16。其中样品14的微观结构照片见图12(d),样品15的微观结构照片见图12(e),样品16的微观结构照片见图12(f)。此三种条件下,所得的三维纳米多孔杂化材料的主要相组成均为Cu 2O并由两种主要结构构成:外包裹层为单层MnOOH纳米片交织而成的纳米薄膜层,内层三维双连续介孔骨架主要为Cu 2O@MnO x核壳结构形成。
实施例8:常温下,利用三电极体系,以饱和甘汞电极作为参比电极,铂片作为对电极,工作电极连接厚度为10μm的Ni 30Mn 70合金箔,置于浓度为0.2mol/L的NaCl溶液中。设置电化学工作站工作电压为-1.0V,工作反应时间2~3h后反应结束。将得到的样品在去离子水中充分清洗后,于真空干燥器中充分干燥,即得到表面均匀担载MnOOH纳米片的三维介孔核壳构造的Ni@MnO x-NiO纳米杂化结构,记作样品17。其微观结构照片见图12(g)-(i)。样品厚度接近初始合金厚度,介孔孔径约分布在20~30nm。
实施例9:对样品2和样品5组装成的模拟电池在0.01-3.0V的电压区间采用二电极体系进行各项电化学性能测试,测试结果如图13所示。在作为锂离子电池的性能测试中,在与文献报道想接近的充电速率下,两个样品都表现除了较好的循环性能,其中样品2的首轮放电比电量达到4.36mAh/cm 2,样品5达到5.50mAh/cm 2,这些都远高于文献中报道值,如在0.016~0.8mA/cm 2的速率下的比电量为0.06~1.3mAh/cm 2(Adv.Mater.24,5166–5180(2012));样品的面积比电量与充放电速率相关,尤其是样品5。在作为超级电容器的性能测试中,样品在低充放电速率下都表现除了较大的比电容量,其中在1mA/cm 2时,样品2的比容量为120F/cm 3,样品5的为样品2的8倍,二者均表现出和其它电容器相近的功率密度但远远高于后者的能量密度,尤其是样品5。
实施例10:对样品10组装成的模拟电池在0.01-3.0V的电压区间采用二电极体系进行各项电化学性能测试,测试结果如图14所示。在作为锂离子电池的性能测试中,在应用与文献报道值接近的充电速率下,样品2的首轮放电比电量达到7.19mAh/cm 2,约为文献值的3~10倍,将此充放电速率提高至10倍时, 样品的比电量略微下降,仍远高于文献报道中的值(Adv.Mater.24,5166–5180(2012)),而且在此速率下表现出相当优越的循环性能,但随着循环次数的增加,性能逐渐下降至一较稳定的值,此值仍然高于许多文献中报导的值。在作为超级电容器的性能测试中,样品在低充放电速率下都表现出较大的比容量,其中在2mA/cm 2时的比电容量约为816F/cm 3,1000次CV循环测试后其电容量保持率约为72.3%,同时表现出相当高的功率密度和能量密度,比在保持和活性碳微小超级电容器相当或略好的功率密度下,能量密度提高了几十甚至上百倍。
实施例11:对样品12组装成的模拟电池在0.01-2.5V的电压区间采用二电极体系进行各项电化学性能测试,测试结果如图15所示。在作为锂离子电池的性能测试中,即使应用远大于文献报道的充放电速率,样品12仍显示出很大的面积比电量,首轮放电比电量在很宽的速率范围内(0.3~2.0mA/cm 2)都能超过10mAh/cm 2,为文献报道值的几倍乃至几十倍,而且表现出十分优越的循环能力(文献中不超过150次),但随着循环次数的增加,比电量逐渐下降,此值仍然高于许多文献中报导的值。在作为超级电容器的性能测试中,样品在2~50mA/cm 2氛围内的每个充放电速率下具有接近的电阻(此电阻小于文献的报道值),但在低充放电速率时具有大的比电容量,如在2mA/cm 2时的比电容量超过1300F/cm 3,1000次CV循环测试后其电容量保持率约为75%,10000次后仍高于50%,CV循环曲线在不同的电压区间具有相似的形状,它还同时表现出相当高的功率密度和能量密度,甚至在经过长期的充放电循环测试后仍具有比其它材料更加优越的储能性能。

Claims (10)

  1. 纳米多孔金属/金属氧化物杂化结构材料,其特征在于,材料基本为核壳结构或负载结构;外层壳或负载的材料为纳米材料;内部核或载体为三维双连续介孔材料,尤其是金属和金属氧化物的杂化材料。
  2. 按照权利要求1所述的纳米多孔金属/金属氧化物杂化结构材料,其特征在于,外层壳或负载的材料为相对较低电势的金属氧化物质,内部核或载体至少包括电势相对较高的金属和金属氧化物质的杂化结构材料。
  3. 按照权利要求1所述的纳米多孔金属/金属氧化物杂化结构材料,其特征在于,外层壳材料,为低维度纳米结构可以是一维纳米线或纳米棒、二维纳米片状结构,或者两种低维度纳米结构的堆积层;若为堆积层则具有大孔结构;
    内部核多孔架构的介孔孔壁上分布有低电化学势金属所对应的氧化物质的零维纳米粒子;初始形成的低维度纳米结构的氧化物材料呈不定形晶态,组成介孔孔壁的核壳结构为单晶晶相。
  4. 制备权利要求1-3任一项所述的纳米多孔金属/金属氧化物杂化结构材料的方法,其特征在于,采用电化学合金途径原位制备,具体包括以下步骤:以包含至少两种金属元素的合金箔为原料,在以惰性易溶盐为电解质的水溶液中,利用三电极体系,所述的合金箔为工作电极,在腐蚀电压的工作范围内通电流进行电化学反应;
    合金箔中金属元素中相对高电势的金属元素A在电化学过程中可以固定在工作电极上,而电势相对较低的金属元素B在电化学过程中形成金属阳离子B溶解在电解液中,电解液中含有的阴离子能够与金属阳离子B反应生成沉淀,进而在电流的作用下形成金属氧化化合物纳米材料组装或负载在工作电极的金属箔表面;而有的金属元素A在反应体系和空气条件下,会部分或全部被氧化成氧化物。
  5. 按照权利要求3的方法,其特征在于,腐蚀电压(位)是由金属本身在反应体系的性质决定,给定一个溶液体系,它的电压(位)即由金属变为金属氧化物的电位就已经确定;所述腐蚀电压的工作范围至少包含合金中一种金属元素的腐蚀电位,且合金中至少还有另一种金属元素的腐蚀电压(位)高于所述腐蚀电压工作范围的截止电压即电压范围的最高值的电压。
  6. 按照权利要求3的方法,其特征在于,惰性易溶盐为:本身不参与所述的电化学反应的可溶性盐,为正盐、碱式盐或酸式盐中的一种或几种;
    若采用正盐作为电解质时,得到的整体是核壳结构;外层壳为相对低电化学势金属的氧化物质纳米材料;内部核为三维双连续介孔材料,是金属和金属氧化物的杂化材料。
  7. 按照权利要求3的方法,其特征在于;在电解质水溶液中,还添加其它可溶性有机物质、表面活性剂等中的一种或几种;或/和合金箔中还含有非金属、类金属或卤族元素。
  8. 按照权利要求3的方法,其特征在于;进一步还包括,对所得的产品进行后处理,包括不同温度下、空气或真空干燥器或真空烘箱中干燥,或惰性气体或空气中焙烧,改变最终杂化材料的组成或局部形貌特征。
  9. 权利要求1所述的纳米多孔金属/金属氧化物杂化结构材料的应用,在电极中应用。
  10. 一种电极,其特征在于,包括权利要求1所述的纳米多孔金属/金属氧化物杂化结构材料。
PCT/CN2018/088824 2017-11-13 2018-05-29 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用 WO2019091096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711115560.1 2017-11-13
CN201711115560.1A CN107910193B (zh) 2017-11-13 2017-11-13 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用

Publications (1)

Publication Number Publication Date
WO2019091096A1 true WO2019091096A1 (zh) 2019-05-16

Family

ID=61845162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088824 WO2019091096A1 (zh) 2017-11-13 2018-05-29 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用

Country Status (2)

Country Link
CN (1) CN107910193B (zh)
WO (1) WO2019091096A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910193B (zh) * 2017-11-13 2020-04-28 吉科猛 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用
CN108807889B (zh) * 2018-05-24 2021-05-18 天津工业大学 一种多孔铁掺杂钒氧化物电极材料的制备方法及其应用
CN112233907B (zh) * 2020-09-03 2022-05-24 吉林大学 一种CuO/MnO2复合纳米材料及其制备方法
CN112349875B (zh) * 2020-10-23 2021-08-10 四川大学 基于中空管状三维纳米多孔结构的锂离子电池铜-铜氧化物一体化负极及制备方法
CN113511629B (zh) * 2021-05-07 2022-06-17 桂林电子科技大学 一种含Bi和Mo的镁基粉体复合制氢材料及其制备方法和应用
CN113903890B (zh) * 2021-06-09 2023-07-14 天津大学 一种集成型纳米多孔氧化钴/磷化二钴杂化材料、制备及储能应用
CN114300411A (zh) * 2021-11-11 2022-04-08 中国科学院深圳先进技术研究院 一种复合材料及其制作方法、半导体封装结构
CN115498142A (zh) * 2022-10-20 2022-12-20 天津大学 一种自支撑电极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605369A (zh) * 2012-01-14 2012-07-25 天津大学 一种非晶纳米多孔二氧化钛复合材料及其沉积硫化镉的方法
CN104051161A (zh) * 2014-07-11 2014-09-17 天津工业大学 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极
CN104946921A (zh) * 2015-05-14 2015-09-30 大连理工大学 一种强永磁性纳米多孔Fe-Pt合金及其制备方法
CN105603483A (zh) * 2015-12-31 2016-05-25 浙江大学 一种钛基合金抗高温氧化涂层的制备方法
CN107910193A (zh) * 2017-11-13 2018-04-13 吉科猛 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325999B (zh) * 2013-05-22 2015-06-03 吉林大学 无缝集成的金属基底/纳米多孔金属/金属氧化物复合电极材料的制备方法和应用
CN104419840B (zh) * 2013-09-01 2016-11-09 济南大学 反负载型纳米多孔金/金属氧化物复合材料及其制备方法
CN104815638B (zh) * 2015-05-07 2017-04-05 太原理工大学 一种非晶纳米多孔二氧化钛负载石墨烯光催化薄膜的制备方法
CN106158408B (zh) * 2016-07-25 2018-06-19 合肥工业大学 一种NiOOH@CuO/Cu2O复合纳米片阵列薄膜及其制备方法和应用
CN106226382B (zh) * 2016-08-08 2018-07-31 北京科技大学 纳米多孔铜/Cu(OH)2纳米线阵列传感器电极材料及其制备方法
CN106563463B (zh) * 2016-11-02 2019-01-11 南昌大学 一种铜氧化物表面复合锰氧化层材料的制备方法
CN106967997B (zh) * 2017-02-24 2019-04-19 天津工业大学 一种高效自支撑催化电极及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605369A (zh) * 2012-01-14 2012-07-25 天津大学 一种非晶纳米多孔二氧化钛复合材料及其沉积硫化镉的方法
CN104051161A (zh) * 2014-07-11 2014-09-17 天津工业大学 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极
CN104946921A (zh) * 2015-05-14 2015-09-30 大连理工大学 一种强永磁性纳米多孔Fe-Pt合金及其制备方法
CN105603483A (zh) * 2015-12-31 2016-05-25 浙江大学 一种钛基合金抗高温氧化涂层的制备方法
CN107910193A (zh) * 2017-11-13 2018-04-13 吉科猛 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用

Also Published As

Publication number Publication date
CN107910193A (zh) 2018-04-13
CN107910193B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
Wang et al. Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors
WO2019091096A1 (zh) 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用
Liu et al. Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes
Shang et al. Synthesis of hollow ZnCo2O4 microspheres with enhanced electrochemical performance for asymmetric supercapacitor
Cao et al. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries
Cao et al. Hierarchical three-dimensional flower-like Co 3 O 4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries
Ruan et al. Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors
Quan et al. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance
Feng et al. Carbon-based core–shell nanostructured materials for electrochemical energy storage
Cheng et al. One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@ Ni3S4 core/shell submicrospheres for high-performance supercapacitors
Zhang et al. Self-assembled Cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties
Wang et al. Morphological control and electrochemical performance of NiCo2O4@ NiCo layered double hydroxide as an electrode for supercapacitors
Li et al. High performance electrochemical capacitor materials focusing on nickel based materials
Ran et al. Boosting the charge storage of layered double hydroxides derived from carbon nanotube-tailored metal organic frameworks
Sun et al. Simple synthesis of honeysuckle-like CuCo2O4/CuO composites as a battery type electrode material for high-performance hybrid supercapacitors
Chen et al. Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance
Wang et al. Facile preparation and sulfidation analysis for activated multiporous carbon@ NiCo2S4 nanostructure with enhanced supercapacitive properties
Guan et al. Core/shell nanorods of MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors
Lan et al. Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors
Pore et al. Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices
Chen et al. An ultrafast supercapacitor built by Co3O4 with tertiary hierarchical architecture
Chen et al. Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries
Karuppaiah et al. Formation of one dimensional nanorods with microsphere of MnCO3 using Ag as dopant to enhance the performance of pseudocapacitors
Huang et al. A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors
Li et al. Cactus-like ZnS/Ni3S2 hybrid with high electrochemical performance for supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875768

Country of ref document: EP

Kind code of ref document: A1