WO2019090972A1 - 一种轴向柱塞泵及马达用磁性滑靴副及控制方法 - Google Patents

一种轴向柱塞泵及马达用磁性滑靴副及控制方法 Download PDF

Info

Publication number
WO2019090972A1
WO2019090972A1 PCT/CN2018/073223 CN2018073223W WO2019090972A1 WO 2019090972 A1 WO2019090972 A1 WO 2019090972A1 CN 2018073223 W CN2018073223 W CN 2018073223W WO 2019090972 A1 WO2019090972 A1 WO 2019090972A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding shoe
coil
swash plate
pair
iron core
Prior art date
Application number
PCT/CN2018/073223
Other languages
English (en)
French (fr)
Inventor
邓海顺
杨勇康
王海峰
王庆春
毛飞宇
汪春燕
何士举
王涛
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Priority to US16/203,618 priority Critical patent/US10371130B2/en
Publication of WO2019090972A1 publication Critical patent/WO2019090972A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • F04B1/126Piston shoe retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating

Definitions

  • the invention relates to the technical field of an axial piston pump and a motor, and in particular to an axial piston pump and a magnetic sliding shoe pair for a motor and a control method thereof.
  • the axial piston pump/motor is one of the most important power components and actuators in the hydraulic system. It is widely used in industrial, agricultural, coal, military and other hydraulic systems. It is the most widely used hydraulic component in modern hydraulic components. one. At the same time, due to the complicated structure of the axial piston pump/motor and the high requirements on the manufacturing process and materials, it is one of the highly technical hydraulic components.
  • the sliding shoe pair is one of the key friction pairs of the axial piston pump/motor, and is the direct bearer of the oil pressure in the plunger chamber, which is extremely easy to wear and fail. Therefore, the underside of the shoe must ensure the necessary lubrication state, and a certain thickness of the oil film is formed to ensure liquid lubrication, thereby preventing the shoe from directly contacting the swash plate. Lubricating oil film should not be too thin, too thin, it is easy to wear or burn out; lubricating oil film should not be too thick, otherwise it will reduce the volumetric efficiency of the plunger pump, and even can not establish the pressure corresponding to the load.
  • the sliding structure of the conventional axial piston pump/motor adopts spring force, hydraulic pressure and hydraulic pressure after decompression through the orifice to form a static pressure support, so that the pressing force is slightly larger than the separation force to ensure the plunger pressure. Tight on the swash plate.
  • the existing axial piston pump/motor presses the return disk through a spring on the drive shaft, and the return disk presses the shoe and the plunger, resulting in complicated force on the return disk and high damage rate.
  • the invention patent of the application No. 201510092027.2 discloses an axial piston pump and a sliding shoe pair pre-tightened by an electromagnetic force of a motor, comprising a plunger and a swash plate, one end of the plunger being in contact with the surface of the swash plate through a sliding shoe;
  • the back surface of the swash plate is provided with a boss on which a coil is wound, and the coil is electrically connected to an external AC power source.
  • the invention patent utilizes electromagnetic force to provide pre-tightening force, effectively solves the problem that the conventional multi-row axial piston pump or the double-side driving plunger motor has difficulty in designing the traditional sliding shoe pair, and optimizes the balanced multi-row axial plunger.
  • the structure of the pump or the double-sided drive plunger motor have the following problems still need to be resolved:
  • the electromagnetic force uses the suction force to adsorb the sliding shoe pair on the swash plate.
  • the electromagnetic force increases, and the oil film thickness can only be maintained by the oil film itself, thereby increasing the difficulty of maintaining the stable oil film thickness.
  • the electromagnetic force distribution is not ideal, and the electromagnetic force fluctuates greatly along the circular motion direction of the sliding pair, which is not conducive to the stable operation of the sliding shoe pair.
  • the electromagnetic force is used in a single way, and only the sliding shoe can be absorbed, and the force of the sliding shoe in the complicated working process of the axial piston pump/motor cannot be adapted, and the wear condition of the bearing surface of the sliding shoe is not improved.
  • An object of the present invention is to provide an axial piston pump and a magnetic sliding shoe pair for a motor and a control method thereof in order to solve the above problems.
  • the current regulation makes the slippery pair work less fluctuating; the magnetic field generated by the energized coil and the induced magnetic field generated by the coil kit on the plunger are adapted to the complex force of the sliding shoe when the axial piston pump/motor is working.
  • an axial piston pump and a magnetic sliding shoe pair for a motor and a control method thereof including a main iron core, a secondary iron core, a coil, a swash plate, a micro-molding hole, an annular pressure plate,
  • the sliding shoe, the coil kit, the plunger, the cylinder block, the spring, the transmission shaft and the distribution plate are characterized in that: a main iron core is arranged at a central position of the back surface of the swash plate, and two symmetrically distributed on both sides of the main iron core
  • the secondary iron cores are respectively located in the middle of the low pressure zone and the high pressure zone of the working area of the plunger pair, and the coil is wound around the main iron core and the secondary iron core, and the coil is electrically connected to the external alternating current power source.
  • the plunger is sleeved with a coil set, the coil set and the plunger are provided with an interference fit, and the coil set is a closed coil.
  • the swash plate is formed with a micro-shaped hole on the annular bearing surface in contact with the sliding shoe.
  • the secondary cores are symmetrically distributed on both sides of the main core, and the diameter and height of the secondary core are smaller than the main core.
  • the micro-shaped holes of the swash plate bearing surface are hemispherical.
  • the entire process can be adjusted to control the current of the coil on the main core.
  • the invention adopts electromagnetic force to press the sliding shoe pair on the swash plate in the form of suction to achieve the magnetic pre-tightening during the initial movement of the sliding shoe pair, and can generate a repulsive force when the oil film is too small, which can effectively prevent the oil film from being too thin.
  • the electromagnetic induction principle and the electromagnetic force suction and repulsive force conversion process provide feedback for the work of the magnetic sliding shoe pair to adapt to the complicated working condition of the axial piston pump/motor.
  • the present invention is provided with a main iron core at the center of the back surface of the swash plate, and two secondary iron cores are symmetrically distributed on both sides of the main iron core, respectively, which are respectively located in the working area of the plunger pair.
  • the middle of the zone and the high-pressure zone area so that the working condition of the sliding shoe pair is matched, the coil is wound around the iron core, and according to the complicated condition of the high and low pressure of the plunger cavity, the current of different sizes is introduced, the electromagnetic force component is improved, and the force is reduced.
  • the fluctuation of the electromagnetic force in the direction of the circular motion of the sliding shoe ensures the stable working state of the sliding shoe pair.
  • the micro-forming hole is processed on the swash plate according to the invention, which reduces the processing difficulty and improves the processing precision; improves the bearing surface of the sliding shoe in contact with the swash plate, and improves the relationship between the sliding shoe pair and the swash plate
  • the oil film stiffness reduces the friction coefficient and improves the wear of the bearing surface of the shoe.
  • micro-shaped hole on the swash plate proposed by the invention makes the sliding shoe pair more likely to generate negative feedback during the working process, so that the transition between the electromagnetic force suction force and the repulsive force is more sensitive.
  • Figure 1 is a schematic view showing the structure of an assembly of the present invention.
  • Figure 2 is a schematic view showing the structure of the swash plate-slide portion of the present invention.
  • Figure 3 is a schematic view showing the distribution of the core of the back of the swash plate of the present invention.
  • Figure 4 is a schematic view showing the structure of the swash plate bearing surface of the present invention.
  • Figure 5 is a schematic view showing the structure of the shoe pair of the present invention.
  • FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 an axial piston pump and a magnetic sliding shoe pair for a motor and a control method thereof, including a main iron core 1 , a secondary iron core 2 and a coil 3 .
  • swash plate 4 The main core 1 is provided at the center of the back side, and there are two identical sub-cores 2 at the symmetric positions on both sides of the main core, respectively located in the middle of the low-pressure zone and the high-pressure zone of the plunger sub-working area, the main core
  • the coil 3 is wound around both the 1 and the sub-core 2, and the coil is connected to an external AC power source, and the micro-molding hole 5 is machined on the bearing surface of the swash plate.
  • the axial piston pump/motor includes a transmission shaft 12, a cylinder 10, and a distribution plate 13.
  • One end of the transmission shaft 12 is disposed in the cylinder 10, connected to the distribution plate 13, and the other end passes through the swash plate 4 and the compression spring 11,
  • the compression spring 11 only keeps the cylinder 10 in a floating state, and ensures the static pressure support of the flow distribution pair.
  • the spring 11 on the existing shoe pair also needs to press the return disk, thereby effectively avoiding the axial piston pump/motor.
  • the working state of the flow distribution pair interacts with the working state of the sliding shoe pair, and the working performance of the axial piston pump/motor sliding shoe pair and the distribution pair is improved.
  • the bearing surface of the swash plate 4 end surface contacting the sliding shoe 7 is processed with a micro-shaped hole 5 which is hemispherical, and the micro-shaped hole 5 can sensitively provide conditions for electromagnetic force feedback and can improve the oil film rigidity. It is easier to form a dynamic pressure effect in the work of the sliding pair.

Abstract

一种轴向柱塞泵及马达用磁性滑靴副及控制方法,包括:柱塞(9)、线圈套件(8)、滑靴(7)、斜盘(4),所述线圈套件(8)内部是闭合线圈;所述斜盘(4)的端面与滑靴(7)接触的承载面加工有微造型孔(5),所述微造型孔(5)为半球形;所述斜盘(4)的背面设有一个主铁芯(1)和两个副铁芯(2),铁芯上均缠绕有线圈(3),线圈(3)与外部交流电源连接。通过电磁力自行反馈调节的方式,来保证滑靴副稳定的工作状态。当泵/马达工作时,线圈(3)通电产生磁场,进而将滑靴(7)吸附在斜盘(4)上,同时线圈套件(8)产生感应磁场,滑靴副受到的电磁力随着滑靴副的运动在吸力与斥力之间相互转换,使滑靴副在复杂的受力情况下形成动压效应,斜盘(4)的承载面微造型孔(5)设计提高油膜刚度,降低摩擦系数。

Description

一种轴向柱塞泵及马达用磁性滑靴副及控制方法 技术领域
本发明涉及轴向柱塞泵及马达技术领域,具体涉及一种轴向柱塞泵及马达用磁性滑靴副及控制方法。
背景技术
轴向柱塞泵/马达是液压系统中重要的动力元件和执行元件之一,广泛地应用在工业、农业、煤矿、军事等液压系统中,是现代液压元件中使用最广的两种液压元件之一。同时,由于轴向柱塞泵/马达结构复杂,对制造工艺、材料的要求非常高,因此它又是技术含量很高的液压元件之一。
近年来,随着我国经济的腾飞,材料、制造、电子等技术的发展,在工业现代化和大规模城市化进程中,工程机械、塑料机械、冶金、机床和农业机械等领域对轴向柱塞泵/马达的需求十分旺盛,因此轴向柱塞泵/马达仍需不断的技术创新和结构改进。
滑靴副是轴向柱塞泵/马达关鍵摩擦副之一,是柱塞腔油液压力的直接承担者,极易磨损和失效。因此,滑靴底面必须保证必要的润滑状态,并且形成一定厚度的油膜以保证液体润滑,从而防止滑靴与斜盘直接接触。润滑油膜不宜太薄,太薄则容易发生磨损或烧坏;润滑油膜也不宜太厚,否则会降低柱塞泵的容积效率,甚至不能建立起与负载相适应的压为。传统的轴向柱塞泵/马达的滑靴副结构均采用弹簧力、液压力与经过阻尼孔减压后的液压力形成静压支承,使压紧力稍大于分离力,以保证柱塞压紧在斜盘斜面上。现有的轴向柱塞泵/马达通过传动轴上的弹簧压紧回程盘,回程盘压紧滑靴和柱塞,导致回程盘的受力复杂,损坏率较高。
申请号201510092027.2的发明专利公开了一种轴向柱塞泵及马达用电磁力预紧的滑靴副,包括柱塞、斜盘,该柱塞的一端通过滑靴与所述斜盘表面接触;所述斜盘的背面设有凸台,该凸台上缠绕有线圈,该线圈与外部交流电源电连接。该发明专利利用电磁力提供预紧力,有效解决了平衡式多排轴向柱塞泵或双侧驱动柱塞马达的传统滑靴副设计困难的问题,优化了平衡式多排轴向柱塞泵或双侧驱动柱塞马达的结构。但仍有如下问题需要解决:
第一,电磁力利用吸力将滑靴副吸附在斜盘上,当油膜厚度减小时,电磁力增加,只能依靠油膜自身刚度维持油膜厚度,从而增大了维持稳定油膜厚度的难度。
第二,电磁力的分布不够理想,沿滑靴副圆周运动方向电磁力波动大,不利于滑靴副的稳定工作。
第三,电磁力运用单一,只能吸附滑靴,无法适应轴向柱塞泵/马达复杂工作过程 中滑靴的受力情况,也没有改善滑靴承载面的磨损情况。
针对以上问题,有必要提出新的结构和新的技术手段,进一步提高磁性滑靴副的工作性能。
发明内容
本发明的目的就在于为了解决上述问题而提供一种轴向柱塞泵及马达用磁性滑靴副及控制方法。改变传统轴向柱塞泵/马达利用弹簧压紧回程盘和滑靴的方式,运用主铁芯线圈通电以达到滑靴副初始运动时的磁预紧;利用主铁芯和副铁芯上线圈的电流调节,使滑靴副工作时波动更小;通过通电线圈产生的磁场与柱塞上的线圈套件产生的感应磁场,来适应轴向柱塞泵/马达工作时滑靴复杂的受力情况,当滑靴与斜盘距离过小,磁场与感应磁场方向相同,产生斥力;当滑靴与斜盘距离过大,磁场与感应磁场方向相反,产生吸力。电磁力、液压力和经过阻尼孔降压的液压力三者间的相互作用实现静压支承。改变滑靴承载面结构,通过微造型孔能够使得滑靴和斜盘之间形成充足的稳定油膜,提高油膜支撑力、降低摩擦系数、减轻油压不稳定、结构不精确对滑靴副产生的磨损现象。
本发明通过以下技术方案来实现上述目的,一种轴向柱塞泵及马达用磁性滑靴副及控制方法,包括主铁芯、副铁芯、线圈、斜盘、微造型孔、环形压板、滑靴、线圈套件、柱塞、缸体、弹簧、传动轴、配流盘,其特征在于:所述斜盘背面的中央位置设有一个主铁芯,且在主铁芯两侧对称分布两个副铁芯,分别位于柱塞副工作区的低压区与高压区区域中间,主铁芯与副铁芯上均缠绕有线圈,该线圈与外部交流电源电连接。
优选的,所述柱塞上套有线圈套件,线圈套件与柱塞采用过盈配合,线圈套件内为闭合线圈。
优选的,所述斜盘与滑靴接触的环形承载面上加工有微造型孔。
优选的,所述副铁芯对称分布在主铁芯的两侧,且副铁芯的直径和高度均小于主铁芯。
优选的,所述斜盘承载面的微造型孔为半球形。
S1:当轴向柱塞泵/马达启动时,主铁芯上的线圈通交流电,将滑靴副紧紧的吸附在斜盘的环形斜面上;
S2:当柱塞副处于低压区时,处于低压区的副铁芯上的线圈通电,提高斜盘对滑靴的电磁吸力,平衡滑靴间的油膜厚度;
S3:当柱塞副助于高压区时,处于高压区的副铁芯上的线圈通入反向电流,降低斜盘对滑靴的的电磁吸力,平衡滑靴间的油膜厚度;
S4:当油膜过厚时,斜盘上的铁芯线圈通电与柱塞上的线圈套件产生感应磁场,斜盘与滑靴间隙过大,两感应磁场相互吸引,减小油膜厚度;
S5:当油膜过薄时,斜盘与滑靴间隙过小,使得两感应磁场相互排斥,增大油膜厚度;
整个过程都可调节主铁芯上线圈的电流大小进行控制。
考虑到轴向柱塞泵/马达工作时柱塞腔有高低压的复杂情况,可在主、副铁芯的线圈上连通不同大小的电流,从而产生不同大小的电磁力,匹配各个滑靴副处于不同区域的工况。
本发明的有益效果是:
1、本发明采用电磁力以吸力的形式将滑靴副压在斜盘上,达到滑靴副初始运动时的磁预紧,且能在油膜过小时产生斥力,能有效预防油膜过薄。磁性滑靴副工作过程中,由电磁感应原理,电磁力吸力与斥力相互的转换过程,为磁性滑靴副的工作提供了反馈,以适应轴向柱塞泵/马达复杂的工作情况。
2、本发明根据滑靴副的受力状况在斜盘背面中央位置设有一个主铁芯,并在主铁芯的两侧对称分布两个副铁芯,分别位于柱塞副工作区的低压区与高压区区域中间,从而于滑靴副工作状况相匹配,铁芯上缠有线圈,根据柱塞腔高低压的复杂情况,通入不同大小的电流,改善了电磁力分力,减小了滑靴副圆周运动方向电磁力的波动,保证滑靴副时刻稳定的工作状态。
3、本发明提出的将微造型孔加工在斜盘上,减小了加工难度,利于提高加工精确度;改善了滑靴与斜盘接触的承载面,提高了滑靴副与斜盘之间的油膜刚度,减小摩擦系数,改善了滑靴承载面的磨损情况。
4、本发明提出的斜盘上的微造型孔让滑靴副在工作过程中更容易产生负反馈,以便电磁力吸力与斥力之间的转变更加灵敏。
附图说明
图1是本发明装配体结构示意图。
图2是本发明斜盘-滑靴副部分结构示意图。
图3是本发明斜盘背部铁芯分布示意图。
图4是本发明斜盘承载面结构示意图。
图5是本发明滑靴副结构示意图。
图中:1、主铁芯;2、副铁芯;3、线圈;4、斜盘;5、微造型孔;6、环形压板;7、滑靴;8、线圈套件;9、柱塞;10、缸体;11、弹簧;12、传动轴;13、配流盘。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1、图2、图3、图4和图5所示:一种轴向柱塞泵及马达用磁性滑靴副及控制方法,包括主铁芯1、副铁芯2、线圈3、斜盘4、微造型孔5、环形压板6、滑靴7、线圈套件8、柱塞9、缸体10、弹簧11、传动轴12、配流盘13,其特征在于:所述斜盘4的背面中央位置设有主铁芯1,在主铁芯的两侧对称位置处有两个相同的副铁芯2,分别位于柱塞副工作区的低压区与高压区区域中间,主铁芯1和副铁芯2上均缠绕线圈3,线圈与外部交流电源连接,所述微造型孔5加工在斜盘的承载面上。
其中的具体工作过程如下:
S1:当轴向柱塞泵/马达启动时:主铁芯1上的线圈3通交流电,使线圈3产生感应磁场,将滑靴副紧紧的吸附在斜盘4的环形斜面上,提供了滑靴副初始运动的磁预紧。因此,在滑靴7将要工作时,滑靴7受到柱塞腔中的油液压力、斜盘4对滑靴7的支撑力以及线圈3上产生的电磁力形成静压支承。
S2:当柱塞副处于低压区时:外负载力减小,油液通过阻尼孔的流量增大,流经阻尼管产生的压力降也增大,导致滑靴7油室压力减小,从而使油膜厚度增大,此时处于低压区的副铁芯2上的线圈3通电,提高斜盘对滑靴的电磁吸力,利用电磁力、液压力来平衡外负载力,从而抑制油膜厚度增大,使滑靴7平衡到新的油膜厚度上。
S3:当柱塞副助于高压区时:外负载力增大,油液通过阻尼孔的流量减小,流经阻尼管产生的压力降也减小,导致滑靴7油室压力增大,从而使油膜厚度减小,此时处于高压区的副铁芯2上的线圈3通入反向电流,降低斜盘4对滑靴7的的电磁吸力,从而抑制油膜厚度减小,使滑靴7再次平衡到新的油膜厚度上。
S4:当油膜过厚时:由于斜盘4上的铁芯线圈3通电与柱塞9上的线圈套件8产生感应磁场,当油膜厚度过大,斜盘4与滑靴7间隙过大,使得两感应磁场相互吸引,减小油膜厚度。
S5:当油膜过薄时:斜盘4与滑靴7间隙过小,使得两感应磁场相互排斥,从而 增大油膜厚度。轴向柱塞泵/马达包括传动轴12、缸体10、配流盘13,传动轴12的一端置于缸体10内,与配流盘13连接,另一端通过斜盘4、压缩弹簧11,此时压缩弹簧11仅仅使缸体10处于浮动状态,保证配流副的静压支承,不同于现有滑靴副上的弹簧11还需压紧回程盘,从而有效避免了轴向柱塞泵/马达的配流副的工作状态与滑靴副的工作状态相互影响,提高了轴向柱塞泵/马达滑靴副和配流副的工作性能。
S6:滑靴副整个工作过程中都可调节主铁芯1上线圈3的交流电,以配合上述调节方式,使滑靴副始终处于最佳工作状态。
所述斜盘4端面与滑靴7接触的承载面加工有微造型孔5,所述微造型孔为半球形,微造型孔5能灵敏的为电磁力反馈提供条件,且能提高油膜刚度,使滑靴副工作工程中更容易形成动压效应。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

  1. 一种轴向柱塞泵及马达用磁性滑靴副及控制方法,包括主铁芯(1)、副铁芯(2)、线圈(3)、斜盘(4)、微造型孔(5)、环形压板(6)、滑靴(7)、线圈套件(8)、柱塞(9)、缸体(10)、弹簧(11)、传动轴(12)、配流盘(13),其特征在于:所述斜盘(4)背面的中央位置设有一个主铁芯(1),且在主铁芯(1)两侧对称分布两个副铁芯(2),分别位于柱塞副工作区的低压区与高压区区域中间,主铁芯(1)与副铁芯(2)上均缠绕有线圈(3),该线圈(3)与外部交流电源电连接。
  2. 根据权利要求1所述的一种轴向柱塞泵及马达用磁性滑靴副及控制方法,其特征在于:所述柱塞(9)上套有线圈套件(8),线圈套件(8)内为闭合线圈。
  3. 根据权利要求1所述的一种轴向柱塞泵及马达用磁性滑靴副及方法,其特征在于:所述斜盘(4)与滑靴(7)接触的环形承载面上加工有微造型孔(5)。
  4. 根据权利要求1所述的一种轴向柱塞泵及马达用磁性滑靴副及控制方法,其特征在于:所述副铁芯(2)对称分布在主铁芯(1)的两侧,且副铁芯(2)的直径和高度均小于主铁芯(1)。
  5. 根据权利要求1或2所述的一种轴向柱塞泵及马达用磁性滑靴副及控制方法,其特征在于:所述斜盘(4)承载面的微造型孔(5)为半球形。
  6. 根据权利要求1所述的一种轴向柱塞泵及马达用磁性滑靴副及控制方法,其特征在于,所述控制方法为:
    S1:当轴向柱塞泵/马达启动时,主铁芯(1)上的线圈(3)通交流电,将滑靴(7)紧紧的吸附在斜盘(4)的环形斜面上;
    S2:当柱塞副处于低压区时,处于低压区的副铁芯(2)上的线圈(3)通电,提高斜盘(4)对滑靴(7)的电磁吸力,平衡滑靴(7)间的油膜厚度;
    S3:当柱塞副助于高压区时,处于高压区的副铁芯2上的线圈(3)通入反向电流,降低斜盘对滑靴(7)的的电磁吸力,平衡滑靴(7)间的油膜厚度;
    S4:当油膜过厚时,斜盘(4)上的铁芯线圈(2)通电与柱塞(9)上的线圈套件(8)产生感应磁场,斜盘(4)与滑靴(7)间隙过大,两感应磁场相互吸引,减小油膜厚度;
    S5:当油膜过薄时,斜盘(4)与滑靴(7)间隙过小,使得两感应磁场相互排斥,增大油膜厚度;
    整个过程都可调节主铁芯(1)上线圈(3)的电流大小进行控制。
PCT/CN2018/073223 2017-11-10 2018-01-18 一种轴向柱塞泵及马达用磁性滑靴副及控制方法 WO2019090972A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/203,618 US10371130B2 (en) 2017-11-10 2018-11-29 Magnetic piston shoe pair for axial piston pump and motor and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711106150.0 2017-11-10
CN201711106150.0A CN107725301B (zh) 2017-11-10 2017-11-10 一种轴向柱塞泵及马达用磁性滑靴副及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/203,618 Continuation US10371130B2 (en) 2017-11-10 2018-11-29 Magnetic piston shoe pair for axial piston pump and motor and control method thereof

Publications (1)

Publication Number Publication Date
WO2019090972A1 true WO2019090972A1 (zh) 2019-05-16

Family

ID=61214764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073223 WO2019090972A1 (zh) 2017-11-10 2018-01-18 一种轴向柱塞泵及马达用磁性滑靴副及控制方法

Country Status (2)

Country Link
CN (1) CN107725301B (zh)
WO (1) WO2019090972A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113642134A (zh) * 2021-09-06 2021-11-12 中铁工程装备集团有限公司 基于蚁群算法的柱塞泵滑靴能耗优化方法及装置
CN114297956A (zh) * 2021-12-30 2022-04-08 中铁工程装备集团有限公司 柱塞泵滑靴承载油膜厚度确定方法和装置
CN117189456A (zh) * 2023-11-07 2023-12-08 华侨大学 基于滑套换向的径向柱塞液压装置及工作方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488051B (zh) * 2018-03-14 2019-05-28 清华大学 航空轴向柱塞液压泵及其斜盘
CN110067725A (zh) * 2019-03-13 2019-07-30 钟彪 一种滑盘支承式非通轴柱塞泵或马达
CN110469476B (zh) * 2019-09-04 2021-06-04 燕山大学 一种永磁体斜盘与滑靴的轴向柱塞泵
CN110863965B (zh) * 2019-10-21 2021-05-28 厦门大学 一种带磁轴承的振动主动控制式轴向柱塞泵
CN111852806A (zh) * 2020-06-17 2020-10-30 中国中元国际工程有限公司 一种跑道融雪复合管用注浆泵及其工作方法
CN113738640B (zh) * 2021-09-02 2022-04-19 厦门大学 一种可控电磁复合支撑的轴向柱塞泵斜盘-滑靴组件
CN113638858B (zh) * 2021-09-09 2023-03-14 中铁工程装备集团有限公司 一种动静态特征自反馈的柱塞泵斜盘组件及柱塞泵
CN113623163B (zh) * 2021-09-22 2022-07-05 哈尔滨工业大学 一种基于液磁复合支撑的端面配流轴向柱塞泵
CN114382672B (zh) * 2021-10-28 2023-09-22 中国航发西安动力控制科技有限公司 液压柱塞泵中斜盘滑靴压紧结构及具有该结构的柱塞泵
CN114165401B (zh) * 2021-12-10 2022-10-21 厦门大学 一种电磁力矩可调位姿自适应补偿的轴向柱塞泵缸体组件
CN114876783B (zh) * 2022-05-24 2023-05-12 浙江大学高端装备研究院 一种嵌入式柱塞滑靴结构拉脱力测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847649A (zh) * 2005-10-28 2006-10-18 兰州理工大学 端面配流轴向柱塞泵的油膜厚度控制系统
KR100991513B1 (ko) * 2010-07-16 2010-11-04 한국기계연구원 필터 내장형 유압펌프 및 모터 피스톤 조립체
CN103410655A (zh) * 2013-08-18 2013-11-27 北京工业大学 一种配流副间隙磁力补偿式水液压马达
CN104675691A (zh) * 2015-02-28 2015-06-03 安徽理工大学 一种轴向柱塞泵及马达用电磁力预紧的滑靴副
CN204493168U (zh) * 2015-02-28 2015-07-22 安徽理工大学 一种轴向柱塞泵及马达用电磁力预紧的滑靴副
CN105317670A (zh) * 2014-07-28 2016-02-10 中国石油天然气股份有限公司 磁悬浮斜盘轴向柱塞泵
CN106870314A (zh) * 2017-04-13 2017-06-20 湖南电气职业技术学院 一种磁浮辅助支承柱塞泵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232277A (ja) * 2002-02-12 2003-08-22 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の動力源
JP4740983B2 (ja) * 2008-06-18 2011-08-03 三菱電機株式会社 燃料供給装置
CN105673478A (zh) * 2016-04-11 2016-06-15 青岛力克川液压机械有限公司 一种基于静压支承的滑靴副
CN106032794B (zh) * 2016-07-29 2018-05-01 浙江大学 一体化高转速斜盘旋转式电机泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847649A (zh) * 2005-10-28 2006-10-18 兰州理工大学 端面配流轴向柱塞泵的油膜厚度控制系统
KR100991513B1 (ko) * 2010-07-16 2010-11-04 한국기계연구원 필터 내장형 유압펌프 및 모터 피스톤 조립체
CN103410655A (zh) * 2013-08-18 2013-11-27 北京工业大学 一种配流副间隙磁力补偿式水液压马达
CN105317670A (zh) * 2014-07-28 2016-02-10 中国石油天然气股份有限公司 磁悬浮斜盘轴向柱塞泵
CN104675691A (zh) * 2015-02-28 2015-06-03 安徽理工大学 一种轴向柱塞泵及马达用电磁力预紧的滑靴副
CN204493168U (zh) * 2015-02-28 2015-07-22 安徽理工大学 一种轴向柱塞泵及马达用电磁力预紧的滑靴副
CN106870314A (zh) * 2017-04-13 2017-06-20 湖南电气职业技术学院 一种磁浮辅助支承柱塞泵

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113642134A (zh) * 2021-09-06 2021-11-12 中铁工程装备集团有限公司 基于蚁群算法的柱塞泵滑靴能耗优化方法及装置
CN114297956A (zh) * 2021-12-30 2022-04-08 中铁工程装备集团有限公司 柱塞泵滑靴承载油膜厚度确定方法和装置
CN117189456A (zh) * 2023-11-07 2023-12-08 华侨大学 基于滑套换向的径向柱塞液压装置及工作方法
CN117189456B (zh) * 2023-11-07 2024-04-16 华侨大学 基于滑套换向的径向柱塞液压装置及工作方法

Also Published As

Publication number Publication date
CN107725301B (zh) 2023-07-25
CN107725301A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019090972A1 (zh) 一种轴向柱塞泵及马达用磁性滑靴副及控制方法
US10371130B2 (en) Magnetic piston shoe pair for axial piston pump and motor and control method thereof
CN204493168U (zh) 一种轴向柱塞泵及马达用电磁力预紧的滑靴副
CN111075785A (zh) 基于双向磁悬浮联轴节的大流量二维半桥式电液比例换向阀
CN103016445A (zh) 卸气槽均压式气悬浮无摩擦气缸
CN107642545A (zh) 一种静压支承工作台油膜厚度控制方法
CN103615482A (zh) 一种微小型机械式离心摩擦限速器
CN104675691B (zh) 一种轴向柱塞泵或马达用电磁力预紧的滑靴副
CN112065797A (zh) 基于永磁式环形气隙磁悬浮联轴节的二维电液伺服比例阀
CN109236596B (zh) 一种斜盘式液压轴向柱塞泵/马达重载滑靴副减摩盘
CN113738640B (zh) 一种可控电磁复合支撑的轴向柱塞泵斜盘-滑靴组件
CN101561013B (zh) 一种主动控制气体轴承姿态的装置
CN212899209U (zh) 基于永磁式环形气隙磁悬浮联轴节的二维电液伺服比例阀
CN115126691A (zh) 一种可控电磁复合支撑的柱塞泵缸体和配油盘组件
CN203488357U (zh) 钛合金液压柱塞泵或马达
CN106438354B (zh) 磁悬浮驱动式无油涡旋压缩机
CN110617246B (zh) 基于Halbach阵列双向磁悬浮联轴节的二维半桥式电液比例换向阀
CN210565072U (zh) 一种磁悬浮防自转涡旋压缩机
CN110081081B (zh) 一种应用于液压元件的液磁矢量支撑
CN207526740U (zh) 一种多级低温潜液泵轴向力平衡机构
CN105673478A (zh) 一种基于静压支承的滑靴副
CN115539342A (zh) 一种带可控电磁支撑的对称浮杯双向柱塞液压泵
CN206290425U (zh) 一种变量柱塞泵的斜盘双静压支撑结构
CN212899208U (zh) 电励磁式二维半桥伺服比例阀
CN203176048U (zh) 卸气槽均压式气悬浮无摩擦气缸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876571

Country of ref document: EP

Kind code of ref document: A1