WO2019088696A1 - 추진 효율 향상 장치 - Google Patents

추진 효율 향상 장치 Download PDF

Info

Publication number
WO2019088696A1
WO2019088696A1 PCT/KR2018/013108 KR2018013108W WO2019088696A1 WO 2019088696 A1 WO2019088696 A1 WO 2019088696A1 KR 2018013108 W KR2018013108 W KR 2018013108W WO 2019088696 A1 WO2019088696 A1 WO 2019088696A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
current fixing
propeller
vane
vanes
Prior art date
Application number
PCT/KR2018/013108
Other languages
English (en)
French (fr)
Inventor
이희동
김희택
박형길
안대영
이상환
이태구
이호재
김동욱
조경현
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170143239A external-priority patent/KR102027269B1/ko
Priority claimed from KR1020170143315A external-priority patent/KR102027270B1/ko
Priority claimed from KR1020170143359A external-priority patent/KR102027271B1/ko
Priority claimed from KR1020170143470A external-priority patent/KR20190048483A/ko
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to JP2020524164A priority Critical patent/JP7145945B2/ja
Priority to SG11202003855RA priority patent/SG11202003855RA/en
Priority to EP18872708.5A priority patent/EP3705392A4/en
Priority to CN201880070528.2A priority patent/CN111295329A/zh
Publication of WO2019088696A1 publication Critical patent/WO2019088696A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • the present invention relates to a propulsion efficiency improvement device.
  • the duct creates additional thrust while passing backward movement along the surface of the hull.
  • the duct can be a factor in increasing the propulsion efficiency.
  • ducts also act as resistances in other respects, which is a factor in reducing propulsion efficiency.
  • the technical problem of the present invention is to provide an apparatus for improving the propulsion efficiency.
  • a propulsion efficiency improving apparatus for a propulsion system comprising: a duct disposed in front of a propeller and having an arc shape and generating a thrust; And a plurality of current fixing vanes supporting the duct on the stern boss portion and generating a swirling flow in a direction opposite to the rotating direction of the propeller.
  • the duct may have a camber protruding in a direction toward the stern boss, and the plurality of current fixing vanes may have a camber of a convex shape in a rotating direction of the propeller.
  • the propulsion efficiency enhancing device includes: a first connection portion interconnecting a first end portion of the duct in the propeller rotation direction and a first outside fixed blade located at the end of the plurality of current fixing vanes in the propeller rotation direction; And a second connection portion for interconnecting a second end portion of the duct in the direction opposite to the propeller rotation direction and a second outside current fixing wing located last in the direction opposite to the propeller rotation direction among the plurality of current fixing wings,
  • the first connecting portion has a shape that continuously connects a first end portion of the duct having a camber shape different from the first outside current fixing vane and the second connecting portion has a shape having a camber shape, And may have a shape continuously connecting the second end portion and the second outer current fixing vane.
  • the duct has an arc shape extending from a left lower region to a right upper region with respect to a center line of a circular arc formed by the duct and the plurality of current holding blades are arranged in a left lower region with respect to a center line of a circular arc formed by the duct And may be disposed apart from each other across the right upper region.
  • the propeller rotates in a clockwise direction when viewed from the rear, and the number of the current-stabilized blades located at the port of the hull among the plurality of current-stabilized blades may be greater than the number of the current-stabilized blades located at the starboard.
  • the center line of the arc formed by the duct may be located above the rotation axis of the propeller.
  • the distance between the center line of the arc formed by the duct and the rotation axis of the propeller may be 0.1 times or more and 0.4 times or less of the radius of the propeller.
  • the duct may be located within the rotating region of the propeller.
  • a propulsion efficiency improving apparatus comprising: a plurality of current fixing vanes supported at a stern boss portion in front of a propeller and generating a swirling flow in a direction opposite to a rotating direction of the propeller; A duct supported at an end of the plurality of current fixing vanes and having an arc shape and generating thrust; And a connection portion interconnecting the duct and the current fixing vane.
  • the duct may have a camber protruding in a direction toward the stern boss, and the plurality of current fixing vanes may have a camber of a convex shape in a rotating direction of the propeller.
  • the connecting portion comprises: a first connecting portion interconnecting a first end portion of the duct in the rotating direction of the propeller and a first outside current fixing blade positioned last in the propeller rotation direction among the plurality of current fixing wings; And a second connection portion for interconnecting a second end portion of the duct in the direction opposite to the propeller rotation direction and a second outside current fixing wing located last in the direction opposite to the propeller rotation direction among the plurality of current fixing wings,
  • the first connection portion has a shape that continuously connects the first end portion of the duct having the camber shape different from the first end portion fixed to the first outside current fixing vane and the second connection portion has the shape of the duct having the same camber shape
  • the second external current fixing vane may be connected to the second external current fixing vane.
  • the first connection portion and the second connection portion may be separately manufactured and coupled to the duct, the first external current fixing wing, and the second external current fixing wing, respectively.
  • a propulsion efficiency improving apparatus comprising: a duct disposed in front of a propeller and having an arc shape and generating a thrust; And a plurality of current fixing vanes for supporting the duct on a stern boss portion and generating a swirling flow in a direction opposite to a rotating direction of the propeller, wherein the duct is provided at a first end portion in the rotational direction of the propeller, And the length of the cord may change from the second end of the propeller in the direction opposite to the rotation direction of the propeller.
  • the first outer current fixing blade located at the end in the rotational direction of the propeller among the plurality of current fixing vanes has a shape in which the length of the cord decreases from the root to the tip,
  • the length of the cord increases from the first end to the second end in the direction opposite to the rotational direction of the propeller, and the length of the cord increases gradually from the end of the propeller to the second end in a direction opposite to the rotational direction of the propeller
  • the second outer current fixing wing may have a shape in which the length of the cord decreases from the root to the tip.
  • the second connecting portion has a shape in which the length of the cord decreases from the tip of the first outer fixing vane to the first end of the duct and increases as the length of the cord increases toward the first end of the duct, The length of the cord decreases from the tip of the outer fixed blade toward the second end of the duct, and the shape of the cord increases.
  • the curved line of the leading edge of the duct may have a single curvature.
  • a propulsion efficiency improving apparatus comprising: a duct disposed in front of a propeller and having an arc shape and generating a thrust; And a plurality of current fixing vanes supporting the duct on the stern boss portion and generating a swirling flow in a direction opposite to the rotating direction of the propeller, wherein the plurality of current fixing vanes are positioned at different positions in the longitudinal direction of the hull do.
  • An inner current fixing blade located between a first outer current fixing vane positioned last in the propeller rotation direction and a second outer current fixing vane positioned last in a direction opposite to the propeller rotation direction among the plurality of current fixing vanes, And may be positioned forward of the first outer current fixing vane and the second outer current fixing vane.
  • the tip of the inner current stabilizing vane fixed to the inner surface of the duct has a front end positioned behind the leading edge of the duct and a rear end of the tip of the inner current stabilizing vane positioned behind the trailing edge of the duct It can be positioned forward.
  • the inner current-stabilizing vane, the first outer-current-stabilizing vane and the second outer-current-stabilizing vane both have the same cord length at the root and the tip, and the inner current-
  • the front and rear distance of the outer current fixing blade may be 0.05 times or more and 0.15 times or less of the code length of the root of the inner current fixing blade.
  • the support for supporting the duct by using the current fixing vane that generates the swirling flow in the direction opposite to the rotation direction of the propeller, unlike the conventional propulsion supporting structure using the general support structure, And the propulsion efficiency can be improved.
  • FIG. 1 is a perspective view of a propulsion efficiency improving apparatus according to an embodiment of the present invention, viewed from the left rear,
  • FIG. 2 is a perspective view in which the propeller is removed in FIG. 1,
  • FIG. 3 is a rear view of the propulsion efficiency improvement apparatus according to an embodiment of the present invention.
  • FIG. 4 is a left side view of a propulsion efficiency improving apparatus according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of the propulsion efficiency enhancing device according to an embodiment of the present invention, as viewed from the left rear, and is a view in which a cross-sectional shape is added to a duct and a current-
  • FIG. 6 is a view of a part of the embodiment of the present invention as viewed from the left, showing a state in which a duct is omitted,
  • FIG. 7 is a developed view of an outer surface of an assembly of a duct, a first outer current fixing vane, and a second outer current fixing vane according to an embodiment of the present invention
  • FIG. 8 is a perspective view of the propulsion efficiency improvement apparatus according to another embodiment of the present invention.
  • FIG. 9 is a perspective view in which the propeller is removed in FIG. 8,
  • FIG. 10 is a rear view of the propulsion efficiency improving apparatus according to another embodiment of the present invention.
  • FIG. 11 is a left side view of a propulsion efficiency improving apparatus according to another embodiment of the present invention.
  • FIG. 12 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention as viewed from the left rear side, and shows a cross-sectional shape added to a duct and a current fixing blade.
  • FIG. 13 is a developed view of an outer surface of an assembly of a duct, a first outer current fixing vane, and a second outer current fixing vane according to another embodiment of the present invention
  • FIG. 14 is a left side view of a propulsion efficiency improving apparatus according to another embodiment of the present invention.
  • FIG. 15 is a diagram in which a duct is omitted in FIG.
  • FIG. 16 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention as viewed from the left rear.
  • FIG. 16 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention as viewed from the left rear.
  • FIG. 17 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention, viewed from the left rear side, and FIG. 18 is a perspective view of the propeller removed in FIG.
  • 19 to 24 are diagrams for explaining the effect of the propulsion efficiency improving apparatus according to some embodiments of the present invention.
  • FIG. 1 is a perspective view of a propulsion efficiency enhancing device according to an embodiment of the present invention as viewed from the left rear
  • FIG. 2 is a perspective view of the propeller removed in FIG. 1
  • FIG. 4 is a left side view of a propulsion efficiency improving apparatus according to an embodiment of the present invention.
  • + X means forward
  • + Y means the left direction.
  • the propulsion efficiency improvement apparatus 100 includes a duct 110 and current fixing vanes 131, 132, 133 and 134.
  • the duct (110) is disposed in front of the propeller (30).
  • the propeller (30) is disposed behind the stern boss portion (20).
  • the propeller 30 rotates and generates thrust.
  • the propeller 30 rotates in the clockwise direction in FIGS. 1 to 3. That is, the propeller 30 rotates clockwise when viewed from the rear.
  • the duct 110 has an arc shape.
  • the duct 110 may have an arc shape extending from the lower left area to the upper right area with respect to the center line A D of the circular arc formed by the duct 110 as shown in FIGS.
  • the duct may have an arc shape extending from the upper left region to the upper right region with respect to the center line of the arc formed by the duct.
  • the angle of arc of the arc formed by the duct 110 is preferably less than 180 degrees.
  • the duct 110 partially covers the stern boss portion 20.
  • the center line A D of the arc formed by the duct 110 may be positioned above the rotation axis A P of the propeller 30 as shown in FIG.
  • the distance H between the center line A D of the circular arc formed by the duct 110 and the rotation axis A P of the propeller 30 may be 0.4 times or more of the radius of the propeller 30. If the distance H between the center line A D of the arc formed by the duct 110 and the rotation axis A P of the propeller 30 exceeds 0.4 times the propeller 30, Can be significantly limited.
  • the distance H between the center line A D of the arc formed by the duct 110 and the rotation axis A P of the propeller 30 may be 0.1 to 0.4 times the radius of the propeller 30.
  • the duct (110) is located within the rotating region of the propeller (30). At this time, the flow passing through the duct 110 can be introduced into the propeller 30 in an aligned state, and the propelling efficiency of the propeller 30 can be improved.
  • the radius of the duct 110 is equal to or less than a value obtained by subtracting the distance between the center line A D of the arc of the duct 110 and the rotation axis A P of the propeller 30 from the propeller radius.
  • the duct 110 generates thrust.
  • the duct 110 has a camber shaped convexly in the direction of the stern boss portion 20 and having an airfoil cross section. This will be described later.
  • a lift is generated in the cross section of the duct 110 as the flow moving backward along the hull 10 passes through the duct 110.
  • the component parallel to the longitudinal direction (ex. X-axis direction) of the hull 10 in the lift force acts as a thrust for propelling the hull 10.
  • the duct 110 can be supported by a stern part of the hull 10 by a separate supporting member (not shown).
  • the current fixing vanes 131, 132, 133 and 134 support the duct 110 with respect to the stern boss 20.
  • the electric current stabilizing vanes 131, 132, 133 and 134 are provided in plural.
  • the number of the current fixing vanes 131, 132, 133, and 134 may be four as shown in Figs.
  • the number of current-carrying wings is not shown, but may be three or five.
  • the plurality of current fixing vanes 131, 132, 133, and 134 are disposed apart from each other in the rotating direction of the propeller 30 as shown in Figs. 2 and 3, the plurality of current fixing vanes 131, 132, 133, and 134 may be spaced apart in the arcuate direction about the center line A D of the arc formed by the duct 110 have.
  • the plurality of current fixing vanes 131, 132, 133, and 134 extend from the left lower region to the upper right region with respect to the center line A D of the circular arc formed by the duct 110 They can be spaced apart from one another.
  • a plurality of current fixing vanes may be disposed apart from each other in the upper left region and the upper right region with respect to the center line of the arc formed by the ducts, though they are not shown.
  • the plurality of current fixing vanes 131, 132, 133, and 134 generate a swirling flow in a direction opposite to the rotating direction of the propeller 30.
  • the swirling flow by the current fixing vanes 131, 132, 133 and 134 is introduced into the propeller 30 to reduce the swirling flow in the rotating direction of the propeller 30, thereby improving the propulsion efficiency.
  • a swirling flow in the direction opposite to the rotation direction of the propeller 30 is generated by the current-stabilizing vanes 131, 132, 133, and 134, the angle of attack of the flow entering the propeller 30 increases, 30) is increased and thus propulsion efficiency is improved.
  • FIG. 5 is a perspective view of the propulsion efficiency enhancing device according to the embodiment of the present invention as viewed from the left rear side, and is a view showing a cross-sectional shape added to a duct and a current fixing blade.
  • the propeller rotates clockwise when viewed from the rear.
  • the plurality of current fixing vanes 131, 132, 133, 134 are convex in the rotational direction of the propeller Shaped camber.
  • the propulsion efficiency improving apparatus 100 is a support for supporting the duct 110 generating the thrust to the stern boss 20 and is provided in a direction opposite to the rotating direction of the propeller 30 132, 133, 134 for generating a swirling flow of the electric current.
  • a support member of a simple shape is used unlike the current fixing vanes 131, 132, 133, and 134 according to the present embodiment in order to support a duct disposed in front of the propeller to generate thrust.
  • This simple shape of the support member has become a factor to increase the resistance of the ship by acting as a resistance.
  • the propulsion efficiency enhancing device 100 includes the current fixing vanes 131, 132, and 132 for generating a vortical flow in a direction opposite to the rotation direction of the propeller 30 as a support for supporting the duct 110, 133 and 134, the thrust of the propeller 30 is increased and the propulsion efficiency is improved.
  • the number of the current fixing vanes 132, 133, 134 located on the left side of the hull 10 among the plurality of current fixing vanes 131, 132, 133, 134 corresponds to the number of the current fixing vanes 131 ).
  • the current fixing vanes 132, 133 and 134 at the port side where the counterflow in the same direction as the rotation direction of the propeller 30 is generated are connected to the inlet ports 132, 133 and 134, However, in the starboard in which the counterflow in the direction opposite to the rotating direction of the propeller 30 is generated, the current fixing vanes 131 are arranged at a larger pitch angle than the port The inflow current flowing into the electric current stabilizing vane 131 can be changed in the direction opposite to the rotation direction of the propeller 30.
  • the resistance increase due to the attachment of the current holding vanes 132, 133 and 134 is small at the port side where the vortical flow in the direction opposite to the rotating direction of the propeller 30 can be generated at a small pitch angle.
  • the increase in resistance due to the attachment of the current fixing vane 131 becomes excessive. Therefore, it is desirable to arrange more current holding vanes at the port side than starboard for high propulsion efficiency.
  • the first end of the duct 110 in the rotating direction of the propeller 30 and the last one of the plurality of current fixing vanes 131, 132, 133, 134 in the rotational direction of the propeller 30 The first outer current holding wings 131 are interconnected.
  • the first outer current fixing vane 131 may be located on the upper right region with respect to the center line A D of the circular arc formed by the duct 110 as shown in FIG.
  • the second end portion of the duct 110 in the direction opposite to the rotating direction of the propeller 30 and the end position of the plurality of current fixing vanes 131, 132, 133, 134 in the direction opposite to the rotational direction of the propeller 30 The second outer current fixing vanes 132 are interconnected.
  • the second outer current fixing vane 132 may be located in the lower left region with respect to the center line A D of the circular arc formed by the duct 110 as shown in FIG.
  • the duct 110 and the first outer current fixing vane 131 are different in camber shape.
  • the duct 110 has a camber protruding toward the stern boss 20, and the first external current fixing vane 131 has a convex camber in the rotational direction of the propeller 30 I have.
  • the duct 110 has a camber shape having a convex shape toward the inside of the space surrounded by the duct 110, the first outside current fixing vane 131 and the second outside current fixing vane 132
  • the current fixing vane 131 has a camber shaped in a convex shape toward the outside of the space surrounded by the duct 110, the first outside current fixing vane 131 and the second outside current fixing vane 132.
  • the first end portion of the duct 110 having the camber shape different from the first end portion and the first outside current fixing vane 131 are continuously connected.
  • the first end of the duct 110 and the first outside current fixing vane 131 having the cambers protruding in opposite directions to each other have a shape in which the camber gradually disappears toward the boundary.
  • the duct 110 and the second outer current holding vane 132 are the same in camber shape.
  • the duct 110 has a camber protruding toward the stern boss 20 and the second external current fixing vane 132 has a camber of a convex shape in the rotational direction of the propeller 30 I have.
  • the duct 110 and the second external current fixing vane 132 both have a space surrounded by the duct 110, the first external current fixing vane 131 and the second external current fixing vane 132 And has a camber of a convex shape toward the center.
  • the second end portion of the duct 110 having the same camber shape and the second external current fixing vane 132 are continuously connected.
  • FIG. 6 is a view illustrating a part of the embodiment of the present invention as viewed from the left side, in which a duct is omitted.
  • FIG. 6 is a view illustrating a part of the embodiment of the present invention as viewed from the left side, in which a duct is omitted.
  • the first outer current fixing vane 131, the second outer current fixing vane 132, and the inner current fixing vanes 133 and 134 may have a sinking shape.
  • the first external current fixing vane 131, the second external current fixing vane 132, and the internal current fixing vanes 133 and 134 have a shape in which the leading edge strikes backward from the root to the tip.
  • the plurality of current holding vanes 131, 132, 133, and 134 may be placed on the same plane perpendicular to the center line A D of the arc formed by the duct 110, respectively.
  • the plurality of current fixing vanes 131, 132, 133, and 134 are as close as possible to the propeller (not shown) so that the rotation direction of the propeller 30 generated from the current fixing vanes 131, 132, 133, The swirling flow in the opposite direction to the propeller 30 can be directly introduced into the propeller 30, thereby improving the propulsion efficiency.
  • the first outside current fixing vane 131, the second outside current fixing vane 132 and the inside current fixing vanes 133 and 134 may all have the same code length at the root.
  • the first outside current fixing vane 131, the second outside current fixing vane 132, and the inside current fixing vanes 133 and 134 may have the same code length at the tip.
  • the code length of the first outer current fixing vane 131, the second outer current fixing vane 132 and the inner current fixing vanes 133 and 134 may be larger than the code length of the tip.
  • the tips of the inner current fixing vanes 133 and 134 can be fixed to the inner surface of the duct 110.
  • the front end of the tip of the inner current fixing vanes 133 and 134 is located behind the leading edge of the duct 110 and the rear end of the tip of the inner current fixing vanes 133 and 134 is located at the trailing edge of the duct 110. [ As shown in FIG.
  • the round bar constituting the leading edge of the inner current fixing vanes 133 and 134 does not interfere with the circular bar constituting the leading edge of the duct 110, and the trailing edge of the inner current fixing vanes 133 and 134
  • the circular rod constituting does not interfere with the circular rod constituting the trailing edge of the duct 110, and workability can be improved.
  • joining the ends of one rod to the side of the other rod is much less workable than joining the ends of one rod to one side of the plate.
  • FIG. 7 is a developed view of an outer surface of an assembly of a duct, a first outer current fixing vane, and a second outer current fixing vane according to an embodiment of the present invention.
  • the trailing edge 110b of the duct 110 has a straight shape on the developed view, and the leading edge 110a of the duct 110 has a convex curved shape.
  • the most convex peak portion in the developed view of the duct 110 approaches the hull 10, making it easier to fix the duct 110 to the hull 10.
  • the duct 110 having the developed view as shown in FIG. 7 has a structure in which the peak portion protrudes forward as shown in FIG. At this time, the peak portion is close to the hull 10 so that the duct 110 can be supported with respect to the hull 10 by a supporting member (not shown) having a short length. Since the supporting member having a short length has a larger strength than the supporting member having a longer construction, it is possible to stably support the duct 110 to the hull 10.
  • the curve formed by the leading edge 110a of the duct 110 on the developed view may have a single curvature R.
  • the duct 110 has a shape in which the length of the cord increases from the first end 110c to the second end 110d, and then decreases.
  • the duct has a structure in which the plates constituting the suction surface and the pressure surface are coupled to the circular rod constituting the leading edge
  • the circular rod is bent to have a single curvature.
  • the workability is greatly improved as compared with the case where the circular rod is bent to have two or more curvatures.
  • the first outer current fixing vane 131 has a shape in which the length of the cord decreases from the root 131c to the tip 131d.
  • the second outer current fixing vane 132 has a shape in which the length of the cord decreases from the root 132c to the tip 132d.
  • FIG. 8 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention as viewed from the left rear side
  • FIG. 9 is a perspective view with the propeller removed in FIG. 8
  • FIG. 11 is a left side view of the propulsion efficiency improving apparatus according to another embodiment of the present invention
  • FIG. 12 is a front view of the propulsion efficiency improving apparatus according to another embodiment of the present invention
  • a sectional shape is added to a duct and a current fixing blade. 8 to 12
  • + X means forward
  • + Y means the left direction.
  • a propulsion efficiency improving apparatus 100 ' includes a duct 110, current fixing vanes 131, 132, 133 and 134, a first connecting portion 150 And a second connection part 160.
  • the propulsion efficiency improving apparatus 100 'according to another embodiment of the present invention may further include a propulsion efficiency improving apparatus 100' according to an embodiment of the present invention in that it further includes a first connecting unit 150 and a second connecting unit 160. [ 100).
  • the first connection part 150 is connected to the first end part in the rotating direction of the propeller 30 of the duct 110 and the end part of the plurality of current fixing wings 131, 132, 133, 134 in the rotating direction of the propeller 30 And the first outer current fixing vanes 131 positioned therebetween are interconnected.
  • the first connection part 150 is formed separately from the duct 110 and the first external current fixing vane 131. The opposite ends of the first connection part 150 are connected to the first external current fixing vane 131 and the duct 110, Respectively.
  • the second connection part 160 is connected to the second end part of the duct 110 in the direction opposite to the rotation direction of the propeller 30 and the second end part of the current fixing vanes 131, 132, 133, And the second external current fixing vanes 132 located at the end in the opposite direction of the first external current fixing vanes 132 are connected to each other.
  • the second connection part 160 is manufactured separately from the duct 110 and the second external current fixing vane 132.
  • the opposite ends of the second connection part 160 are connected to the second external current fixing vane 132 and the duct 110, Respectively. As shown in Fig.
  • the duct 110 and the first outer current fixing vane 131 are different in camber shape.
  • the duct 110 has a camber protruding toward the stern boss 20, and the first external current fixing vane 131 has a convex camber in the rotational direction of the propeller 30 I have.
  • the duct 110 has a camber shape having a convex shape toward the inside of the space surrounded by the duct 110, the first outside current fixing vane 131 and the second outside current fixing vane 132
  • the current fixing vane 131 has a camber shaped in a convex shape toward the outside of the space surrounded by the duct 110, the first outside current fixing vane 131 and the second outside current fixing vane 132.
  • the first connecting part 150 has a shape that continuously connects the first end of the duct 110 and the first outside current fixing vane 131 having different camber shapes as described above.
  • the first connection unit 150 includes a first region 151 having a camber shaped in a convex shape in the same direction as the camber of the duct 110, and a first region 151 having a camber of the first external current- And a second region 152 having a camber shape having a convex shape in the direction of the arrow.
  • the cambers of the first area 151 and the second area 152 gradually disappear while approaching the boundary between the first area 151 and the second area 152, respectively.
  • the duct 110 and the second outer current holding vane 132 are the same in camber shape.
  • the duct 110 has a camber protruding toward the stern boss 20 and the second external current fixing vane 132 has a camber of a convex shape in the rotational direction of the propeller 30 I have.
  • the duct 110 and the second external current fixing vane 132 both have a space surrounded by the duct 110, the first external current fixing vane 131 and the second external current fixing vane 132 And has a camber of a convex shape toward the center.
  • the second connecting portion 160 has a shape that continuously connects the second end portion of the duct 110 having the same camber shape and the second outside current fixing vane 132 as described above.
  • the second connection portion 160 has a camber shaped in a convex shape toward the inside of the space surrounded by the duct 110, the first outside current fixing vane 131 and the second outside current fixing vane 160 .
  • FIG. 13 is a developed view of an outer surface of an assembly of a duct, a first outer current fixing vane, and a second outer current fixing vane according to another embodiment of the present invention.
  • the trailing edge 110b of the duct 110 has a straight shape on the developed view, and the leading edge 110a of the duct 110 has a convex curved shape.
  • the most convex peak portion in the developed view of the duct 110 approaches the hull 10, making it easier to fix the duct 110 to the hull 10.
  • the curve formed by the leading edge 110a of the duct 110 on the developed view may have a single curvature.
  • the duct 110 has a shape in which the length of the cord increases from the first end 110c to the second end 110d, and then decreases.
  • the first outer current fixing vane 131 has a shape in which the length of the cord decreases from the root 131c to the tip 131d.
  • the second outer current fixing vane 132 has a shape in which the length of the cord decreases from the root 132c to the tip 132d.
  • the length of the cord increases as the distance from the tip 131d of the first external current fixing vane 131 to the first end 110c of the duct 110 decreases.
  • the portion of the first connection portion 150 where the length of the cord decreases while increasing is the shortest cord portion 153 in the first connection portion 150.
  • the shortest cord portion 153 in the first connection portion 150 corresponds to the boundary between the first region 151 (FIG. 10) and the second region 152 (FIG. 10).
  • the length of the cord may decrease as the distance from the tip 132d of the second external current fixing vane 132 to the second end 110d of the duct 110 increases.
  • Reference numerals 131a, 150a, 110a, 160a and 132a denote leading edges
  • reference numerals 131b, 150b, 110b, 160b and 132b denote trailing edges.
  • FIG. 14 is a left side view of a propulsion efficiency enhancing device according to another embodiment of the present invention
  • FIG. 15 is a diagram in which a duct is omitted in FIG.
  • FIG. 16 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention as viewed from the left rear.
  • a propulsion efficiency improving apparatus 100 '' includes a duct 110, a plurality of current fixing vanes 131, 132, 133 and 134, 1 connection unit 150, and a second connection unit 160.
  • the propulsion efficiency improving apparatus 100 "according to yet another embodiment of the present invention is configured such that at the forward and backward positions of the plurality of current fixing vanes 131, 132, 133, 134, Enhancing device 100 '.
  • the inner current fixing vanes 133 and 134 are located forward of the first outside current fixing vane 131 and the second outside current fixing vane 132.
  • the front end of the tip of the inner current fixing vanes 133 and 134 is positioned behind the leading edge of the duct 110 and the rear end of the tip of the inner current fixing vanes 133 and 134 is positioned at the rear of the trailing edge of the duct 110 It is located forward of the edge.
  • the forward and backward distances L of the inner current fixing vanes 133 and 134 and the first outside current fixing vane 131 and the second outside current fixing vane 132 in the present embodiment are equal to the distance between the inside current fixing vanes 133 and 134 May be 0.05 times or more and 0.15 times or less than the code length of the route of the first outside current fixing vane 131 or the second outside current fixing vane 132.
  • the code lengths of the inner current fixing vanes 133 and 134 and the roots of the first outside current fixing vane 131 and the second outside current fixing vane 132 are all the same.
  • the current fixing vanes 131, 132, 133, 134 are all located at the same position in the lengthwise direction of the hull 10, the resistance acting on the hull 10 is reduced.
  • the inner current fixing vanes 133 and 134 are located a predetermined distance L away from the first outside current fixing vane 131 and the second outside current fixing vane 132, 133, and 134, the first outside current fixing vane 131 and the second outside current fixing vane 132 is weakened, and the resistance to the hull 10 is reduced.
  • the distance between the inner current fixing vanes 133 and 134 and the first outside current fixing vane 131 and the second outside current fixing vane 132 is smaller than the above range,
  • the resistance to the hull 10 may increase due to the venturi effect generated between the one outer current fixing vane 131 and the second outer current fixing vane 132.
  • FIG. 17 is a perspective view of the propulsion efficiency enhancing device according to another embodiment of the present invention, viewed from the left rear side, and FIG. 18 is a perspective view of the propeller removed in FIG.
  • the propulsion efficiency improving apparatus 100a includes a duct 110, and a plurality of current fixing blades 131, 132, 133, and 134.
  • the trailing edge 110b of the duct 110 has a straight shape and the leading edge 110a of the duct 110 has a convex curved shape as shown in FIG. .
  • the duct 110 has a structure in which the peak portion protrudes forward as shown in FIG. At this time, the peak portion is close to the hull 10 so that the duct 110 can be supported with respect to the hull 10 by a supporting member (not shown) having a short length. Since the supporting member having a short length has a larger strength than the supporting member having a longer construction, it is possible to stably support the duct 110 to the hull 10. Unlike the case described with reference to FIGS. 8 to 16, a separate connection part 150 and 160 may not be included.
  • the inner current fixing vanes 133 and 134 are positioned forward of the first outer current fixing vane 131 and the second outer current fixing vane 132 as described in Figs. 14 to 16.
  • the tips of the tips of the inner current holding vanes 133 and 134 are positioned behind the leading edges of the duct 110 and the tips of the tips of the inner current holding vanes 133 and 134 are positioned forward of the trailing edge of the duct 110 .
  • the current fixing vanes 131, 132, 133, 134 are all located at the same position in the lengthwise direction of the hull 10, the resistance acting on the hull 10 is reduced.
  • FIG. 19 is a case in which only a plurality of current fixing blades (see 131, 132, 133 and 134 in Figs. 1 to 18) are provided in front of the propeller.
  • 20 is a case in which a plurality of current fixing blades and a circular duct (i.e., full duct) are installed in front of the propeller.
  • the circular duct is a shape formed to surround the current fixing vane circularly.
  • FIG. 21 is a case in which a plurality of current fixing blades and a part duct (i.e., partial duct) are installed in front of a propeller, like the propulsion efficiency improving device according to some embodiments of the present invention.
  • FIG. 19 a case in which a current fixing blade and a circular duct are installed (FIG. 20), a case in which a current fixing blade and a part of ducts are installed (FIG. 21)
  • the stator means a current-carrying wing
  • the full duct means a circular duct
  • the partial duct means a duct.
  • the case (FIG. 19) in which only the current stabilizing blade was installed had a 2.0% fuel saving effect as compared with the comparison case.
  • the case (FIG. 20) in which the current-stabilizing blade and the circular duct were installed had a fuel saving effect of 1.0% as compared with the case to be compared.
  • the case in which the current stabilizing blade and some ducts were installed had a fuel saving effect of 3.0% as compared with the comparison case.
  • cavitation due to a terminal vortex may occur in a current fixing blade generating a swirling flow. Therefore, in the case in which only the current fixing vanes are provided (Fig. 19), additional shapes such as winglets should be mounted to reduce end cavitation. However, in the case of using some ducts (Fig. 21), all of the current fixing wings are wrapped in some ducts, so that end vortices are originally blocked. Therefore, additional devices such as a winglet are unnecessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

추진 효율 향상 장치가 개시된다. 본 발명의 실시예에 따른 추진 효율 향상 장치는 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및 상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함한다.

Description

추진 효율 향상 장치
본 발명은 추진 효율 향상 장치에 관한 것이다.
최근 선박을 운용하는 과정에서 소비되는 에너지를 절감하기 위한 다양한 기술 개발이 이루어지고 있는 실정이다.
에너지 절감 기술의 일례로서, 프로펠러의 전방에 배치되는 덕트가 있다.
덕트는 선체의 표면을 따라 후방으로 이동하는 유동을 통과시키면서 추가적인 추력을 발생시킨다. 이 경우, 덕트는 추진 효율을 증가시키는 요인이 될 수 있다.
그러나 덕트는 다른 측면에서 저항으로 작용하기 때문에 추진 효율을 감소시키는 요인이 되기도 한다.
본 발명의 기술적 과제는, 추진 효율을 향상시키기 위해 장치를 제공하는 것이다.
상기 기술적 과제를 해결하기 위한 본 발명의 추진 효율 향상 장치의 일 측면(aspect)에 따르면, 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및 상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함하는, 추진 효율 향상 장치가 제공될 수 있다.
상기 덕트는 상기 선미 보스부를 향하는 방향으로 볼록한 형상의 캠버를 가지고, 상기 복수의 전류 고정 날개는 상기 프로펠러의 회전 방향으로 볼록한 형상의 캠버를 가질 수 있다.
상기 추진 효율 향상 장치는 상기 덕트의 상기 프로펠러 회전 방향으로의 제 1 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향으로 마지막에 위치하는 제 1 외측 고정 날개를 상호 연결하는 제 1 연결부; 및 상기 덕트의 상기 프로펠러 회전 방향의 반대 방향으로의 제 2 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개를 상호 연결하는 제 2 연결부를 더 포함하고, 상기 제 1 연결부는 캠버 형상이 상이한 상기 덕트의 제 1 끝단부와 상기 제 1 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가지고, 상기 제 2 연결부는 캠버 형상이 동일한 상기 덕트의 제 2 끝단부와 상기 제 2 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가질 수 있다.
상기 덕트는 상기 덕트가 형성하는 원호의 중심선에 대해 좌측 하방 영역에서 우측 상방 영역에 걸쳐 연장된 원호 형상을 가지고, 상기 복수의 전류 고정 날개는 상기 덕트가 형성하는 원호의 중심선에 대해 좌측 하방 영역에서 우측 상방 영역에 걸쳐 상호 이격되어 배치될 수 있다.
상기 프로펠러는 후방에서 볼 때 시계 방향으로 회전하고, 상기 복수의 전류 고정 날개 중 선체의 좌현에 위치하는 전류 고정 날개의 개수는 우현에 위치하는 전류 고정 날개의 개수보다 많을 수 있다.
상기 덕트가 형성하는 원호의 중심선은 상기 프로펠러의 회전축보다 상방에 위치할 수 있다.
상기 덕트가 형성하는 원호의 중심선과 상기 프로펠러의 회전축 사이의 거리는 상기 프로펠러 반경의 0.1배 이상 0.4배 이하일 수 있다.
상기 덕트는 상기 프로펠러의 회전 영역 내에 위치할 수 있다.
본 발명의 추진 효율 향상 장치의 다른 측면에 따르면, 프로펠러의 전방에서 선미 보스부에 지지되고, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개; 상기 복수의 전류 고정 날개의 끝단부에 지지되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및 상기 덕트와 상기 전류 고정 날개를 상호 연결하는 연결부를 포함한다.
상기 덕트는 상기 선미 보스부를 향하는 방향으로 볼록한 형상의 캠버를 가지고, 상기 복수의 전류 고정 날개는 상기 프로펠러의 회전 방향으로 볼록한 형상의 캠버를 가질 수 있다.
상기 연결부는, 상기 덕트의 상기 프로펠러 회전 방향으로의 제 1 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개를 상호 연결하는 제 1 연결부; 및 상기 덕트의 상기 프로펠러 회전 방향의 반대 방향으로의 제 2 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개를 상호 연결하는 제 2 연결부를 더 포함하고, 상기 제 1 연결부는 캠버 형상이 서로 상이한 상기 덕트의 제 1 끝단부와 상기 제 1 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가지고, 상기 제 2 연결부는 캠버 형상이 동일한 상기 덕트의 제 2 끝단부와 상기 제 2 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가질 수 있다.
상기 제1 연결부 및 상기 제2 연결부는 각각 상기 덕트, 상기 제1 외측 전류 고정 날개 및 상기 제2 외측 전류 고정 날개와 별개로 제작되어 결합될 수 있다.
본 발명의 추진 효율 향상 장치의 또 다른 측면에 따르면, 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및 상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함하고, 상기 덕트는 상기 프로펠러의 회전 방향으로의 제 1 끝단부에서 상기 프로펠러의 회전 방향의 반대 방향으로의 제 2 끝단부로 갈수록 코드의 길이가 변화하는 형상을 가질 수 있다.
상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개는 루트에서 팁으로 갈수록 코드의 길이가 감소하는 형상을 가지고, 상기 덕트는 상기 프로펠러의 회전 방향으로의 제 1 끝단부에서 상기 프로펠러의 회전 방향의 반대 방향으로의 제 2 끝단부로 갈수록 코드의 길이가 증가하다가 감소하는 형상을 가지고, 상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개는 루트에서 팁으로 갈수록 코드의 길이 감소하는 형상을 가질 수 있다.
상기 덕트의 상기 프로펠러의 회전 방향으로의 제 1 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향으로 마지막에 위치하는 제 1 외측 고정 날개 사이에 개재되는 제 1 연결부; 및 상기 덕트의 상기 프로펠러의 회전 방향의 반대 방향으로의 제 2 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개 사이에 개재되는 제 2 연결부를 더 포함하고, 상기 제 1 연결부는 상기 제 1 외측 고정 날개의 팁에서 상기 덕트의 제 1 끝단부로 갈수록 코드의 길이가 감소하다 증가하는 형상을 가지고, 상기 제 2 연결부는, 상기 제 2 외측 고정 날개의 팁에서 상기 덕트의 제 2 끝단부로 갈수록 코드의 길이가 감소하다가 증가하는 형상을 가질 수 있다.
상기 덕트의 외측을 향하는 일면을 전개한 전개도에서, 상기 덕트의 리딩 에지가 이루는 곡선은 단일한 곡률을 가질 수 있다.
본 발명의 추진효율향상장치의 또 다른 측면에 따르면, 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및 상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함하고, 상기 복수의 전류 고정 날개는 선체의 길이 방향으로 다른 위치에 위치한다.
상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개와 상기 프로펠러 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개 사이에 위치하는 내측 전류 고정 날개는 상기 제 1 외측 전류 고정 날개 및 상기 제 2 외측 전류 고정 날개보다 전방에 위치할 수 있다.
상기 내측 전류 고정 날개는 하나 이상의 개수를 가지고, 상기 덕트의 내측면에 고정되는 상기 내측 전류 고정 날개의 팁은 그 전단이 상기 덕트의 리딩 에지보다 후방에 위치하고 그 후단이 상기 덕트의 트레일링 에지보다 전방에 위치할 수 있다.
상기 내측 전류 고정 날개와 상기 제 1 외측 전류 고정 날개와 상기 제 2 외측 전류 고정 날개는 모두 루트와 팁에서 동일한 코드 길이를 가지고, 상기 내측 전류 고정 날개와 상기 제 1 외측 전류 고정 날개 및 상기 제 2 외측 전류 고정 날개의 전후 거리는 상기 내측 전류 고정 날개의 루트의 코드 길이의 0.05배 이상 0.15배 이하일 수 있다.
본 발명의 실시예에 따르면, 덕트를 지지하는 지지체로서 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 전류 고정 날개를 사용함으로써 일반적인 지지 구조를 사용하여 덕트를 지지하던 종래와 달리 프로펠러의 추력을 증가시키고 추진 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이고,
도 2는 도 1에서 프로펠러가 제거된 사시도이고,
도 3은 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 후방에서 바라본 도면이고,
도 4는 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 좌측에서 바라본 도면이고,
도 5는 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도로서, 덕트와 전류 고정 날개에 단면 형상을 추가한 도면이고,
도 6은 본 발명의 일 실시예에 따른 일부를 좌측에서 바라본 도면으로서, 덕트가 생략된 상태를 나타내는 도면이고,
도 7은 본 발명의 일 실시예에 따른 덕트, 제 1 외측 전류 고정 날개, 제 2 외측 전류 고정 날개의 결합체의 외측면에 대한 전개도를 나태는 도면이고,
도 8은 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이고,
도 9는 도 8에서 프로펠러가 제거된 사시도이고,
도 10은 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 후방에서 바라본 도면이고,
도 11은 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 좌측에서 바라본 도면이고,
도 12는 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도로서, 덕트와 전류 고정 날개에 단면 형상을 추가한 도면이다.
도 13은 본 발명의 다른 실시예에 따른 덕트, 제 1 외측 전류 고정 날개, 제 2 외측 전류 고정 날개의 결합체의 외측면에 대한 전개도를 나태는 도면이고,
도 14는 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치를 좌측에서 바라본 도면이고,
도 15는 도 14에서 덕트가 생략된 도면이다.
도 16은 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이다.
도 17은 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이고, 도 18은 도 17에서 프로펠러가 제거된 사시도이다.
도 19 내지 도 24는 본 발명의 몇몇 실시예에 따른 추진 효율 향상 장치의 효과를 설명하기 위한 도면들이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 본 발명의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이고, 도 2는 도 1에서 프로펠러가 제거된 사시도이고, 도 3은 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 후방에서 바라본 도면이고, 도 4는 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 좌측에서 바라본 도면이다. 참고로, 도 1 내지 도 4에서 +X는 전방을 의미하고, +Y는 좌측 방향을 의미한다.
도 1 내지 도 4를 참조하면, 본 실시예에 일 실시예에 따른 추진 효율 향상 장치(100)는 덕트(110)와, 전류 고정 날개(131, 132, 133, 134)를 포함한다.
덕트(110)는 프로펠러(30)의 전방에 배치된다. 프로펠러(30)는 선미 보스부(20)의 후방에 배치된다. 프로펠러(30)는 회전하며 추력을 발생시킨다. 본 실시예에서 프로펠러(30)는 도 1 내지 도 3에서 볼 때 시계 방향으로 회전한다. 즉, 프로펠러(30)는 후방에서 볼 때 시계 방향으로 회전한다.
덕트(110)는 원호 형상을 가진다.
일례로, 덕트(110)는 도 1 내지 도 3과 같이 덕트(110)가 형성하는 원호의 중심선(AD)에 대해 좌측 하방 영역에서 우측 상방 영역에 걸쳐 연장된 원호 형상을 가질 수 있다.
다른 예로, 도시되지 않았으나 덕트는 덕트가 형성하는 원호의 중심선에 대해 좌측 상방 영역에서 우측 상방 영역에 걸쳐 연장된 원호 형상을 가질 수 있다.
덕트(110)가 형성하는 원호의 원호각은 180도 미만이 바람직하다.
덕트(110)는 선미 보스부(20)를 부분적으로 감싸는 구조를 가진다.
덕트(110)가 형성하는 원호의 중심선(AD)은 도 4와 같이 프로펠러(30)의 회전축(AP)보다 상방에 위치할 수 있다.
이때, 덕트(110)가 형성하는 원호의 중심선(AD)과 프로펠러(30)의 회전축(AP) 사이의 거리(H)는 프로펠러(30)의 반경의 이상 0.4배 이하일 수 있다. 덕트(110)가 형성하는 원호의 중심선(AD)과 프로펠러(30)의 회전축(AP) 사이의 거리(H)가 프로펠러(30)의 0.4배를 초과하면 전류 고정 날개를 설치할 수 있는 범위가 현저하게 제한될 수 있다.
나아가, 덕트(110)가 형성하는 원호의 중심선(AD)과 프로펠러(30)의 회전축(AP) 사이의 거리(H)는 프로펠러(30)의 반경의 0.1배 이상 0.4배 이하일 수 있다.
덕트(110)는 프로펠러(30)의 회전 영역 내에 위치한다. 이때, 덕트(110)를 통과하는 유동이 정렬된 형태로 프로펠러(30)로 유입될 수 있고, 프로펠러(30)의 추진 효율이 향상될 수 있다.
이때, 덕트(110)의 반경은 프로펠러 반경에서 덕트(110) 원호의 중심선(AD)과 프로펠러(30)의 회전축(AP) 사이의 거리를 뺀 값보다 작거나 같다.
덕트(110)는 추력을 발생시킨다. 예컨대, 덕트(110)는 익형 단면을 가지며 선미 보스부(20)를 향하는 방향으로 볼록한 형상의 캠버를 가진다. 이에 대해 후술한다.
선체(10)를 따라 후방으로 이동하는 유동이 덕트(110)를 지나는 과정에서 덕트(110)의 단면에 양력이 발생한다. 양력 중에서 선체(10) 길이 방향(ex. X축 방향)과 나란한 성분은 선체(10)를 추진하기 위한 추력으로 작용한다.
덕트(110)는 별도의 지지 부재(미도시)에 의해 선체(10)의 선미부에 지지될 수 있다.
전류 고정 날개(131, 132, 133, 134)는 덕트(110)를 선미 보스부(20)에 대해 지지한다.
전류 고정 날개(131, 132, 133, 134)는 복수로 제공된다.
일례로, 전류 고정 날개(131, 132, 133, 134)의 개수는 도 1 내지 도 3과 같이 네 개일 수 있다.
다른 예로, 전류 고정 날개의 개수는 도시되지 않았으나 세 개 또는 다섯 개 등일 수 있다.
복수의 전류 고정 날개(131, 132, 133, 134)는 도 1 내지 도 3과 같이 프로펠러(30)의 회전 방향으로 이격되어 배치된다. 달리 표현하면, 복수의 전류 고정 날개(131, 132, 133, 134)는 도 2 및 도 3과 같이 덕트(110)가 형성하는 원호의 중심선(AD)을 중심으로 원호 방향으로 이격 배치될 수 있다.
일례로, 복수의 전류 고정 날개(131, 132, 133, 134)는 도 2 및 도 3과 같이 덕트(110)가 형성하는 원호의 중심선(AD)에 대해 좌측 하방 영역에서 우측 상방 영역에 걸쳐 상호 이격되어 배치될 수 있다.
다른 예로, 복수의 전류 고정 날개는 도시되지 않았으나 덕트가 형성하는 원호의 중심선에 대해 좌측 상방 영역에서 우측 상방 영역에 걸쳐 상호 이격되어 배치될 수 있다.
복수의 전류 고정 날개(131, 132, 133, 134)는 프로펠러(30)의 회전 방향과 반대 방향의 선회류를 발생시킨다.
전류 고정 날개(131, 132, 133, 134)에 의한 선회류는 프로펠러(30)로 유입되어 프로펠러(30)의 회전 방향의 선회류를 감소시킴으로써 추진 효율을 향상시킨다. 달리 표현하면, 전류 고정 날개(131, 132, 133, 134)에 의해 프로펠러(30)의 회전 방향과 반대 방향의 선회류가 발생되면, 프로펠러(30)로 유입되는 유동의 받음각이 증가하여 프로펠러(30)에서 발생되는 추력이 증가하고 이에 따라 추진 효율이 향상된다.
도 5는 본 발명의 일 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도로서, 덕트와 전류 고정 날개에 단면 형상을 추가한 도면이다.
도 5를 참조하면, 본 실시에에서 프로펠러(미도시)는 후방에서 볼 때 시계 방향으로 회전한다. 이때, 복수의 전류 고정 날개(131, 132, 133, 134)는 프로펠러(미도시)의 회전 방향과 반대 방향의 선회류를 발생시키기 위해, 도 5와 같이 프로펠러(미도시)의 회전 방향으로 볼록한 형상의 캠버를 가진다.
이상에서 살펴본 본 발명의 일 실시예에 따른 추진 효율 향상 장치(100)는 추력을 발생시키는 덕트(110)를 선미 보스부(20)에 대해 지지하는 지지체로서 프로펠러(30)의 회전 방향과 반대 방향의 선회류를 발생시키는 전류 고정 날개(131, 132, 133, 134)를 사용한다.
이와 관련하여 통상적으로 프로펠러의 전방에 배치되어 추력을 발생시키는 덕트를 지지하기 위해 본 실시예에 따른 전류 고정 날개(131, 132, 133, 134)와 달리 단순한 형상의 지지 부재가 사용된다. 이러한 단순한 형상의 지지 부재는 저항으로 작용하게 되어 선박의 저항을 증가시키는 요인이 되었다.
그러나 본 발명의 일 실시예에 따른 추진 효율 향상 장치(100)는 덕트(110)를 지지하는 지지체로서 프로펠러(30)의 회전 방향과 반대 방향의 선회류를 발생시키는 전류 고정 날개(131, 132, 133, 134)를 사용함으로써 종래와 달리 프로펠러(30)의 추력을 증가시키고 추진 효율을 향상시킨다.
본 실시예에서 복수의 전류 고정 날개(131, 132, 133, 134) 중 선체(10)의 좌현에 위치하는 전류 고정 날개(132, 133, 134)의 개수는 우현에 위치하는 전류 고정 날개(131)의 개수보다 많다.
보다 상세히, 통상적으로 전류 고정 날개가 없는 나선(barehull) 상태에서 프로펠러로 유입되는 반류의 분포를 살펴보면, 좌현에서는 프로펠러의 회전 방향과 동일한 방향의 반류가 발생하고, 우현에서는 프로펠러의 회전 방향과 반대 방향의 반류가 발생한다.
프로펠러(30)의 회전 방향과 동일한 방향의 반류가 생성되는 좌현에서 전류 고정 날개(132, 133, 134)는 작은 피치각(부착각)으로 전류 고정 날개(132, 133, 134)로 유입되는 유입류를 프로펠러(30)의 회전 방향의 반대 방향으로 변경 가능하나, 프로펠러(30)의 회전 방향과 반대 방향의 반류가 생성되는 우현에서는 전류 고정 날개(131)가 좌현보다 더욱 큰 피치각(부착각)으로 설치되어야만 전류 고정 날개(131)로 유입되는 유입류를 프로펠러(30)의 회전 방향의 반대 방향으로 변경할 수 있다.
이 경우, 작은 피치각으로 프로펠러(30)의 회전 방향의 반대 방향의 선회류를 발생할 수 있는 좌현에서는 전류 고정 날개(132, 133, 134)의 부착에 따른 저항 증가가 작으나, 큰 피치각으로만 프로펠러(30)의 회전 방향의 반대 방향의 선회류를 발생시킬 수 있는 우현에서는 전류 고정 날개(131)의 부착에 따른 저항 증가가 과도해 진다. 그러므로, 높은 추진효율을 위해서는 우현 보다 좌현에 더욱 많은 전류 고정 날개를 배치하는 것이 바람직하다.
본 실시예에서, 덕트(110)의 프로펠러(30)의 회전 방향으로의 제 1 끝단부와 복수의 전류 고정 날개(131, 132, 133, 134) 중 프로펠러(30) 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개(131)는 상호 연결된다. 제 1 외측 전류 고정 날개(131)는 도 3과 같이 덕트(110)가 형성하는 원호의 중심선(AD)에 대해 우측 상방 영역에 위치할 수 있다.
덕트(110)의 프로펠러(30)의 회전 방향의 반대 방향으로의 제 2 끝단부와 복수의 전류 고정 날개(131, 132, 133, 134) 중 프로펠러(30) 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개(132)는 상호 연결된다. 제 2 외측 전류 고정 날개(132)는 도 3과 같이 덕트(110)가 형성하는 원호의 중심선(AD)에 대해 좌측 하방 영역에 위치할 수 있다.
본 실시예에서, 덕트(110)와 제 1 외측 전류 고정 날개(131)는 캠버 형상에 있어서 상이하다.
보다 상세히, 덕트(110)는 도 5와 같이 선미 보스부(20)를 향하여 볼록한 형상의 캠버를 가지고, 제 1 외측 전류 고정 날개(131)는 프로펠러(30)의 회전 방향으로 볼록한 형상의 캠버를 가진다.
달리 표현하면, 덕트(110)는 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)로 둘러싸인 공간의 내부를 향해 볼록한 형상의 캠버를 가지고, 제 1 외측 전류 고정 날개(131)는 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)로 둘러싸인 공간의 외부를 향해 볼록한 형상의 캠버를 가진다.
본 실시예에서 위와 같이 캠버 형상이 상이한 덕트(110)의 제 1 끝단부와 제 1 외측 전류 고정 날개(131)는 연속적으로 연결된다.
예컨대, 도 5와 같이 상호 반대 방향으로 볼록한 캠버를 가지는 덕트(110)의 제 1 끝단부와 제 1 외측 전류 고정 날개(131)는 그 경계로 갈수록 점진적으로 캠버가 소멸하는 형상을 가진다.
본 실시예에서, 덕트(110)와 제 2 외측 전류 고정 날개(132)는 캠버 형상에 있어서 동일하다.
보다 상세히, 덕트(110)는 도 5와 같이 선미 보스부(20)를 향하여 볼록한 형상의 캠버를 가지고, 제 2 외측 전류 고정 날개(132)는 프로펠러(30)의 회전 방향으로 볼록한 형상의 캠버를 가진다.
달리 표현하면, 덕트(110)와 제 2 외측 전류 고정 날개(132)는 모두 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)로 둘러싸인 공간의 내부를 향해 볼록한 형상의 캠버를 가진다.
본 실시예에서 위와 같이 캠버 형상이 동일한 덕트(110)의 제 2 끝단부와 제 2 외측 전류 고정 날개(132)는 연속적으로 연결된다.
도 6은 본 발명의 일 실시예에 따른 일부를 좌측에서 바라본 도면으로서, 덕트가 생략된 상태를 나태는 도면이다.
도 5 및 도 6을 참조하면, 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)와 내측 전류 고정 날개(133, 134)는 후퇴익 형상을 가질 수 있다. 이때, 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)와 내측 전류 고정 날개(133, 134)는 리딩 에지가 루트에서 팁으로 갈수록 후방으로 쳐지는 형상을 가진다.
본 실시예에서 복수의 전류 고정 날개(131, 132, 133, 134)는 각각 트레일링 에지가 덕트(110)가 형성하는 원호의 중심선(AD)에 수직한 동일 평면 상에 놓일 수 있다. 이때, 복수의 전류 고정 날개(131, 132, 133, 134)은 프로펠러(미도시)와 최대한 근접하게 되어 전류 고정 날개들(131, 132, 133, 134)에서 발생되는 프로펠러(30)의 회전 방향과 반대 방향의 선회류가 프로펠러(30)로 바로 유입될 수 있어 추진효율이 향상된다.
본 실시예에서, 제 1 외측 전류 고정 날개(131), 제 2 외측 전류 고정 날개(132) 및 내측 전류 고정 날개(133, 134)는 모두 루트에서의 코드 길이가 동일할 수 있다. 그리고 제 1 외측 전류 고정 날개(131), 제 2 외측 전류 고정 날개(132) 및 내측 전류 고정 날개(133, 134)는 모두 팁에서의 코드 길이가 동일할 수 있다. 그리고 제 1 외측 전류 고정 날개(131), 제 2 외측 전류 고정 날개(132) 및 내측 전류 고정 날개(133, 134)는 모두 루트에서의 코드 길이가 팁에서의 코드 길이보다 클 수 있다.
도 5를 참조하면, 본 실시예에서, 내측 전류 고정 날개(133, 134)의 팁은 덕트(110)의 내측면에 고정될 수 있다.
이때, 내측 전류 고정 날개(133, 134)의 팁의 전단은 덕트(110)의 리딩 에지보다 후방에 위치하고, 내측 전류 고정 날개(133, 134)의 팁의 후단은 덕트(110)의 트레일링 에지보다 전방에 위치한다.
이 경우, 내측 전류 고정 날개(133, 134)의 리딩 에지를 구성하는 원형봉이 덕트(110)의 리딩 에지를 구성하는 원형봉과 간섭하지 않고, 내측 전류 고정 날개(133, 134)의 트레일링 에지를 구성하는 원형봉이 덕트(110)의 트레일링 에지를 구성하는 원형봉과 간섭하지 않게 되어 작업성이 향상될 수 있다. 참고로, 어떤 봉의 끝단을 다른 봉의 측면에 결합시키는 것은 하나의 봉의 끝단을 평판의 일면에 결합시키는 것보다 작업성이 매우 낮다.
도 7은 본 발명의 일 실시예에 따른 덕트, 제 1 외측 전류 고정 날개, 제 2 외측 전류 고정 날개의 결합체의 외측면에 대한 전개도를 나태는 도면이다.
도 7을 참조하면, 전개도 상에서 덕트(110)의 트레일링 에지(110b)는 직선 형상을 가지고 덕트(110)의 리딩 에지(110a)는 전방으로 볼록한 곡선 형상을 가질 수 있다.
이 경우, 덕트(110)의 전개도에서 가장 볼록한 피크 부분이 선체(10)에 가까워져 덕트(110)를 선체(10)에 고정하기 용이해진다.
보다 상세히, 도 7과 같은 전개도를 가지는 덕트(110)는 피크 부분이 도 4와 같이 전방으로 돌출된 구조를 가진다. 이때, 피크 부분이 선체(10)와 가까워져 길이가 짧은 지지 부재(미도시)로도 덕트(110)를 선체(10)에 대해 지지할 수 있다. 길이가 짧은 지지 부재는 구조상 길이가 긴 지지 부재에 비해 강도가 크기 때문에 덕트(110)를 선체(10)에 안정적으로 지지할 수 있다.
도 7을 참조하면, 전개도 상에서 덕트(110)의 리딩 에지(110a)가 이루는 곡선은 단일한 곡률(R)을 가질 수 있다. 이 경우, 덕트(110)는 제 1 끝단부(110c)에서 제 2 끝단부(110d)로 갈수록 코드의 길이가 증가하다가 감소하는 형상을 가진다.
통상적으로 덕트는 리딩 에지를 구성하는 원형봉에 압력면과 흡입면을 구성하는 판들이 결합되는 구조를 가진다
전개도상에서 덕트(110)의 리딩 에지(110a)가 이루는 곡선이 단일한 곡률(R)을 갖도록 덕트(110)를 제작하기 위해서는 원형봉은 하나의 곡률을 갖도록 벤딩 가공된다. 이 경우, 원형봉을 둘 이상의 곡률을 갖도록 벤딩 가공하는 경우에 비해 작업성이 크게 향상된다.
도 7을 참조하면, 제 1 외측 전류 고정 날개(131)는 루트(131c)에서 팁(131d)으로 갈수록 코드의 길이가 감소하는 형상을 가진다. 제 2 외측 전류 고정 날개(132)는 루트(132c)에서 팁(132d)으로 갈수록 코드의 길이가 감소하는 형상을 가진다.
도 8은 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이고, 도 9는 도 8에서 프로펠러가 제거된 사시도이고, 도 10은 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 후방에서 바라본 도면이고, 도 11은 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 좌측에서 바라본 도면이고, 도 12는 본 발명의 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도로서, 덕트와 전류 고정 날개에 단면 형상을 추가한 도면이다. 참고로, 도 8 내지 도 12에서 +X는 전방을 의미하고, +Y는 좌측 방향을 의미한다.
도 8 내지 도 12를 참조하면, 본 발명의 다른 실시예에 따른 추진 효율 향상 장치(100')는, 덕트(110), 전류 고정 날개(131, 132, 133, 134), 제 1 연결부(150) 및 제 2 연결부(160)를 포함할 수 있다. 본 발명의 다른 실시예에 따른 추진 효율 향상 장치(100')는 제 1 연결부(150)와 제 2 연결부(160)를 더 포함한다는 점에서 앞선 본 발명의 일 실시예에 따른 추진 효율 향상 장치(100)와 차이가 있다.
제 1 연결부(150)는 덕트(110)의 프로펠러(30)의 회전 방향으로의 제 1 끝단부와 복수의 전류 고정 날개(131, 132, 133, 134) 중 프로펠러(30) 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개(131)를 상호 연결한다.
제 1 연결부(150)는 덕트(110)와 제 1 외측 전류 고정 날개(131)와 별도로 제작되고, 제 1 연결부(150)의 양측단부는 제 1 외측 전류 고정 날개(131)와 덕트(110)의 제 1 끝단부에 각각 결합될 수 있다.
제 2 연결부(160)는 덕트(110)의 프로펠러(30)의 회전 방향의 반대 방향으로의 제 2 끝단부와 복수의 전류 고정 날개(131, 132, 133, 134) 중 프로펠러(30) 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개(132)를 상호 연결한다.
제 2 연결부(160)는 덕트(110)와 제 2 외측 전류 고정 날개(132)와 별도로 제작되고, 제 2 연결부(160)의 양측단부는 제 2 외측 전류 고정 날개(132)와 덕트(110)의 제 2 끝단부에 각각 결합될 수 있다.
본 실시예에서, 덕트(110)와 제 1 외측 전류 고정 날개(131)는 캠버 형상에 있어서 상이하다.
보다 상세히, 덕트(110)는 도 5와 같이 선미 보스부(20)를 향하여 볼록한 형상의 캠버를 가지고, 제 1 외측 전류 고정 날개(131)는 프로펠러(30)의 회전 방향으로 볼록한 형상의 캠버를 가진다.
달리 표현하면, 덕트(110)는 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)로 둘러싸인 공간의 내부를 향해 볼록한 형상의 캠버를 가지고, 제 1 외측 전류 고정 날개(131)는 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)로 둘러싸인 공간의 외부를 향해 볼록한 형상의 캠버를 가진다.
본 실시예에 따른 제 1 연결부(150)는 위와 같이 캠버 형상이 상이한 덕트(110)의 제 1 끝단부와 제 1 외측 전류 고정 날개(131)를 연속적으로 연결하는 형상을 가진다.
예컨대, 제 1 연결부(150)는 도 5와 같이 덕트(110)의 캠버와 같은 방향으로 볼록한 형상의 캠버를 가지는 제 1 영역(151)과, 제 1 외측 전류 고정 날개(131)의 캠버와 같은 방향으로 볼록한 형상의 캠버를 가지는 제 2 영역(152)을 포함한다. 제 1 영역(151)과 제 2 영역(152)의 캠버는 각각 제 1 영역(151)과 제 2 영역(152)의 경계에 가까워지면서 점진적으로 소멸한다.
본 실시예에서, 덕트(110)와 제 2 외측 전류 고정 날개(132)는 캠버 형상에 있어서 동일하다.
보다 상세히, 덕트(110)는 도 5와 같이 선미 보스부(20)를 향하여 볼록한 형상의 캠버를 가지고, 제 2 외측 전류 고정 날개(132)는 프로펠러(30)의 회전 방향으로 볼록한 형상의 캠버를 가진다.
달리 표현하면, 덕트(110)와 제 2 외측 전류 고정 날개(132)는 모두 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132)로 둘러싸인 공간의 내부를 향해 볼록한 형상의 캠버를 가진다.
본 실시예에 따른 제 2 연결부(160)는 위와 같이 캠버 형상이 동일한 덕트(110)의 제 2 끝단부와 제 2 외측 전류 고정 날개(132)를 연속적으로 연결하는 형상을 가진다.
예컨대, 제 2 연결부(160)는 도 5와 같이 덕트(110)와 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(160)로 둘러싸인 공간의 내부를 향해 볼록한 형상의 캠버를 가진다.
도 13은 본 발명의 다른 실시예에 따른 덕트, 제 1 외측 전류 고정 날개, 제 2 외측 전류 고정 날개의 결합체의 외측면에 대한 전개도를 나타내는 도면이다.
도 13을 참조하면, 전개도 상에서 덕트(110)의 트레일링 에지(110b)는 직선 형상을 가지고 덕트(110)의 리딩 에지(110a)는 전방으로 볼록한 곡선 형상을 가질 수 있다.
이 경우, 덕트(110)의 전개도에서 가장 볼록한 피크 부분이 선체(10)에 가까워져 덕트(110)를 선체(10)에 고정하기 용이해진다.
도 13을 참조하면, 전개도 상에서 덕트(110)의 리딩 에지(110a)가 이루는 곡선은 단일한 곡률을 가질 수 있다. 이 경우, 덕트(110)는 제 1 끝단부(110c)에서 제 2 끝단부(110d)로 갈수록 코드의 길이가 증가하다가 감소하는 형상을 가진다.
도 13을 참조하면, 제 1 외측 전류 고정 날개(131)는 루트(131c)에서 팁(131d)으로 갈수록 코드의 길이가 감소하는 형상을 가진다. 제 2 외측 전류 고정 날개(132)는 루트(132c)에서 팁(132d)으로 갈수록 코드의 길이가 감소하는 형상을 가진다.
그리고 제 1 연결부(150)는 제 1 외측 전류 고정 날개(131)의 팁(131d)에서 덕트(110)의 제 1 끝단부(110c)로 갈수록 코드의 길이가 감소하다 증가하는 형상을 가진다. 특히, 제1 연결부(150)에서 코드의 길이가 감소하다가 증가하는 부분은, 제1 연결부(150)에서 가장 코드가 짧은 부분(153)이 된다. 제1 연결부(150)에서 가장 코드가 짧은 부분(153)은 제1 영역(도 10의 151)과 제2 영역(도 10의 152)의 경계에 해당한다. 제 2 연결부(160)는 제 2 외측 전류 고정 날개(132)의 팁(132d)에서 덕트(110)의 제 2 끝단부(110d)로 갈수록 코드의 길이가 감소하다가 증가하는 형상을 가질 수 있다.-
도면부호 131a, 150a, 110a, 160a, 132a는 리딩 에지를 나타내고, 도면부호 131b, 150b, 110b, 160b, 132b는 트레일링 에지를 나타낸다.
도 14는 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치를 좌측에서 바라본 도면이고, 도 15는 도 14에서 덕트가 생략된 도면이다. 도 16은 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이다.
도 14 내지 도 16을 참조하면, 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치(100")는 덕트(110)와, 복수의 전류 고정 날개(131, 132, 133, 134)와, 제 1 연결부(150)와, 제 2 연결부(160)를 포함한다.
본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치(100")는 복수의 전류 고정 날개(131, 132, 133, 134)의 전후 방향 위치에 있어서, 앞선 본 발명의 일 실시예에 따른 추진 효율 향상 장치(100')와 상이하다.
본 실시예에서, 내측 전류 고정 날개(133, 134)는 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132) 보다 전방에 위치한다.
이때에도, 내측 전류 고정 날개(133, 134)의 팁의 전단은 덕트(110)의 리딩 에지보다 후방에 위치하고, 내측 전류 고정 날개(133, 134)의 팁의 후단은 덕트(110)의 트레일링 에지보다 전방에 위치한다.
본 실시예에서 내측 전류 고정 날개(133, 134)와 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)의 전후 거리(L)는 내측 전류 고정 날개(133, 134) 또는 제 1 외측 전류 고정 날개(131) 또는 제 2 외측 전류 고정 날개(132)의 루트의 코드 길이의 0.05배 이상 0.15배 이하일 수 있다. 참고로, 본 실시예에서 내측 전류 고정 날개(133, 134)와 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)의 루트의 코드 길이는 모두 동일하다.
이와 같이 내측 전류 고정 날개(133, 134)가 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)에 비해 전방에 위치하는 경우, 전류 고정 날개들(131, 132, 133, 134)이 모두 선체(10)의 길이 방향으로 동일한 위치에 위치하는 경우에 비해 선체(10)에 작용하는 저항이 감소된다.
이는 내측 전류 고정 날개(133, 134)가 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)와 전방으로 소정의 거리(L)만큼 떨어져 위치하게 되어, 내측 전류 고정 날개(133, 134)와 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132) 사이에서 발생되는 벤추리 효과가 약화되어 선체(10)에 걸리는 저항을 저감시키기 때문이다.
내측 전류 고정 날개(133, 134)와 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)의 전후 거리가 위와 같은 범위를 초과하는 경우 내측 전류 고정 날개(133, 134)와 프로펠러(미도시) 사이의 거리가 멀어져 내측 전류 고정 날개(133, 134)에 의해 유도되는 유동이 프로펠러(미도시)로 충분히 유입되지 않아 추진 효율이 떨어질 수 있다.
내측 전류 고정 날개(133, 134)와 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)의 전후 거리가 위와 같은 범위보다 작은 경우 내측 전류 고정 날개(133, 134)와 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132) 사이에서 발생되는 벤추리 효과에 의해 선체(10)에 걸리는 저항이 증가할 수 있다.
도 17은 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치를 좌측 후방에서 바라본 사시도이고, 도 18은 도 17에서 프로펠러가 제거된 사시도이다.
도 17 및 도 18을 참조하면, 본 발명의 또 다른 실시예에 따른 추진 효율 향상 장치(100a)는 덕트(110), 복수의 전류 고정 날개(131, 132, 133, 134)를 포함한다.
덕트(110)의 전개도는 도 7을 이용하여 설명한 것과 같이, 덕트(110)의 트레일링 에지(110b)는 직선 형상을 가지고 덕트(110)의 리딩 에지(110a)는 전방으로 볼록한 곡선 형상을 가질 수 있다. 덕트(110)는 피크 부분이 도 4와 같이 전방으로 돌출된 구조를 가진다. 이때, 피크 부분이 선체(10)와 가까워져 길이가 짧은 지지 부재(미도시)로도 덕트(110)를 선체(10)에 대해 지지할 수 있다. 길이가 짧은 지지 부재는 구조상 길이가 긴 지지 부재에 비해 강도가 크기 때문에 덕트(110)를 선체(10)에 안정적으로 지지할 수 있다. 한편, 도 8 내지 도 16에서 설명된 것과는 달리, 별도의 연결부(150, 160)를 포함하지 않을 수 있다.
내측 전류 고정 날개(133, 134)는 도 14 내지 도 16에서 설명한 것과 같이, 제 1 외측 전류 고정 날개(131)와 제 2 외측 전류 고정 날개(132) 보다 전방에 위치한다.
내측 전류 고정 날개(133, 134)의 팁의 전단은 덕트(110)의 리딩 에지보다 후방에 위치하고, 내측 전류 고정 날개(133, 134)의 팁의 후단은 덕트(110)의 트레일링 에지보다 전방에 위치한다.
이와 같이 내측 전류 고정 날개(133, 134)가 제 1 외측 전류 고정 날개(131) 및 제 2 외측 전류 고정 날개(132)에 비해 전방에 위치하는 경우, 전류 고정 날개들(131, 132, 133, 134)이 모두 선체(10)의 길이 방향으로 동일한 위치에 위치하는 경우에 비해 선체(10)에 작용하는 저항이 감소된다.
이하, 도 19 내지 도 22를 참조하여, 본 발명의 몇몇 실시예에 따른 추진 효율 향상 장치(100, 100', 100", 100a)의 연료 절감 효과를 더 구체적으로 설명한다.
우선, 도 19는 프로펠러의 전방에 복수의 전류 고정 날개(도 1 내지 도 18의 131, 132, 133, 134 참조)만을 설치한 케이스이다. 도 20는 프로펠러의 전방에 복수의 전류 고정 날개와 원형 덕트(즉, full duct)를 설치한 케이스이다. 원형 덕트는 전류 고정 날개를 원형으로 주변을 둘러싸도록 형성된 형상이다. 도 21은, 본 발명의 몇몇 실시예에 따른 추진 효율 향상 장치와 같이, 프로펠러의 전방에 복수의 전류 고정 날개와 일부 덕트(즉, partial duct)를 설치한 케이스이다.
전류 고정 날개만 설치한 케이스(도 19), 전류 고정 날개와 원형 덕트를 설치한 케이스(도 20), 전류 고정 날개와 일부 덕트를 설치한 케이스(도 21)를, 프로펠러만 설치된 케이스(즉, 비교대상 케이스)와 비교하여 연료 절감 효과를 테스트하고 그 결과를 도 22에 도시하였다. 도 22에서 stator는 전류 고정 날개를, full duct는 원형 덕트를, partial duct는 일부 덕트를 의미한다.
도 22를 참고하면, 전류 고정 날개만 설치한 케이스(도 19)는 비교대상케이스에 비해서 2.0% 연료 절감 효과가 있었다. 전류 고정 날개와 원형 덕트를 설치한 케이스(도 20)는 비교대상케이스에 비해서 1.0% 연료 절감 효과가 있었다. 전류 고정 날개와 일부 덕트를 설치한 케이스(도 21)는 비교대상케이스에 비해서 3.0% 연료 절감 효과가 있었다.
전류 고정 날개와 원형 덕트를 설치한 케이스(도 20)의 연료 절감 효과가, 다른 케이스에 비해서 비교적 낮은 이유를 확인하기 위해 추가적인 테스트를 하고, 그 결과를 도 23 및 도 24에 표시하였다.
도 23 및 도 24를 비교하면, 도 23에서 선미 보스부의 아래와 원형 덕트 사이에서 선체 압력 강하가 발생함을 알 수 있다(D1 참고). 반면 도 24에서는 선미 보스부의 아래에서 선체 압력 강하가 발생하지 않음을 알 수 있다(D2 참고). 선체 압력 강하가 발생하면, 이로 인해 선체 하부에서 음의 압력이 발생해서 선체 저항이 커진다. 따라서, 연료 절감 효과가 떨어지게 된다.
한편, 전류 고정 날개만 설치된 케이스(도 19)와 비교할 때, 전류 고정 날개와 일부 덕트를 설치한 케이스(도 21)의 연료 절감 효과가 좋은 이유는 다음과 같다.
일부 덕트를 사용한 케이스(도 21)에서, 모든 전류 고정 날개는 일부 덕트와 다점 지지 구조로 연결된다(즉, multiple support). 따라서, 일부 덕트를 사용한 케이스(도 21)는, 캔틸레버(cantilever) 형태인 전류 고정 날개만 설치된 케이스(도 19)에 비해 구조적 안정성이 높다.
또한, 선회류를 발생시키는 전류 고정 날개는, 끝단와류에 의한 공동현상이 발생할 수 있다. 따라서, 전류 고정 날개만 설치한 케이스(도 19)에서는, 끝단 공동현상을 감소시키기 위해 윙렛(winglet)과 같은 부가 형상을 장착하여야 한다. 하지만, 일부 덕트를 사용한 케이스(도 21)는, 모든 전류 고정 날개가 일부 덕트로 감싸져 있는 형상이므로 끝단 와류가 원천적으로 봉쇄된다. 따라서, 윙렛과 같은 추가적인 장치가 불필요하다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
(부호의 설명)
10 : 선체
20 : 선미 보스부
30 : 프로펠러
100 : 추진 효율 향상 장치
110 : 덕트
131 : 제 1 외측 전류 고정 날개
132 : 제 2 외측 전류 고정 날개
133, 134 : 내측 전류 고정 날개
150 : 제 1 연결부
160 : 제 2 연결부

Claims (20)

  1. 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및
    상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함하는, 추진 효율 향상 장치.
  2. 제1항에 있어서,
    상기 덕트는 상기 선미 보스부를 향하는 방향으로 볼록한 형상의 캠버를 가지고,
    상기 복수의 전류 고정 날개는 상기 프로펠러의 회전 방향으로 볼록한 형상의 캠버를 가지는, 추진 효율 향상 장치.
  3. 제2항에 있어서,
    상기 덕트의 상기 프로펠러 회전 방향으로의 제 1 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개를 상호 연결하는 제 1 연결부; 및
    상기 덕트의 상기 프로펠러 회전 방향의 반대 방향으로의 제 2 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개를 상호 연결하는 제 2 연결부를 더 포함하고,
    상기 제 1 연결부는 캠버 형상이 서로 상이한 상기 덕트의 제 1 끝단부와 상기 제 1 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가지고,
    상기 제 2 연결부는 캠버 형상이 동일한 상기 덕트의 제 2 끝단부와 상기 제 2 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가지는, 추진 효율 향상 장치.
  4. 제1항에 있어서,
    상기 덕트는 상기 덕트가 형성하는 원호의 중심선에 대해 좌측 하방 영역에서 우측 상방 영역에 걸쳐 연장된 원호 형상을 가지고,
    상기 복수의 전류 고정 날개는 상기 덕트가 형성하는 원호의 중심선에 대해 좌측 하방 영역에서 우측 상방 영역에 걸쳐 상호 이격되어 배치되는, 추진 효율 향상 장치.
  5. 제1항에 있어서,
    상기 프로펠러는 후방에서 볼 때 시계 방향으로 회전하고,
    상기 복수의 전류 고정 날개 중 선체의 좌현에 위치하는 전류 고정 날개의 개수는 우현에 위치하는 전류 고정 날개의 개수보다 많은, 추진 효율 향상 장치.
  6. 제1항에 있어서,
    상기 덕트가 형성하는 원호의 중심선은 상기 프로펠러의 회전축보다 상방에 위치하는, 추진 효율 향상 장치.
  7. 제1항에 있어서,
    상기 덕트가 형성하는 원호의 중심선과 상기 프로펠러의 회전축 사이의 거리는 상기 프로펠러 반경의 0.1배 이상 0.4배 이하인, 추진 효율 향상 장치.
  8. 제1항에 있어서,
    상기 덕트는 상기 프로펠러의 회전 영역 내에 위치하는, 추진 효율 향상 장치.
  9. 프로펠러의 전방에서 선미 보스부에 지지되고, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개;
    상기 복수의 전류 고정 날개의 끝단부에 지지되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및
    상기 덕트와 상기 전류 고정 날개를 상호 연결하는 연결부를 포함하는, 추진 효율 향상 장치.
  10. 제9항에 있어서,
    상기 덕트는 상기 선미 보스부를 향하는 방향으로 볼록한 형상의 캠버를 가지고,
    상기 복수의 전류 고정 날개는 상기 프로펠러의 회전 방향으로 볼록한 형상의 캠버를 가지는, 추진 효율 향상 장치.
  11. 제10항에 있어서,
    상기 연결부는,
    상기 덕트의 상기 프로펠러 회전 방향으로의 제 1 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개를 상호 연결하는 제 1 연결부; 및
    상기 덕트의 상기 프로펠러 회전 방향의 반대 방향으로의 제 2 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개를 상호 연결하는 제 2 연결부를 더 포함하고,
    상기 제 1 연결부는 캠버 형상이 서로 상이한 상기 덕트의 제 1 끝단부와 상기 제 1 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가지고,
    상기 제 2 연결부는 캠버 형상이 동일한 상기 덕트의 제 2 끝단부와 상기 제 2 외측 전류 고정 날개를 연속적으로 연결하는 형상을 가지는, 추진 효율 향상 장치.
  12. 제11항에 있어서,
    상기 제1 연결부 및 상기 제2 연결부는 각각 상기 덕트, 상기 제1 외측 전류 고정 날개 및 상기 제2 외측 전류 고정 날개와 별개로 제작되어 결합되는, 추진 효율 향상 장치.
  13. 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및
    상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함하고,
    상기 덕트는 상기 프로펠러의 회전 방향으로의 제 1 끝단부에서 상기 프로펠러의 회전 방향의 반대 방향으로의 제 2 끝단부로 갈수록 코드의 길이가 변화하는 형상을 가지는, 추진 효율 향상 장치.
  14. 제13항에 있어서,
    상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개는 루트에서 팁으로 갈수록 코드의 길이가 감소하는 형상을 가지고,
    상기 덕트는 상기 프로펠러의 회전 방향으로의 제 1 끝단부에서 상기 프로펠러의 회전 방향의 반대 방향으로의 제 2 끝단부로 갈수록 코드의 길이가 증가하다가 감소하는 형상을 가지고,
    상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개는 루트에서 팁으로 갈수록 코드의 길이 감소하는 형상을 가지는, 추진 효율 향상 장치.
  15. 제13항에 있어서,
    상기 덕트의 상기 프로펠러의 회전 방향으로의 제 1 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향으로 마지막에 위치하는 제 1 외측 고정 날개 사이에 개재되는 제 1 연결부; 및
    상기 덕트의 상기 프로펠러의 회전 방향의 반대 방향으로의 제 2 끝단부와 상기 복수의 전류 고정 날개 중 상기 프로펠러의 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개 사이에 개재되는 제 2 연결부를 더 포함하고,
    상기 제 1 연결부는
    상기 제 1 외측 고정 날개의 팁에서 상기 덕트의 제 1 끝단부로 갈수록 코드의 길이가 감소하다 증가하는 형상을 가지고,
    상기 제 2 연결부는,
    상기 제 2 외측 고정 날개의 팁에서 상기 덕트의 제 2 끝단부로 갈수록 코드의 길이가 감소하다가 증가하는 형상을 가지는, 추진 효율 향상 장치.
  16. 제13항에 있어서,
    상기 덕트의 외측을 향하는 일면을 전개한 전개도에서,
    상기 덕트의 리딩 에지가 이루는 곡선은 단일한 곡률을 가지는, 추진 효율 향상 장치.
  17. 프로펠러의 전방에 배치되고, 원호 형상을 가지며, 추력을 발생시키는 덕트; 및
    상기 덕트를 선미 보스부에 지지하되, 상기 프로펠러의 회전 방향과 반대 방향의 선회류를 발생시키는 복수의 전류 고정 날개를 포함하고,
    상기 복수의 전류 고정 날개는 선체의 길이 방향으로 다른 위치에 위치하는, 추진 효율 향상 장치.
  18. 제17항에 있어서,
    상기 복수의 전류 고정 날개 중 상기 프로펠러 회전 방향으로 마지막에 위치하는 제 1 외측 전류 고정 날개와 상기 프로펠러 회전 방향의 반대 방향으로 마지막에 위치하는 제 2 외측 전류 고정 날개 사이에 위치하는 내측 전류 고정 날개는 상기 제 1 외측 전류 고정 날개 및 상기 제 2 외측 전류 고정 날개보다 전방에 위치하는, 추진 효율 향상 장치.
  19. 제18항에 있어서,
    상기 내측 전류 고정 날개는 하나 이상의 개수를 가지고,
    상기 덕트의 내측면에 고정되는 상기 내측 전류 고정 날개의 팁은 그 전단이 상기 덕트의 리딩 에지보다 후방에 위치하고 그 후단이 상기 덕트의 트레일링 에지보다 전방에 위치하는, 추진 효율 향상 장치.
  20. 제18항에 있어서,
    상기 내측 전류 고정 날개와 상기 제 1 외측 전류 고정 날개와 상기 제 2 외측 전류 고정 날개는 모두 루트와 팁에서 동일한 코드 길이를 가지고,
    상기 내측 전류 고정 날개와 상기 제 1 외측 전류 고정 날개 및 상기 제 2 외측 전류 고정 날개의 전후 거리는 상기 내측 전류 고정 날개의 루트의 코드 길이의 0.05배 이상 0.15배 이하인, 추진 효율 향상 장치.
PCT/KR2018/013108 2017-10-31 2018-10-31 추진 효율 향상 장치 WO2019088696A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020524164A JP7145945B2 (ja) 2017-10-31 2018-10-31 推進効率向上装置
SG11202003855RA SG11202003855RA (en) 2017-10-31 2018-10-31 Apparatus for enhancing propulsion efficiency
EP18872708.5A EP3705392A4 (en) 2017-10-31 2018-10-31 DEVICE TO IMPROVE PROPULSION EFFICIENCY
CN201880070528.2A CN111295329A (zh) 2017-10-31 2018-10-31 推进效率提升装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2017-0143239 2017-10-31
KR10-2017-0143470 2017-10-31
KR1020170143239A KR102027269B1 (ko) 2017-10-31 2017-10-31 추진효율향상장치
KR1020170143315A KR102027270B1 (ko) 2017-10-31 2017-10-31 추진효율향상장치
KR1020170143359A KR102027271B1 (ko) 2017-10-31 2017-10-31 추진효율향상장치
KR10-2017-0143359 2017-10-31
KR1020170143470A KR20190048483A (ko) 2017-10-31 2017-10-31 추진효율향상장치
KR10-2017-0143315 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088696A1 true WO2019088696A1 (ko) 2019-05-09

Family

ID=66332409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013108 WO2019088696A1 (ko) 2017-10-31 2018-10-31 추진 효율 향상 장치

Country Status (5)

Country Link
EP (1) EP3705392A4 (ko)
JP (1) JP7145945B2 (ko)
CN (1) CN111295329A (ko)
SG (1) SG11202003855RA (ko)
WO (1) WO2019088696A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021239963A1 (de) * 2020-05-28 2021-12-02 Becker Marine Systems Gmbh Anordnung zur verringerung eines antriebsleistungsbedarfs eines wasserfahrzeugs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086611A (zh) * 2018-10-23 2020-05-01 东辉休闲运动用品(上海)有限公司 水下推进器
EP4155190A1 (en) * 2021-09-23 2023-03-29 Damen Components Holding B.V. Flow-guiding system for a ship propulsion system
CN115416832A (zh) * 2022-09-05 2022-12-02 大连中远海运重工有限公司 船用螺旋式导流管节能装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239060A (ja) * 2007-03-28 2008-10-09 Mitsui Eng & Shipbuild Co Ltd 船尾横長ダクト及び船舶
KR20100103982A (ko) * 2009-03-16 2010-09-29 대우조선해양 주식회사 선박의 전류고정날개
KR20120094763A (ko) * 2011-02-17 2012-08-27 충남대학교산학협력단 전류고정날개를 적용한 선박용 덕트-프로펠러
KR20120126910A (ko) * 2011-05-13 2012-11-21 현대중공업 주식회사 복수열의 핀을 가지는 선박의 프로펠러 덕트 구조체
KR20160032475A (ko) * 2014-09-16 2016-03-24 현대중공업 주식회사 선박용 덕트
KR20160058370A (ko) * 2014-11-14 2016-05-25 한국해양과학기술원 선박 에너지 절감을 위한 비대칭 부채꼴 선미 덕트

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD241056A1 (de) * 1985-09-23 1986-11-26 Schiffbau Stammbetrieb K Vorrichtung zur erhoehung des wirkungsgrades von schiffspropellern
JPH0467594U (ko) * 1990-10-20 1992-06-16
CN202368782U (zh) 2011-12-12 2012-08-08 江苏华海船舶设计有限公司 内置导叶的节能导管
KR20130125628A (ko) * 2012-05-09 2013-11-19 에스티엑스조선해양 주식회사 선박 선미 유동 개선용 부채꼴 형상 덕트 부가물
KR101402534B1 (ko) * 2012-07-25 2014-06-02 현대중공업 주식회사 선박용 추진 장치
CN103332281B (zh) 2013-07-19 2017-03-08 上海船舶研究设计院 用于右旋单桨船的预旋三角导管
EP3210876B1 (en) * 2014-10-24 2019-11-06 Samsung Heavy Ind. Co., Ltd. Propelling efficiency enhancing device
CN105346698A (zh) * 2015-12-02 2016-02-24 南通虹波机械有限公司 高效节能导轮

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239060A (ja) * 2007-03-28 2008-10-09 Mitsui Eng & Shipbuild Co Ltd 船尾横長ダクト及び船舶
KR20100103982A (ko) * 2009-03-16 2010-09-29 대우조선해양 주식회사 선박의 전류고정날개
KR20120094763A (ko) * 2011-02-17 2012-08-27 충남대학교산학협력단 전류고정날개를 적용한 선박용 덕트-프로펠러
KR20120126910A (ko) * 2011-05-13 2012-11-21 현대중공업 주식회사 복수열의 핀을 가지는 선박의 프로펠러 덕트 구조체
KR20160032475A (ko) * 2014-09-16 2016-03-24 현대중공업 주식회사 선박용 덕트
KR20160058370A (ko) * 2014-11-14 2016-05-25 한국해양과학기술원 선박 에너지 절감을 위한 비대칭 부채꼴 선미 덕트

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705392A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021239963A1 (de) * 2020-05-28 2021-12-02 Becker Marine Systems Gmbh Anordnung zur verringerung eines antriebsleistungsbedarfs eines wasserfahrzeugs

Also Published As

Publication number Publication date
EP3705392A1 (en) 2020-09-09
JP7145945B2 (ja) 2022-10-03
SG11202003855RA (en) 2020-05-28
EP3705392A4 (en) 2021-08-04
CN111295329A (zh) 2020-06-16
JP2021501089A (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019088696A1 (ko) 추진 효율 향상 장치
WO2012044089A2 (ko) 수직축 터빈 및 이를 구비하는 양방향 적층식 수직축 터빈
WO2018101632A1 (en) Carbon blade for wind power generator with multi-down conductor
WO2014123397A1 (ko) 선박의 추진장치
WO2014182124A1 (ko) 원심팬
EP0147878A1 (en) System for mounting a jet engine
WO2015182931A1 (ko) 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡
WO2017078330A1 (ko) 비행체
US20230344322A1 (en) Bearing current mitigation for an electric machine embedded in a gas turbine engine
WO2020059896A1 (ko) 변형 가능한 날개
WO2016064091A1 (ko) 추진효율 향상장치
CN109018382B (zh) 一种飞机发动机变形整流罩结构
WO2019027126A1 (ko) 덕트형 선박 에너지 절감 장치
WO2024075973A1 (ko) 세굴 방지 기능을 갖는 해상 교량용 교각
KR20190048346A (ko) 추진효율향상장치
WO2017119630A1 (ko) 고속 후방 분사 및 일체 회전 방식의 선박용 추진 장치
KR20120094763A (ko) 전류고정날개를 적용한 선박용 덕트-프로펠러
WO2021230480A1 (ko) 헤어드라이어
WO2022030698A1 (ko) 림포일을 갖는 추진유닛의 제조방법, 이에 의해 제조되는 추진유닛 및 비행체
WO2024181709A1 (ko) 원심팬
WO2022139264A1 (ko) 패러글라이더 캐노피 및 이를 구비하는 패러글라이더
WO2019245088A1 (ko) 선박용 추진장치
WO2024025376A1 (ko) 선박 구조
CN211373994U (zh) 用于轴对称通气模型舵面气动力测量的天平整流罩
WO2022177038A1 (ko) 하이브리드 엔진 및 이를 포함하는 하이브리드 드론

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872708

Country of ref document: EP

Effective date: 20200602