WO2019090791A1 - 一种冷凝器及其制造工装和制造方法 - Google Patents

一种冷凝器及其制造工装和制造方法 Download PDF

Info

Publication number
WO2019090791A1
WO2019090791A1 PCT/CN2017/110832 CN2017110832W WO2019090791A1 WO 2019090791 A1 WO2019090791 A1 WO 2019090791A1 CN 2017110832 W CN2017110832 W CN 2017110832W WO 2019090791 A1 WO2019090791 A1 WO 2019090791A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
condenser
heat sink
pressing
pipe
Prior art date
Application number
PCT/CN2017/110832
Other languages
English (en)
French (fr)
Inventor
孙宇彤
秦国军
Original Assignee
苏州市泰美达电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州市泰美达电器有限公司 filed Critical 苏州市泰美达电器有限公司
Publication of WO2019090791A1 publication Critical patent/WO2019090791A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Definitions

  • the invention relates to the technical field of refrigerator condensers, and in particular to a manufacturing tool of a condenser and a condenser and a manufacturing method of the condenser.
  • the condenser belongs to the refrigeration system and is a kind of heat exchanger. It can convert gas or vapor into liquid, and transfer the heat in the pipe to the air near the heat pipe in a faster way.
  • the refrigeration principle of the refrigerator in the refrigerator is that the compressor compresses the working medium from low-temperature and low-pressure gas into high-temperature and high-pressure gas, and then condenses into a medium-temperature and high-pressure liquid through the condenser, and becomes a low-temperature and low-pressure liquid after throttling by the throttle valve. .
  • the low-temperature low-pressure liquid working medium is sent to the evaporator, which absorbs heat in the evaporator and evaporates into low-temperature and low-pressure steam, and is again sent to the compressor to complete the refrigeration cycle.
  • the high temperature and high pressure gas passes through a long tube (usually coiled into a solenoid), so that the heat is lost to the surrounding air.
  • a heat sink with excellent heat conduction performance is often added to the pipeline to increase the heat dissipation area. To accelerate heat dissipation and accelerate air convection through the fan to take away the heat.
  • the heat sink In the existing condenser, the heat sink is mostly made of aluminum, and the cost is relatively high.
  • the copper tube is bent into a U shape, and then the heat sink is inserted into the copper tube for welding and fixing to form a heat dissipation unit. Then, at both ends of the heat dissipation copper pipe, a bent connecting member is connected to both ends of the copper pipe of the next heat dissipating unit, and the plurality of heat dissipating units constitute a condenser.
  • the condenser produced in this way has high material cost and complicated process, on the one hand, the input cost of the production equipment is increased, and on the other hand, the labor cost is correspondingly increased, and the structure, the production mode and the production equipment need to be optimized and upgraded to adapt The long-term rapid development of enterprises.
  • an object of the present invention is to provide a condenser which can solve the problems of high material cost, complicated process, and high equipment investment in the prior art by improving the structure of the condenser and using a reasonable manufacturing tool and manufacturing method.
  • a condenser includes a plurality of heat dissipating units, the heat dissipating unit includes a plurality of fins and a heat dissipating tube, the heat dissipating fins are provided with through holes, and the middle portion of the heat dissipating tubes is bent into a U shape, and the heat dissipating tube The two ends are bent through the through holes of the plurality of fins, and the through holes are in an interference fit with the through holes of the fins.
  • the heat dissipating tube is located at a portion between the plurality of fins, and the tube wall is deformed in the radial direction so that the portion of the heat dissipating tube has an elliptical cross section, and is expanded and fixed to the inner wall of the through hole of the fin.
  • the heat sink and the heat pipe are made of cold rolled carbon steel.
  • the present invention also provides a condenser manufacturing tool, the manufacturing tool being a pressing device, the pressing device having a mounting portion for carrying a heat sink and a heat pipe and being loadable on the carrier
  • the pressing portion of the heat dissipating portion of the portion is pressed, and the pressing portion presses the heat dissipating tube to deform in a direction perpendicular to the pressing direction, and is inflated and fixed to the inner wall of the through hole of the fin.
  • the mounting portion has a base, and the base is provided with a carrying platform.
  • the top mask of the carrying platform has a contact surface, and the plurality of rectangular fins are supported on the carrying platform.
  • a groove, the arcing groove for placing the heat pipe is disposed at a position corresponding to the through hole of the heat sink, the pressing portion has a top plate, and an extrusion member is disposed under the top plate, and the pressing
  • the bottom surface of the piece has a pressing point, and the pressing point acts perpendicularly on the pipe wall of the heat pipe and abuts against the contact surface to realize radial deformation of the heat pipe in a direction perpendicular to the pressing direction.
  • a plurality of fin receiving grooves are formed at positions of the fins corresponding to the fin carrying grooves of the carrying platform.
  • the contact surface and the bottom surface of the extrusion member are inclined surfaces having the same inclination angle, and the two are matched to each other to achieve abutting contact.
  • the heat dissipating plate carrying groove is disposed in a direction parallel to the width direction of the carrying platform and uniformly arranged along the length direction of the carrying platform, and the heat sink carries the length and width of the groove and the length and width of the heat sink.
  • the arc-shaped groove is disposed in a direction parallel to the longitudinal direction of the stage, that is, perpendicular to the direction in which the fin-bearing groove is disposed, and the direction in which the fin-receiving groove is disposed is parallel to the width direction of the extrusion.
  • the length and width of the heat sink receiving groove are the same as the length and width of the heat sink.
  • the width of the arcuate groove is larger than the diameter of the heat pipe, and the depth of the arc groove is 3 mm, and the sum of the depth of the heat sink carrying groove and the heat sink receiving groove is equal to the heat sink. height.
  • the heat sinks are sequentially inserted into the heat sink carrying grooves on the carrying platform in the condenser manufacturing tooling;
  • the middle portion of the heat-dissipating tube is bent into a U-shape, and the two ends of the heat-dissipating tube are passed through the through-holes of the plurality of fins and placed in the arc-shaped grooves on the carrying platform;
  • the extrusion member moves in a direction perpendicular to the heat dissipation pipe, and the pressing action point of the bottom surface of the extrusion member acts perpendicularly on the pipe wall of the heat dissipation pipe and abuts against the contact surface, so that the heat dissipation pipe is relatively perpendicular to the extrusion
  • the direction of the pressure is radially deformed and is fixed and fixed to the inner wall of the through hole of the heat sink;
  • the condenser provided by the invention expands and fixes the heat sink through the heat-dissipating tube to realize the structure that the two fixed portions are fixed by the heat sink and the heat-dissipating tube by welding in the prior art, and the process is more convenient and simultaneously used.
  • Cold rolled carbon steel The original aluminum and copper materials are further reduced in the cost of the raw materials, and the present invention also provides a corresponding manufacturing tool and manufacturing method with respect to the condenser equipped with the structure, thereby further improving the production system of the condenser of the structure. To simplify the process.
  • FIG. 1 is a schematic structural view of a heat dissipating unit in a condenser provided by the present invention
  • FIG. 2 is a schematic perspective structural view of a mounting portion of a condenser manufacturing tool according to the present invention
  • Figure 3 is a side view of Figure 2;
  • FIG. 4 is a schematic perspective structural view of a pressing portion of a condenser manufacturing tool provided by the present invention.
  • Figure 5 is a side view of Figure 4.
  • FIG. 6 is a schematic structural view of a heat sink and a heat pipe loaded on a mounting portion of a condenser manufacturing tool
  • Fig. 7 is a schematic view showing the structure of the pressing portion when it is pressed and pressed.
  • the heat sink In the existing condenser, the heat sink is mostly made of aluminum, and the cost is relatively high.
  • the copper tube is bent into a U shape, and then the heat sink is inserted into the copper tube for welding and fixing to form a heat dissipation unit. Then, at both ends of the heat dissipation copper pipe, a bent connecting member is connected to both ends of the copper pipe of the next heat dissipating unit, and the plurality of heat dissipating units constitute a condenser.
  • the condenser produced in this way has high material cost and complicated process, on the one hand, the input cost of the production equipment is increased, and on the other hand, the labor cost is correspondingly increased, and the structure, the production mode and the production equipment need to be optimized and upgraded to adapt The long-term rapid development of enterprises.
  • the present invention has been made in view of the above problems, and provides a structure-optimized condenser and a condenser incorporating the structure to provide a manufacturing tool and a manufacturing method for manufacturing the condenser.
  • a condenser includes a plurality of heat dissipating units.
  • the heat dissipating unit includes a plurality of fins 1 and a heat dissipating tube 2 .
  • the fins 1 are provided with through holes, and the middle portion of the heat dissipating tubes 2 is bent into U.
  • the two ends of the heat pipe 2 are bent through the through holes of the plurality of fins 1 and bent again, and the heat pipes 2 and the through holes of the fins 1 are interference fit.
  • the prior art adopts a structure in which the heat-dissipating heat-dissipating tube 2 and the heat-dissipating fins 1 are welded, and the present invention adopts a portion in which the heat-dissipating tube 2 is located between the plurality of fins 1, and the tube wall is deformed in the radial direction.
  • the heat pipe of the portion has an elliptical cross section and is fixedly fixed to the inner wall of the through hole of the heat sink 1.
  • the original heat sink 1 is made of aluminum, and the heat pipe 2 is replaced by a cold rolled carbon steel.
  • a condenser manufacturing tool is manufactured as a pressing device, and the pressing device has a mounting portion 3 for carrying the heat sink 1 and the heat pipe 2 and can be placed on the mounting.
  • the heat-dissipating tube 2 of the portion 3 presses the pressing portion 4, and the pressing portion 4 presses the heat-dissipating tube 2 to be deformed in a direction perpendicular to the pressing direction, and is inflated and fixed to the inner wall of the through-hole of the fin 1.
  • the mounting portion 3 has a base 5, and the base 5 is provided with a loading platform 6.
  • the top surface of the loading platform 6 has a contact surface 7, and the carrier 6 is provided with a plurality of rectangular heat sink carrying grooves 8
  • the carrying platform 6 is provided with two arcuate recesses 9 for placing the heat dissipating tubes 2 at positions corresponding to the through holes of the fins 1.
  • the pressing portion 4 has a top plate 10, and an extrusion member 11 is disposed below the top plate 10.
  • the bottom surface of the extrusion member 11 has a pressing point 12, and the pressing point 12 acts perpendicularly on the wall of the heat-dissipating tube 2 and abuts against the contact surface 7, so that the heat-dissipating tube 2 is relatively perpendicular to the pressing direction. Radial deformation occurs, and the contact surface 7 and the bottom surface of the extrusion member 11 are inclined surfaces having the same inclination angle, and the two are coupled to each other to achieve abutting contact.
  • the pressing member 11 is provided with a plurality of fin receiving grooves 13 at positions corresponding to the fin carrying grooves 8 of the carrying table 6.
  • the fin-bearing grooves 8 are disposed in a direction parallel to the width direction of the stage 6 and are evenly arranged along the length direction of the stage 6, and the length and width of the fin-bearing grooves 8 are the same as the length and width of the fins 1.
  • the arcuate groove 9 is disposed in a direction parallel to the longitudinal direction of the stage 6, that is, perpendicular to the direction in which the fin carrying groove 8 is disposed, and the fin receiving groove 13 is disposed in a direction parallel to the width direction of the extrusion member 11, and Uniformly arranged along the length direction of the extrusion member 11, the length and width of the fin accommodation recess 13 are the same as the length and width of the fin 1.
  • the width of the arc groove 9 is set larger than the diameter of the heat pipe 2, the depth of the arc groove 9 is 3 mm, and the heat sink carrying groove 8 and The sum of the depths of the fin accommodating recesses 13 is equal to the height of the fins 1, so that the fins 1 are not affected by the squeezing force during the squeezing process.
  • the heat sinks are sequentially inserted into the heat sink carrying grooves on the carrying platform in the condenser manufacturing tooling.
  • the middle portion of the heat-dissipating tube is bent into a U-shape, and both ends of the heat-dissipating tube are passed through the through holes of the plurality of fins and placed in the arc-shaped grooves on the carrying table, as shown in FIG.
  • the extrusion member moves in a direction perpendicular to the heat dissipation pipe, and the pressing action point of the bottom surface of the extrusion member acts perpendicularly on the pipe wall of the heat dissipation pipe and abuts against the contact surface, so that the heat dissipation pipe is relatively perpendicular to the extrusion
  • the pressing direction is radially deformed and is fixedly fixed to the inner wall of the through hole of the heat sink, as shown in FIG.
  • the condenser provided by the invention improves the complexity of the manufacturing process by improving the structure of the condenser, replaces the original traditional materials to reduce the cost of raw materials, and cooperates with the condenser of the structure to provide a correspondingly reasonable manufacturing tooling and manufacturing.
  • the method further solves the problems of high material cost, complicated process and high investment of machinery and equipment in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种冷凝器,包括多个散热单元,散热单元包括多个散热片(1)和一根散热管(2),所述散热片(1)上开设有通孔,散热管(2)的中部弯折成U型,散热管(2)的两端穿设通过多个散热片(1)的通孔后再次弯折,散热管(2)与散热片(1)的通孔为过盈配合。通过改进冷凝器的结构以降低制造工序的复杂度,替换原有的传统材料以降低原材料成本。为配合该种结构的冷凝器,提供相应合理的制造工装和制造方法,进一步解决现有技术中材料成本高、工序复杂、机器设备投入高的问题。

Description

一种冷凝器及其制造工装和制造方法 技术领域
本发明涉及冰箱冷凝器技术领域,具体涉及一种冷凝器、冷凝器的制造工装和冷凝器的制造方法。
背景技术
冷凝器属于制冷系统的机件,为换热器的一种,能把气体或蒸气转变成液体,将管子中的热量以较快的方式传到散热管附近的空气中。一般冰箱内的制冷机的制冷原理是压缩机把工质由低温低压气体压缩成高温高压气体,再经过冷凝器冷凝成中温高压的液体,经节流阀节流后,则成为低温低压的液体。低温低压的液态工质送入蒸发器,在蒸发器中吸热蒸发而成为低温低压的蒸汽,再次输送进压缩机,从而完成制冷循环。
高温高压气体通过一根长长的管子(通常盘成螺线管),让热量散失到四周的空气中,为提高冷凝器的效率经常在管道上附加热传导性能优异的散热片,加大散热面积,以加速散热,并通过风机加快空气对流,把热量带走。
现有的冷凝器中的散热片多采用铝,成本相对较高,在生产过程中,先将铜管折弯呈U形,之后再将散热片穿入铜管进行焊接固定,构成一个散热单元,之后再在散热铜管的两端在焊接一弯折的连接件与下一个散热单元的铜管两端连接,多个散热单元构成冷凝器。如此生产的冷凝器其材料成本高,工序复杂,一方面提高了生产设备的投入成本,另一方面也相应的提高了人力成本,需要对此结构、生产方式及生产设备进行优化升级,以适应企业的长期快速发展。
发明内容
有鉴于此,本发明的目的是提供一种冷凝器,通过改进冷凝器的结构,使用合理的制造工装和制造方法以解决现有技术中材料成本高、工序复杂、机器设备投入高的问题。
为达到上述目的,本发明采用的技术方案是:
一种冷凝器,包括多个散热单元,所述散热单元包括多个散热片和一根散热管,所述散热片上开设有通孔,所述散热管的中部弯折成U型,散热管的两端穿设通过多个散热片的通孔后再次弯折,所述散热管与散热片的通孔为过盈配合。
作为优选的,所述散热管位于多个散热片之间的部分其管壁沿径向发生形变使该部分的散热管截面呈椭圆形,并胀紧固定作用于散热片的通孔内壁上。
作为优选的,所述散热片和散热管采用冷轧碳钢。
为了实现上述目的,本发明还提供一种冷凝器制造工装,所述制造工装为压紧装置,所述压紧装置具有用于承载散热片及散热管的载置部和可对承载于上述载置部的散热管进行挤压的压紧部,所述压紧部挤压散热管使其在相对垂直于挤压方向发生形变,并与散热片的通孔内壁胀紧固定。
作为优选的,所述载置部具有一基座,所述基座上设有一承载台,所述承载台的顶面具有一接触面,且承载台上开设有多个长方形的散热片承载凹槽,承载台对应散热片通孔的位置处开设有两个用于放置散热管的弧形凹槽,所述压紧部具有一顶板,所述顶板下方设置有一挤压件,所述挤压件的底面具有一挤压作用点,所述挤压作用点垂直作用于散热管的管壁上并与接触面抵接压紧,实现散热管在相对垂直于挤压方向发生径向形变,所述挤压件对应承载台的散热片承载凹槽的位置开设有多个散热片容置凹槽。
作为优选的,所述接触面与挤压件的底面为具有相同倾斜角度的斜面,两者配合对应设置实现抵接接触。
作为优选的,所述散热片承载凹槽的设置方向与承载台的宽度方向平行,并沿承载台的长度方向均匀排列,所述散热片承载凹槽的长度和宽度与散热片的长度和宽度相同,所述弧形凹槽的设置方向与承载台的长度方向平行即与散热片承载凹槽的设置方向垂直,所述散热片容置凹槽的设置方向与挤压件的宽度方向平行,并沿挤压件的长度方向均匀排列,所述散热片容置凹槽的长度和宽度与散热片的长度和宽度相同。
作为优选的,所述弧形凹槽的宽度大于散热管的直径,且弧形凹槽的深度为3mm,所述散热片承载凹槽与散热片容置凹槽的深度之和等于散热片的高度。
同时还提供一种通过使用上述冷凝器制造工装制造冷凝器的制造方法,包括如下步骤:
S1、将散热片按序依次插入冷凝器制造工装中的承载台上的散热片承载凹槽内;
S2、散热管中部弯折成U型,并将散热管的两端穿设通过多个散热片的通孔后置于承载台上的弧形凹槽内;
S3、挤压件在垂直于散热管的方向上移动,挤压件底面的挤压作用点垂直作用于散热管的管壁上并与接触面抵接压紧,实现散热管在相对垂直于挤压方向发生径向形变,并与散热片的通孔内壁胀紧固定;
S4、利用弯管机对散热管的两端进行折弯,完成整个制造过程。
与现有技术相比,本发明提供的冷凝器通过散热管胀紧固定散热片实现两者固定相较于现有技术中通过焊接实现散热片和散热管固定的结构,工序更方便,同时用冷轧碳钢替 换原先的铝、铜材料,进一步降低了原材料成本,相对于配合该种结构的冷凝器,本发明还提供了相应的制造工装和制造方法,从而进一步完善了该种结构的冷凝器的生产体系,实现工序简单化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种冷凝器中的散热单元的结构示意图;
图2为本发明提供的一种冷凝器制造工装的载置部的立体结构示意图;
图3为图2的侧视图;
图4为本发明提供的一种冷凝器制造工装的压紧部的立体结构示意图;
图5为图4的侧视图;
图6为散热片、散热管装载在冷凝器制造工装的载置部时的结构示意图;
图7为压紧部挤压进行挤压压紧时的结构示意图。
附图中涉及的附图标记和组成部分说明:
1、散热片;2、散热管;3、载置部;4、压紧部;5、基座;6、承载台;7、接触面;8、散热片承载凹槽;9、弧形凹槽;10、顶板;11、挤压件;12、挤压作用点;13、散热片容置槽。
具体实施方式
现有的冷凝器中的散热片多采用铝,成本相对较高,在生产过程中,先将铜管折弯呈U形,之后再将散热片穿入铜管进行焊接固定,构成一个散热单元,之后再在散热铜管的两端在焊接一弯折的连接件与下一个散热单元的铜管两端连接,多个散热单元构成冷凝器。如此生产的冷凝器其材料成本高,工序复杂,一方面提高了生产设备的投入成本,另一方面也相应的提高了人力成本,需要对此结构、生产方式及生产设备进行优化升级,以适应企业的长期快速发展。
本发明针对上述存在的问题,提供一种结构优化的冷凝器,以及配合该结构的冷凝器提供一种制造该冷凝器的制造工装和制造方法。
下面将通过具体实施方式对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1所示,一种冷凝器,包括多个散热单元,散热单元包括多个散热片1和一根散热管2,散热片1上开设有通孔,散热管2的中部弯折成U型,散热管2的两端穿设通过多个散热片1的通孔后再次弯折,散热管2与散热片1的通孔为过盈配合。摒弃了现有技术中采用焊接固定散热管2和散热片1的结构,本发明采用对散热管2位于多个散热片1之间的部分将进行挤压,使其管壁沿径向发生形变,该部分的散热管截面呈椭圆形,并胀紧固定作用于散热片1的通孔内壁上。为了原材料的成本,将原先散热片1采用铝、散热管2采用筒替换为冷轧碳钢。
参见图2~图5所示,一种冷凝器制造工装,制造工装为压紧装置,压紧装置具有用于承载散热片1及散热管2的载置部3和可对承载于上述载置部3的散热管2进行挤压的压紧部4,压紧部4挤压散热管2使其在相对垂直于挤压方向发生形变,并与散热片1的通孔内壁胀紧固定。
载置部3具有一基座5,基座5上设有一承载台6,承载台6的顶面具有一接触面7,且承载台6上开设有多个长方形的散热片承载凹槽8,承载台6对应散热片1通孔的位置处开设有两个用于放置散热管2的弧形凹槽9。压紧部4具有一顶板10,顶板10下方设置有一挤压件11。
挤压件11的底面具有一挤压作用点12,挤压作用点12垂直作用于散热管2的管壁上并与接触面7抵接压紧,实现散热管2在相对垂直于挤压方向发生径向形变,接触面7与挤压件11的底面为具有相同倾斜角度的斜面,两者配合对应设置实现抵接接触。
挤压件11对应承载台6的散热片承载凹槽8的位置开设有多个散热片容置凹槽13。
散热片承载凹槽8的设置方向与承载台6的宽度方向平行,并沿承载台6的长度方向均匀排列,散热片承载凹槽8的长度和宽度与散热片1的长度和宽度相同。弧形凹槽9的设置方向与承载台6的长度方向平行即与散热片承载凹槽8的设置方向垂直,散热片容置凹槽13的设置方向与挤压件11的宽度方向平行,并沿挤压件11的长度方向均匀排列,散热片容置凹槽13的长度和宽度与散热片1的长度和宽度相同。
为了实现是散热管2能在弧形凹槽9内发生形变,将弧形凹槽9的宽度设置大于散热管2的直径,弧形凹槽9的深度为3mm,散热片承载凹槽8与散热片容置凹槽13的深度之和等于散热片1的高度,使得散热片1在挤压过程中不受挤压作用力影响。
还提供一种通过使用上述冷凝器制造工装制造冷凝器的制造方法,包括如下步骤:
S1、将散热片按序依次插入冷凝器制造工装中的承载台上的散热片承载凹槽内。
S2、散热管中部弯折成U型,并将散热管的两端穿设通过多个散热片的通孔后置于承载台上的弧形凹槽内,参见图6所示。
S3、挤压件在垂直于散热管的方向上移动,挤压件底面的挤压作用点垂直作用于散热管的管壁上并与接触面抵接压紧,实现散热管在相对垂直于挤压方向发生径向形变,并与散热片的通孔内壁胀紧固定,参见图7所示。
S4、利用弯管机对散热管的两端进行折弯,完成整个制造过程。
本发明提供的冷凝器,通过改进冷凝器的结构以降低制造工序的复杂度,替换了原有的传统材料以降低原材料成本,配合该种结构的冷凝器,提供了相应合理的制造工装和制造方法,进一步解决现有技术中材料成本高、工序复杂、机器设备投入高的问题。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种冷凝器,其特征在于:包括多个散热单元,所述散热单元包括多个散热片和一根散热管,所述散热片上开设有通孔,所述散热管的中部弯折成U型,散热管的两端穿设通过多个散热片的通孔后再次弯折,所述散热管与散热片的通孔为过盈配合。
  2. 根据权利要求1所述的一种冷凝器,其特征在于:所述散热管位于多个散热片之间的部分其管壁沿径向发生形变使该部分的散热管截面呈椭圆形,并胀紧固定作用于散热片的通孔内壁上。
  3. 根据权利要求1所述的一种冷凝器,其特征在于:所述散热片和散热管采用冷轧碳钢。
  4. 一种用于制造权利要求1所述冷凝器的冷凝器制造工装,其特征在于:所述制造工装为压紧装置,所述压紧装置具有用于承载散热片及散热管的载置部和可对承载于上述载置部的散热管进行挤压的压紧部,所述压紧部挤压散热管使其在相对垂直于挤压方向发生形变,并与散热片的通孔内壁胀紧固定。
  5. 根据权利要求4所述的一种冷凝器制造工装,其特征在于:所述载置部具有一基座,所述基座上设有一承载台,所述承载台的顶面具有一接触面,且承载台上开设有多个长方形的散热片承载凹槽,承载台对应散热片通孔的位置处开设有两个用于放置散热管的弧形凹槽,所述压紧部具有一顶板,所述顶板下方设置有一挤压件,所述挤压件的底面具有一挤压作用点,所述挤压作用点垂直作用于散热管的管壁上并与接触面抵接压紧,实现散热管在相对垂直于挤压方向发生径向形变,所述挤压件对应承载台的散热片承载凹槽的位置开设有多个散热片容置凹槽。
  6. 根据权利要求5所述的一种冷凝器制造工装,其特征在于:所述接触面与挤压件的底面为具有相同倾斜角度的斜面,两者配合对应设置实现抵接接触。
  7. 根据权利要求5所述的一种冷凝器制造工装,其特征在于:所述散热片承载凹槽的设置方向与承载台的宽度方向平行,并沿承载台的长度方向均匀排列,所述散热片承载凹槽的长度和宽度与散热片的长度和宽度相同,所述弧形凹槽的设置方向与承载台的长度方向平行即与散热片承载凹槽的设置方向垂直,所述散热片容置凹槽的设置方向与挤压件的宽度方向平行,并沿挤压件的长度方向均匀排列,所述散热片容置凹槽的长度和宽度与散热片的长度和宽度相同。
  8. 根据权利要求7所述的一种冷凝器制造工装,其特征在于:所述弧形凹槽的宽度大于散热管的直径,且弧形凹槽的深度为3mm,所述散热片承载凹槽与散热片容置凹槽的深度之和等于散热片的高度。
  9. 一种冷凝器制造方法,其特征在于:使用权利要求4~8任意一项所述的冷凝器制造工 装,包括如下步骤:
    S1、将散热片按序依次插入冷凝器制造工装中的承载台上的散热片承载凹槽内;
    S2、散热管中部弯折成U型,并将散热管的两端穿设通过多个散热片的通孔后置于承载台上的弧形凹槽内;
    S3、挤压件在垂直于散热管的方向上移动,挤压件底面的挤压作用点垂直作用于散热管的管壁上并与接触面抵接压紧,实现散热管在相对垂直于挤压方向发生径向形变,并与散热片的通孔内壁胀紧固定;
    S4、利用弯管机对散热管的两端进行折弯,完成整个制造过程。
PCT/CN2017/110832 2017-11-13 2017-11-14 一种冷凝器及其制造工装和制造方法 WO2019090791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711114061.0A CN107702388B (zh) 2017-11-13 2017-11-13 一种冷凝器及其制造工装和制造方法
CN201711114061.0 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019090791A1 true WO2019090791A1 (zh) 2019-05-16

Family

ID=61179263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110832 WO2019090791A1 (zh) 2017-11-13 2017-11-14 一种冷凝器及其制造工装和制造方法

Country Status (2)

Country Link
CN (1) CN107702388B (zh)
WO (1) WO2019090791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210070841A (ko) * 2019-12-05 2021-06-15 코웨이 주식회사 정수기용 응축기, 정수기용 응축기의 제조 방법 및 응축기를 구비하는 정수기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238129A (ja) * 1990-02-13 1991-10-23 Showa Alum Corp プレート・フィン付き熱交換器の製造法
CN201715783U (zh) * 2010-06-09 2011-01-19 广东美的电器股份有限公司 翅片式热交换器
CN102840784A (zh) * 2011-06-24 2012-12-26 乐金电子(天津)电器有限公司 散热圆管及换热器
CN203148115U (zh) * 2013-03-26 2013-08-21 浙江同星制冷有限公司 高效翅片式换热器
CN103471440A (zh) * 2013-09-28 2013-12-25 广东万和新电气股份有限公司 管翅式换热器及其组件
CN103658295A (zh) * 2012-09-11 2014-03-26 常州群星制冷设备有限公司 液压胀管用夹具及其排片方法
CN204666007U (zh) * 2015-02-16 2015-09-23 宁波市哈雷换热设备有限公司 换热器翅片
CN207501496U (zh) * 2017-11-13 2018-06-15 苏州市泰美达电器有限公司 一种冷凝器及其制造工装

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238129A (ja) * 1990-02-13 1991-10-23 Showa Alum Corp プレート・フィン付き熱交換器の製造法
CN201715783U (zh) * 2010-06-09 2011-01-19 广东美的电器股份有限公司 翅片式热交换器
CN102840784A (zh) * 2011-06-24 2012-12-26 乐金电子(天津)电器有限公司 散热圆管及换热器
CN103658295A (zh) * 2012-09-11 2014-03-26 常州群星制冷设备有限公司 液压胀管用夹具及其排片方法
CN203148115U (zh) * 2013-03-26 2013-08-21 浙江同星制冷有限公司 高效翅片式换热器
CN103471440A (zh) * 2013-09-28 2013-12-25 广东万和新电气股份有限公司 管翅式换热器及其组件
CN204666007U (zh) * 2015-02-16 2015-09-23 宁波市哈雷换热设备有限公司 换热器翅片
CN207501496U (zh) * 2017-11-13 2018-06-15 苏州市泰美达电器有限公司 一种冷凝器及其制造工装

Also Published As

Publication number Publication date
CN107702388B (zh) 2020-09-18
CN107702388A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
KR20110104141A (ko) 방사형(격자구조)의 주름을 갖는 이중관 냉동시스템 열교환기
CN104654673A (zh) 用于制冷设备的蒸发器的连接管及其制造和使用方法
WO2019090791A1 (zh) 一种冷凝器及其制造工装和制造方法
CN107166992A (zh) 冷媒散热片、空调以及冷媒散热片的加工方法
EP2784427B1 (en) Heat transfer fin, fin-tube heat exchanger, and heat pump device
JP2014074513A (ja) フィンチューブ熱交換器、ヒートポンプ装置及び伝熱フィン
JP2002224756A (ja) 熱交換器の曲げ方法
CN207501496U (zh) 一种冷凝器及其制造工装
KR100888363B1 (ko) 브레이징 공정을 이용한 히트 파이프의 제조방법 및 이에의한 히트 파이프
CN111928705B (zh) 具有重力型回路热管的散热装置
JP2014194294A (ja) 熱交換器とそれを用いた空調装置及び熱交換器製造方法
JP6797304B2 (ja) 熱交換器及び空気調和機
KR20170059865A (ko) 냉장고용 턴핀 응축기
KR20100108754A (ko) 턴핀형 열교환기, 이를 이용한 열교환 시스템 및 턴핀형 열교환기의 제조방법
CN217236572U (zh) 一种多通道均温板
CN113483579A (zh) 一种以翅片管为单元的一体化高效换热冷凝器
CN208688321U (zh) 大型换热器上增加的套管结构
CN218821828U (zh) 一种单通道均温板
KR102385752B1 (ko) 냉매 사이클 장치용 열교환 조립체 및 그 제조방법
KR101412730B1 (ko) 내면에 홈이 형성된 알루미늄 튜브로 이루어진 무용접 일체형 열교환기 및 그 제조 방법
CN109269141B (zh) 铝型材管路板式制冷制热系统
KR20190023812A (ko) 열교환기 및 그 제조방법
CN109470069B (zh) 一种热管换热套件及其制造方法
KR20110064874A (ko) 나선형의 주름을 갖는 이중관 냉동시스템 열교환기
KR20240037103A (ko) 열교환기의 제조장치 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931539

Country of ref document: EP

Kind code of ref document: A1