WO2019091029A1 - Procédé de test ultrasonore à réseau à commande de phase de cordon de soudure d'un boîtier soudé à l'aide d'un alliage d'aluminium - Google Patents

Procédé de test ultrasonore à réseau à commande de phase de cordon de soudure d'un boîtier soudé à l'aide d'un alliage d'aluminium Download PDF

Info

Publication number
WO2019091029A1
WO2019091029A1 PCT/CN2018/078110 CN2018078110W WO2019091029A1 WO 2019091029 A1 WO2019091029 A1 WO 2019091029A1 CN 2018078110 W CN2018078110 W CN 2018078110W WO 2019091029 A1 WO2019091029 A1 WO 2019091029A1
Authority
WO
WIPO (PCT)
Prior art keywords
phased array
aluminum alloy
welded
weld
ultrasonic testing
Prior art date
Application number
PCT/CN2018/078110
Other languages
English (en)
Chinese (zh)
Inventor
朱和珍
朱俊阳
徐高亮
刘佳佳
周春
Original Assignee
江苏金鑫电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金鑫电器有限公司 filed Critical 江苏金鑫电器有限公司
Publication of WO2019091029A1 publication Critical patent/WO2019091029A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the invention relates to the technical field of welding of aluminum alloy welded casings, in particular to the quality inspection technology of weld seams.
  • the actual method of inspecting the weld is to place the work on a workbench that can control its movement, and the inspection worker holds a common ultrasonic instrument, and the inspection workman observes the dynamic waveform information through the display screen on the ultrasonic system, if found on it.
  • the mark is marked there. Due to the long time of ordinary ultrasonic testing, the influence of human factors is large, and the use of the couplant remover is time consuming and laborious. For example, a 18-meter spiral welded pipe with a weld length of 40 meters and two ordinary ultrasonic sensors are tested at the same time, each requiring 90 minutes.
  • Phased Array Ultrasonic Testing is a method of applying different time delays (or voltages) to each unit of an array probe when transmitting or receiving ultrasonic waves according to a set focusing law, and detecting the movement of the sound beam by beamforming.
  • Ultrasonic inspection imaging technology for functions such as deflection and focusing.
  • the phased array ultrasound host probe consists of 64 piezoelectric wafers. Each piezoelectric wafer forms a transmitting/receiving array element, and then under the excitation of the transmitting circuit, the phase difference formed by the phase relationship of each transmitting or receiving ultrasonic wave reaching a point in the object is changed by pulse delay to achieve the deflection of the beam. Focus to achieve detection.
  • the ordinary phased array ultrasonic testing method can not achieve the intended purpose, and also causes missed or over-detected.
  • the object of the present invention is to provide a phased array ultrasonic testing method for a weld of an aluminum alloy welded casing which is convenient, fast, accurate and convenient for later analysis.
  • the invention adopts a phased array probe perpendicular to the weld seam and performs a linear scan along the straight pipe weld direction; the phased array probe is a phased array probe conforming to JB/T 11731.
  • phased array probe The parameters of the phased array probe are shown in the following table:
  • the present invention proposes a preferred detection scheme for selecting the parameters of the corresponding phased array probe according to the maximum thickness of the welded pipe to be inspected, which is convenient, fast and accurate, and is convenient for later analysis. purpose.
  • phased array ultrasonic method of the present invention can be used to detect the workpiece.
  • a 18-meter spiral welded pipe with a weld length of 40 meters can be completed by using the above phased array ultrasonic method of the present invention for one person for 30 minutes.
  • phased array ultrasound is a sector scan, the influence of human factors is small, safe and environmentally friendly, high efficiency, high accuracy, and storable. This saves time and precision and ensures the quality of the product. Then, the defects found are re-examined by ordinary ultrasound and manual dissection.
  • the detection efficiency can reach 3 to 5 times of ordinary ultrasonic detection and radiation detection; it can also cross-work, there is no specific requirement for environment and time; at the same time, all inspection records are digitally stored for easy traceability and preservation.
  • the present invention uses two phased array probes for synchronous linear scanning, and two phased array probes are respectively disposed on the same side of the welded pipe weld, and on both sides of the straight pipe weld.
  • the linear scanning speed is not more than 100 mm/s along the axis of the pipe. Improve the efficiency of testing and save time for testing.
  • the speed of the straight scan is 1 to 2 m/min along the axial direction of the straight pipe. This not only ensures the work efficiency, but also obtains a stable data for analysis and judgment.
  • the speed of the linear scanning is 1 to 2 m/min along the direction of the weld of the steel pipe. While ensuring work efficiency, a stable data can be obtained for analysis and judgment.
  • the 10 ° C ⁇ 35 ° C water with pure, no bubbles and impurities is used as the coupling agent of the phased array probe. It is coupled with water and has no pollution to the environment. Under the water temperature of 10 °C ⁇ 35 °C, water transmits better to sound waves, and the obtained data is more accurate.
  • test environment should not be carried out at locations that affect the normal operation of ultrasonic instruments and auxiliary electrical equipment, such as strong magnetic, vibration, high frequency, large dust, corrosive gases and noisy locations.
  • the temperature and humidity of the working point should be controlled within the range allowed by the testing equipment, auxiliary electrical equipment and materials.
  • the surface of the workpiece to be inspected is free from dust, impurities and pollutants, and the surface roughness is ⁇ Ra6.3.
  • the control movement speed of this example is 80 mm/s.
  • the shape and size of the weld profile, the corresponding standard calibration block and the comparison verification test block are selected for verification.
  • Sensitivity adjustment The amplitude of the ⁇ 2 transverse through hole with a depth of 10 mm on the calibration test block is calibrated to 80%, and the sensitivity calibration is completed. This process uses the above coupling agent.
  • TCG curve production select the TCG production module on the phased array ultrasound system, adjust the amplitude of the ⁇ 2 hole at the depth of 10mm to 80%, adjust the green line to the two red dotted boxes, click OK, add the next One point, adjust the amplitude of the ⁇ 2 transverse through hole at depth 20mm to 80%, and adjust the inner green line to the two red dotted lines. Add the first point, click OK, and the TCG curve is completed.
  • the maximum depth of the transverse hole is greater than 2.2 times the thickness of the plate.
  • the phased array probe is JB/T 11731 compliant.
  • a phased array probe consists of an array of multiple wafers.
  • phased array probe conforms to JB/T 11731, and the phased array probe consists of multiple wafers.
  • the parameters of the phased array probe are shown in the following table:
  • the wafer pitch refers to the distance between the same side or center of two adjacent wafers.
  • the deflection direction aperture size refers to the size of a set of wafers used by each probe.
  • the following is an example of longitudinal seam welding, and the maximum thickness of the straight pipe is 6 mm ⁇ T ⁇ 15 mm.
  • Two phased array probes are used for synchronous linear scanning.
  • the two phased array probes are respectively arranged on the same side of the straight pipe weld and on both sides of the weld.
  • the time gain correction is to gain correction of the echoes of the same size reflector at different sound paths to achieve the same amplitude.
  • the scan surface should be marked on the workpiece scan surface before the scan.
  • the mark content includes at least the scan start point and the scan direction.
  • Two phased array probes are used for synchronous linear scanning.
  • the two phased array probes are respectively arranged on the same side of the steel pipe weld and on both sides of the steel pipe weld.
  • the two phased array probe wafer arrays are oriented perpendicular to the probe's direction of movement or at a stable angle.
  • the leading edge of the probe leaves a certain distance from the center of the weld and translates along the axis of the weld to obtain information on the weld within the coverage of the sound beam.
  • the above coupling agent is continuously supplied by a water pump during the scanning process.
  • the software should have at least A, S, B, and C display functions, and have the function of positioning, addressing, and analyzing defects on the scanned image.
  • It can store and recall A, S, B, and C images, and can copy stored detection data to external storage space.
  • the software should have the Focus Rule function A, CG calibration function, and TCG (or DAC) calibration function.
  • the instrument should be capable of storing and resolving information about the relative position of each A-scan signal, such as the encoder position.
  • the off-line analysis software should be able to view the key parameters of the test.
  • the maximum amplitude of the defect does not exceed 100% of the full screen and is greater than 20%, the maximum length of the A-scan echo amplitude reduced by 6 dB at different angles of the defect is found as the length of the defect. If the maximum amplitude of the defect is less than 20% higher than 10%, then the defect is found at different angles. The A-scan echo amplitude is reduced to 10% to measure the defect indication length by the 10% absolute sensitivity method.
  • the maximum amplitude of the defect exceeds 100% of the full screen, the maximum length of the defect at which the A-scan echo amplitude is reduced to 50% of the full screen is found as the length of the defect.
  • Two defects adjacent in the length direction of the defect have a lengthwise spacing smaller than the smaller defect length and the distance between the two defects in the direction perpendicular to the length of the defect is less than 5 mm, and should be treated as a defect, and the sum of the two defect lengths is taken as Indicate the length (interval count). If the two defects are overlapped in the longitudinal direction projection, the distance between the left and right end points of the two defects projected in the longitudinal direction is taken as the indicated length.
  • Defect identification marking the defect location of the inspected part
  • the measurement of the weld defect is carried out using a tape measure, and the surface of the product is marked with information including the length, depth and grade of the defect.
  • phased array ultrasonic testing speed is faster than other detection methods, such as 18 m workpiece, phased array ultrasonic testing takes 30 minutes, and ordinary ultrasonic testing takes 90 minutes.
  • phased array ultrasonic testing is less affected by artificial factors, while ordinary ultrasonic testing and X-ray testing are greatly affected by the level of artificial defects.

Abstract

L'invention concerne un procédé de test ultrasonore à réseau à commande de phase d'un cordon de soudure d'un boîtier soudé à l'aide d'un alliage d'aluminium, qui se rapporte au domaine technique des cordons de soudure de boîtiers soudés à l'aide d'un alliage d'aluminium et, plus précisément, à des technologies de détection de qualité des cordons de soudure. Un contrôle de balayage linéaire est réalisé le long d'une direction de cordon de soudure d'un tube droit à l'aide d'une sonde de réseau à commande de phase perpendiculaire au cordon de soudure. La présente invention concerne un procédé de test optimisé permettant de sélectionner des paramètres d'une sonde de réseau à commande de phase correspondante en fonction de l'épaisseur maximale d'un tube soudé détecté, ce qui permet d'atteindre les objectifs de commodité, de rapidité et de précision, ainsi que l'objectif de faciliter une analyse ultérieure.
PCT/CN2018/078110 2017-11-08 2018-03-06 Procédé de test ultrasonore à réseau à commande de phase de cordon de soudure d'un boîtier soudé à l'aide d'un alliage d'aluminium WO2019091029A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711087825.1A CN107894458A (zh) 2017-11-08 2017-11-08 铝合金焊接壳体焊缝的相控阵超声检测方法
CN201711087825.1 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019091029A1 true WO2019091029A1 (fr) 2019-05-16

Family

ID=61804828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078110 WO2019091029A1 (fr) 2017-11-08 2018-03-06 Procédé de test ultrasonore à réseau à commande de phase de cordon de soudure d'un boîtier soudé à l'aide d'un alliage d'aluminium

Country Status (2)

Country Link
CN (1) CN107894458A (fr)
WO (1) WO2019091029A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380955A (zh) * 2018-12-31 2020-07-07 中国科学院沈阳自动化研究所 基于超声相控阵的增材制造零件缺陷的检测方法
CN111505118B (zh) * 2020-04-27 2023-07-21 润电能源科学技术有限公司 检测焊缝的方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115963A (zh) * 2013-01-29 2013-05-22 上海中油天宝巴圣钢管有限公司 电阻焊管焊缝爬波检测方法及其爬波探头
CN104297340A (zh) * 2014-09-24 2015-01-21 中国能源建设集团安徽电力建设第一工程公司 一种基于相控阵超声波探伤仪的小径管无损检测方法
CN104849349A (zh) * 2015-05-18 2015-08-19 田国良 采用相控阵超声组合技术检测薄壁小径管焊缝的方法
CN105353035A (zh) * 2015-11-12 2016-02-24 青岛发现检验技术咨询有限公司 一种利用相控阵对tky管节点的检测方法
JP2016074004A (ja) * 2014-10-07 2016-05-12 Jfeスチール株式会社 電縫溶接部の中温域のクリープ特性に優れた高強度電縫鋼管の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359976A (zh) * 2014-08-25 2015-02-18 中国海洋石油总公司 海底管道环焊缝缺陷高度精确定量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115963A (zh) * 2013-01-29 2013-05-22 上海中油天宝巴圣钢管有限公司 电阻焊管焊缝爬波检测方法及其爬波探头
CN104297340A (zh) * 2014-09-24 2015-01-21 中国能源建设集团安徽电力建设第一工程公司 一种基于相控阵超声波探伤仪的小径管无损检测方法
JP2016074004A (ja) * 2014-10-07 2016-05-12 Jfeスチール株式会社 電縫溶接部の中温域のクリープ特性に優れた高強度電縫鋼管の製造方法
CN104849349A (zh) * 2015-05-18 2015-08-19 田国良 采用相控阵超声组合技术检测薄壁小径管焊缝的方法
CN105353035A (zh) * 2015-11-12 2016-02-24 青岛发现检验技术咨询有限公司 一种利用相控阵对tky管节点的检测方法

Also Published As

Publication number Publication date
CN107894458A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
JP4839333B2 (ja) 超音波検査方法および超音波検査装置
US8453509B2 (en) Method for the non-destructive testing of a test object by way of ultrasound and apparatus therefor
WO2020048373A1 (fr) Procédé de détection non destructive de tube à paroi mince de diamètre grand et intermédiaire en fonction d'un détecteur de défauts à ultrasons en réseau à commande de phase
CN110018241A (zh) 基于超声相控阵的大型厚壁容器焊接接头缺陷的检测方法
CN105181798A (zh) 一种建筑钢结构焊缝超声相控阵检测工艺
EP2669672B1 (fr) Appareil et procédé pour inspecter un tube
CN108414617A (zh) 铁素体类钢小径管对接环焊缝相控阵超声检测方法
CN105699492A (zh) 一种用于焊缝检测的超声成像方法
CN108414622A (zh) 不锈钢管对接焊缝相控阵超声检测方法
JP2007046913A (ja) 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置
JP2013156104A (ja) 溶接部の超音波探傷装置及び超音波探傷方法
CN111174894B (zh) 一种激光超声横波声速测量方法
CN108008014B (zh) 一种用于小口径管异种钢对接焊缝层间未熔合缺陷的检测装置和检测方法
CN102980947A (zh) 用于检查方形棒的相控阵无损检查系统及其校准方法
WO2019091029A1 (fr) Procédé de test ultrasonore à réseau à commande de phase de cordon de soudure d'un boîtier soudé à l'aide d'un alliage d'aluminium
CN111650281A (zh) 一种用于杆塔焊缝的超声波相控阵检测方法
JP2007322350A (ja) 超音波探傷装置及び方法
WO2015111143A1 (fr) Dispositif de détection ultrasonore de défaut pour inspection de soudures, procédé de détection ultrasonore de défaut pour inspection de soudures et procédé de fabrication de structure de véhicule ferroviaire les utilisant
Pugalendhi et al. Use of Phased Array Ultrasonic Testing (PAUT) & Time Of Flight Diffraction (TOFD) in Lieu of Radiography Testing on ASME U Stamp Pressure Vessel fabrication Projects
CN103207240B (zh) 一种斜探头超声场纵向声压分布的测量方法
CN103217485B (zh) 一种斜探头超声场声压分布的测量试块
CN113834874A (zh) 基于civa仿真及分析接管角焊缝缺陷的方法
WO2010019039A1 (fr) Procédé et dispositif de contrôle faisant appel aux ultrasons
JPH11248690A (ja) 超音波探傷装置
CN110220977A (zh) 基于模式转换波的管道结构tofd检测近表面盲区抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876007

Country of ref document: EP

Kind code of ref document: A1