WO2019088179A1 - ヌクレオシド誘導体及びその利用 - Google Patents

ヌクレオシド誘導体及びその利用 Download PDF

Info

Publication number
WO2019088179A1
WO2019088179A1 PCT/JP2018/040544 JP2018040544W WO2019088179A1 WO 2019088179 A1 WO2019088179 A1 WO 2019088179A1 JP 2018040544 W JP2018040544 W JP 2018040544W WO 2019088179 A1 WO2019088179 A1 WO 2019088179A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
hydrogen atom
substituted
oligonucleotide
Prior art date
Application number
PCT/JP2018/040544
Other languages
English (en)
French (fr)
Inventor
義仁 上野
雄介 前田
瞭平 梶野
Original Assignee
ヤマサ醤油株式会社
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマサ醤油株式会社, 国立大学法人岐阜大学 filed Critical ヤマサ醤油株式会社
Priority to CA3080896A priority Critical patent/CA3080896A1/en
Priority to EP18873256.4A priority patent/EP3712160A4/en
Priority to JP2019550462A priority patent/JP7173467B2/ja
Priority to US16/760,781 priority patent/US11780874B2/en
Priority to CN201880083548.3A priority patent/CN111868067A/zh
Publication of WO2019088179A1 publication Critical patent/WO2019088179A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • RNA drugs such as siRNA that suppress gene expression are useful for such diseases and can be said to have excellent drug potential.
  • RNA drugs have not been able to satisfy sufficient cell membrane permeability, ribonuclease resistance and gene repression ability.
  • the present specification aims to provide more practical nucleosides and their use as applied to RNA drugs and the like.
  • the present inventors pay attention to chemical modification to ribose which is a sugar moiety of ribonucleotide, but on modification to the 5 'carbon atom which is a carbon atom constituting ribose but is not a constituent carbon atom of ribose 5 membered ring I focused on it. It has been found that introduction of a substituent having a base at such a 5 'carbon atom can improve ribonuclease resistance and cell membrane permeability while maintaining gene expression suppression ability. According to the present specification, the following means are provided based on such findings.
  • R 1 represents a hydrogen atom, a hydroxyl group, a hydroxyl group in which a hydrogen atom is substituted with an alkyl group or an alkenyl group, or a protected group
  • X represents a halogen atom.
  • R 4 represents NHR 7 each having a linking group (R 7 represents a hydrogen atom, an alkyl group, an alkenyl group or a protecting group for amino groups), an azide group, an amidino group or a guanidino group, and B represents a purine It represents either a -9-yl group, a 2-oxo-pyrimidin-1-yl group, a substituted purin-9-yl group, or a substituted 2-oxo-pyrimidin-1-yl group.
  • R 7 represents a hydrogen atom or R 4 represents a guanidino group having the linking group.
  • R 1 represents a hydrogen atom, a halogen atom, a hydroxyl group, a hydroxyl group in which a hydrogen atom is substituted by an alkyl group or an alkenyl group, or a protected hydroxyl group;
  • R 4 represents NHR 7 having a linking group (R 7 represents a hydrogen atom, an alkyl group, an alkenyl group or an amino group protecting group), Represents an azide group, an amidino group or a guanidino group, and B represents a purin-9-yl group, a 2-oxo-pyrimidin-1-yl group, a substituted purin-9-yl group, or a substituted 2-oxo-pyrimidin-1- Represents any of the (8)
  • the oligonucleotide derivative or the salt thereof according to (7) or (8) which comprises at least three of the partial structures.
  • An siRNA agent comprising the oligonucleotide derivative according to any one of (7) to (11) or a salt thereof as an active ingredient.
  • the present disclosure relates to a practical nucleoside derivative or a salt thereof and a use thereof suitable for RNA medicine such as siRNA.
  • the nucleoside derivative or the salt thereof hereinafter, simply referred to as the present nucleoside derivative
  • the ability to suppress gene expression is sufficiently exhibited, and moreover, it has ribonuclease resistance and cell membrane permeability. Are better. Therefore, it is possible to provide an oligonucleotide suitable for administration without using a carrier such as LNP for delivery, which has been used for conventional RNA medicine.
  • the present nucleoside derivative is also useful as a reagent such as a detection probe using RNA. That is, oligonucleotides suitable for various RNA reagents can be provided.
  • the nucleoside derivative disclosed in the present specification is useful when the basic substituent such as an aminoalkyl-based substituent is introduced at the 5 'position of ribose, which has hitherto been difficult, and the property is carefully examined. It is based on finding features. That is, conventionally, with respect to ribonuclease resistance, substitution at the 2'-position and 3'-position of ribose has been common.
  • the nucleoside derivative disclosed in the present specification since the hydrogen atom of the 5 'carbon atom is substituted instead of modifying the carbon atom constituting the ribose ring, the nucleoside derivative is disclosed While maintaining the siRNA activity by the oligonucleotide using S., it is possible to combine useful properties for RNA medicines and the like, ie, ribonuclease resistance and cell membrane permeability, which are more than expected.
  • the nucleoside derivative can be a nucleoside derivative represented by the following formula (1) or (2) or a salt thereof.
  • the nucleoside derivative can be included in the partial structure of the oligonucleotide by methods known to those skilled in the art.
  • the present nucleoside derivative is provided with a substituent having basicity at the 5 'position of ribose and deoxyribose, whereby an oligonucleotide having a partial structure derived from the present nucleoside derivative is derived from the phosphate group etc. possessed by the oligonucleotide.
  • cell membrane permeability of the oligonucleotide having the partial structure can be improved.
  • ribonuclease resistance can be improved in an oligonucleotide comprising a partial structure derived from the present nucleoside derivative.
  • the meaning of “lower” in the substituent in the compound represented by the formula or the like means that the number of carbon atoms constituting the substituent is up to 10 at the maximum.
  • a carbon number of 1 to 6 or a carbon number of 1 to 5 is usually exemplified, and further, a carbon number of 1 to 4 or a carbon number of 1 to 3 is mentioned as a preferable example.
  • nucleoside derivatives and salts thereof One embodiment of the present nucleoside derivative or a salt thereof is a nucleoside derivative represented by the following formula (1) or a salt thereof.
  • nucleoside derivative or its salt is a nucleoside derivative represented by following formula (2), or its salt.
  • R 1 represents a hydrogen atom, a hydroxyl group, a hydroxyl group in which a hydrogen atom is substituted by an alkyl group or an alkenyl group, or a protected hydroxyl group.
  • R 1 is a hydrogen atom
  • the nucleoside derivative is a deoxyribonucleoside derivative.
  • R 1 is a hydroxyl group, a hydroxyl group in which a hydrogen atom is substituted with an alkyl group or an alkenyl group, or a protected hydroxyl group
  • the present nucleoside derivative is a ribonucleoside derivative.
  • X represents a halogen atom.
  • the halogen atom is not particularly limited, and examples thereof include a chlorine atom, an iodine atom, a fluorine atom and a bromine atom.
  • the nucleoside derivative is a deoxyribonucleoside derivative.
  • the halogen atom is not particularly limited in the bonding direction to the carbon atom at the 2'-position of ribose, but the halogen atom corresponds to the hydroxyl group of natural ribose. Bonding is preferred.
  • the alkyl group includes a saturated hydrocarbon group which is linear, branched, cyclic or a combination thereof.
  • a lower alkyl group is preferable, and for example, a lower alkyl group having 1 to 6 carbon atoms or a lower alkyl group having 1 to 5 carbon atoms is mentioned as a more preferable example, and further, 1 to 4 carbon atoms or carbon atoms
  • One to three lower alkyl groups are mentioned as particularly preferred examples.
  • Preferred examples of the linear alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, among which a methyl group, an ethyl group, An n-propyl group is preferable, and for example, a methyl group and an ethyl group are preferable, and for example, a methyl group is preferable.
  • examples of the branched alkyl group having 1 to 4 carbon atoms include isopropyl group, isobutyl group, s-butyl group, t-butyl group and the like, and among these, isopropyl group is mentioned as a particularly preferable example.
  • examples of the cyclic alkyl group having 1 to 4 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopropylmethyl group and the like.
  • an alkenyl group includes a saturated hydrocarbon group which is linear, branched, cyclic or a combination thereof. Usually, a lower alkenyl group is preferable.
  • the lower alkenyl group for example, ethenyl group, 1-propenyl group, 2-propenyl group, 1-methyl-2-propenyl group, 1-methyl-1-propenyl group, 2-methyl group -1-propenyl group, 1-butenyl group, 2-butenyl group and the like.
  • hydroxyl-protecting group those skilled in the art are well known, and for example, Protective Groups in Organic Synthesis (John Wiley and Sons, 2007 edition) can be referred to.
  • protecting group for a hydroxyl group include, for example, an aliphatic acyl group, an aromatic acyl group, a lower alkoxymethyl group, an oxycarbonyl group which may have an appropriate substituent, and an appropriate substituent.
  • a substituent in aryl, lower alkyl, lower alkoxy, a halogen atom, or a cyano group is meant), a silyl group, etc. are illustrated.
  • examples of the alkoxy group include a saturated alkyl ether group which is linear, branched, cyclic or a combination thereof.
  • a lower alkoxy group is preferable, and as the lower alkoxy group, for example, a lower alkoxy group having 1 to 6 carbon atoms or a lower alkoxy group having 1 to 5 carbon atoms can be mentioned, and further, a carbon atom having 1 to 4 carbon atoms, or carbon An alkoxy group of 1 to 3 is preferable, and an alkoxy group of 1 to 4 carbon atoms is particularly preferable.
  • Preferred examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group and an n-butoxy group.
  • isopropoxy group, isobutoxy group, s-butoxy group, t-butoxy group and the like are mentioned as preferable examples.
  • a cyclopropoxy group and a cyclobutoxy group are also preferable, and a cyclopropyl methoxy group is also mentioned as a preferable example.
  • examples of the alkylthio group include a saturated alkylthio group which is linear, branched, cyclic or a combination thereof.
  • a lower alkylthio group is preferable.
  • the lower alkylthio group for example, a lower alkylthio group having 1 to 6 carbon atoms or a lower alkylthio group having 1 to 5 carbon atoms is preferable, and further, a lower alkylthio group having 1 to 4 carbon atoms is preferable.
  • an alkylthio group having 1 to 3 carbon atoms is mentioned as a particularly preferred example.
  • Preferred examples of the saturated alkylthio group having 1 to 4 carbon atoms include a methylthio group, an ethionyl thio group, an n-propylthio group, and an n-butylthio group. Further, an isopropylthio group, an isobutylthio group, an s-butylthio group, or a t-butylthio group is exemplified as a preferred example. Further, a cyclopropylthio group or a cyclobutylthio group is mentioned as a preferable example, and a cyclopropylmethylthio group is further exemplified as a further preferable example.
  • aliphatic acyl groups aromatic acyl groups and silyl groups are mentioned as particularly preferable examples.
  • a methyl group substituted with one to three substituted or unsubstituted aryl groups is also mentioned as a preferred example.
  • Examples of the above-mentioned aliphatic acyl group include an alkylcarbonyl group, a carboxyalkylcarbonyl group, a halogeno lower alkylcarbonyl group, or a lower alkoxy lower alkylcarbonyl.
  • the alkyl in the alkylcarbonyl group is as described above. That is, as the alkylcarbonyl group, for example, formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, pentanoyl group, pivaloyl group, valeryl group, isovaleryl group, octanoyl group, nonanoyl group, decanoyl group, 3-methylnonanoyl group, 8-Methyl nonanoyl group, 3-ethyl octanoyl group, 3,7-dimethyl octanoyl group, undecanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, pentadecanoyl group, hexadecanoyl group, 1-methylpentadeca group Noyl group, 14-methylpentadecanoyl group, 13,13-dimethyl
  • an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pentanoyl group and a pivaloyl group are mentioned as preferable examples, and further an acetyl group is mentioned as a particularly preferable example.
  • the alkyl in the carboxylated alkylcarbonyl group is as described above.
  • the substitution position of carboxylation can also be appropriately selected. That is, as the carboxylated alkylcarbonyl group, for example, succinoyl group, glutaroyl group, adipoyl group can be mentioned.
  • the halogen, the lower and the alkyl in the halogeno lower alkylcarbonyl group are as described above.
  • the substitution position of the halogen can be appropriately selected. That is, as the halogeno lower alkylcarbonyl group, for example, chloroacetyl group, dichloroacetyl group, trichloroacetyl group and trifluoroacetyl group can be mentioned.
  • the alkoxy and the alkyl in the lower alkoxy lower alkylcarbonyl group, and the lower, are as described above.
  • the position at which lower alkoxy is substituted can be selected as appropriate. That is, as the lower alkoxy lower alkylcarbonyl group, for example, a methoxyacetyl group can be mentioned.
  • aromatic acyl group for example, arylcarbonyl group, halogenoarylcarbonyl group, lower alkylated arylcarbonyl group, lower alkoxylated arylcarbonyl group, carboxylated arylcarbonyl group, nitrated arylcarbonyl group, or arylated aryl A carbonyl group is mentioned.
  • Examples of the arylcarbonyl group include benzoyl group, ⁇ -naphthoyl group and ⁇ -naphthoyl group, and more preferably benzoyl group.
  • Examples of the halogenoarylcarbonyl group include 2-bromobenzoyl group and 4-chlorobenzoyl group.
  • Examples of the lower alkylated arylcarbonyl group include 2,4,6-trimethylbenzoyl group, 4-toluoyl group, 3-toluoyl group and 2-toluoyl group.
  • Examples of the lower alkoxylated arylcarbonyl group include 4-anisoyl group, 3-anisoyl group and 2-anisoyl group.
  • Examples of the carboxylated arylcarbonyl group include 2-carboxybenzoyl group, 3-carboxybenzoyl group and 4-carboxybenzoyl group.
  • Examples of the nitrated arylcarbonyl group include 4-nitrobenzoyl group, 3-nitrobenzoyl group and 2-nitrobenzoyl group.
  • Examples of the arylated arylcarbonyl group include 4-phenylbenzoyl group.
  • the lower alkoxymethyl group includes, for example, methoxymethyl group, 1,1-dimethyl-1-methoxymethyl group, ethoxymethyl group, propoxymethyl group, isopropoxymethyl group, butoxymethyl group and t-butoxymethyl group. Particularly preferred is a methoxymethyl group.
  • oxycarbonyl group which may have a suitable substituent, a lower alkoxycarbonyl group, a lower alkoxycarbonyl group substituted with a halogen or a silyl group, or an alkenyloxycarbonyl group can be mentioned.
  • Examples of the lower alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group and a t-butoxycarbonylisobutoxycarbonyl group.
  • Examples of the lower alkoxycarbonyl group substituted by the halogen or silyl group include 2,2-trichloroethoxycarbonyl group and 2- (trimethylsilyl) ethoxycarbonyl group.
  • alkenyloxycarbonyl group examples include a vinyloxycarbonyl group.
  • tetrahydropyranyl group which may have a suitable substituent, for example, a tetrahydropyran-2-yl group or a 3-bromotetrahydropyran-2-yl group is mentioned as a preferred example, and particularly preferred is A tetrahydropyran-2-yl group is mentioned.
  • Examples of the optionally substituted tetrathiopyranyl group include tetrahydrothiopyran-2-yl group and 4-methoxytetrahydrothiopyran-4-yl group, more preferably tetrahydrothiopyran-2 -Yl group is mentioned.
  • the substituent in the above-mentioned substituted aryl means lower alkyl, lower alkoxy, halogen or cyano group.
  • methyl group substituted by 1 to 3 substituted or unsubstituted aryl groups include, for example, benzyl group, ⁇ -naphthylmethyl group, ⁇ -naphthylmethyl group, diphenylmethyl group, triphenylmethyl group, ⁇ -A naphthyl diphenylmethyl group is mentioned, Preferably a benzyl group and a triphenylmethyl group are mentioned.
  • 9-anthrylmethyl 4-methylbenzyl group, 2,4,6-trimethylbenzyl group, 3,4,5-trimethylbenzyl group can be mentioned, preferably, 2,4,6-trimethylbenzyl group And 3,4,5-trimethylbenzyl.
  • 4-methoxybenzyl group 4-methoxyphenyldiphenylmethyl group, 4,4'-dimethoxytriphenylmethyl group, preferably 4-methoxybenzyl group, 4-methoxyphenyldiphenylmethyl group, A 4,4'-dimethoxytriphenylmethyl group is mentioned.
  • Further examples include 4-chlorobenzyl and 4-bromobenzyl.
  • 4-cyanobenzyl group is also mentioned as a preferred example.
  • silyl group a trimethylsilyl group, triethylsilyl group, isopropyldimethylsilyl group, t-butyldimethylsilyl group, methyldiisopropylsilyl group, methyldi-t-butylsilyl group, triisopropylsilyl group, diphenylmethylsilyl group And diphenylbutylsilyl and diphenylisopropylsilylphenyldiisopropylsilyl.
  • trimethylsilyl, t-butyldimethylsilyl, triisopropylsilyl and diphenylmethylsilyl are more preferable, and trimethylsilyl, t-butyldimethylsilyl and diphenylmethylsilyl are particularly preferable.
  • a hydroxyl-protecting group a chemical method (for example, hydrogenolysis, hydrolysis, electrolysis, or photolysis, etc.) or a biological method (for example, hydrolysis in the human body, etc.) is imagined. And the like, and may mean a substituent which is cleaved and eliminated by any method such as induction with a microorganism or the like).
  • a hydroxyl-protecting group in particular, a substituent capable of leaving by hydrogenolysis or hydrolysis is mentioned as a preferred example.
  • the protected hydroxyl group can be said to be a hydroxyl group in which a hydrogen atom is substituted by such a protective group.
  • the protective group for hydroxyl group is as described above.
  • a protecting group of a phosphoric acid group for example, a lower alkyl group, a lower alkyl group substituted with a cyano group, an ethyl group substituted with a silyl group, a lower alkyl group substituted with a halogen, a lower alkenyl group, a cyano group Substituted lower alkenyl group, cycloalkyl group, lower alkenyl group substituted by cyano group, aralkyl group, aralkyl group substituted by aryl group by nitro group, aralkyl group substituted by aryl ring by halogen, lower alkyl group And aryl groups substituted with halogen, aryl groups substituted with halogen, or aryl groups substituted with a nitro group.
  • the lower alkyl group is as described above.
  • Examples of the lower alkyl group substituted by a cyano group include a 2-cyanoethyl group, a 2-cyano-1,1-dimethylethyl group, and a 2-cyanoethyl group is particularly preferable.
  • Examples of the ethyl group substituted with a silyl group include a 2-methyldiphenylsilylethyl group, a 2-trimethylsilylethyl group, and a 2-triphenylsilylethyl group.
  • the lower alkyl group substituted by the above-mentioned halogen for example, 2,2,2-trichloroethyl group, 2,2,2-tribromoethyl group, 2,2,2-trifluoroethyl group, 2,2,3,
  • a 2-trichloroethyl group is mentioned, and particularly preferably a 2,2,2-trichloroethyl group is mentioned.
  • the lower alkenyl groups include ethenyl group, 1-propenyl group, 2-propenyl group, 1-methyl-2-propenyl group, 1-methyl-1-propenyl group, 2-methyl-1-propenyl group, and the like. -Butenyl group, 2-butenyl group and the like.
  • Examples of the lower alkenyl group substituted by a cyano group include 2-cyanoethyl group, 2-cyanopropyl group and 2-cyanobutenyl group.
  • Examples of the aralkyl group include benzyl group, ⁇ -naphthylmethyl group, ⁇ -naphthylmethyl group, indenylmethyl group, phenanthrenylmethyl group, anthracenylmethyl group, diphenylmethyl group, triphenylmethyl group, and the like.
  • aralkyl group in which the aryl ring is substituted with the above nitro group 2- (4-nitrophenyl) ethyl group, 0-nitrobenzyl group, 4-nitrobenzyl group, 2,4-dinitrobenzyl group, 4-chloro And -2-nitrobenzyl group.
  • a phosphoric acid protecting group a chemical method (for example, hydrogenolysis, hydrolysis, electrolysis, or photolysis) or a biological method (for example, hydrolysis in the human body etc.)
  • the term “substituent group” may mean a substituent which is cleaved and eliminated by any method such as induction with a microorganism.
  • a protecting group of phosphoric acid a substituent which is eliminated particularly by hydrogenolysis or hydrolysis is mentioned as a preferable example.
  • n represents 0 or 1
  • R 5 and R 6 may be the same as or different from each other, and a hydrogen atom, a hydroxyl group, a protected hydroxyl group, a mercapto group, a protected mercapto group, a lower alkoxy group, cyano lower alkoxy Indicates either a group, an amino group, or a substituted amino group.
  • R 5 and R 6 will not be hydrogen atoms.
  • the protected hydroxyl and lower alkoxy groups are as described above.
  • Protected mercapto groups are well known to those skilled in the art.
  • an alkylthio group, an arylthio group, an aliphatic acyl group and an aromatic acyl group can be mentioned.
  • an aliphatic acyl group and an aromatic acyl group are mentioned, Especially preferably, an aromatic acyl group is mentioned.
  • the alkylthio group lower alkylthio groups are preferable, and for example, methylthio, ethylthio and t-butylthio groups are mentioned as preferable examples.
  • an arylthio group a benzylthio is mentioned, for example.
  • a benzoyl group is mentioned as an aromatic acyl group.
  • the cyano lower alkoxy group is, for example, a linear, branched, cyclic, or a combination thereof having a carbon number of 1 to 5 carbon atoms which is substituted by a cyano group (note that a carbon of cyano in the cyano group may be substituted) (When counted without including the number) is given as a preferred example, and specifically, for example, cyanomethoxy, 2-cyanoethoxy, 3-cyanopropoxy, 4-cyanobutoxy, 3-cyano-2-methylpropoxy, or 1-cyanomethyl-1,1-dimethylmethoxy and the like can be mentioned, with particular preference given to the 2-cyanoethoxy group.
  • Substituted amino groups can be selected as R 5 and R 6 .
  • the substituent of the amino group is any of lower alkoxy group, lower alkylthio group, cyano lower alkoxy group, or lower alkyl group.
  • R 5 and R 6 When both R 5 and R 6 are substituted amino groups, they may be substituted amino groups which are different from each other as the substituted amino group.
  • the lower alkoxy group, the lower alkylthio group, the cyano lower alkoxy group, and the lower alkyl group are as described above.
  • a phosphoroamidite group an H-phosphonate group, or a phosphonyl group is mentioned as a preferable example, and a phosphoroamidite group is particularly preferable.
  • a phosphoroamidite group is particularly preferable.
  • R 5 and R 6 when n is 0, at least one of R 5 and R 6 is a substituted amino group, and the other may be anything, phospho It becomes a loamidite group.
  • the phosphoroamidite group one of R 5 and R 6 is an amino group substituted, and the other is a lower alkoxy group or a phosphoroamidite group which is a cyano lower alkoxy group, and the reaction efficiency of the condensation reaction is good. Especially preferred.
  • substituted amino group for example, a diethylamino group, a diisopropylamino group, a dimethylamino group and the like can be mentioned as a preferable example, and a diisopropylamino group is particularly preferable.
  • a methoxy group are preferred examples.
  • a cyano lower alkoxy group a 2-cyanoethyl group is mentioned as a preferred example.
  • the phosphoramidite group specifically, -P (OC 2 H 4 CN ) (N (CH (CH 3) 2), or -P (OCH 3) is (N (CH (CH 3) 2) Preferred examples are given.
  • n is 1 and at least one of R 5 and R 6 is a hydrogen atom and the other is any other than a hydrogen atom in —P ((O) n (R 5 ) R 6 Is an H-phosphonate group.
  • substituent other than hydrogen include, for example, a hydroxyl group, a methyl group, a methoxy group, a thiol group and the like, with a hydroxyl group being particularly preferable.
  • n (R 5 ) R 6 and R 5 and R 6 are both lower alkoxy groups, they are phosphonyl groups.
  • the lower alkoxy groups in R 5 and R 6 may be the same or different.
  • the lower alkoxy group for example, a methoxy group, an ethoxy group and the like can be mentioned as a preferred example.
  • R 2 in the present nucleoside derivative for example, —P (-O) n (R 5 ) R 6 is particularly preferable.
  • R 2 be a phosphate group or a protected phosphate group.
  • a hydrogen atom or a hydroxyl protecting group is also preferable.
  • R 2 examples include hydrogen atom, acetyl group, benzoyl group, benzyl group, p-methoxybenzyl group, trimethylsilyl group, tert-butyldiphenylsilyl group, -P (OC 2 H 4 CN) ( N (CH (CH 3 ) 2 ), -P (OCH 3 ) (N (CH (CH 3 ) 2 ), or phosphonyl group is mentioned as a preferred example.
  • R 3 in the present nucleoside derivative for example, a hydrogen atom or a hydroxyl-protecting group is preferable.
  • Specific examples of R 3 include hydrogen atom, acetyl group, benzoyl group, benzyl group, p-methoxybenzyl group, dimethoxytrityl group, monomethoxytrityl group, tert-butyldiphenylsilyl group, and trimethylsilyl group. Preferred examples are given.
  • R 4 can represent NHR 7 having a linking group, an azide group, an amidino group or a guanidino group, respectively. That is, each of NHR 7 , an azide group, an amidino group or a guanidino group is bonded to the carbon atom at the 5 'position via a linking group.
  • a C1 or more bivalent hydrocarbon group can be represented, for example. That is, examples of the divalent hydrocarbon group include an alkylene group having 1 to 8 carbon atoms or less, and an alkenylene group having 2 to 8 carbon atoms or less.
  • the alkylene group as the linking group may be linear or branched, but is preferably linear.
  • a lower alkyl group is preferable, for example, a lower alkyl group having 1 to 6 carbon atoms, and for example, a lower alkyl group having 1 to 6 carbon atoms is preferable, and for example, 2 to 4 carbon atoms or 2 to 6 carbon atoms Three lower alkyl groups are preferred.
  • the linear alkyl group having 1 to 6 carbon atoms include methylene group, ethylene group, propane-1,3-diyl group, n-butane-1,1-diyl group, n-pentyl-1-5, Examples include diyl and n-hexyl-1,6-diyl.
  • butane-1,2-diyl group and the like can be mentioned.
  • ethylene, propane-1,3-diyl and n-butane-1,1-diyl are mentioned as particularly preferable examples.
  • the alkenylene group as a linking group is linear or branched, preferably linear.
  • lower alkenylene groups are preferable, and examples of lower alkenylene groups include ethene-1,2-diyl group, propene-1,3-diyl group, butene-1,4-diyl group and the like.
  • nucleoside derivative represented by the formula (1) for example, a divalent hydrocarbon group such as an alkylene group having 2 or more carbon atoms such as ethylene group is preferable from the viewpoint of nuclease resistance and cell membrane permeability of the oligonucleotide derivative. It is. Furthermore, in the nucleoside derivative represented by the formula (2), even a divalent hydrocarbon group such as an alkylene group having one or more carbon atoms such as an ethylene group is suitable from the viewpoint of nuclease resistance and cell membrane permeability. .
  • R 7 includes a hydrogen atom, an alkyl group or an alkenyl group, or a protecting group for an amino group.
  • alkyl group lower alkyl groups are preferably mentioned in addition to the alkyl groups described above.
  • alkenyl group lower alkenyl groups are preferably mentioned in addition to the already described alkenyl groups.
  • the linking group is an alkylene group having 2 or more, for example 3 or more, for example 4 or more, for example 6 or less, for example 5 or less, for example 4 or less carbon atoms. Is preferred.
  • R 4 is NH 2 (amino group) having a linking group, that is, when the linking group is an alkylene group or an alkenylene group, it is an aminoalkyl group or an aminoalkenyl group.
  • R 4 when R 4 is an aminoalkyl group or the like, the present nucleoside derivative and the oligonucleotide derivative provided with a monomer unit derived from the present nucleoside derivative change charge in ambient pH environment It is possible to exhibit chargeability with the characteristic of For example, it can be cationic under acidic conditions, and can decrease to a charge of zero under neutral conditions under neutral conditions.
  • the charge of the nucleoside derivative can be dynamically changed as required, or a desired charge can be imparted. Therefore, according to such a present nucleoside derivative, the charge of the oligonucleotide can be adjusted in a non-conventional manner or with a higher degree of freedom than in the past. From the above, the present nucleoside derivative in which R 3 is an aminoalkyl group or the like is useful as a charge (positive charge) imparting agent or charge control agent to an oligonucleotide or the like.
  • an azide group and an amidino group having a linking group ie, CH 3 (NH) C (NH)-(amino group of amidine excluding one hydrogen atom), guanidino group, ie, NH 2 (NH) C (NH)-(an amino group of guanidine with one hydrogen atom removed).
  • the linking group can be an alkylene group having 1 or more carbon atoms, such as 2 or more carbon atoms, or an alkenylene group.
  • R 4 is an amidino group having a linking group or a guanidino group, it is always cationic, unlike the case of the aminoalkyl group described above.
  • Such present nucleoside derivatives are useful for use in combination with the present nucleoside derivatives in which R 4 is an aminoalkyl group or the like.
  • protecting groups for amino groups are well known to those skilled in the art and reference can be made to the aforementioned references. Specifically, in addition to those mentioned above as protecting groups for hydroxyl group, for example, benzyl group, methyl benzyl group, chlorobenzyl group, dichlorobenzyl group, fluorobenzyl group, trifluoromethylbenzyl group, nitrobenzyl group, methoxyphenyl Group, methoxymethyl (MOM) group, N-methylaminobenzyl group, N, N-dimethylaminobenzyl group, phenacyl group, acetyl group, trifluoroacetyl group, pivaloyl group, benzoyl group, phthalimido group, allyloxycarbonyl group, 2,2,2-Trichloroethoxycarbonyl group, benzyloxycarbonyl group, t-butoxycarbonyl (Boc) group, 1-methyl-1- (4-biphenyl) ethoxycarbon
  • benzyl group, methoxyphenyl group, acetyl group, trifluoroacetyl (TFA) group, pivaloyl group, benzoyl group, t-butoxycarbonyl (Boc) group, 1-methyl-1- (4-biphenyl) ethoxycarbonyl (Bpoc) group, 9-fluorenylmethoxycarbonyl group, benzyloxymethyl (BOM) group, or 2- (trimethylsilyl) ethoxymethyl (SEM) group can be mentioned, with particular preference given to benzyl group, methoxyphenyl group, acetyl Groups, benzoyl group, benzyloxymethyl group.
  • a protecting group of amino group chemical method (for example, hydrogenolysis, hydrolysis, electrolysis, or photolysis etc.) or biological method (for example, hydrolysis etc. in human body) is imagined. And the like, and may mean a substituent which is cleaved and eliminated by any method such as induction with a microorganism or the like).
  • a substituent capable of leaving by hydrogenolysis or hydrolysis is preferred as a protective group for the amino group.
  • B base in the present nucleoside derivative
  • artificial bases other than known natural bases can be mentioned.
  • B a purin-9-yl group, a 2-oxo-pyrimidin-1-yl group, a substituted purin-9-yl group, or a substituted 2-oxo-pyrimidin-1-yl group can be selected.
  • B includes purin-9-yl group or 2-oxo-pyrimidin-1-yl group, and also 2,6-dichloropurin-9-yl or 2-oxo-pyrimidin-1-yl Can be mentioned. Furthermore, 2-oxo-4-methoxy-pyrimidin-1-yl, 4- (1H-1,2,4-triazol-1-yl) -pyrimidin-1-yl, or 2,6-dimethoxypurine-9- Can be mentioned.
  • 2-oxo-4-amino-pyrimidin-1-yl in which the amino group is protected 2-amino-6-bromopurin-9-yl in which the amino group is protected, 2-amino in which the amino group is protected -6-hydroxypurin-9-yl, amino- and / or hydroxyl-protected 2-amino-6-hydroxypurin-9-yl, amino-protected 2-amino-6-chloropurine-9- And amino-protected 6-aminopurin-9-yl or amino-protected 4-amino-5-methyl-2-oxo-pyrimidin-1-yl.
  • the protective groups for hydroxyl and amino are as described above.
  • 6-aminopurin-9-yl (adenine), 2-amino-6-hydroxypurin-9-yl (guanidine), 2-oxo-4-amino-pyrimidin-1-yl (cytosine), 2-oxo -4-hydroxy-pyrimidin-1-yl (uracil) or 2-oxo-4-hydroxy-5-methylpyrimidin-1-yl (thymine).
  • 4-amino-5-methyl-2-oxo-pyrimidin-1-yl (methyl cytosine), 2,6-diaminopurin-9-yl, 6-amino-2-fluoropurin-9-yl, 6 And -mercaptopurin-9-yl, 4-amino-2-oxo-5-chloro-pyrimidin-1-yl, or 2-oxo-4-mercapto-pyrimidin-1-yl.
  • 6-amino-2-methoxypurin-9-yl 6-amino-2-chloropurin-9-yl, 2-amino-6-chloropurin-9-yl, or 2-amino-6-bromopurine And -9-yl.
  • the substituent in each of the substituted purin-9-yl group or the substituted 2-oxo-pyrimidin-1-yl group is a hydroxyl group, a protected hydroxyl group, a lower alkoxy group, a mercapto group, a protected mercapto group, a lower alkylthio group,
  • each substituent described in the substituted purin-9-yl group or the substituted 2-oxo-pyrimidin-1-yl group is preferable, but in addition to this, a triazole group is further added It is also preferable that a lower alkoxymethyl group is added.
  • Preferred examples of the substituted purin-9-yl group are, for example, 6-aminopurin-9-yl, 2,6-diaminopurin-9-yl, 2-amino-6-chloropurin-9-yl, 2- Amino-6-bromopurin-9-yl, 2-amino-6-hydroxypurin-9-yl, 6-amino-2-methoxypurin-9-yl, 6-amino-2-chloropurin-9-yl, Examples include 6-amino-2-fluoropurin-9-yl, 2,6-dimethoxypurin-9-yl, 2,6-dichloropurin-9-yl, 6-mercaptopurin-9-yl and the like.
  • a substituent in which the amino group and / or the hydroxyl group is protected is mentioned as a preferred example.
  • 2-oxo-pyrimidin-1-yl for example, 2-oxo-4-amino-pyrimidin-1-yl, 1H- (1,2,4-triazol-1-yl) -pyrimidin-1-yl, 4-1H-1,4-amino-2-oxo-5-chloro-pyrimidin-1-yl, 2-oxo-4-methoxy-pyrimidin-1-yl, 2-oxo-4-mercapto-pyrimidin-1-yl , 2-oxo-4-hydroxy-pyrimidin-1-yl, 2-oxo-4-hydroxy-5-methylpyrimidin-1-yl, or 4-amino-5-methyl-2-oxo-pyrimidin-1-yl And the like. Also, 2-oxo-4-methoxy-pyrimidin-1-yl or 4- (1H-1,2,4-triazol-1-yl) -pyrimidin-1-yl is mentioned as a preferred example.
  • the nucleoside derivative may be a salt.
  • the form of the salt is not particularly limited, but in general, an acid addition salt is exemplified, and it may be in the form of an intramolecular counter ion.
  • a base addition salt may be formed.
  • pharmaceutically acceptable salts are preferred. Types of acids and bases that form pharmaceutically acceptable salts are well known to those skilled in the art, for example, J. Mol. Pharm. Sci. , 1-19 (1977) can be referred to.
  • acid addition salts include mineral acid salts and organic acid salts.
  • a base addition salt is also mentioned as a preferred example.
  • Examples of the mineral acid salt include hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, hydrogen sulfate, phosphate, and hydrogen phosphate.
  • hydrochloride and phosphate are mentioned as preferred examples.
  • an organic acid salt for example, acetate, trifluoroacetate, gluconate, lactate, salicylate, citrate, tartrate, ascorbate, succinate, maleate, fumarate, formic acid Salts, benzoates, methanesulphonates, ethanesulphonates, p-toluenesulphonates and the like.
  • Base addition salts include alkali metal salts, alkaline earth metal salts, organic amine salts and addition salts of amino acids.
  • alkali metal salts examples include sodium salts and potassium salts.
  • a salt of alkaline-earth metal magnesium salt, calcium salt etc. are mentioned, for example.
  • organic amine salts include triethylamine salts, pyridine salts, procaine salts, picoline salts, dicyclohexylamine salts, diethanolamine salts, triethanolamine salts, tris (hydroxymethyl) aminomethane salts and the like.
  • an addition salt of an amino acid for example, arginine salt, lysine salt, ornithine salt, serine salt, glycine salt, aspartate salt, glutamate salt and the like can be mentioned.
  • the nucleoside derivative or a salt thereof may exist as a hydrate or a solvate, and these substances are also included in the scope of the present disclosure.
  • the present nucleoside derivative or a salt thereof can be easily produced by those skilled in the art according to the below-mentioned synthesis examples and known methods.
  • This nucleoside derivative can improve the nuclease resistance of a single stranded oligonucleotide and a double stranded oligonucleotide by introducing it into the oligonucleotide as at least a part of the oligonucleotide, and also can be used for mammalian cells etc.
  • Cell membrane permeability can be improved. That is, the nucleoside derivative is itself useful as a nuclease resistance enhancer and / or a cell membrane permeabilizer.
  • the nucleoside derivative can also have a basic substituent at 4 '. Thereby, it can function as a charge control agent or a positive charge imparting agent capable of adjusting the negative charge derived from a phosphate group or the like in an oligonucleotide or the like.
  • the oligonucleotide derivative disclosed herein (hereinafter, also referred to as the present oligonucleotide derivative) can contain at least one partial structure represented by Formula (3) and Formula (4).
  • the partial structure represented by Formula (3) and Formula (4) may be acquired based on the nucleoside derivative represented by Formula (1) and Formula (2), or its salt, respectively.
  • R 1 , X, R 4 and B in the partial structure represented by Formula (3) and Formula (4) are respectively synonymous with those in Formula (1) and Formula (2).
  • the partial structure represented by Formula (3) and Formula (4) may contain 2 or more in this oligonucleotide derivative. In that case, these partial structures may be identical to or different from one another.
  • the entire partial structure contained in the present oligonucleotide derivative may be composed only of the partial structure represented by formula (3), or is composed only of the partial structure represented by formula (4) May be Moreover, it may have partial structure 1 or 2 or more represented by Formula (3), and may have 1 or 2 or more partial structure represented by Formula (4).
  • the present oligonucleotide derivative can comprise at least, for example, three of the aforementioned partial structures.
  • each partial structure may or may not be provided substantially equally on the 5 'terminal side, the central part and the 3' terminal side of the present oligonucleotide derivative.
  • the partial structure is provided substantially equally in these parts of the present oligonucleotide derivative does not necessarily mean that the same number of partial parts are provided in the respective parts, and at least one of these parts is at least one in these parts.
  • each portion is provided with about 1 to 3 partial structures, it can be said that they are substantially equal.
  • the present oligonucleotide derivative when the present oligonucleotide derivative is intended for siRNA, its chain length is generally 18 mer to 25 mer or less, and typically 21 mer to 23 mer.
  • the oligonucleotide derivative can comprise, for example, at least four, also for example five, and also for example six partial structures.
  • the present oligonucleotide derivative is not particularly limited to the partial structure, but may have, for example, 8 or less, for example, 7 or less, or for example, 6 or less.
  • the present oligonucleotide derivative may be an oligoribonucleotide or an oligodeoxyribonucleotide, It is also good.
  • the present oligonucleotide derivative may be a chimera of ribonucleotide and deoxyribonucleotide.
  • the oligonucleotide derivative is itself single-stranded, but may be in the form of oligoribonucleotides, oligodeoxyribonucleotides, and hybrids with oligodeoxyribo / ribonucleotides (chimeric chains), ie, double-stranded form.
  • This oligonucleotide derivative is a partial structure other than the partial structure represented by the formula (3) and the formula (4), which corresponds to other naturally occurring nucleotides, known nucleoside derivatives and / or nucleotide derivatives, etc. Can be provided.
  • the partial structure and other partial structures defined in the present specification may be linked to each other, for example, by a phosphodiester bond, a phosphate monoester bond, a thiophosphate ester bond and the like.
  • the present oligonucleotide derivative is preferably at least 2 or more, more preferably 8 or more, and particularly preferably 15 or more, in terms of the number of partial structures and the number of other nucleoside derivatives.
  • the upper limit is not particularly limited, and is, for example, 100 or less, for example, 80 or less, for example, 60 or less, and for example, 50 or less, for example, 40 or less Also, for example, it may be 30 or less, and for example, 20 or less.
  • the present oligonucleotide derivative may have one or more asymmetric centers in other partial structures in addition to partial structures represented by Formula (3) and Formula (4), and the same applies in the case where a stereoisomer exists. And any mixtures of stereoisomers, racemates and the like are all included in the scope of the present invention. It may also exist as a tautomer.
  • the oligonucleotide derivative may be a salt.
  • the form of the salt is not particularly limited, but pharmaceutically acceptable salts are mentioned as a preferred example.
  • the aspect of the salt in the nucleoside derivative described above can be applied.
  • the present oligonucleotide derivative or a salt thereof may be a hydrate or a solvate, and these are also included in the scope of the present invention.
  • nucleoside derivative and the present oligonucleotide derivative are produced by those skilled in the art based on the synthesis techniques for nucleosides and oligonucleotides known at the time of filing of the present application as well as the specific synthesis examples described later.
  • the present nucleoside derivative and the present oligonucleotide derivative can be produced, for example, by the following method, but the method for producing the nucleoside analog or oligonucleotide analog of the present invention is not limited to the following method.
  • reaction time is not particularly limited in each reaction, but the progress of the reaction can be easily traced by the analysis means described later, and therefore, the reaction may be completed at the time when the yield of the desired product is maximized.
  • each reaction can be carried out under an inert gas atmosphere such as, for example, under a nitrogen stream or an argon stream, if necessary.
  • the reaction when protection by a protecting group and subsequent deprotection are required, the reaction can be appropriately performed by using the method described later.
  • Bn represents a benzyl group
  • Ac represents an acetyl group
  • Bz represents a benzoyl group
  • PMB represents a p-methoxybenzyl group
  • Tr represents a triphenylmethyl group
  • TBAF represents Indicate tetrabutylammonium fluoride
  • TEMPO indicates 2,2,6,6-tetramethylpiperidine 1-oxyl
  • DDQ indicates 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • PPH 3 represents triphenylphosphine
  • BCl 3 represents boron trichloride
  • THA represents a trifluoroacetyl group
  • TsO represents a tosyloxy group
  • MMTr represents a 4-methoxytriphenylmethyl group.
  • DMTr indicates 4,4'-dimethoxytriphenylmethyl group
  • TMS indicates trimethylsilyl group
  • TBDMS indicates tert-butyldimethylsilyl Group is shown
  • TBDPS is tert-butyldiphenylsilyl group
  • MOM is methoxymethyl group
  • BOM is benzyloxymethyl group
  • SEM is 2- (trimethylsilyl) ethoxymethyl group.
  • nucleoside derivative can be synthesized according to the following scheme.
  • the following scheme is an example of a scheme from the synthesis of thymine ribonucleoside derivative using glucose as a starting material to the synthesis of a phosphoroamidite agent for the synthesis of the present oligonucleotide derivative.
  • the compound 1 was obtained from glucose according to a conventional method. From compound 1 Bioorganic & Medical Chemistry 11 (2003) 211-2226, Bioorganic & Chemistry letters (1999) 2667-2672, The Journal of Organic Chemistry 2013, 78, 9956-9962, HELVATICA CHIMICA ACTA Vol. 83 (2000) 128-151, etc. In addition, compounds 3 to 20 are obtained based on the descriptions of Bioorganic & Medical Chemistry 11 (2003) 211-2226, Bioorganic & Chemistry letters (1999) 2667-2672 and Nucleic Acids Research, 43, (2015), 2993-3011 be able to.
  • the present oligonucleotide derivative having the partial structure represented by the formulas (3) and (4) can be easily used by using various present nucleoside derivatives represented by the formula (1) or (2) as an amidite agent etc. Can be manufactured. That is, by using such a nucleoside derivative, it can be synthesized using a known DNA synthesizer, and the resulting oligonucleotide derivative is purified using a column, and the purity of the product is reversed phase HPLC or MALDI-TOF- By analysis by MS, the purified oligonucleotide derivative can be obtained.
  • the method of using this oligonucleotide derivative as an acid addition salt is well known to those skilled in the art.
  • the substantial charge amount of RNA can be maintained while sufficiently maintaining RNA functions such as RNA interference ability in the living body. It is possible to control, to increase lipid solubility (van der Waals intermolecular force), and to realize lowering of the dsRNA melting temperature. Thereby, ribonuclease resistance can be improved, and cell membrane permeability can be improved. Furthermore, it is possible to neutralize the negative charge by the phosphate group etc. and adjust the overall charge.
  • the present oligonucleotide derivative at least one of the present partial structures can be provided. Also, for example, two can be provided. By providing a plurality of this partial structure, cell membrane permeability, ribonuclease resistance and the like can be surely improved and adjusted.
  • the present oligonucleotide derivative can also have at least three of the present partial structures.
  • the site of one or more of the present partial structures is not particularly limited, but can be provided, for example, on either or both of the 5 'terminal side and the 3' terminal side. .
  • the 5 'end side and the 3' end side respectively refer to regions within a few numbers from each end of the polymer chain of the present oligonucleotide, and do not exceed, for example, 30% of the total constituent units of the polymer chain.
  • the proportion of the range from the end varies depending on the total length of the polymer chain, it can be, for example, 25% or less, for example, 20% or less, for example 10% or less, or for example 5% or less.
  • the 5 'end side and the 3' end side are, for example, 1 to 30 from each end, for example, 1 to 25, for example, 1 to 20, for example, 1 to 15 pieces, for example 1 to 10 pieces, also for example 1 to 8 pieces, also for example 1 to 6 pieces, for example 1 to 5 pieces, for example 1 to 4 pieces, also for example 1 to 3 pieces,
  • it can be a region of a structural unit derived from 1 to 2 nucleoside derivatives.
  • the oligonucleotide derivative can have one or more of the partial structures in any of such terminal regions. Preferably, two or more can be provided.
  • the present oligonucleotide derivative can also be provided with the present partial structure at either or both of the 5 'end and the 3' end (that is, the first constituent unit from each end).
  • one or more of the present partial structures can be provided in the central portion which is a portion other than the 5 'end side and the 3' end side.
  • the present oligonucleotide derivative can also have the present partial structure in the central part of either or both of the 5 'end side and the 3' end side.
  • one or more of the present partial structures can be provided at each of the 5 'end, the 3' end and the central portion.
  • ribonuclease resistance and cell membrane permeability and further charge regulation can be improved by providing the present partial structure approximately equally or dispersedly as a whole.
  • Providing two or more of the present partial structures in the central part of the present oligonucleotide derivative is useful from the viewpoint of improving the properties.
  • a partial structure derived from a ribonucleoside derivative represented by Formula (3), and a partial structure derived from a deoxyribonucleotide derivative represented by Formula (4) can be used.
  • the ribonucleoside derivative represented by Formula (3) and the partial structure of Formula (4) are provided as uracil (U) etc. which is a base in RNA as a base of B as a substitute of a ribonucleoside derivative. It can be used.
  • R 4 in the formulas (3) and (4) has NHR 7 with an alkylene group having one or more carbon atoms as a linking group, ribonuclease resistance, cell membrane permeability and further charge It is suitable from the viewpoint of controllability.
  • R 7 may be a hydrogen atom or an acyl group having an alkyl group having about 1 to 6 carbon atoms.
  • the alkylene group can be ethylene group, propylene group, butylene group, pentylene group, hexylene group or the like. For example, it can be an ethylene group, a propylene group, a butylene group or the like.
  • it can be, for example, an ethylene group or a propylene group.
  • an ethylene group or a propylene group as a linking group, it is possible to obtain higher resistance to ribonuclease, cell membrane permeability, and charge control than a methylene group.
  • the partial structure may be an amidino group provided with a linking group, an azide group and a guanidino group. Also by providing such a functional group, high ribonuclease resistance and cell membrane permeability can be obtained.
  • the linking group may be an alkylene group having one or more carbon atoms.
  • the linking group of R 4 in the formulas (3) and (4) is an alkyl group having about 1 to 6 carbon atoms, and further, for example, the lower limit of the carbon number is 2 or more, for example 3 or more Is preferred.
  • Such structures are effective for ribonuclease resistance and cell membrane permeability.
  • the present oligonucleotide derivative has at least six of the partial structures. By providing six or more, it is advantageous to ribonuclease resistance, cell membrane permeability, and charge controllability.
  • the present oligonucleotide derivative can be used, for example, as siRNA. That is, by forming a complex with an in vivo component (RISC protein) and cleaving the mRNA in a sequence-specific manner, the information on the mRNA can be ribosomally identified to a specific protein by ribosomes. Make it impossible to be translated. Moreover, it is considered that it can be incorporated as a constituent of miRNA, or as a constituent of aptamer RNA, and can be used while taking advantage of the characteristics of ribonuclease resistance and cell membrane permeability improvement. Furthermore, it can also be linked to other compounds to form a conjugate. Furthermore, the present oligonucleotide derivative can also be used as a component of a ribozyme. The oligonucleotide derivative is also useful as an RNA chip and other reagents.
  • the present oligonucleotide derivative can be used as a component of various RNA pharmaceuticals that treats diseases by inhibiting the function of genes such as antitumor agents and antiviral agents, taking advantage of features not found in natural nucleotides, Usefulness over natural nucleotides is expected. That is, the present oligonucleotide derivative is useful as a raw material or an intermediate reagent for such an RNA drug as well as such an RNA drug. In addition, the present nucleoside derivative is useful as a raw material or an intermediate of such RNA medicine.
  • the charge controllability, ribonuclease resistance, cell membrane permeability, charge controllability of the present oligonucleotide derivative and the biological activity of various RNAs including the present oligonucleotide derivative can be appropriately determined by those skilled in the art in the examples and application described later. It can be easily assessed by reference to the techniques known to those skilled in the art at times.
  • the target compound 1 was synthesized using glucose as a starting material and the existing method (Bioorganic & Medical Chemistry 11 (2003) 211-2226, Bioorganic & Chemistry letters (1999) 2667-2672).
  • the reaction solution is partitioned between CHCl 3 and distilled water, and the organic layer is washed with 10% HCl aq., 10% Na 2 S 2 O 3 aq., Distilled water, sat. NaCl aq. And dried over Na 2 SO 4 did.
  • the solvent was distilled off under reduced pressure.
  • the resulting residue was dissolved under Ar atmosphere (EtO) 2 P (O) CH 2 COOEt 2.43 mL in THF 25 mL, 10 min stirring in an ice bath was added a NaH 0.49 g.
  • the residue dissolved in 25 mL of THF is added dropwise and stirred at room temperature for 30 minutes. Add 30 mL of distilled water and stir at room temperature.
  • reaction solution was extracted with EtOAc and distilled water, and the organic layer was washed with sat. NaCl aq. And dried over Na 2 SO 4 .
  • reaction solution was extracted with EtOAc and distilled water, and the organic layer was washed with sat. NaCl aq. And dried over Na 2 SO 4 .
  • Oligonucleotide synthesis was performed on a 0.2 ⁇ mol scale by an automatic nucleic acid synthesizer using the phosphoroamidite method.
  • the natural nucleoside amidite was diluted with MeCN to 0.1 M, and the CPG resin to which the 3 'terminal nucleoside was bound was packed on the column by 0.2 ⁇ mol each based on its activity and the synthesis was started .
  • the CPG resin was transferred to a sampling tube, 900 ⁇ L of CH 3 CN and 100 ⁇ L of Et 2 NH were added and vortexed for 5 minutes. Then it was spun down and the supernatant was discarded and washed twice with 1 mL of CH 3 CN.
  • the sample was evaporated to dryness under vacuum, then the sample was dissolved in DMSO (100 ⁇ l) to deprotect the TBDMS group, and TEA ⁇ 3HF (125 ⁇ l) was added and stirred, followed by incubation at 65 ° C. for 90 minutes.
  • the sample after incubation was made up to 10 ml with 0.1 M TEAA buffer, and the diluted solution was passed through an equilibrated Sep-Pat C18 reverse phase column and adsorbed onto the column. The column was washed with sterile water to remove salts, eluted with 50% CH 3 CN in H 2 O (3 ml) and crudely purified.
  • the crudely purified sample was evaporated to dryness, the residue was dissolved in loading solution (1 ⁇ TBE in 90% formamide) (200 ⁇ l), and the target oligonucleotide was separated by 20% PAGE (500 V, 20 mA).
  • the target oligonucleotide band was fractionated, 0.1 M TEAA buffer, 1 mM aqueous EDTA solution (20 ml) was added, and shaken overnight. After shaking, the filtrate was passed through an equilibrated Sep-Pac t C18 reverse phase column and adsorbed onto the column. The column was washed with sterile water to remove salts, eluted with 50% MeCN in H 2 O (3 ml) and dried under reduced pressure.
  • the oligonucleotide was dissolved in H 2 O (1 ml), and the yield was determined from the absorbance at 260 nm of the diluted solution. Further, 60 pmol of the oligonucleotide was evaporated to dryness under reduced pressure, well mixed with 3 ⁇ l of sterile water and 3 ⁇ l of matrix solution, and dried on a plate, and then the mass was measured by MALDI-TOF / MS. Below, the synthesized oligonucleotide is shown.
  • TEAA buffer The 0.1 M TEAA buffer was used after diluting 20 times with 2N TEAA buffer (277.6 ml of Et 3 N added to 114.38 ml of acetic acid and adjusted to 1000 ml with H 2 O to pH 7.0).
  • epsilon (N n) represents the epsilon 260 nucleic acid N n located
  • ⁇ (N n-1 pN n) represents a certain nucleic acid dimeric N n-1 pN n of epsilon 260.
  • the oligonucleotide was prepared as an aqueous solution and diluted so that the absorbance (Abs 260 ) at a wavelength of 260 nm was within the effective range of the absorbance meter. Abs 260 was measured at room temperature using a 1 cm path length (l) quartz cell for absorbance measurement. The following equation was used to calculate the concentration C (mol / l).
  • the matrix solution was prepared by dissolving 3-hydroxypicolinic acid (3-HPA) (4.85 mg) and diammonium hydrogen citrate (0.8 mg) in 50% MeCN in H 2 O (50 ⁇ l). In addition, diammonium hydrogen citrate was added to inhibit the attachment of Na + or K + .
  • the oligonucleotide ON 4300 pmol synthesized in Example 2 was dissolved in 37.5 ⁇ L of OPTI-MEM, 1.1 ⁇ L was dispensed into an eppendorf tube, and 5 ⁇ L of Loading buffer was added to make a 0 min sample. To the remaining samples, 1.2 ⁇ L of bovine serum (BS) as a ribonuclease source was added and incubated at 37 ° C. After 15 min, 30 min, 1 h, 3 h, 6 h, 12 h, 24 h, 2.4 ⁇ L was pipetted into an eppendorf tube on ice in 10 ⁇ L of loading buffer. The sample was electrophoresed and analyzed using FUJIFILM LAS4000. The results are shown in FIG.
  • BS bovine serum
  • the natural oligonucleotide having the same sequence as that of the oligonucleotide ON4 was substantially degraded 6 to 12 hours after the nuclease treatment, while the oligonucleotide ON4 was approximately 12 hours and 24 hours later. It was also found that it could be maintained undegraded.
  • HeLa cells were prepared to be 8000 cells / ml, and 100 ⁇ l was added to each well of a 96-well plate and cultured for 24 hours. Each strand of the synthesized siRNA was dissolved in TE buffer (100 mM NaCl), heated at 100 ° C. for 3 minutes, allowed to stand for 1 hour or more, and returned to room temperature. Mix 0.5 ⁇ l of siRNA solution, 48 ⁇ l of medium (OPTI-MEM), 0.5 ⁇ l of RNAiMAX in a total volume of 50 ⁇ l, add 40 ⁇ l of OPTI-MEM to each well of the 96 well plate that has absorbed the medium, and further prepare the sample Was added to each well in an amount of 10 ⁇ L.
  • TE buffer 100 mM NaCl
  • CO 2 incubator 37 is allowed to stand for one hour at ° C., for 24 hours at a CO 2 incubator 37 ° C. by adding 100 ⁇ l of D-MEM to each well. After 24 hours, the medium was aspirated and stored frozen for 24 hours.
  • 24 ⁇ l of Dual glow substrate substrate for Firefly luciferase
  • 23 ⁇ l of the sample was transferred to a 96 well plate for luminescence measurement, and Firefly luciferase was measured.
  • oligonucleotides ON1 to ON3 showed gene expression suppression ability comparable to that of the natural oligonucleotide (Native).
  • HeLa cells were prepared to have 20000 cells / ml, and 400 ⁇ l was added to each well of a 48-well plate and cultured for 24 hours.
  • the oligonucleotide ON4 (40 pmol) dried in an eppene was dissolved in OPTI-MEM (400 ⁇ l), the medium in each well was aspirated, and then the whole amount was added to the wells. After incubating for 1 hour, 200 ⁇ l / well of bovine serum-containing culture medium (10% BS D-MEM (WAKO)) was added. After 24 hours, the media in each well was aspirated and the wells were washed twice with 1 ⁇ PBS.
  • the natural oligonucleotide (Native) hardly permeated through the cell membrane, whereas the oligonucleotide ON4 showed excellent cell membrane glycation.
  • 5'-tosyloxyethyl compounds such as Compound 2 can be obtained in a short step by stereoselective aldol reaction using nucleoside derivatives such as uridine and 2'-O-alkyluridine as starting materials.
  • nucleoside derivatives such as uridine and 2'-O-alkyluridine as starting materials.
  • the intended amidite agent can be efficiently obtained.
  • SEQ ID NO: 1-2 artificial siRNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

RNA医薬等に適用するのにより実用的なヌクレオシド及びその利用を提供する。このため、以下の式(1)又は(2)で表される、ヌクレオシド誘導体又はその塩を提供する。 【化16】 (式(1)中、R1は、水素原子、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された基を表し、式(2)中、Xは、ハロゲン原子を表す。式(1)及び式(2)中、R2及びR3は互いに同一又は異なっていてもよく、水素原子、水酸基の保護基、リン酸基、保護されたリン酸基、又は-P(=O)nR5R6(nは0又は1を示し、R5及びR6は、互いに同一又は異なっていてもよく、水素原子、水酸基、保護された水酸基、メルカプト基、保護されたメルカプト基、低級アルコキシ基、シアノ低級アルコキシ基、アミノ基、又は置換されたアミノ基のいずれかを示す。ただし、nが1のときには、R5及びR6が共に水素原子となることはない。)を示し、R4は、それぞれ連結基を有するNHR7(R7は、水素原子、アルキル基、アルケニル基又はアミノ基の保護基を表す。)、アジド基、アミジノ基又はグアニジノ基を表し、Bは、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基のいずれかを表す。)

Description

ヌクレオシド誘導体及びその利用
 本明細書は、ヌクレオシド誘導体及びその利用に関する。
(関連出願の相互参照)
 本出願は、2017年10月31日に出願された日本国特許出願である特願2017-211339の関連出願であり、この日本出願に基づく優先権を主張するものであり、この日本出願に記載された全ての内容を援用によりここに組み込まれる。
 がんをはじめ、遺伝子変異や遺伝子発現異常が原因又は関連している疾患は多数知られている。遺伝子の発現を抑制するsiRNAなどのRNA医薬は、こうした疾患に有用であり、優れた医薬品ポテンシャルを有しているといえる。
 一方、siRNA等は、細胞膜透過が困難であったり、ヌクレアーゼによる分解を受けやすいという問題がある。このため、これまで、siRNAの細胞内送達用のLNPなどのキャリアの使用が試みられたり、ヌクレオシドに対する種々の化学修飾が試みられている(非特許文献1~4)。
HELVATICA CHIMICA ACTA Vol. 83 (2000) 128-151 The Journal of Organic Chemistry 2012, 77, 3233-3245 Bioorganic & Chemistry letters(1999)2667-2672 The Journal of Organic Chemistry 2013, 78, 9956-9962
 しかしながら、細胞膜透過性、ヌクレアーゼ耐性こうした試みにもかかわらず、未だに、RNA医薬の有効性の一層の向上が求められている。こうしたRNAの改変によっても、十分な細胞膜透過性、リボヌクレアーゼ耐性及び遺伝子抑制能を充足することはできていない。
 本明細書は、RNA医薬等に適用するのにより実用的なヌクレオシド及びその利用を提供することを、目的とする。
 本発明者らは、リボヌクレオチドの糖部であるリボースに対する化学修飾に着目する一方、リボースを構成する炭素原子ではあるが、リボースの五員環の構成炭素原子でない5’位炭素原子に対する修飾に着目した。かかる5’位炭素原子への塩基を有する置換基の導入によって、遺伝子発現抑制能を維持しつつ、リボヌクレアーゼ耐性及び細胞膜透過性を向上させうるという知見を得た。本明細書によれば、かかる知見に基づき以下の手段が提供される。
(1)以下の式(1)又は(2)で表される、ヌクレオシド誘導体又はその塩。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
1は、水素原子、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された基を表し、
式(2)中、Xは、ハロゲン原子を表す。
式(1)及び式(2)中、
2及びR3は互いに同一又は異なっていてもよく、水素原子、水酸基の保護基、リン酸基、保護されたリン酸基、又は-P(=O)n56(nは0又は1を示し、R5及びR6は、互いに同一又は異なっていてもよく、水素原子、水酸基、保護された水酸基、メルカプト基、保護されたメルカプト基、低級アルコキシ基、シアノ低級アルコキシ基、アミノ基、又は置換されたアミノ基のいずれかを示す。ただし、nが1のときには、R5及びR6が共に水素原子となることはない。)を示し、
4は、それぞれ連結基を有するNHR7(R7は、水素原子、アルキル基、アルケニル基又はアミノ基の保護基を表す。)、アジド基、アミジノ基又はグアニジノ基を表し、Bは、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基のいずれかを表す。)
(2)前記式(1)及び式(2)中、R7は水素原子を表すか又はR4は前記連結基を有するグアニジノ基を表す、(1)に記載のヌクレオシド誘導体又はその塩。
(3)前記式(1)及び式(2)中、R4の前記連結基は、炭素数1以上6以下のアルキレン基を表す、(1)又は(2)に記載のヌクレオシド誘導体又はその塩。
(4)前記式(1)及び式(2)中、R4の前記連結基は、炭素数1以上6以下のアルキレン基を表し、R7は水素原子を表す、(1)~(3)のいずれかに記載のヌクレオシド誘導体又はその塩。
(5)(1)~(4)のいずれかに記載のヌクレオシド誘導体を含む、オリゴヌクレオチドに対する細胞膜透過性付与剤。
(6)(1)~(4)のいずれかに記載のヌクレオシド誘導体を含む、オリゴヌクレオチドに対するリボヌクレアーゼ耐性付与剤。
(7)以下の式(3)及び式(4)からなる群から選択される部分構造を少なくとも1個備える、オリゴヌクレオチド誘導体又はその塩。
Figure JPOXMLDOC01-appb-C000004
(式(3)中、R1は、水素原子、ハロゲン原子、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された水酸基を表し、式(4)中、Xは、ハロゲン原子を表す。式(3)及び式(4)中、R4は、それぞれ連結基を有するNHR7(R7は、水素原子、アルキル基、アルケニル基又はアミノ基の保護基を表す。)、アジド基、アミジノ基又はグアニジノ基を表し、Bは、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基のいずれかを表す。)
(8)前記部分構造を少なくとも2個備える、(7)に記載のオリゴヌクレオチド誘導体又はその塩。
(9)前記部分構造を少なくとも3個備えている、(7)又は(8)に記載のオリゴヌクレオチド誘導体又はその塩。
(10)前記部分構造を3個以上8個以下備える、(7)~(9)のいずれかに記載のオリゴヌクレオチド誘導体又はその塩。
(11)前記オリゴヌクレオチドは、オリゴリボヌクレオチドである、(7)~(10)のいずれかに記載のオリゴヌクレオチド誘導体又はその塩。
(12)(7)~(11)のいずれかに記載のオリゴヌクレオチド誘導体又はその塩を有効成分とする、siRNA剤。
リボヌクレアーゼ耐性の評価結果を示す図である。 アミノアルキル基修飾による細胞膜透過性の評価結果を示す図である。 アミノアルキル基修飾による細胞膜透過性の他の評価結果を示す図である。
 本明細書の開示は、siRNAなどRNA医薬に好適な実用性のあるヌクレオシド誘導体又はその塩及びその利用に関する。本明細書に開示されるヌクレオシド誘導体又はその塩(以下、単に、本ヌクレオシド誘導体ともいう。)によれば、遺伝子発現抑制能を十分に発揮し、しかも、リボヌクレアーゼ耐性を有するとともに、細胞膜透過性に優れている。このため、従来のRNA医薬に用いられてきた送達用のLNPなどのキャリアを用いない投与に好適なオリゴヌクレオチドを提供できる。
 また、本ヌクレオシド誘導体は、RNAを用いた検出プローブなど試薬としても有用である。すなわち、種々のRNA試薬に好適なオリゴヌクレオチドを提供できる。
 本明細書に開示されるヌクレオシド誘導体は、従来困難であったリボースの第5’位にアミノアルキル系置換基などの塩基性置換基を導入し、その性質について精査したところ、予想を超える有用な特徴を見出したことに基づいている。すなわち、従来、リボヌクレアーゼ耐性に関しては、リボースの2’位や3’位の置換体によることが一般的であった。これに対して、本明細書に開示されるヌクレオシド誘導体によれば、リボース環を構成する炭素原子を修飾するのではなく、5’炭素原子の水素原子を置換するものであるため、当該ヌクレオシド誘導体を用いたオリゴヌクレオチドによるsiRNA活性を維持しつつ、予想を超えるリボヌクレアーゼ耐性と細胞膜透過性という、RNA医薬等に有用な特性を兼ね備えることができる。
 以下、本開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善されたヌクレオチド誘導体及びその利用を提供するために、他の特徴や開示とは別に、又は共に用いることができる。
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
(本ヌクレオシド誘導体)
 本ヌクレオシド誘導体は、以下の式(1)又は(2)で表されるヌクレオシド誘導体又はその塩とすることができる。本ヌクレオシド誘導体は、当業者の周知の方法で、オリゴヌクレオチドの部分構造に含めることができる。
Figure JPOXMLDOC01-appb-C000005
 本ヌクレオシド誘導体は、リボース及びデオキシリボースの第5’位に塩基性を有する置換基を備えることで、本ヌクレオシド誘導体に由来する部分構造を備えるオリゴヌクレオチドにおいて、オリゴヌクレオチドが有するリン酸基などに起因する負電荷の少なくとも一部を中和することができるという電荷調節能を備えることができる。
 また、当該部分構造を備えるオリゴヌクレオチドの細胞膜透過性を向上させることができる。
 さらに、本ヌクレオシド誘導体に由来する部分構造を備えるオリゴヌクレオチドにおいて、リボヌクレアーゼ耐性を向上することができる。
 本明細書中、式等で表される化合物における置換基における「低級」の意は、該置換基を構成する炭素数が、最大10個までであることを意味している。例えば、通常は炭素数1~6個、又は炭素数1~5個が例示され、さらには炭素数1~4個、又は炭素数1~3個であることが好ましい例として挙げられる。
 以下、本明細書に開示される本ヌクレオシド誘導体又はその塩及びこれらの利用について説明する。
(ヌクレオシド誘導体及びその塩)
 本ヌクレオシド誘導体又はその塩の一つの態様は、以下の式(1)で表されるヌクレオシド誘導体又はその塩である。
Figure JPOXMLDOC01-appb-C000006
 また、本ヌクレオシド誘導体又はその塩の他の一つの態様は、以下の式(2)で表されるヌクレオシド誘導体又はその塩である。
Figure JPOXMLDOC01-appb-C000007
[R1について]
 式(1)中、R1は、水素原子、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された水酸基を表す。R1が水素原子のとき、本ヌクレオシド誘導体は、デオキシリボヌクレオシド誘導体である。R1が、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された水酸基であるとき、本ヌクレオシド誘導体は、リボヌクレオシド誘導体である。
[Xについて]
 式(2)中、Xは、ハロゲン原子を表す。ハロゲン原子としては、特に限定するものではないが、塩素原子、ヨウ素原子、フッ素原子及び臭素原子等が挙げられる。Xがハロゲン原子のとき、本ヌクレオシド誘導体は、デオキシリボヌクレオシド誘導体である。なお、ハロゲン原子は、式(2)からも明らかなように、リボースの2’位の炭素原子に対する結合方向は特に限定するものではないが、天然のリボースの水酸基に相当するようにハロゲン原子が結合することが好適である。
(アルキル基)
 本明細書中、アルキル基としては、直鎖状、分枝状、環状、又はそれらの組み合わせである飽和炭化水素基が挙げられる。通常は、低級アルキル基が好ましく、例えば炭素数1~6個の低級アルキル基、又は炭素数1~5個の低級アルキル基がより好ましい例として挙げられ、さらに炭素数1~4個又は炭素数1~3個の低級アルキル基が特に好ましい例として挙げられる。直鎖状の炭素数1から4までのアルキル基としては、メチル基、エチル基、n-プロピル基、又n-ブチル基等が好適な例として挙げられ、このうち、メチル基、エチル基、n-プロピル基が好ましく、また例えばメチル基、エチル基が好ましく、また例えばメチル基が好ましい。また分枝状の炭素数1から4までのアルキル基としては、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられ、このうち、イソプロピル基が特に好ましい例として挙げられる。又、環状の炭素数1から4までのアルキル基としては、シクロプロピル基、シクロブチル基、又はシクロプロピルメチル基等が挙げられる。
(アルケニル基)
 本明細書中、アルケニル基としては、直鎖状、分枝状、環状、又はそれらの組み合わせである飽和炭化水素基が挙げられる。通常は、低級アルケニル基が好ましく、低級アルケニル基としては、例えばエテニル基、1-プロペニル基、2-プロペニル基、1-メチル-2-プロペニル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、1-ブテニル基、2-ブテニル基などが挙げられる。
(水酸基の保護基又は保護された水酸基)
 本明細書において、水酸基の保護基としては、当業者に周知であって、例えば、Protective Groups in Organic Synthesis(John Wiley and Sons、2007年版)を参考にすることができる。水酸基の保護基としては、代表的な例を挙げると、例えば、脂肪族アシル基、芳香族アシル基、低級アルコキシメチル基、適宜の置換基があってもよいオキシカルボニル基、適宜の置換基があってもよいテトラヒドロピラニル基、適宜の置換基があってもよいテトラチオピラニル基、合わせて1から3個の置換又は無置換のアリール基にて置換されたメチル基(但し前述の置換アリールにおける置換基としては、低級アルキル、低級アルコキシ、ハロゲン原子、又はシアノ基を意味する。)、又はシリル基、等が例示される。
 なお、本明細書中、アルコキシ基としては、直鎖状、分枝状、環状、又はそれらの組み合わせである飽和アルキルエーテル基が挙げられる。低級アルコキシ基が好ましく、低級アルコキシ基としては、例えば炭素数1~6個の低級アルコキシ基、又は炭素数1~5個の低級アルコキシ基が挙げられ、さらには炭素数1~4個、又は炭素数1~3個のアルコキシ基が好ましく、炭素数1~4個のアルコキシ基が特に好ましい。炭素数1~4個のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、又はn-ブトキシ基等が好ましい例として挙げられる。また、イソプロポキシ基、イソブトキシ基、s-ブトキシ基、又はt-ブトキシ基等も好ましい例として挙げられる。また、シクロプロポキシ基、シクロブトキシ基も好ましく、シクロプロピルメトキシ基も好ましい例として挙げられる。
 本明細書中、アルキルチオ基としては、直鎖状、分枝状、環状、又はそれらの組み合わせである飽和アルキルチオ基が挙げられる。低級アルキルチオ基が好ましく、低級アルキルチオ基としては、例えば炭素数1~6個の低級アルキルチオ基、又は炭素数1~5個の低級アルキルチオ基が好ましく、さらには炭素数1~4個の低級アルキルチオ基、又は炭素数1~3個までのアルキルチオ基が特に好ましい例として挙げられる。炭素数1~4個の飽和アルキルチオ基としては、例えば、メチルチオ基、エチオルチオ基、n-プロピルチオ基、n-ブチルチオ基等が好ましい例として例示される。またイソプロピルチオ基、イソブチルチオ基、s-ブチルチオ基、又はt-ブチルチオ基等も好ましい例として例示される。またシクロプロピルチオ基、又はシクロブチルチオ基が好ましい例として挙げられ、さらにシクロプロピルメチルチオ基がさらに好ましい例として例示される。
 これらのうち、脂肪族アシル基、芳香族アシル基、シリル基が特に好ましい例として挙げられる。また、合わせて1から3個の置換又は無置換のアリール基にて置換されたメチル基(但しその置換アリールにおける置換基は、前述の通り)も好ましい例として挙げられる。
 上記の脂肪族アシル基としては、例えば、アルキルカルボニル基、カルボキシアルキルカルボニル基、ハロゲノ低級アルキルカルボニル基、又は低級アルコキシ低級アルキルカルボニルが挙げられる。
 なお、前記アルキルカルボニル基におけるアルキルは前述の説明の通りである。すなわち、アルキルカルボニル基としては、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ピバロイル基、バレリル基、イソバレリル基、オクタノイル基、ノナノイル基、デカノイル基、3-メチルノナノイル基、8-メチルノナノイル基、3-エチルオクタノイル基、3,7-ジメチルオクタノイル基、ウンデカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ペンタデカノイル基、ヘキサデカノイル基、1-メチルペンタデカノイル基、14-メチルペンタデカノイル基、13,13-ジメチルテトラデカノイル基、ヘプタデカノイル基、15-メチルヘキサデカノイル基、オクタデカノイル基、1-メチルヘプタデカノイル基、ノナデカノイル基、アイコサノイル基、又はヘナイコサイル基が挙げられる。このうち、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ピバロイル基が好ましい例として挙げられ、さらにはアセチル基が特に好ましい例として挙げられる。また前記カルボキシ化アルキルカルボニル基におけるアルキルは前述の説明の通りである。カルボキシ化の置換位置などについても適宜選択できる。すなわち、カルボキシ化アルキルカルボニル基としては、例えばスクシノイル基、グルタロイル基、アジポイル基が挙げられる。
 前記ハロゲノ低級アルキルカルボニル基における、ハロゲン、低級、及びアルキルについては前述の説明の通りである。ハロゲンの置換位置などについても適宜選択できる。すなわち、ハロゲノ低級アルキルカルボニル基としては、例えばクロロアセチル基、ジクロロアセチル基、トリクロロアセチル基、トリフルオロアセチル基が挙げられる。
 前記低級アルコキシ低級アルキルカルボニル基における、アルコキシ及びアルキル、さらに低級については前述の説明の通りである。低級アルコキシが置換する位置などについても適宜選択できる。すなわち、低級アルコキシ低級アルキルカルボニル基として、例えばメトキシアセチル基が挙げられる。
 上記の芳香族アシル基としては、例えば、アリールカルボニル基、ハロゲノアリールカルボニル基、低級アルキル化アリールカルボニル基、低級アルコキシ化アリールカルボニル基、カルボキシ化アリールカルボニル基、ニトロ化アリールカルボニル基、又はアリール化アリールカルボニル基が挙げられる。
 前記アリールカルボニル基としては、例えばベンゾイル基、α-ナフトイル基、β-ナフトイル基が挙げられ、さらに好ましくはベンゾイル基が挙げられる。前記ハロゲノアリールカルボニル基としては、例えば、2-ブロモベンゾイル基、4-クロロベンゾイル基が挙げられる。前記低級アルキル化アリールカルボニル基としては、2,4,6-トリメチルベンゾイル基、4-トルオイル基、3-トルオイル基、2-トルオイル基が挙げられる。前記低級アルコキシ化アリールカルボニル基としては、例えば4-アニソイル基、3-アニソイル基、2-アニソイル基が挙げられる。
 前記カルボキシル化アリールカルボニル基としては、例えば2-カルボキシベンゾイル基、3-カルボキシベンゾイル基、4-カルボキシベンゾイル基が挙げられる。前記ニトロ化アリールカルボニル基としては、例えば、4-ニトロベンゾイル基、3-ニトロベンゾイル基、2-ニトロベンゾイル基が挙げられる。前記アリール化アリールカルボニル基としては、例えば、4-フェニルベンゾイル基が挙げられる。
 低級アルコキシメチル基としては、例えばメトキシメチル基、1,1-ジメチル-1-メトキシメチル基、エトキシメチル基、プロポキシメチル基、イソプロポキシメチル基、ブトキシメチル基、t-ブトキシメチル基が挙げられる。特に好ましくはメトキシメチル基が挙げられる。
 適宜の置換基があってもよいオキシカルボニル基としては、低級アルコキシカルボニル基、ハロゲン又はシリル基で置換された低級アルコキシカルボニル基、又はアルケニルオキシカルボニル基が挙げられる。
 前記低級アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニルイソブトキシカルボニル基が挙げられる。前記ハロゲン又はシリル基で置換された低級アルコキシカルボニル基としては、2,2-トリクロロエトキシカルボニル基、2-(トリメチルシリル)エトキシカルボニル基が挙げられる。
 前記アルケニルオキシカルボニル基としては、ビニルオキシカルボニル基が挙げられる。上記の、適宜の置換基があってもよいテトラヒドロピラニル基としては、例えばテトラヒドロピラン-2-イル基、又は、3-ブロモテトラヒドロピラン-2-イル基が好ましい例として挙げられ、特に好ましくはテトラヒドロピラン-2-イル基が挙げられる。
 適宜の置換基があってもよいテトラチオピラニル基としては、例えばテトラヒドロチオピラン-2-イル基、4-メトキシテトラヒドロチオピラン-4-イル基が挙げられ、さらに好ましくはテトラヒドロチオピラン-2-イル基が挙げられる。合わせて1から3個の置換又は無置換のアリール基にて置換されたメチル基、においては、前述の置換アリールにおける置換基としては、低級アルキル、低級アルコキシ、ハロゲン、又はシアノ基を意味する。
 合わせて1から3個の置換又は無置換のアリール基にて置換されたメチル基としては、例えばベンジル基、α-ナフチルメチル基、β-ナフチルメチル基、ジフェニルメチル基、トリフェニルメチル基、α-ナフチルジフェニルメチル基が挙げられ、好ましくはベンジル基、トリフェニルメチル基が挙げられる。その他に、例えば9-アンスリルメチル4-メチルベンジル基、2,4,6-トリメチルベンジル基、3,4,5-トリメチルベンジル基が挙げられ、好ましくは、2,4,6-トリメチルベンジル基、3,4,5-トリメチルベンジル基が挙げられる。その他の種類として、例えば4-メトキシベンジル基、4-メトキシフェニルジフェニルメチル基、4,4’-ジメトキシトリフェニルメチル基が挙げられ、好ましくは4-メトキシベンジル基、4-メトキシフェニルジフェニルメチル基、4,4’-ジメトキシトリフェニルメチル基が挙げられる。さらには、例えば4-クロロベンジル基、4-ブロモベンジル基が挙げられる。またその他に、例えば4-シアノベンジル基も好ましい例として挙げられる。
 本明細書中、シリル基としては、トリメチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、t-ブチルジメチルシリル基、メチルジイソプロピルシリル基、メチルジ-t-ブチルシリル基、トリイソプロピルシリル基、ジフェニルメチルシリル基、ジフェニルブチルシリル基、ジフェニルイソプロピルシリルフェニルジイソプロピルシリル基が挙げられる。このなかでさらに好ましくは、トリメチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、ジフェニルメチルシリル基が挙げられ、特に好ましくは、トリメチルシリル基、t-ブチルジメチルシリル基、ジフェニルメチルシリル基が挙げられる。
 本明細書における水酸基の保護基としては、化学的方法(例えば、加水素分解、加水分解、電気分解、又は光分解など)、又は生物学的方法(例えば、人体内で加水分解等。想像するに微生物等での誘導など)、のいずれかの方法により開裂し、脱離する置換基を意味する場合もある。水酸基の保護基としては、特に、加水素分解、又は加水分解により脱離する置換基が好ましい例として挙げられる。なお、保護された水酸基は、かかる保護基で水素原子が置換された水酸基ということができる。
[R2及びR3について]
 式(1)及び式(2)中、R2及びR3は、互いに同一又は異なっていてもよく、水素原子、水酸基の保護基、リン酸基、保護されたリン酸基、又は-P(=O)n(R5)R6を表す。水酸基の保護基は既に説明したとおりである。
(保護されたリン酸基)
 保護されたリン酸基における保護基は当業者公知であり、上述の参考文献や説明を参考にすることができる。
 リン酸基の保護基としては、例えば、低級アルキル基、シアノ基で置換された低級アルキル基、シリル基で置換されたエチル基、ハロゲンで置換された低級アルキル基、低級アルケニル基、シアノ基で置換された低級アルケニル基、シクロアルキル基、シアノ基で置換された低級アルケニル基、アラルキル基、ニトロ基でアリール環が置換されたアラルキル基、ハロゲンでアリール環が置換されたアラルキル基、低級アルキル基で置換されたアリール基、ハロゲンで置換されたアリール基、又はニトロ基で置換されたアリール基が挙げられる。
 前記の低級アルキル基としては、前述したとおりである。前記のシアノ基で置換された低級アルキル基としては、例えば2-シアノエチル基、2-シアノ-1、1-ジメチルエチル基が挙げられ、特に好ましくは、2-シアノエチル基が挙げられる。前記のシリル基で置換されたエチル基としては、例えば2-メチルジフェニルシリルエチル基、2-トリメチルシリルエチル基、2-トリフェニルシリルエチル基が挙げられる。
 前記のハロゲンで置換された低級アルキル基としては、例えば2,2,2-トリクロロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリフルオロエチル基、2,2,2-トリクロロエチル基が挙げられ、特に好ましくは、2,2,2-トリクロロエチル基が挙げられる。前記の低級アルケニル基としては、例えばエテニル基、1-プロペニル基、2-プロペニル基、1-メチル-2-プロペニル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、1-ブテニル基、2-ブテニル基などが挙げられる。
 前記のシアノ基で置換された低級アルケニル基としては、例えば2-シアノエチル基、2-シアノプロピル基、2-シアノブテニル基が挙げられる。前記のアラルキル基としては、例えばベンジル基、α-ナフチルメチル基、β-ナフチルメチル基、インデニルメチル基、フェナンスレニルメチル基、アントラセニルメチル基、ジフェニルメチル基、トリフェニルメチル基、1-フェネチル基、2-フェネチル基、1-ナフチルエチル基、2-ナフチルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-ナフチルプロピル、2-ナフチルプロピル、3-ナフチルプロピル、1-フェニルブチル基、2-フェニルブチル基、3-フェニルブチル基、4-フェニルブチル基が挙げられ、さらに好ましくは、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、1-フェネチル基、2-フェネチル基が挙げられ、特に好ましくは、ベンジル基が挙げられる。
 前記のニトロ基でアリール環が置換されたアラルキル基としては、2-(4-ニトロフェニル)エチル基、0-ニトロベンジル基、4-ニトロベンジル基、2,4-ジニトロベンジル基、4-クロロ-2-ニトロベンジル基などが挙げられる。
 本明細書においてリン酸の保護基としては、化学的方法(例えば、加水素分解、加水分解、電気分解、又は光分解など)、又は生物学的方法(例えば、人体内で加水分解等。想像するに微生物等での誘導など)、のいずれかの方法により開裂し、脱離する置換基を意味する場合もある。リン酸の保護基としては、特に、加水素分解、又は加水分解により脱離する置換基が好ましい例として挙げられる。
(-P(=O)n(R5)R6
 本発明のヌクレオシド類縁体のR2及びR4は、-P(=O)n(R5)R6となる場合がある。nは0又は1を示し、R5及びR6は、互いに同一又は異なっていてもよく、水素原子、水酸基、保護された水酸基、メルカプト基、保護されたメルカプト基、低級アルコキシ基、シアノ低級アルコキシ基、アミノ基、又は置換されたアミノ基のいずれかを示す。ただし、nが1のときには、R5及びR6が共に水素原子となることはない。保護された水酸基及び低級アルコキシ基については、既に説明したとおりである。
(保護されたメルカプト基)
 保護されたメルカプト基は、当業者において周知である。保護されたメルカプト基としては、例えば上記水酸基の保護基として挙げたものの他、例えばアルキルチオ基、アリールチオ基、脂肪族アシル基、芳香族アシル基が挙げられる。好ましくは、脂肪族アシル基、芳香族アシル基が挙げられ、特に好ましくは、芳香族アシル基が挙げられる。アルキルチオ基としては、低級アルキルチオ気が好ましく、例えば、メチルチオ、エチルチオ、t-ブチルチオ基が好ましい例として挙げられる。アリールチオ基としては、例えばベンジルチオが挙げられる。また芳香族アシル基としてはベンゾイル基が挙げられる。
 前記のシアノ低級アルコキシ基としては、例えば、シアノ基が置換した直鎖状、分枝状、環状、又はそれらの組み合わせである炭素数1~5個のアルコキシ基(なお、シアノ基中の炭素の数を含めずに数えた場合)が好ましい例として挙げられ、具体的には例えば、シアノメトキシ、2-シアノエトキシ、3-シアノプロポキシ、4-シアノブトキシ、3-シアノ―2-メチルプロポキシ、又は1-シアノメチル-1,1-ジメチルメトキシ等が挙げられ、特に好ましくは、2-シアノエトキシ基が挙げられる。
 R5及びR6として、置換されたアミノ基が選択できる。そのアミノ基の置換基は、低級アルコキシ基、低級アルキルチオ基、シアノ低級アルコキシ基、又は低級アルキル基のいずれかを示す。なお前記R5及びR6が共に、置換されたアミノ基である場合では、該置換されたアミノ基として互いに異なった置換されたアミノ基であってもよい。前記の低級アルコキシ基、低級アルキルチオ基、シアノ低級アルコキシ基、及び低級アルキル基は、前述に説明された通りである。
 -P(=O)n(R5)R6としては、より具体的には、ホスホロアミダイト基、H-ホスホネート基、又はホスホニル基が好ましい例として挙げられ、ホスホロアミダイト基が特に好ましい例として挙げられる。
 -P(=O)n(R5)R6において、nが0であり、R5及びR6の少なくとも一方が置換されたアミノ基であり、他方は何であってもよい場合には、ホスホロアミダイト基となる。ホスホロアミダイト基としては、R5及びR6の一方が置換されたアミノ基であり、他方が低級アルコキシ基、又はシアノ低級アルコキシ基であるホスホロアミダイト基が、縮合反応の反応効率が良好であり、特に好ましい。その置換されたアミノ基としては、例えば、ジエチルアミノ基、ジイソプロピルアミノ基、ジメチルアミノ基等が好ましい例として挙げられ、特に好ましくはジイソプロピルアミノ基が例示される。また、R5及びR6の他方の置換基における低級アルコキシ基としては、メトキシ基が好ましい例として挙げられる。また、シアノ低級アルコキシ基としては、2-シアノエチル基が好ましい例として挙げられる。ホスホロアミダイト基としては、具体的には、-P(OC24CN)(N(CH(CH32)、又は-P(OCH3)(N(CH(CH32)が好ましい例として挙げられる。
 -P(=O)n(R5)R6において、nが1であり、R5及びR6の少なくとも一方が水素原子であり、他方は水素原子以外であれば何であってもよい場合には、H-ホスホネート基となる。その、水素以外の置換基としては、例えば、ヒドロキシル基、メチル基、メトキシ基、チオール基等が挙げられ、特に好ましくはヒドロキシル基が例示される。
 また、-P(=O)n(R5)R6において、nが1であり、R5及びR6が共に低級アルコキシ基である場合には、ホスホニル基となる。なお、R5及びR6における低級アルコキシ基は互いに同一でも相違していてもよい。その低級アルコキシ基としては、例えば、メトキシ基、エトキシ基等が好ましい例として挙げられる。ホスホニル基としては、具体的には、-P(=O)(OCH32が挙げられる。
 本ヌクレオシド誘導体におけるR2としては、例えば、-P(=O)n(R5)R6であることが特に好ましい。-P(=O)n(R5)R6としては、ホスホロアミダイト基、H-ホスホネート基、又はホスホニル基が好ましい例として挙げられる。R2としては、その他にリン酸基、又は保護されたリン酸基であることも好ましい。さらにR2としては、水素原子、又は水酸基の保護基であることも好ましい。
 R2の具体的な他の例示としては、水素原子、アセチル基、ベンゾイル基、ベンジル基、p-メトキシベンジル基、トリメチルシリル基、tert-ブチルジフェニルシリル基、-P(OC24CN)(N(CH(CH32)、-P(OCH3)(N(CH(CH32)、又はホスホニル基が好ましい例として挙げられる。
 本ヌクレオシド誘導体におけるR3としては、例えば、水素原子又は水酸基の保護基が好ましい。また例えば、リン酸基、保護されたリン酸基、又は-P(=O)n(R5)R6であることも好ましい。R3としての具体的な例示を挙げると、水素原子、アセチル基、ベンゾイル基、ベンジル基、p-メトキシベンジル基、ジメトキシトリチル基、モノメトキシトリチル基、tert-ブチルジフェニルシリル基、又はトリメチルシリル基が好ましい例として挙げられる。
[R4について]
 式(1)及び式(2)中、R4は、それぞれ連結基を有するNHR7、アジド基、アミジノ基又はグアニジノ基を表すことができる。すなわち、NHR7、アジド基、アミジノ基又はグアニジノ基は、それぞれが連結基を介して5’位の炭素原子に結合している。
 連結基としては、例えば、炭素数1個以上の2価炭化水素基を表すことができる。すなわち、2価の炭化水素基としては、炭素数1~8個以下のアルキレン基、炭素数2~8個以下のアルケニレン基などが挙げられる。
 連結基としてのアルキレン基としては、直鎖状、分枝状であってもよいが、好ましくは直鎖状である。例えば、低級アルキル基が好ましく、例えば炭素数1~6個の低級アルキル基、また例えば、炭素数1~6個の低級アルキル基が好ましく、また例えば、炭素数2~4個又は炭素数2~3個の低級アルキル基が好ましい。直鎖状の炭素数1から6までのアルキル基としては、メチレン基、エチレン基、プロパンー1、3-ジイル基、n-ブタン-1,1-ジイル基、n-ペンチル-1-5,-ジイル基、n-ヘキシル-1,6-ジイル基等が挙げられる。また、例えば、ブタン-1,2-ジイル基等が挙げられる。また例えば、エチレン基、プロパンー1、3-ジイル基、n-ブタン-1,1-ジイル基が特に好ましい例として挙げられる。
 連結基としてのアルケニレン基としては、直鎖状、分枝状であり、好ましくは直鎖状である。例えば、低級アルケニレン基が好ましく、低級アルケニレン基としては、例えば、エテン-1,2-ジイル基、プロペンー1,3-ジイル基、ブテン-1,4-ジイル基等が挙げられる。
 式(1)で表されるヌクレオシド誘導体においては、例えばエチレン基などの炭素数2以上のアルキレン基などの2価炭化水素基であることがオリゴヌクレオチド誘導体のヌクレアーゼ耐性及び細胞膜透過性の観点から好適である。また、式(2)で表されるヌクレオシド誘導体においては、例えばエチレン基などの炭素数1以上のアルキレン基などの2価炭化水素基であってもヌクレアーゼ耐性及び細胞膜透過性の観点から好適である。
 R7としては、水素原子、アルキル基又はアルケニル基又はアミノ基の保護基が挙げられる。アルキル基は、既に説明したアルキル基のほか、低級アルキル基が好ましく挙げられる。アルケニル基としては、既に説明したアルケニル基のほか、低級アルケニル基が好ましく挙げられる。R7が水素原子などこれらの基であるとき、連結基は、炭素数2以上、また例えば3以上、また例えば4以上で、例えば6以下、また例えば5以下、また例えば4以下のアルキレン基であることが好適である。
 また、R7が水素原子のとき、R4は、連結基を有するNH2(アミノ基)、すなわち、連結基がアルキレン基やアルケニレン基のときには、アミノアルキル基やアミノアルケニル基などとなる。式(1)及び式(2)中、R4がアミノアルキル基などであることにより、本ヌクレオシド誘導体及び本ヌクレオシド誘導体に由来するモノマーユニットを備えるオリゴヌクレオチド誘導体は、周囲のpH環境において電荷が変化するという特徴を伴う電荷付与性を発揮することができる。例えば、酸性下ではカチオニックであり、生理的条件下の中性ではプラス電荷が減少して電荷ゼロとなりうる。すなわち、かかる電荷調節能によれば、pH環境を変化させることで、必要時にヌクレオシド誘導体の電荷をダイナミックに変化させたり、所望の電荷を付与したりすることができる。したがって、このような本ヌクレオシド誘導体によれば、オリゴヌクレオチドの電荷を従来とは異なる態様であるいは従来よりも一層高い自由度で調整できるようになる。以上のことから、R3がかかるアミノアルキル基などである本ヌクレオシド誘導体は、オリゴヌクレオチド等に対する電荷(正電荷)付与剤又は電荷調節剤として有用である。
 R3としては、それぞれ連結基を有する、アジド基、アミジノ基、すなわち、CH3(NH)C(NH)-(アミジンのアミノ基から水素原子1個を除いたもの)、グアニジノ基、すなわち、NH2(NH)C(NH)-(グアニジンのアミノ基から水素原子1個を除いたもの)が挙げられる。なかでも、グアニジノ基が挙げられる。R3が、これらの基を有するとき、連結基は、炭素数1以上、また例えば2以上などのアルキレン基又はアルケニレン基などとすることができる。なお、R4が、連結基を有するアミジノ基、グアニジノ基のときには、既述のアミノアルキル基などのときとは異なり、常にカチオニックとなる。かかる本ヌクレオシド誘導体は、R4がアミノアルキル基などである本ヌクレオシド誘導体と組み合わせて用いるのに有用である。
 アミノ基に対する保護基は、当業者に周知されており、前述の参考文献を参照することができる。具体的には、上記にて水酸基の保護基として挙げたものの他、例えばベンジル基、メチルベンジル基、クロロベンジル基、ジクロロベンジル基、フルオロベンジル基、トリフルオロメチルベンジル基、ニトロベンジル基、メトキシフェニル基、メトキシメチル(MOM)基、N-メチルアミノベンジル基、N,N-ジメチルアミノベンジル基、フェナシル基、アセチル基、トリフルオロアセチル基、ピバロイル基、ベンゾイル基、フタルイミド基、アリルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、ベンジルオキシカルボニル基、t-ブトキシカルボニル(Boc)基、1-メチル-1-(4-ビフェニル)エトキシカルボニル(Bpoc)基、9-フルオレニルメトキシカルボニル基、ベンジルオキシメチル(BOM)基、又は2-(トリメチルシリル)エトキシメチル(SEM)基などが挙げられる。さらに好ましくは、ベンジル基、メトキシフェニル基、アセチル基、トリフルオロアセチル(TFA)基、ピバロイル基、ベンゾイル基、t-ブトキシカルボニル(Boc)基、1-メチル-1-(4-ビフェニル)エトキシカルボニル(Bpoc)基、9-フルオレニルメトキシカルボニル基、ベンジルオキシメチル(BOM)基、又は2-(トリメチルシリル)エトキシメチル(SEM)基が挙げられ、特に好ましくは、ベンジル基、メトキシフェニル基、アセチル基、ベンゾイル基、ベンジルオキシメチル基が挙げられる。
 本発明においてアミノ基の保護基としては、化学的方法(例えば、加水素分解、加水分解、電気分解、又は光分解など)、又は生物学的方法(例えば、人体内で加水分解等。想像するに微生物等での誘導など)、のいずれかの方法により開裂し、脱離する置換基を意味する場合もある。特に、加水素分解、又は加水分解により脱離する置換基がアミノ基の保護基として好ましい。
[B:塩基について]
 本ヌクレオシド誘導体におけるB:塩基としては、公知の天然塩基ほか、人工塩基が挙げられる。例えば、Bとしては、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基が選択できる。
 すなわち、Bとしては、プリン-9-イル基、又は2-オキソ-ピリミジン-1-イル基が挙げられるほか、2,6-ジクロロプリン-9-イル、又は2-オキソ-ピリミジン-1-イルが挙げられる。さらに、2-オキソ-4-メトキシ-ピリミジン-1-イル、4-(1H-1,2,4-トリアゾール‐1-イル)-ピリミジン-1-イル、又は2,6-ジメトキシプリン-9-イルが挙げられる。
 さらに、アミノ基が保護された2-オキソ-4-アミノ-ピリミジン-1-イル、アミノ基が保護された2-アミノ-6-ブロモプリン-9-イル、アミノ基が保護された2-アミノ-6-ヒドロキシプリン-9-イル、アミノ基及び/又は水酸基が保護された2-アミノ-6-ヒドロキシプリン-9-イル、アミノ基が保護された2-アミノ-6-クロロプリン-9-イル、アミノ基が保護された6-アミノプリン-9-イル、又はアミノ基が保護された4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル基が挙げられる。なお、水酸基及びアミノ基の各保護基については、既に説明したとおりである。
 さらに、6-アミノプリン-9-イル(アデニン)、2-アミノ-6-ヒドロキシプリン-9-イル(グアニジン)、2-オキソ-4-アミノ-ピリミジン-1-イル(シトシン)、2-オキソ-4-ヒドロキシ-ピリミジン-1-イル(ウラシル)、又は2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル(チミン)が挙げられる。
 さらにまた、4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル(メチルシトシン)、2,6-ジアミノプリン-9-イル、6-アミノ-2-フルオロプリン-9-イル、6-メルカプトプリン-9-イル、4-アミノ-2-オキソ-5-クロロ-ピリミジン-1-イル、又は2-オキソ-4-メルカプト-ピリミジン-1-イルが挙げられる。
 また、6-アミノ-2-メトキシプリン-9-イル、6-アミノ-2-クロロプリン-9-イル、2-アミノ-6-クロロプリン-9-イル、又は2-アミノ-6-ブロモプリン-9-イルが挙げられる。
置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基それぞれにおける置換基は、水酸基、保護された水酸基、低級アルコキシ基、メルカプト基、保護されたメルカプト基、低級アルキルチオ基、アミノ基、保護されたアミノ基、低級アルキル基で置換されたアミノ基、低級アルキル基、低級アルコキシメチル基、又はハロゲン原子のいずれか一つ、又はそれらの複数の組み合わせのいずれかである。これらの置換基は、既に説明したとおりである。
 本ヌクレオシド誘導体におけるBとしては、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基における置換基が既述の各置換基が好ましいが、これに加えてさらに、トリアゾール基、低級アルコキシメチル基が加わることも好ましい。
 置換プリン-9-イル基の好ましい例としては、例えば、6-アミノプリン-9-イル、2,6-ジアミノプリン-9-イル、2-アミノ-6-クロロプリン-9-イル、2-アミノ-6-ブロモプリン-9-イル、2-アミノ-6-ヒドロキシプリン-9-イル、6-アミノ-2-メトキシプリン-9-イル、6-アミノ-2-クロロプリン-9-イル、6-アミノ-2-フルオロプリン-9-イル、2,6-ジメトキシプリン-9-イル、2,6-ジクロロプリン-9-イル、又は6-メルカプトプリン-9-イル等が挙げられる。上述の置換基中にアミノ基や水酸基があれば、それらのアミノ基及び/又は水酸基が保護化された置換基が好ましい例として挙げられる。
 置換2-オキソ-ピリミジン-1-イルとしては、例えば2-オキソ-4-アミノ-ピリミジン-1-イル、1H-(1,2,4-トリアゾール-1-イル)-ピリミジン-1-イル、4-1H-1,4-アミノ-2-オキソ-5-クロロ-ピリミジン-1-イル、2-オキソ-4-メトキシ-ピリミジン-1-イル、2-オキソ-4-メルカプト-ピリミジン-1-イル、2-オキソ-4-ヒドロキシ-ピリミジン-1-イル、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル、又は4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル等が挙げられる。
 また、2-オキソ-4-メトキシ-ピリミジン-1-イル、又は4-(1H-1,2,4-トリアゾール‐1-イル)-ピリミジン-1-イルが好ましい例として挙げられる。
 こうしたBのうち、置換基中にアミノ基や水酸基があれば、それらのアミノ基又は水酸基が保護化された置換基が好ましい例として挙げられる。
 本ヌクレオシド誘導体は、塩であってもよい。塩の形態は特に限定されないが、一般的には酸付加塩が例示され、分子内対イオンの形態をとっていてもよい。又は置換基の種類によっては塩基付加塩が形成される場合もある。塩としては、薬学的に許容される塩が好ましい。薬学的に許容しうる塩を形成する酸及び塩基の種類は当業者には周知であり、例えばJ.Pharm.Sci.,1-19(1977)に記載しているものなどを参考にすることができる。例えば、酸付加塩としては、鉱酸塩、有機酸塩が挙げられる。また、一個以上の置換基が酸性部分を含有する場合、塩基付加塩も好ましい例として挙げられる。
 鉱酸塩としては、例えば、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、硫酸塩、硫酸水素酸塩、リン酸塩、リン酸水素酸塩などが挙げられる。通常は、塩酸塩、リン酸塩、が好ましい例として挙げられる。有機酸塩としては、例えば、酢酸塩、トリフルオロ酢酸塩、グルコン酸塩、乳酸塩、サリチル酸塩、クエン酸塩、酒石酸塩、アスコルビン酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、ギ酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、又はp-トルエンスルホン酸塩などが挙げられる。通常は、酢酸塩等が好ましい例として挙げられる。塩基付加塩としては、アルカリ金属の塩、アルカリ土類金属の塩、有機アミン塩、アミノ酸の付加塩が挙げられる。
 前記のアルカリ金属の塩としては、例えばナトリウム塩、カリウム塩などが挙げられる。また、アルカリ土類金属の塩としては、例えば、マグネシウム塩、カルシウム塩などが挙げられる。有機アミン塩としては、例えば、トリエチルアミン塩、ピリジン塩、プロカイン塩、ピコリン塩、ジシクロヘキシルアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、トリス(ヒドロキシメチル)アミノメタン塩等が例示される。また、アミノ酸の付加塩としては、例えば、アルギニン塩、リジン塩、オルニチン塩、セリン塩、グリシン塩、アスパラギン酸塩、グルタミン酸塩などが挙げられる。
本ヌクレオシド誘導体又はその塩は、水和物又は溶媒和物として存在する場合もあり、これらの物質も本明細書の開示の範囲に含まれる。本ヌクレオシド誘導体又はその塩は、後述の合成例や公知の方法に準じて、当業者は容易に製造することができる。
 本ヌクレオシド誘導体は、オリゴヌクレオチドの少なくとも一部としてオリゴヌクレオチドに導入することで、一本鎖としてのオリゴヌクレオチド、二本鎖オリゴヌクレオチドのヌクレアーゼ耐性を向上させうることができるほか、哺乳動物細胞等の細胞膜透過性を向上させることができる。すなわち、本ヌクレオシド誘導体は、それ自体は、ヌクレアーゼ耐性向上剤及び/又は細胞膜透過性付与剤として有用である。また、本ヌクレオシド誘導体は、4’に塩基性の置換基を備えることができる。これにより、オリゴヌクレオチド等におけるリン酸基などに由来する負電荷を調整することができるという電荷調節剤又は正電荷付与剤として機能することができる。
(オリゴヌクレオチド誘導体及びその塩)
 本明細書に開示されるオリゴヌクレオチド誘導体(以下、本オリゴヌクレオチド誘導体ともいう。)は、式(3)及び式(4)で表される部分構造を少なくとも1個含有することができる。式(3)及び式(4)で表される部分構造は、それぞれ、式(1)及び式(2)で表されるヌクレオシド誘導体又はその塩に基づいて取得されうる。
Figure JPOXMLDOC01-appb-C000008
 式(3)及び式(4)で表される部分構造におけるR1、X,R4及びBについては、式(1)及び式(2)におけるのとそれぞれ同義である。
 式(3)及び式(4)で表される部分構造は、本オリゴヌクレオチド誘導体中において2個以上含んでいてもよい。その場合、これらの部分構造は、互いに同一であっても異なっていてもよい。また、本オリゴヌクレオチド誘導体に含まれる部分構造の全体は、式(3)で表される部分構造のみから構成されていてもよいし、式(4)で表される部分構造のみから構成されていてもよい。また、式(3)で表される部分構造1又は2以上有し、かつ式(4)で表される部分構造を1又は2以上有していてもよい。
 また、式(3)及び式(4)で表される部分構造の配置としては、互いに隣り合ってもよいし、離れて存在してもよい。例えば、本オリゴヌクレオチド誘導体は、前記部分構造を少なくとも、例えば、3個備えることができる。この場合、各部分構造を、本オリゴヌクレオチド誘導体の5’末端側、中央部及び3’末端側に略均等に備えることもできるし、そうでなくてもよい。ここで、当該部分構造を本オリゴヌクレオチド誘導体のこれら各部に略均等に備える、とは、これらの各部において、同数個を必ずしも部分構造を備えることを限定するものではなく、これら各部に少なくとも1個をそれぞれ備えることを少なくとも充足すれば足りる。例えば、各部に1~3個程度の部分構造を備える場合には、略均等ということができる。本オリゴヌクレオチド誘導体は、例えば、siRNAを意図する場合には、その鎖長は、概ね、18mer~25mer以下であり、典型的には、21mer~23merである。オリゴヌクレオチド誘導体は、例えば、少なくとも4個、また例えば、5個、また例えば6個の部分構造を備えることができる。また、本オリゴヌクレオチド誘導体は、当該部分構造を、特に限定するものではないが、例えば、8個以下、また例えば、7個以下、また例えば、6個以下備えることができる。
 式(3)で表される部分構造は、糖鎖部分がリボース又はデオキシリボースに由来していることから、本オリゴヌクレオチド誘導体は、オリゴリボヌクレオチドであってもよいし、オリゴデオキシリボヌクレオチドであってもよい。また、本オリゴヌクレオチド誘導体は、リボヌクレオチドとデオキシリボヌクレオチドとのキメラであってもよい。
 本オリゴヌクレオチド誘導体は、それ自体一本鎖であるが、オリゴリボヌクレオチド、オリゴデオキシリボヌクレオチド、及びオリゴデオキシリボ/リボヌクレオチド(キメラ鎖)とのハイブリッド、すなわち、二本鎖の形態を採ることもできる。
 本オリゴヌクレオチド誘導体は、式(3)及び式(4)で表される部分構造以外の部分構造としては、その他の天然のヌクレオチド、又は公知のヌクレオシド誘導体及び/又はヌクレオチド誘導体などに該当する部分構造を備えることができる。本明細書において規定する部分構造及びその他の部分構造は、互いに、例えば、リン酸ジエステル結合、リン酸モノエステル結合、チオリン酸エステル結合等によって結合されうる。
 本オリゴヌクレオチド誘導体は、部分構造及びその他のヌクレオシド誘導体の個数を単位として、少なくとも2個以上、さらには8個以上であることが好ましく、特に好ましくは15個以上であることが挙げられる。上限としては特に限定されないが、例えば100個以下であり、また例えば、80個以下であり、また例えば、60個以下であり、また例えば、50個以下であり、また例えば、40個以下であり、また例えば、30個以下であり、また例えば、20個以下であってもよい。
 本オリゴヌクレオチド誘導体は、式(3)及び式(4)で表される部分構造ほか、その他の部分構造において、一個以上の不斉中心を有する場合があり、立体異性体が存在する場合も同様であって、立体異性体の任意の混合物、又はラセミ体などはいずれも本発明の範囲に包含される。また互変異性体として存在しうる場合もある。
 本オリゴヌクレオチド誘導体は、塩であってもよい。塩の形態は特に限定されないが、薬学的に許容される塩が好ましい例として挙げられる。塩については、既述の本ヌクレオシド誘導体における塩の態様を適用することができる。本オリゴヌクレオチド誘導体又はその塩としては、水和物や溶媒和物であってもよく、これらも本発明の範囲に含まれる。
(本ヌクレオシド誘導体及び本オリゴヌクレオチド誘導体の製造)
 本ヌクレオシド誘導体及び本オリゴヌクレオチド誘導体は、当業者であれば、後段の具体的な合成例のほか、本願出願時において公知のヌクレオシド及びオリゴヌクレオチドについての合成技術に基づいて、容易に合成されうる。
 本ヌクレオシド誘導体及び本オリゴヌクレオチド誘導体は、例えば下記の方法により製造できるが、本発明のヌクレオシド類縁体又はオリゴヌクレオチド類縁体の製造方法は下記の方法に限定されるものではない。
 それぞれの反応において、反応時間は特に限定されないが、後述の分析手段により反応の進行状態を容易に追跡できるため、目的物の収量が最大となる時点で終了すればよい。また、それぞれの反応は必要により、例えば、窒素気流下又はアルゴン気流下などの不活性ガス雰囲気下で行うことができる。それぞれの反応において、保護基による保護及びその後の脱保護が必要な場合は、後述の方法を利用することにより適宜反応を行うことができる。
 なお、本明細書においては、Bnはベンジル基を示し、Acはアセチル基を示し、Bzはベンゾイル基を示し、PMBはp-メトキシベンジル基を示し、Trはトリフェニルメチル基を示し、TBAFは、テトラブチルアンモニウムフロライドを示し、TEMPOは、2,2,6,6-テトラメチルピペリジン 1-オキシルを示し、DDQは、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノンを示し、PPH3は、トリフェニルホスフィンを示し、BCl3は、三塩化ホウ素を示し、THAは、トリフルオロアセチル基を示し、TsOは、トシルオキシ基を示し、MMTrは4-メトキシトリフェニルメチル基を示し、DMTrは4,4’-ジメトキシトリフェニルメチル基を示し、TMSはトリメチルシリル基を示し、TBDMSはtert-ブチルジメチルシリル基を示し、TBDPSはtert-ブチルジフェニルシリル基を示し、MOMはメトキシメチル基を示し、BOMはベンジルオキシメチル基を示し、SEMは2-(トリメチルシリル)エトキシメチル基を示す。
 例えば、本ヌクレオシド誘導体の一例は、以下のスキームに従い合成することができる。なお、以下のスキームは、グルコースを出発物質として、チミンリボヌクレオシド誘導体を合成し、本オリゴヌクレオチド誘導体の合成のためのホスホロアミダイト剤を合成するまでのスキームの一例である。
Figure JPOXMLDOC01-appb-C000009
 常法に従い、グルコースから、上記化合物1を取得した。化合物1から、
Bioorganic & Medical Chemistry 11(2003)211-2226, Bioorganic & Chemistry letters(1999)2667-2672, The Journal of Organic Chemistry 2013, 78, 9956-9962, HELVATICA CHIMICA ACTA Vol. 83 (2000) 128-151等のほか、Bioorganic & Medical Chemistry 11(2003)211-2226, Bioorganic & Chemistry letters(1999)2667-2672及びNucleic Acids Research, 43, (2015), 2993-3011の記載に基づいて化合物3ないし化合物20を得ることができる。
 式(3)及び(4)で表される部分構造を備える本オリゴヌクレオチド誘導体は、式(1)又は(2)で表される各種の本ヌクレオシド誘導体を、アミダイト剤等として利用することで容易に製造できる。すなわち、こうしたヌクレオシド誘導体を用いることで、公知のDNAシンセサイザーを用いて合成することができ、得られるオリゴヌクレオチド誘導体は、カラムを用いて精製し、生成物の純度を逆相HPLCやMALDI-TOF-MSで分析することにより、精製された本オリゴヌクレオチド誘導体を得ることができる。なお、本オリゴヌクレオチド誘導体を酸付加塩とする方法は、当業者に周知である。
 本オリゴヌクレオチド誘導体によれば、リボース5’位に連結基を介して所定のN含有基を備えることで、RNA干渉能等の生体におけるRNA機能を十分に維持しつつ、RNAの実質電荷量を調節でき、脂溶性(ファンデルワールス分子間力)を増強し、dsRNA溶融温度をさげることを実現できる。これにより、リボヌクレアーゼ耐性を向上させることができるほか、細胞膜透過性を向上させることができる。さらに、リン酸基等によるマイナス電荷を中和し、全体としての電荷を調節することもできる。
 本オリゴヌクレオチド誘導体においては、本部分構造を少なくとも1個備えることができる。また例えば、同2個備えることができる。本部分構造を複数個備えることで、細胞膜透過性、リボヌクレアーゼ耐性等を確実に向上させ、また調整することができる。また、本オリゴヌクレオチド誘導体は、本部分構造を少なくとも3個備えることもできる。
 本オリゴヌクレオチド誘導体においては、1個又は2個以上の本部分構造の備える部位は特に限定するものではないが、例えば、5’末端側及び3’末端側のいずれか及び双方に備えることができる。5’末端側及び3’末端側とは、それぞれ、本オリゴヌクレオチドのポリマー鎖の各末端から適数個の範囲の領域をいい、それぞれ、ポリマー鎖の全構成単位の、例えば30%を超えない構成単位からなる領域をいう。上記末端からの範囲の割合は、ポリマー鎖の全長によっても異なるが、例えば25%以下、また例えば20%以下、また例えば10%以下、また例えば5%以下などとすることができる。より具体的には、5’末端側及び3’末端側とは、例えば各末端から1個~30個、また例えば例えば1個~25個、また例えば1個~20個、また例えば1個~15個、また例えば1個~10個、また例えば1個~8個、また例えば1個~6個、また例えば1個~5個、また例えば1個~4個、また例えば1~3個、また例えば例えば1~2個のヌクレオシド誘導体由来の構成単位の領域とすることができる。本オリゴヌクレオチド誘導体は、こうした末端領域のいずれかに1個又は2個以上の本部分構造を備えることができる。好ましくは、2個以上備えることができる。また、本オリゴヌクレオチド誘導体は、5’末端及び3’末端(すなわち、各末端から1個目の構成単位)のいずれか又は双方に本部分構造を備えることもできる。
 本オリゴヌクレオチド誘導体においては、1個又は2個以上の本部分構造を、5’末端側及び3’末端側以外の部分である中央部に備えることもできる。本オリゴヌクレオチド誘導体が、中央部に本部分構造を備えることで、リボヌクレアーゼ耐性及び細胞膜透過性の向上や調整が一層容易になる。また、オリゴヌクレオチド全体の電荷の調整もより容易になる。
 本オリゴヌクレオチド誘導体は、5’末端側及び3’末端側のいずれか又は双方と中央部に本部分構造を備えることもできる。好ましくは5’末端側、3’末端側及び中央部の各部に1個又は2個以上の本部分構造を備えることができる。このように、全体として、おおよそ均等にあるいは分散して本部分構造を備えることで、リボヌクレアーゼ耐性及び細胞膜透過性さらには電荷調節性を向上させることができる。本オリゴヌクレオチド誘導体の中央部には、本部分構造を2個以上備えることが、特性向上の観点から有用である。
 本オリゴヌクレオチド誘導体における本部分構造としては、式(3)で表されるリボヌクレオシド誘導体由来する部分構造、式(4)で表されるデオキシリボヌクレオチド誘導体に由来する部分構造を用いることができる。なお、式(3)で表されるリボヌクレオシド誘導体及び式(4)の部分構造は、Bの塩基として、RNAにおける塩基であるウラシル(U)他を備えることで、リボヌクレオシド誘導体の代替物として用いることができる。
 また、本部分構造は、式(3)及び(4)におけるR4が、炭素数1又は2以上のアルキレン基を連結基として、NHR7を有することが、リボヌクレアーゼ耐性及び細胞膜透過性さらには電荷調節性の観点から好適である。この場合、R7は、水素原子であってもよいし、炭素数1~6程度のアルキル基を有するアシル基であってもよい。当該アルキレン基は、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基などとすることができる。また、例えばエチレン基、プロピレン基、ブチレン基などとすることができる。また例えば例えばエチレン基、プロピレン基などとすることができる。エチレン基、プロピレン基を連結基とすることで、メチレン基を用いた場合に比較して高いリボヌクレアーゼ耐性と細胞膜透過性さらには電荷調節性とを得ることができる。
 また、本部分構造は、連結基を備えるアミジノ基、アジド基及びグアニジノ基であってもよい。かかる官能基を備えることでも、高いリボヌクレアーゼ耐性及び細胞膜透過性を得ることができる。この場合、連結基は、炭素数1以上のアルキレン基であってもよい。
 また、本部分構造は、式(3)及び式(4)のR4の連結基が炭素数1~6程度のアルキル基、さらに、例えば、炭素数の下限が2以上、また例えば3以上であることが好適である。かかる構造は、リボヌクレアーゼ耐性及び細胞膜透過性に有効である。
本オリゴヌクレオチド誘導体は、少なくとも本部分構造を少なくとも6個備えることが好適である。6個以上備えることで、リボヌクレアーゼ耐性や細胞膜透過性、さらには電荷調節性に有利である。
 本オリゴヌクレオチド誘導体は、例えば、siRNAとして利用できる。すなわち、二重鎖を形成したオリゴヌクレオチド誘導体は、生体内成分(RISCタンパク質)と複合体を形成して、配列特異的にmRNAを切断することにより、mRNA上の情報がリボソームにより特定のタンパク質へ翻訳されることをできなくする。また、miRNAを構成する構成物として、あるいはまたアプタマーRNAの構成物としても取り込まれて、リボヌクレアーゼ耐性や細胞膜透過性向上の特徴を生かしつつ、利用できると考えられる。さらに、他の化合物と連結してコンジュゲートを構成することもできる。さらにまた、本オリゴヌクレオチド誘導体は、リボザイムの構成物としても利用できる。また、本オリゴヌクレオチド誘導体は、RNAチップやその他の試薬としても有用である。
 このことから本オリゴヌクレオチド誘導体は、天然ヌクレオチドにはない特徴を生かして、抗腫瘍剤、抗ウイルス剤をはじめとする遺伝子の働きを阻害して疾病を治療する種々のRNA医薬品の構成物として、天然ヌクレオチドに優る有用性が期待される。すなわち、本オリゴヌクレオチド誘導体は、こうしたRNA医薬のほか、その原料又は中間体試薬として有用である。また、本ヌクレオシド誘導体は、こうしたRNA医薬の原料又は中間体として有用である。
 本オリゴヌクレオチド誘導体の電荷調節性、リボヌクレアーゼ耐性、細胞膜透過性、電荷調節能ならびに本オリゴヌクレオチド誘導体を含む種々のRNAの生物活性については、当業者であれば、適宜、後述する実施例や本願出願時における当業者の周知の手法を参照することで容易に評価することができる。 
 以下、本明細書の開示をより具体的に説明するために具体例としての実施例を記載する。以下の実施例は、本明細書の開示を説明するためのものであって、その範囲を限定するものではない。
(1)2′OCH3-5′アミノプロピルアミダイトユニット及び樹脂体の合成
 以下のスキームに従い、2′OCH3-5′アミノプロピルアミダイトユニット及び樹脂体を合成した。
Figure JPOXMLDOC01-appb-C000010
1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-allofuranose (1)
 グルコースを出発原料とし、既存の手法(Bioorganic & Medical Chemistry 11(2003)211-2226, Bioorganic & Chemistry letters(1999)2667-2672)を用いて目的物 1を合成した。
6-O-[(1, 1-dimethylethyl)diphenylsilyl]-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-allofuranose (2)
Ar雰囲気下で化合物 (1) 7.25 g (21.3 mmol) をpyridine 72 mLに溶かし、TBDPSCl 6.09 mL (23.4 mmol) を加えて室温で16時間30分撹拌。反応液をEtOAcとsat. NaHCO3 aq. で生成物を抽出し、有機層を蒸留水、sat. NaCl aq.で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 1) で精製し、無色のオイル状化合物  (2) (11.34 g, 19.6 mmol, 92%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.69- 7.65 (m, 4 H), 7.44- 7.35 (m, 6 H), 7.19- 7.17 (m, 2 H), 6.81-6.80 (m, 2 H), 5.71 (d, J= 4.2 Hz, 1 H), 4.58 (d, J = 11 Hz, 1 H), 4.48 (t, J = 4.1 Hz, 1 H), 4.43 (d, J = 11.7 Hz, 1 H), 4.06 (dd, J = 8.6 Hz, 3.4 Hz, 1 H), 4.02- 4.04 (m, 1 H), 3.89 (dd, J = 8.6 Hz, 4.8 Hz, 1 H), 3.79 (s, 3 H), 3.75-3.73 (m, 2H), 2.55 (d, J = 3.5 Hz, 1 H), 1.55 (s, 3 H), 1.34 (s, 3 H), 1.06 (s, 9 H) ; 13C NMR (151 MHz, CDCl3) δ 159.5, 135.8, 135.7, 129.9, 129.9, 129.8, 127.9, 113.9, 113.0, 104.2, 78.0, 77.9, 77.3, 72.1, 71.9, 64.7, 55.4, 27.0, 27.0, 26.7, 19.4 ; HRMS (ESI) m/zCalcd for C33H42NaO7Si (M+Na) +; 601.25975 found 601.25809
5-O-Benzyl-6-O-[(1,1-dimethylethyl)diphenylsilyl]-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-allofuranose (3)
Ar雰囲気下で化合物 (2) 11.34 g (19.6 mmol) をDMF 113 mLに溶かし、NaH 1.57 g (39.2 mmol) を加えて室温で30分撹拌。氷浴で冷却してBnBr 4.66 mL (39.2 mmol) 、 NaI 0.59 g (3.92 mmol) を加えて室温に戻し、90 °Cで5時間撹拌。5時間後、氷浴で冷却してMeOH 10 mLを加えて20分撹拌。反応液をEtOAcとsat. NaHCO3 aq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 7 : 1) で精製し、黄色のオイル状化合物(3) (8.69 g, 13.0 mmol, 66%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.68- 7.64 (m, 4 H), 7.44- 7.39 (m, 2H), 7.35- 7.31 (m, 5H), 7.30- 7.26 (m, 5H), 7.12-7.10 (m, 2H), 6.76-6.74 (m, 2 H), 5.67 (d, J = 4.1 Hz, 1 H), 4.47 (d, J = 11.6 Hz, 1 H), 4.68 (d, J = 11.6 Hz, 1 H), 4.54 (d, J = 11.6 Hz, 1 H), 4.47 (t, J = 4.1 Hz, 1 H), 4.38 (d, J = 11.0 Hz, 1 H), 4.26 (dd, J = 8.2 Hz, 2.1 Hz, 1 H), 4.00-3.96 (m, 2H), 3.80-3.79 (m, 2H), 3.78 (s, 3 H), 1.57 (s, 3 H), 1.34 (s, 3 H), 1.04 (s, 9 H) ; 13C NMR (151 MHz, CDCl3) δ : 159.4, 139.3, 135.8, 135.8, 133.7, 133.6, 129.9, 129.7, 128.3, 127.8, 127.8, 127.6, 127.4, 113.8, 113.0, 104.2, 79.6, 78.0, 74.1, 71.7, 64.1, 55.4, 27.1, 27.0, 26.8, 19.3, 14.3 ; HRMS (ESI) m/zCalcd for C40H48NaO7Si (M+Na) +; 691.30670 found 691.30739
5-O-Benzyl-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-allofuranose (4)
Ar雰囲気下で化合物 (3) 3.67 g (5.49 g) をTHF 37 mLに溶かし、1 M TBAF (8.24 mmol) を加えて室温で19時間撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 1) で精製し、透明なオイル状化合物(4) (2.11 g, 4.91 mmol, 89%) を得た。
1HNMR (600 MHz, CDCl3) δ : 7.34- 7.32 (m, 2H), 7.30- 7.28 (m, 5H), 6.88- 6.86 (m, 2H), 5,72 (d, J = 4.1 Hz, 1H), 4.72 (d, J = 12.4 Hz, 1H), 4.70 (d, J = 11.0 Hz, 1H), 4.64 (d, J = 11.7 Hz, 1H), 4.56 (t, J = 3.42, 1H), 4.50 (d, J = 11.7 Hz, 1H), 4.21 (dd, J = 8.94 Hz, 2.04 Hz, 1H), 4.03 (dd, J = 8.9 Hz, 4.1 Hz, 1H), 3.89- 3.87 (m, 1H), 3.80 (s, 3H), 3.67- 3.65 (m, 2H), 2.42 (t, J = 5.5 Hz, 1H), 1.59 (s, 1H), 1.36 (s, 1H) ; 13C NMR (151 MHz, CDCl3) δ : 159.6, 138.5, 129.9, 128.9, 128.3, 127.6, 127.5, 113.8, 112.9, 104.0, 80.0, 77.9, 77.2, 76.3, 73.3, 71.7, 61.9, 55.2, 26.8, 26.5 ; HRMS (ESI) m/z Calcd for C24H30NaO(M+Na) +; 453.18892 found453.18636.
(R) -5-O-Benzyl-5-C-[2-ethoxycarbonyl-(E)-vinyl]-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-ribose (5)
化合物 (4) 4.47 g (10.4 mmol) をCH2Cl2 17.3 mLに溶かし、氷浴で冷却した。TEMPO 16 mg (0.10 mmol) 、2 M KBr aq. 0.5 mLを加えて氷浴中で撹拌。NaHCO3 0.15 gをNaClO aq. 8.5 mLに溶かし、反応液に加えて氷浴中で40分撹拌。反応液をCHCl3と蒸留水で分液し、有機層を10% HCl aq. 、10%Na2S2O3aq. 、蒸留水、sat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去した。得られた残渣をAr雰囲気下で (EtO)2P(O)CH2COOEt 2.43 mLをTHF 25 mLに溶かし、NaH 0.49 gを加えて氷浴中で10分撹拌。THF 25 mLに溶かした残渣をドロップワイズで加え、室温で30分撹拌。蒸留水を30 mL加えて、室温で撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 1) で精製し、黄色のオイル状化合物 (5) (4.15 g, 8.33 mmol, 80%) を得た。
1H NMR (600 MHz, CDCl3) δ 7.34- 7.32 (m, 2H), 7.29- 7.27 (m, 3H), 7.23- 7.22 (m, 2H), 6.86- 6.83 (m, 3H), 5.88 (d, J= 13.7 Hz, 1H), 5.71 (d, J = 4.1 Hz, 1H), 4.63 (d, J = 11.7 Hz, 1H), 4.62 (d, J = 11.6 Hz), 4.50 (m, 2H), 4.21 (d, J = 11.6 Hz, 1H), 4.26-4.22 (m, 2H), 4.19 (q, J = 6.9 Hz, 2H), 3.82-3.80 (m, 1H), 3.80 (s, 3H), 1.58 (s, 3H), 1.35 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H) ; 13C NMR (151 MHz, CDCl3) δ : 165.9, 159.6, 143.6, 138.0, 130.0, 129.6, 128.5, 127.8, 127.8, 123.8, 114.0, 113.3, 104.4, 80.8, 77.6, 77.2, 76.6, 72.2, 71.8, 60.6, 55.4, 27.1, 26.8, 14.4 ; HRMS (ESI) m/z Calcd for C28H34NaO(M+Na) +; 521.21514 found 521.21582.
(R)-5-O-Benzyl-5-C-[2-ethoxycarbonylethyl]-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-ribose (6)
化合物 (5) 5.07 g (10.1 mmol) をEtOAc 25 mLに溶かし、5% Pd/C 1.45 g (13.6 mmol)、ギ酸アンモニウム 3.18 g (50.5 mmol) を加えて室温で5時間30分撹拌。反応液をセライトろ過し、ろ液を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(Hexane : EtOAc = 3 :1) で精製し、透明なオイル状化合物 (6) (4.57 g, 9.13 mmol, 90%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.34- 7.27 (m, 5H), 7.23- 7.22 (m, 2H), 6.85- 6.83 (m, 2H), 5.65 (d, J = 3.4 Hz, 1H), 4.67 (d, J = 11.7 Hz, 1H), 4.65 (d, J = 11.7 Hz, 1H), 4.52 (d, J = 11.7 Hz, 1H), 4.50 (d, J = 11.0 Hz, 1H), 4.48 (t, J = 4.1 Hz, 1H), 4.17 (dd, J = 8.94 Hz, 2.1 Hz, 1H), 3.94 (dd, J = 8.6 Hz, 4.1 Hz, 1H), 3.78 (s, 3H), 3.73- 3.70 (m, 1H), 2.42- 2.37 (m, 1H), 2.33- 2.28 (m, 1H), 1.96- 1.90 (m, 1H), 1.80- 1.74 (m, 1H), 1.57 (s, 3H), 1.33 (s, 3H), 1.20 (t, J = 6.9 Hz, 3H) ; 13C NMR (151 MHz, CDCl3) δ : 173.5, 159.5, 138.9, 129.9, 129.8, 128.4, 127.8, 127.5, 113.9, 113.0, 104.0, 81.1, 77.9, 77.3, 77.1, 73.5, 71.9, 60.5, 60.4, 55.4, 31.0, 27.1, 26.8, 26.2, 14.3 ; HRMS (ESI) m/z Calcd for C28H36KO(M+K) +; 539.20472 found 539.20262.
(R)-5-O-Benzyl-5-C-hydroxypropyl-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-ribose (7)
Ar雰囲気下、氷浴中でLiAlH4 0.55 g (14.4 mmol) にTHF 35 mLを加えて撹拌。化合物 (6) 3.61 gをTHF 10 mLに溶かした溶液をドロップワイズで加え、氷浴中で30分撹拌。(+)-酒石酸ナトリウムカリウム四水和物の飽和水溶液を加えて、室温で30分撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 1) で精製し、透明なオイル状化合物 (7) (3.28 g, 7.14 mmol, 99%) を得た。
1H NMR (400 MHz, CDCl3) δ : 7.35- 7.27 (m, 7H), 6.87- 6.85 (m, 2H), 5.67 (d, J = 3.7 Hz, 1H), 4.71 (d, J = 11.9 Hz, 1H), 4.68 (d, J = 12.8 Hz, 1H), 4.56 (d, J = 11.5 Hz, 1H), 4.51 (t, J = 4.1 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.20 (dd, J = 8.7 Hz, 1.8Hz, 1H), 3.96 (dd, J = 8.7 Hz, 4.6 Hz, 1H), 3.80 (s, 3H), 3.72- 3.69 (m, 1H), 3.57- 3.53 (m, 1H), 1.70- 1.63 (m, 2H), 1.59 (s, 3H), 1.56- 1.52 (m, 1H), 1.45- 1.42 (m, 1H), 1.36 (s, 3H) ; 13C NMR (101 MHz, CDCl3) δ : 159.5, 138.9, 129.9, 129.8, 128.4, 127.9, 127.6, 113.9, 113.0, 104.0, 88.2, 78.2, 77.9, 77.0, 73.5, 71.8, 62.8, 55.4, 29.6, 27.4, 27.1, 26.8 ; HRMS (ESI) m/z Calcd for C26H34NaO(M+Na) +; 481.22022 found 481.22082. 
(R)-5-O-Benzyl-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-5-C-p-toluenesulfonyloxypropyl-α-D-ribose (8)
Ar雰囲気下で化合物 (7) 0.10 g (0.23 mmol) をCH2Cl2 1.0 mLに溶かし、氷浴で撹拌。p-TsCl 0.15 g、pyridine 0.13 mLを加えて室温で3時間撹拌。反応液をCHCl3とsat. NaHCOaq. で生成物を抽出し、有機層をsat. NaCl aq.で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 1) で精製し、透明なオイル状化合物 (8) (0.13 g, 0.217 mmol, 96%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.74 (d, J= 8.3 Hz, 2H), 7.32-7.27 (m, 5H), 7.25-7.21 (m, 4H), 6.88-6.85 (m, 2H), 5.65 (d, J = 4.1 Hz, 1H), 4.64 (d, J = 11.7 Hz, 2H), 4.50 (t, J = 4.1 Hz, 1H), 4.46 (d, J = 11.6 Hz, 1H), 4.46 (d, J = 12.4 Hz, 1H), 4.10 (dd, J = 6.5 Hz, 2.1 Hz, 1H), 3.94-3.87 (m, 3H), 3.81 (s, 3H), 3.59-3.58 (m, 1H), 2.42 (s, 3H), 1.82-1.74 (m, 1H), 1.64-1.59 (m, 2H), 1.56 (s, 3H), 1.47-1.42 (m, 1H), 1.35 (s, 3H) ; 13C NMR (101 MHz, CDCl3) δ : 159.6, 144.8, 138.8, 133.2, 129.9, 129.9, 129.7, 128.4, 128.0, 127.8, 127.6, 113.9, 113.0, 104.0, 81.1, 77.8, 77.4, 77.0, 73.4, 71.8, 70.6, 60.5, 55.4, 27.1, 26.9, 26.8, 25.7, 21.8, 21.2, 14.3 ; HRMS (ESI) m/z Calcd for C33H40NaO9S(M+Na) +; 635.22907 found 635.22816.
(R)-5-C-Azidopropyl-5-O-benzyl-1, 2-O-isopropylidene-3-O-(4-methoxybenzyl)-α-D-ribose (9)
Ar雰囲気下で化合物 (8) 4.10 g (6.70 mmol) をDMF 40 mLに溶かし、NaN3 3.65 g (56.2 mmol) を加えて60 °Cで撹拌。反応液をEtOAcとsat. NaCl aq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 5 : 1) で精製し、透明なオイル状化合物 (9) (2.63 g, 5.43 mmol, 81%)を得た。
1H NMR (600 MHz, CDCl3) δ : 7.34- 7.27 (m, 7H), 6.88-6.85 (m, 2H), 5.68 (d, J = 3.4 Hz, 1H), 4.70 (d, J = 11.6 Hz, 1H), 4.67 (d, J = 11.7 Hz, 1H), 4.54 (d, J = 11.7 Hz, 1H), 4.52 (t, J = 4.1 Hz, 1H), 4.49 (d, J = 11.6, 1H), 4.17 (dd, J = 8.6 Hz, 1.4 Hz, 1H), 3.96 (dd, J = 8.6 Hz, 4.8 Hz, 1H), 3.80 (s, 3H), 3.70- 3.68 (m, 1H), 3.17 (t, J = 6.8 Hz, 2H), 1.75- 1.64 (m, 2H), 1.59 (s, 3H), 1.53- 1.46 (m, 2H), 1.36 (s, 3H) ; 13C NMR (151 MHz, CDCl3) δ : 159.6, 138.9, 129.9, 129.8, 128.4, 127.9, 127.6, 113.9, 113.0, 104.0, 81.2, 77.9, 77.5, 77.1, 73.5, 71.8, 55.4, 51.5, 28.2, 27.1, 26.8, 25.7 ; HRMS (ESI) m/zCalcd for C26H33N3NaO(M+Na) +; 506.22670 found 506.22941.
(R)-5-C-Azidopropyl-5-O-benzyl-1, 2-O-di-acetyl-3-O-(4-methoxybenzyl)-α-D-ribose (10)
化合物 (9) を50% 酢酸水溶液に溶かし、70 °Cで24時間撹拌。EtOHを加えて溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 1) で精製し、透明なオイル状化合物(2.07 g, 4.67 mmol, 60%) を得た。Ar雰囲気下でこの化合物をpyridine 10.1 mLに溶かし、Ac2O 6.7 mL (72.4 mmol) を加え、室温で6時間撹拌。反応液を氷浴で冷却し、氷水に入れた。反応液をEtOAcと蒸留水で抽出し、有機層をsat. NaHCO3 aq. 、sat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 4 : 1) で精製し、化合物 (10) (6.49 g, 10.5 mmol, 97%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.36-7.27 (m, 5H), 7.20 (d, J = 8.3 Hz, 2H), 6.86-6.85 (m, 2H), 6.11 (s, 1H), 5.33 (d, J = 4.8 Hz, 1H), 4.71 (d, J = 11.7 Hz, 1H), 4.55 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 10.3 Hz, 1H), 4.41 (d, J = 10.3 Hz, 1H), 4.40 (dd, J = 8.3 Hz, 4.8 Hz, 1H), 4.15 (dd, J = 2.8 Hz, 7.6 Hz, 1H), 3.80 (s, 3H), 3.67-3.65 (m, 1H), 3.18-3.15 (m, 2H), 2.13(s, 3H), 1.85 (s, 3H), 1.70-1.50 (m, 4H) ; 13C NMR (151 MHz, CDCl3) δ : 170.0, 169.5, 159.7, 130.1, 129.4, 128.5, 127.7, 127.6, 114.0, 98.6, 83.8, 77.5, 75.9, 74.0, 73.1, 73.0, 55.4, 51.5, 28.0, 25.3, 21.0, 20.9 ; HRMS (ESI) m/z Calcd for C27H33N3NaO(M+Na) ; 550.21653 found 550.21745.
2´-O-Acetyl-(R)-5´-C-azidopropyl-5´-O-benzyl-3´-O-(4-methoxybenzyl)-uridine (11)
Ar雰囲気下で化合物 (10) 2.04 g (3.87 mmol) 、uracil 0.74 g (6.60 mmol) をCH3CN 20 mLに溶かし、BSA 3.6 mL (13.9 mmol) を加えて55 °Cで1時間撹拌。氷浴で冷却し、TMSOTf 1.6 mL (8.75 mmol) をドロップワイズで加え、室温に戻し、55 °Cで2時間撹拌。氷浴で冷却し、sat. NaHCO3 aq. 25 mLを加えて撹拌。反応液をEtOAcとsat. NaCl aq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 1) で精製し、透明な泡状化合物 (11) (2.04 g, 3.51 mmol, 91%) を得た。
1H NMR (600 MHz, CDCl3) δ : 8.82 (s, 1H), 7.39-7.29,7.22 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.2 Hz, 2H), 6.04 (d, J = 4.1 Hz, 1H), 5.23 (t, J = 5.5 Hz, 1H), 5.18 (dd, J = 7.9 Hz, 2.1 Hz, 1H), 4.73 (d, J = 11.6 Hz, 1H), 4.53 (d, J = 11.0 Hz, 1H), 4.45 (d, J = 11.0 Hz, 1H), 4.40 (d, J = 11.0 Hz, 1H), 4.30 (t, J = 6.2 Hz, 1H), 4.10 (dd, J = 5.5 Hz, 2.8 Hz, 1H), 3.81 (s, 3H), 3.75- 3.74 (m, 1H), 3.24 (t, J = 6.8 Hz, 2H), 2.12 (s, 3H), 1.77-1.72 (m, 1H), 1.66-1.52 (m, 3H) ; 13C NMR (151 MHz, CDCl3) δ : 170.1, 162.9, 159.7, 150.2, 140.1, 137.7, 130.0, 129.2, 128.8, 128.3, 127.7, 114.0, 102.7, 87.4, 83.8, 78.4, 74.5, 74.2, 73.0, 72.9, 55.4, 51.4, 27.4, 25.4, 20.9 ; HRMS (ESI) m/z Calcd for C29H33KN5O(M+Na) +; 618.19662 found 618.19882.
(R)-5´-C-Azidopropyl-5´-O-benzyl-3´-O-(4-methoxybenzyl)-uridine (12)
Ar雰囲気下で化合物 (11) 0.53 g (0.91 mmol) をMeOH 5.2 mLに溶かし、K2CO3 0.38 g (2.75 mmol) を加えて1時間撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 2) で精製し、白色の固体化合物 (12) (0.46 g, 0.86 mmol, 95%) を得た。
1H NMR (400 MHz, CDCl3) δ : 8.04 (s, 1H), 7.40-7.34 (m, 3H), 7.29-7.27 (m, 3H), 7.25-7.21 (m, 2H), 6.91-6.89 (m, 2H), 5.85 (d, J = 5.5 Hz, 1H), 5.26 (dd, J= 8.3 Hz, 2.3 Hz, 1H), 4.74 (d, J = 11.0 Hz, 1H), 4.60 (d, J = 11.4 Hz, 1H), 4.53 (d, J = 11.0 Hz, 1H), 4.41 (d, J = 1H), 4.17-4.07 (m, 3H), 3.82 (s, 3H), 3.71-3.69 (m, 1H), 3.29-3.27 (m, 2H), 2.87 (d, J = 7.3 Hz, 1H), 1.78-1.59 (m, 4H) ; 13C NMR (151 MHz, CDCl3) δ : 163.0, 159.9, 150.6, 140.3, 137.7, 130.0, 128.8, 128.7, 128.3, 127.7, 114.2, 102.7, 89.4, 83.7, 78.8, 75.9, 73.5, 72.8, 72.6, 55.4, 51.5, 27.5, 25.2 ; HRMS (ESI) m/z Calcd for C28H33N5NaO(M+Na) +; 560.21212 found 560.21286. 
(R)-5´-C-Azidopropyl-5´-O-benzyl-3´-O-(4-methoxybenzyl)-2´-O-methyl-uridine (13)
Ar雰囲気下で化合物 (12) 0.46 g (0.86 mmol) をTHF 4.6 mLに溶かし、氷浴で冷却し、NaH 0.10 g (2.55 mmol) を加えて氷浴で5分撹拌。アルミホイルで遮光し、CH3I 0.27 mL (4.34 mmol) をドロップワイズで加えて氷浴で4時間半撹拌。その後、室温で3時間撹拌。sat. NaHCOaq. を少量加えて室温で撹拌。反応液をEtOAcとsat. NaHCOaq. で生成物を抽出し、有機層をsat. NaCl aq.で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 2 : 3) で精製し、透明な泡状化合物(13) (0.43 g, 0.78 mmol, 90%) を得た。
1H NMR (600 MHz, CDCl3) δ : 8.31 (s, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.39- 7.33 (m, H), 5.94 (d, J = 2.1 Hz, 1H), 4.96 (dd, J= 8.3 Hz, 2.1 Hz, 1H), 4.77 (d, J = 11.0 Hz, 1H), 4.56 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.41 (d, J = 11.0 Hz, 1H), 4.21 (dd, J = 7.2 Hz, 2.8 Hz, 1H), 4.11 (dd, J = 7.2 Hz, 4.8 Hz, 1H), 3.83- 3.82 (m, 1H), 3.82 (s, 3H), 3.64 (dd, J = 4.8 Hz, 2.8 Hz, 1H), 3.31- 3.24 (m, 2H), 1.88- 1.83 (m, 1H), 1.72- 1.65 (m, 3H) ; 13C NMR (151 MHz, CDCl3) δ : 163.4, 159.7, 150.1, 140.3, 137.7, 129.9, 129.2, 128.8, 128.3, 127.7, 114.0, 102.0, 87.9, 82.5, 82.5, 78.2, 73.9, 72.6, 58.6, 55.4, 51.5, 27.1, 25.3 ; HRMS (ESI) m/zCalcd for C28H33N5NaO(M+Na) +; 574.22777 found 574.22525.
(R)-5´-C-Azidopropyl-5´-O-benzyl-2´-O-methyl-uridine (14)
Ar雰囲気下で化合物 (13) 0.43 g (0.78 mmol) をCH2Cl2 1.85 mLに溶かし、蒸留水 96 μLを加えて氷浴で冷却。DDQ 0.21 g (0.94 mmol) を加えて氷浴で2時間撹拌。その後、室温で2時間撹拌。sat. NaHCO3 aq. を5 mL加え、室温で撹拌。反応液をセライトろ過し、ろ液をCHCl3とsat. NaCl aq. で生成物を抽出し、有機層をNa2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 2) で精製し、白色の固体化合物 (14) (0.27 g, 0.62 mmol, 79%) を得た。
1H NMR (600 MHz, CDCl3) δ : 8.33 (s, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.41-7.32 (m, 5H), 5.96 (d, J = 2.3 Hz, 1H), 4.98(dd, J= 8.2 Hz, 2.3 Hz, 1H), 4.81 (d, J = 11.0 Hz, 1H), 4.45 (d, J = 11.0 Hz, 1H), 4.41-4.36 (m, 1H), 3.99 (dd, J = 6.9 Hz, 2.3 Hz, 1H), 4.01-3.97 (m, 1H), 3.63 (dd, J = 5.5 Hz, 2.3 Hz, 1H), 3.58 (s, 3H), 3.34 (t, J = 6.9 Hz, 2H), 2.75 (d, J = 8.2 Hz, 1H), 1.96-1.68 (m, 4H) ; 13C NMR(151 MHz, CDCl3) δ : 163.3, 150.2, 140.0, 137.6, 128.8, 128.3, 127.8, 102.2, 86.7, 84.7, 84.2, 78.3, 72.9, 67.8, 58.8, 51.5, 27.2, 25.4 ; HRMS (ESI) m/z Calcd for C20H25N5NaO(M+Na) +; 454.17025 found 454.16755.
(R)-5´-C-Azidopropyl-5´-O-benzyl-3´-O-[(1, 1-dimethylethyl)diphenylsilyl]-2´-O-methyl-uridine (15)
Ar雰囲気下で化合物 (14) 0.27 g (0.62 mmol) をDMF 2.7 mLに溶かし、imidazole 0.42 g (6.17 mmol) 、TBDPSCl 0.80 mL (3.08 mmol) を加え、室温で18時間撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaHCOaq. とsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 2) で精製し、白色の泡状化合物 (15) (0.39 g, 0.59 mmol, 95%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.91 (s, 1H), 7.73-7.71 (m, 2H), 7.67-7.66 (m, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.39-7.33 (m, 8H), 7.23-7.22 (m, 2H), 5.88 (d, J = 3.5 Hz, 1H), 4.94 (dd, J = 8.2 Hz, 2.8 Hz, 1H), 4.74 (d, J = 11.9 Hz, 1H), 4.41 (dd, J = 6.2 Hz, 4.8 Hz, 1H), 4.38 (d, J = 11.0 Hz, 1H), 4.22 (dd, J = 6.2 Hz, 2.1 Hz, 1H), 3.74-3.72 (m, 1H), 3.24-3.15 (m, 2H), 3.10 (dd, J = 4.8 Hz, 3.4 Hz, 1H), 3.07 (s, 3H), 1.80-1.75 (m, 1H), 1.64-1.56 (m, 3H), 1.09 (s, 9H) ; 13C NMR(151 MHz, CDCl3) δ : 163.1, 149.9, 140.1, 137.7, 136.2, 136.0, 133.0, 130.2, 130.2, 128.8, 128.2, 127.9, 127.8, 127.5, 101.9, 86.5, 84.1, 83.3, 78.7, 72.7, 69.9, 57.6, 51.3, 27.1, 27.1, 25.8, 19.5 ; HRMS (ESI) m/zCalcd for C36H43KN5O6Si (M+K) +; 708.26197 found 708.26246.
(R)-5´-C-Azidopropyl-3´-O-[(1, 1-dimethylethyl)diphenylsilyl]-2´-O-methyl-uridine (16)
Ar雰囲気下で化合物 (15) 0.39 g (0.59 mmol) をCH2Cl2 6.0 mLに溶かし、-78 °Cで10分撹拌。1 M BCl33.5 mL (3.5 mmol) を加えて-78 °Cで3時間撹拌。-30 °Cに昇温し、CH2Cl: MeOH = 1 : 1 (v/v) の混合液 10 mLを加えて10分撹拌。さらに室温で撹拌し、CHCl3とsat. NaHCOaq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 2) で精製し、白色の泡状化合物 (16) (0.34 g, 0.58 mmol, 99%) を得た。
1H NMR (600 MHz, CDCl3) δ : 8.09 (s, 1H), 7.73-7.72 (m, 2H), 7.68-7.66 (m, 2H), 7.42-7.38 (m, 5H), 5.73 (dd, J = 8.3 Hz, 2.1 Hz, 1H), 5.55 (d, J = 6.9 Hz, 1H), 4.35 (dd, J = 4.8 Hz, 2.0 Hz, 1H), 4.09 (dd, J = 6.9 Hz, 4.8 Hz, 1H), 4.00 (t, J = 2.1 Hz, 1H), 3.66-3.62 (m, 1H), 3.54 (d, J = 2.1 Hz, 1H), 3.19 (s, 3H), 3.17-3.11 (m, 2H), 1.64-1.60 (m, 1H), 1.46-1.41 (m, 1H), 1.09 (s, 9H), 1.02-0.98 (m, 1H), 0.92-0.88 (m, 1H) ; 13C NMR(151 MHz, CDCl3) δ : 163.1, 150.4, 143.8, 136.2, 136.1, 133.2, 133.0, 130.3, 130.2, 128.0, 127.8, 102.7, 92.7, 89.9, 81.0, 71.3, 70.2, 58.5, 51.2, 29.4, 27.0, 25.7, 19.5 ; HRMS (ESI) m/zCalcd for C29H37N5NaO6Si (M+Na) +; 602.24108 found 602.23893.
(R)-5´-C-Azidopropyl-5´-O-(4, 4´-dimethoxytrityl)-3´-O-[(1, 1-dimethylethyl)diphenylsilyl]-2´-O-methyl-uridine (17)
Ar雰囲気下で化合物 (16) 0.71 g (1.22 mmol) をpyridine 4.1 mLに溶かし、DMTrCl 2.07 g (6.11 mmol) 、2,6- lutidine 0.85 mL (7.34 mmol) を加え、40 °Cで48時間撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq.で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 2) で精製し、黄色の泡状化合物 (17) (0.81 g, 0.92 mmol, 75%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.96 (s, 1H), 7.76-7.75 (m, 2H), 7.72-7.71 (m, 2H), 7.51-7.40 (m, 6H), 6.75 (d, J = 8.9 Hz, 4H), 5.93 (d, J = 5.5 Hz, 1H), 5.06 (d, J = 6.2 Hz, 1H), 4.504.49 (m, 1H), 4.12-4.11 (m, 1H), 3.77 (s, 3H), 3.77 (s, 3H), 3.29-3.27 (m, 2H), 3.04 (s, 3H), 2.83-2.80 (m, 1H), 2.75-2.71 (m, 1H), 1.20-1.13 (m, 1H), 1.10 (s, 9H), 1.03-0.99 (m, 1H) ; 13C NMR(151 MHz, CDCl3) δ : 163.3, 158.8, 158.7, 150.2, 146.2, 136.4, 136.0, 135.9, 135.8, 133.5, 133.0, 130.7, 130.4, 130.2, 130.1, 128.1, 127.9, 127.7, 127.0, 113.3, 113.2, 113.1, 102.4, 87.4, 86.4, 84.9, 82.6, 73.7, 70.7, 57.9, 55.3, 55.3, 51.1, 27.8, 27.0, 25.3, 19.5 ; HRMS (ESI) m/zCalcd for C50H55KN5O8Si (M+K) +; 920.34570 found 920.34581.
(R)-5´-O-(4, 4´-Dimethoxytrityl)-3´-O-[(1, 1-dimethylethyl)diphenylsilyl]-2´-O-methyl-5´-C-trifluoroacetylaminopropyl-uridine (18)
Ar雰囲気下で化合物 (17) 0.17 g (0.19 mmol) をTHF 1.7 mLに溶かし、Ph3P 0.13 g (0.50 mmol) 、蒸留水 0.15 mL (8.32 mmol) を加えて40 °Cで3時間撹拌。溶媒を減圧留去し、残渣をCH2Cl21.65 mLに溶かし、Et3N 40 μL (0.29 mmol) 、CF3COOEt 70 μL (0.59 mmol) を加えて25時間撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 3 : 2) で精製し、黄色の泡状化合物 (18) (0.16 g, 0.17 mmol, 87%) を得た。
1H NMR (600 MHz, CDCl3) δ : 7.93 (s, 1H), 7.75-7.74 (m, 2H), 7.70-7.69 (m, 2H), 7.51-7.47 (m, 4H), 7.41 (t, J = 7.6 Hz, 4H), 7.28-7.27 (m, 2H), 7.21-7.17 (m, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.74 (d, J = 7.6 Hz, 4H), 5.89 (d, J = 5.5 Hz, 1H), 5.87 (s, 1H), 5.13 (dd, J = 8.2 Hz, 2.0 Hz, 1H), 4.45 (t, J = 4.1 Hz, 1H), 4.11 (t, J = 3.4 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.31 (t, J = 5.5 Hz, 1H), 3.28-3.26 (m, 1H), 3.05 (s, 3H), 2.88-2.84 (m, 2H), 1.30-1.24 (m, 2H), 1.09 (s, 9H), 1.04-0.95 (m, 2H) ; 13C NMR(151 MHz, CDCl3) δ : 162.8, 158.9, 158.8, 150.1, 146.1, 140.6, 136.4, 136.1, 135.8, 133.8, 132.8, 130.6, 130.4, 130.3, 130.1, 128.1, 128.0, 127.9, 127.9, 127.1, 113.3, 113.2, 102.5, 87.4, 87.1, 85.2, 82.3, 73.5, 70.7, 58.0, 55.4, 55.4, 39.6, 27.7, 27.0, 25.1, 19.6 ; HRMS (ESI) m/z Calcd for C52H56F3KN3O9Si (M+K) +; 990.33750 found 990.33913.
(R)-5´-O-(4, 4´-Dimethoxytrityl)-2´-O-methyl-5´-C-trifluoroacetylaminopropyl-uridine (19)
Ar雰囲気下で化合物 (18) 0.86 g (0.91 mmol) をTHF 8.6 mLに溶かし、1 M TBAF 1.4 mL (1.4 mmol) を加え、室温で6時間撹拌。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 2) で精製し、白色の固体化合物 (19) (0.55 g, 0.77 mmol, 85%) を得た。
1H NMR (600 MHz, CDCl3) δ : 11.41 (d, J= 1.4 Hz, 1H), 9.28 (t, J = 5.5 Hz, 1H), 7.42 (d, J = 7.6 Hz, 2H), 7.31-7.29 (m, 6H), 7.22 (t, J = 7.6 Hz, 1H), 6.89 (dd, J = 8.9 Hz, 2.1 Hz, 4H), 5.69 (d, J = 6.2 Hz, 1H), 5.29 (dd, J = 8.3 Hz, 2.0 Hz, 1H), 5.16 (d, J = 6.8 Hz, 1H), 4.11 (dd, J= 11.0 Hz, 6.2 Hz,1H), 3.74 (s, 6H), 3.58 (t, J = 5.5 Hz, 1H), 3.30-3.29 (m, 1H), 3.27 (s, 3H), 2.92-2.86 (m, 2H), 1.33-1.23 (m, 4H) ; 13C NMR(151 MHz, CDCl3) δ :162.8, 158.2, 150.4, 146.3, 140.6, 136.2, 136.1, 130.3, 130.2, 127.9, 127.7, 126.7, 113.0, 102.0, 86.1, 85.7, 84.4, 81.2, 72.7, 67.7, 57.6, 55.0, 55.0, 27.1, 24.2 ; HRMS (ESI) m/z Calcd for C36H38F3N3NaO(M+Na) +; 736.24578 found 736.24725.
3´-O-[2-Cyanoethoxy(diisopropylamino)phosphino]- (R)-5´-O-(4, 4´-dimethoxytrityl)-2´-O-methyl-5´-C-trifluoroacetylaminopropyl-uridine (20)
Ar雰囲気下で化合物 (19) 0.19 g (0.27 mmol) をDMF 1.5 mLに溶かし、DMF 0.5 mLに溶かした1H-tetrazole 17 mg (0.25 mmol) を加え、さらに1-methylimidazole 7.8 μL (0.098 mmol) 、CEOP(N(i-Pr)2)0.13 mL (0.40 mmol) を加えて室温で2時間半撹拌。EtOAcとsat. NaHCO3 aq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1 : 1) で精製し、無色の泡状化合物 (20) (0.18 g, 0.20 mmol, 73%) を得た。
31P NMR (162 MHz, CDCl3) δ: 150.5, 148.7; HRMS (ESI) m/z Calcd for C45H55F3KN5NaO10P(M+K) +; 952.32757 found 952.32498.
(CPG樹脂の合成方法)
 なお、上記で取得したヌクレオシド誘導体のCPG樹脂誘導体化は以下のようにして行った。
 Ar雰囲気下、化合物19をpyridine 1.5mLに溶かし、無水コハク酸0.056g、DMAP0.034gを加えて室温で20時間撹拌。その後、EtOAcと蒸留水で生成物を抽出し、有機層をsat.NaHCOaq.、sat.NaClaq.で洗浄し、Na2SO4-で乾燥した。溶媒を減圧留去し、得られた残渣をAr雰囲気下でDMF1.4mLに溶かし、CPG樹脂0.21g(CPG-500Å、NHloading:167μmol/g)、EDC・HCl 0.028g加えて室温で5日間静置した。反応液を濾過し、残渣をpyridineで洗浄した。その後残渣にpyridine 13.5mL、DMAP0.183g、無水酢酸1.5mLの混合液を加えて1日間静置した。反応液を濾過し、pyridine、EtOH、CH3CNで残渣を洗浄した後、減圧下で残渣を乾燥し、25.2μmol/gのCPG樹脂を得た。
(オリゴヌクレオチドの合成)
 オリゴヌクレオチドの合成は、ホスホロアミダイト法を用いた核酸自動合成機によって0.2μmolスケールで行った。天然のヌクレオシドアミダイト体を0.1MになるようにMeCNで希釈し、3´末端となるヌクレオシドが結合したCPG樹脂は、その活性に基づいてそれぞれ0.2μmol相当をカラムに詰めて合成を開始した。
 合成終了後、CPG樹脂をサンプリングチューブに移し、CH3CN900μLとEt2NH100μLを加えて5分間ボルテックスで撹拌した。その後、スピンダウンし、上清を捨て、CH3CN 1mLで2回洗浄した。CH3NH2500μL、NH3aq.500μLを加えて65°Cで10分間インキュベートした。溶液を室温に戻した後、エッペンドルフチューブに上清を移し、H2O:EtOH=3:1(v/v)1mLでCPG樹脂を2回洗浄して溶液を減圧乾固した。これによりCPG樹脂上のオリゴヌクレオチドを切り出すとともに脱保護を行った。
 インキュベート後サンプルは減圧乾固し、次にTBDMS基を脱保護するためにサンプルをDMSO(100μl)に溶かし、TEA・3HF(125μl)を加えて撹拌した後、65℃で90分インキュベートした。インキュベート後のサンプルを0.1M TEAA bufferで10mlにメスアップし、希釈溶液を平衡化したSep-Pac tC18逆相カラムに通してカラムに吸着させた。カラムを滅菌水で洗浄して塩を取り除き、50% CH3CN in H2O(3ml)で溶出し、粗精製した。
 粗精製サンプルは減圧乾固し、残渣をloading solution(1×TBE in 90% formamide)(200μl)に溶解させ、20%PAGE(500V,20mA)によって目的のオリゴヌクレオチドを分離した。目的のオリゴヌクレオチドバンドを分取し、0.1M TEAA buffer、1mM EDTA水溶液(20ml)を加え、一晩振盪した。振盪後、ろ液を平衡化したSep-Pac tC18逆相カラムに通し、カラムに吸着させた。カラムを滅菌水で洗浄して塩を取り除き、50%MeCN in H2O(3ml)で溶出し、減圧下乾固した。
 オリゴヌクレオチドはH2O(1ml)に溶かし、希釈液の260nmにおける吸光度から収量を求めた。また、60pmol相当のオリゴヌクレオチドを減圧乾固させ、3μlの滅菌水及び3μlのマトリックス溶液とよく混和し、プレート上で乾固した後、MALDI-TOF/MSで質量を測定した。以下に、合成したオリゴヌクレオチドを示す。
Figure JPOXMLDOC01-appb-T000011
 上記表中、「U」は以下に示した構造を指す。また、Fは蛍光標識を指す。
Figure JPOXMLDOC01-appb-C000012
 以下、用いた試薬について説明する。
(TEAA buffer)
 0.1M TEAA bufferは、2N TEAA buffer(酢酸114.38mlにEt3N 277.6mlを加え、H2Oで1000mlにしてpH7.0に調製したもの)を20倍希釈して使用した。
(PAGE)
 40%アクリルアミド(19:1)溶液(40ml)、尿素(33.6g)、10×TBE buffer(8ml)を加えて溶解し、H2Oを加え80mlとした。最後にAPS(55mg)を加えて溶かし、TEMED(40μl)を加えて振り混ぜ、1.5mmスペーサーを挟んで固定した2枚ガラス板の間に流し込み、1時間以上静置して固化させた。また、1×TBE bufferを泳動用緩衝液として用いた。
(1mM EDTA水溶液)
 0.1M EDTA水溶液(EDTA・4Na1.80gをH2Oで40mlに調製したもの)を100倍希釈して使用した。
(オリゴヌクレオチド水溶液)
 波長260nmでの吸光度(Abs260)が吸光度計の有効範囲になるように希釈した水溶液とした。光路長(l)1cmの吸光度測定用石英セルを用いて室温にてAbs260を測定した。OD260の計算には下式を用いた。ここでVは溶液の全量を示す。
Figure JPOXMLDOC01-appb-C000013
 また、N1pN2pN3p・・・Nn-1nで表される一本鎖オリゴヌクレオチドのモル吸光係数(ε260)の算出には次式を用いた。
Figure JPOXMLDOC01-appb-C000014
 ここで、ε(Nn)はある核酸Nnのε260を示し、ε(Nn-1pNn)はある核酸二量体Nn-1pNnのε260を示す。なお、オリゴヌクレオチドは水溶液とし、波長260nmでの吸光度(Abs260)が、吸光度計の有効範囲になるよう希釈した。光路長(l)1cmの吸光度測定用石英セルを用いて、室温でAbs260を測定した。濃度C(mol/l)の算出は次式を用いた。
Figure JPOXMLDOC01-appb-C000015
(マトリックス溶液)
 マトリックス溶液は、3-hydroxypicolinic acid(3-HPA)(4.85mg)とdiammonium hydrogen citrate(0.8mg)を50%MeCN in H2O(50μl)に溶解させて調製した。なお、diammonium hydrogen citrateは、Na+やK+が付着するのを阻害するために加えた。
(40%アクリルアミド(19:1)溶液
 アクリルアミド(190g)、N,N′-bisacrylamide(10g)をH2Oに溶かして500mlにして調製した。
(10×TBEbuffer)
 Tris(109g)、ホウ酸(55g)、EDTA・2Na(7.43g)をH2Oに溶かして1000mlにして調製した。
(ヌクレアーゼ耐性の測定)
 実施例2で合成したオリゴヌクレオチドON4300pmolをOPTI-MEM37.5μLに溶かし、1.1μLをエッペンドルフチューブに分注し、Loading buffer5μLを加えて0minのサンプルとした。残りのサンプルにリボヌクレアーゼ源としてのウシ血清(BS)1.2μLを加え、37℃でインキュベートした。15min、30min、1h、3h、6h、12h、24h後に2.4μLをLoading buffer 10μLに入った氷上のエッペンドルフチューブにピペッティングした。そのサンプルを電気泳動後、FUJIFILM LAS4000を用いて解析した。その結果を図1に示した。
 図2に示すように、オリゴヌクレオチドON4と同一配列の天然オリゴヌクレオチドは、ヌクレアーゼ処理から6~12時間後にはほぼ分解していたのに対し、オリゴヌクレオチドON4は、12時間及び24時間経過後においても、未分解の状態で維持できることがわかった。
(遺伝子発現抑制能の測定)
 RNA干渉能の評価にはDual luciferase reporter assayを用いた。
 HeLa細胞を8000cell/mlになるように調製し、96well plateの各wellに100μlずつ入れ24時間培養した。合成したsiRNAのそれぞれの鎖をTE buffer(100mM NaCl)に溶解し、100℃で3分加熱後、1時間以上静置し室温に戻した。siRNA溶液0.5μL、培地(OPTI-MEM)48μL、RNAiMAX 0.5μlを総量50μlになるように混合し、培地を吸った96well plateの各wellにOPTI-MEMを40μLずつ入れ、さらに調製したサンプルを各wellに10μLずつ加えた。その後CO2インキュベーター37℃で1時間静置させ、各wellにD-MEMを100μl加えてCO2インキュベーター37℃で24時間培養した。24時間後、培地を吸い、24時間冷凍保存した。ルシフェラーゼ発光の測定は、解凍後Dual glow substrate(Firefly luciferaseの基質)24μlを加え5分間振とう後、サンプル23μlを発光測定用の96well plateに移し、Firefly luciferaseを測定した。その後、Stop and glow substrate(Renilla luciferaseの基質)23μlを加え10分振とう後、Renilla luciferaseを測定した。Renilla luciferaseの発光測定値をFirefly luciferaseの値で割り、%of controlを用いて比較した。なお、比較例として、同一配列からなる天然のオリゴヌクレオチド(Native)を用いた。luciferase測定には、Luminescenser JNRIIを使用した。その結果を図2に示す。
 図2に示すように、オリゴヌクレオチドON1~ON3は、天然オリゴヌクレオチド(Native)と同等程度の遺伝子発現抑制能を示した。
(細胞膜透過性試験)
HeLa細胞を20000cell/mlになるように調製し、48well plateの各wellに400μlずつ入れ24時間培養した。エッペンに乾固させたオリゴヌクレオチドON4(40pmol)をOPTI-MEM(400μl)に溶解させ、各ウェルの培地を吸引したのちに全量をウェルに加えた。1時間インキュベート後,ウシ血清入り培養培地(10%BS D-MEM(WAKO))を200μl/well加えた。24時間後、各ウェルの培地を吸引し、1×PBSで2回ウェルを洗浄した。その後、倒立型蛍光顕微鏡(IX70、OLYMPUS社製)を用い、細胞観察を行った結果を図3に示す。なお、比較例として、同一配列からなる天然のオリゴヌクレオチド(Native)を用いた。
 図3に示すように、天然オリゴヌクレオチド(Native)は、ほとんど細胞膜を透過しなかったのに対して、オリゴヌクレオチドON4は、優れた細胞膜糖化性を示した。
(2)2′OCH3-5′アミノエチルアミダイトユニットの合成
 以下のスキームに従い、2′OCH3-5′アミノエチルアミダイトユニットを合成した。
Figure JPOXMLDOC01-appb-C000016
(S)-5´-C-Azidoethyl-3´-O- [(1, 1-dimethylethyl) diphenyl silyl]-2´-O-methyl-uridine (3). 
 ウリジン(化合物(1))を出発物質として、Marie Maturano et al., Eur. J. Org. Chem., 721-730 (2012)に記載のスキーム2に準じて化合物(2)(Marieらのスキーム2における化合物15)を取得し、化合物(2)0.25g(0.36 mmol)を、Ar雰囲気下でDMF 2.5 mLに溶かし、NaN3 0.20 g (3.0 mmol) を加えて60 °Cで18時間撹拌した。反応液よりEtOAcとsat. NaCl aq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane: EtOAc = 1: 2) で精製し、白色の泡状化合物 (3) (0.19 g, 0.34 mmol, 95%)を得た。
1H NMR (400 MHz, CDCl3) d: 8.01 (s, 1H), 7.71-7.57 (m, 4H), 7.58 (d, J = 8.2 Hz, 1H), 7.51-7.39 (m, 6H), 5.67 (d, J = 4.1 Hz, 1H), 5.63 (dd, J = 8.2, 2.3 Hz, 1H), 4.19 (t, J = 4.6 Hz, 1H), 3.91 (dd, J = 5.0, 1.8 Hz, 1H), 3.78 (t, J = 4.6 Hz, 1H), 3.41 (s, 3H), 3.34 (t, J = 6.0 Hz, 1H), 2.21 (s, 1H), 1.77-1.71 (m, 1H), 1.52-1.51 (m, 1H), 1.11 (s, 9H).
(S)-5´-C-Azidoethyl-5´-O-(4, 4´-dimethoxytrityl)-3´-O- [(1, 1-dimethylethyl) diphenyl silyl]-2´-O-methyl-uridine (4)
 Ar雰囲気下で化合物(3) 0.19 g (0.34 mmol) をpyridine 2.0 mLに溶かし、DMTrCl 0.58 g (1.70 mmol) 、2,6- lutidine 0.23 mL (2.03 mmol) を加え、40 °Cで3日間撹拌。反応液をEtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq.で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1: 1) で精製し、黄色の泡状化合物 (4) (0.21 g, 0.24 mmol, 71%) を得た。
1H NMR (600 MHz, CDCl3) d: 8.03 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 2.0 Hz, 1H), 7.60-7.58 (m, 2H), 7.47 (d, J =6.9 Hz, 2H), 7.44-7.39 (m, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.28-7.25 (m, 3H), 7.23 (s, 4H), 7.13-7.08 (m, 4H), 6.77-6.73 (m, 4H), 6.14 (d, J = 5.5 Hz, 1H), 5.63 (dd, J = 8.2, 2.7, 1H), 4.38 (dd, J = 4.8, 3.4 Hz, 1H), 3.96 (t, J = 2.7 Hz, 1H), 3.80 (s, 3), 3.79 (s, 3H), 3.68 (t, J = 5.5 Hz, 1H), 3.28 (m, 1H), 3.13 (s, 3H), 2.57-2.52 (m, 1H), 2.74-2.70 (m, 1H), 1.80-1.74 (m, 1H), 1.36-1.30 (m, 1H), 0.99 (s, 9H).
(S)- 5´-O-(4, 4´-dimethoxytrityl)-3´-O- [(1, 1-dimethylethyl) diphenyl silyl]-2´-O-methyl-5´-C-trifluoroacetylaminopropyl-uridine (5)
 Ar雰囲気下で化合物 (4) 0.21 g (0.24 mmol) をTHF 4.0 mLに溶かし、Ph3P 0.15 g (0.60 mmol) 、蒸留水 0.17 mL (9.68 mmol) を加えて40 °Cで14時間撹拌。溶媒を減圧留去し、残渣をCH2Cl2 2.5 mLに溶かし、Et3N 50 μL (0.36 mmol) 、CF3COOEt 87 μL (0.73 mmol) を加えて11時間撹拌。反応液を減圧留去した後、EtOAcと蒸留水で生成物を抽出し、有機層をsat. NaCl aq. で洗い、Na2SO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane: EtOAc = 1: 1) で精製し、黄色の泡状化合物 (5) (0.19 g, 0.20 mmol, 83%) を得た。
1H NMR (600 MHz, CDCl3) d: 8.11 (s, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.60-7.59 (m, 2H), 7.48 (d, J = 6.2 Hz, 2H), 7.45-7.38 (m, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28-7.22 (m, 6H), 7.15-7.11 (m, 4H), 6.77-6.74 (m, 4H), 6.08 (s, J = 5.5 Hz, 1H), 5.84 (s, 1H), 5.66 (dd, J = 8.2, 2.7 Hz, 1H), 4.41 (t, J = 4.8 Hz, 1H), 3.92 (dd, J = 3.4, 2.0 Hz, 1H), 3.79 (s, 3H), 3.79 (s, 3H), 3.64 (t, J = 5.5 Hz, 1H), 3.24-3.21 (m, 1H), 3.13 (s, 3H), 2.80-2.69 (m, 2H), 1.72-1.66 (m, 1H), 1.32-1.28 (m,1H), 0.98 (s, 9H).
(S)- 5´-O-(4, 4´-dimethoxytrityl)- 2´-O-methyl-5´-C-trifluoroacetylaminopropyl-uridine (6)
 Ar雰囲気下で化合物(5) 0.19 g (0.20 mmol) をTHF 2.0 mLに溶かし、1 M TBAF 0.30 mL (0.30 mmol) を加え、室温で10時間撹拌。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1: 1) で精製し、白色の泡状化合物 (6) (0.12 g, 0.17 mmol, 85%) を得た。
1H NMR (400 MHz, CDCl3) d: 8.56 (s, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.43-7.41 (m, 2H), 7.35-7.23 (m, 6H), 6.85-6.81 (m, 4H), 6.23 (s, 1H), 5.84 (d, J = 2.3 Hz, 1H), 5.65 (dd, J = 8.3, 2.3 Hz, 1H), 4.16-4.11 (m, 1H), 3.94 (dd, J = 7.4, 3.4 Hz, 1H), 3.83-3.81 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.70-3.68 (m, 1H), 3.59 (s, 3H), 3.28-3.12 (m, 2H), 2.53 (d, J = 8.3 Hz, 1H), 1.80-1.71 (m, 1H), 1.65-1.61 (m, 1H).
3´-O-[2-Cyanoethoxy(diisopropylamino)phosphino]- (S)- 5´-O-(4, 4´-dimethoxytrityl)- 2´-O-methyl-5´-C-trifluoroacetylaminopropyl-uridine (7)
 Ar雰囲気下で化合物 (6) 0.14 g (0.20 mmol) をTHF 1.5 mLに溶かし, DIPEA 0.17 mL (0.96 mmol) , CEP-Cl 0.088 mL (0.39 mmol) を加え, 室温で30分間撹拌。CHCl3とsat. NaHCO3 aq. で生成物を抽出し、有機層をsat. NaCl aq. で洗い、NaSO4で乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (Hexane : EtOAc = 1: 2) で精製し、白色の泡状化合物 (7) (0.14 g, 0.15 mmol, 77%) を得た。
31P NMR (162 MHz, CDCl3) d: 150.8, 150.6.
 上記スキームによれば、ウリジンや2‘-O-アルキルウリジンなどのヌクレオシド誘導体を出発物質として、立体選択的なアルドール反応により化合物2などの5‘-トシルオキシエチル体を短工程で得ることができ、結果として、意図するアミダイト剤を効率的に得ることができる。
 本出願の明細書において参照される文献は、いずれも、その文献に記載された全ての内容を援用によりここに組み込まれるものである。
配列番号1~2:人工siRNA

Claims (12)

  1.  以下の式(1)又は(2)で表される、ヌクレオシド誘導体又はその塩。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、
    1は、水素原子、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された基を表し、
    式(2)中、Xは、ハロゲン原子を表す。
    式(1)及び式(2)中、
    2及びR3は互いに同一又は異なっていてもよく、水素原子、水酸基の保護基、リン酸基、保護されたリン酸基、又は-P(=O)n56(nは0又は1を示し、R5及びR6は、互いに同一又は異なっていてもよく、水素原子、水酸基、保護された水酸基、メルカプト基、保護されたメルカプト基、低級アルコキシ基、シアノ低級アルコキシ基、アミノ基、又は置換されたアミノ基のいずれかを示す。ただし、nが1のときには、R5及びR6が共に水素原子となることはない。)を示し、
    4は、それぞれ連結基を有するNHR7(R7は、水素原子、アルキル基、アルケニル基又はアミノ基の保護基を表す。)、アジド基、アミジノ基又はグアニジノ基を表し、Bは、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基のいずれかを表す。)
  2.  前記式(1)及び式(2)中、R7は水素原子を表すか又はR4は前記連結基を有するグアニジノ基を表す、請求項1に記載のヌクレオシド誘導体又はその塩。
  3.  前記式(1)及び式(2)中、R4の前記連結基は、炭素数1以上6以下のアルキレン基を表す、請求項1又は2に記載のヌクレオシド誘導体又はその塩。
  4.  前記式(1)及び式(2)中、R4の前記連結基は、炭素数1以上6以下のアルキレン基を表し、R7は水素原子を表す、請求項1~3のいずれかに記載のヌクレオシド誘導体又はその塩。
  5.  請求項1~4のいずれかに記載のヌクレオシド誘導体を含む、オリゴヌクレオチドに対する細胞膜透過性付与剤。
  6.  請求項1~4のいずれかに記載のヌクレオシド誘導体を含む、オリゴヌクレオチドに対するリボヌクレアーゼ耐性付与剤。
  7.  以下の式(3)及び式(4)からなる群から選択される部分構造を少なくとも1個備える、オリゴヌクレオチド誘導体又はその塩。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、R1は、水素原子、ハロゲン原子、水酸基、水素原子がアルキル基又はアルケニル基で置換された水酸基又は保護された水酸基を表し、式(4)中、Xは、ハロゲン原子を表す。式(3)及び式(4)中、R4は、それぞれ連結基を有するNHR7(R7は、水素原子、アルキル基、アルケニル基又はアミノ基の保護基を表す。)、アジド基、アミジノ基又はグアニジノ基を表し、Bは、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、置換プリン-9-イル基、又は置換2-オキソ-ピリミジン-1-イル基のいずれかを表す。)
  8.  前記部分構造を少なくとも2個備える、請求項7に記載のオリゴヌクレオチド誘導体又はその塩。
  9.  前記部分構造を少なくとも3個備えている、請求項7又は8に記載のオリゴヌクレオチド誘導体又はその塩。
  10.  前記部分構造を3個以上8個以下備える、請求項7~9のいずれかに記載のオリゴヌクレオチド誘導体又はその塩。
  11.  前記オリゴヌクレオチドは、オリゴリボヌクレオチドである、請求項7~10のいずれかに記載のオリゴヌクレオチド誘導体又はその塩。
  12.  請求項7~11のいずれかに記載のオリゴヌクレオチド誘導体又はその塩を有効成分とする、siRNA剤。
     
PCT/JP2018/040544 2017-10-31 2018-10-31 ヌクレオシド誘導体及びその利用 WO2019088179A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3080896A CA3080896A1 (en) 2017-10-31 2018-10-31 Nucleoside derivative and use thereof
EP18873256.4A EP3712160A4 (en) 2017-10-31 2018-10-31 NUCLEOSIDE DERIVATIVE AND ASSOCIATED USE
JP2019550462A JP7173467B2 (ja) 2017-10-31 2018-10-31 ヌクレオシド誘導体及びその利用
US16/760,781 US11780874B2 (en) 2017-10-31 2018-10-31 Nucleoside derivative and use thereof
CN201880083548.3A CN111868067A (zh) 2017-10-31 2018-10-31 核苷衍生物及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211339 2017-10-31
JP2017-211339 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088179A1 true WO2019088179A1 (ja) 2019-05-09

Family

ID=66332519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040544 WO2019088179A1 (ja) 2017-10-31 2018-10-31 ヌクレオシド誘導体及びその利用

Country Status (6)

Country Link
US (1) US11780874B2 (ja)
EP (1) EP3712160A4 (ja)
JP (1) JP7173467B2 (ja)
CN (1) CN111868067A (ja)
CA (1) CA3080896A1 (ja)
WO (1) WO2019088179A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148293A (ja) * 1991-11-28 1993-06-15 Mect Corp 新規カプラマイシン誘導体およびその製造方法
WO1994022454A1 (en) * 1993-03-31 1994-10-13 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
JPH10506915A (ja) * 1994-11-02 1998-07-07 アイ・シー・エヌ・フアーマシユーテイカルズ 糖修飾ヌクレオシドおよびオリゴヌクレオチドを合成するためのその使用
JP2017211339A (ja) 2016-05-27 2017-11-30 日立Geニュークリア・エナジー株式会社 原子炉建屋および建屋用構造体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US6743902B1 (en) 1994-11-02 2004-06-01 Valeant Pharmaceuticals International Sugar modified nucleosides
US5731181A (en) 1996-06-17 1998-03-24 Thomas Jefferson University Chimeric mutational vectors having non-natural nucleotides
JP4180681B2 (ja) 1997-10-23 2008-11-12 株式会社Kri アンチセンスオリゴヌクレオチド
US20050058982A1 (en) 2002-07-26 2005-03-17 Chiron Corporation Modified small interfering RNA molecules and methods of use
EP1856434A4 (en) 2005-02-25 2012-07-11 Waters Technologies Corp APPARATUS AND APPARATUS FOR SEALED CONNECTION
JPWO2014112463A1 (ja) 2013-01-15 2017-01-19 国立大学法人大阪大学 スルホンアミド構造を有するヌクレオシドおよびヌクレオチド
DK3043803T3 (da) 2013-09-11 2022-08-01 Univ Emory Nukleotid- og nucleosidsammensætninger og deres anvendelse
KR102314960B1 (ko) 2013-10-11 2021-10-19 얀센 바이오파마, 인코퍼레이트. 치환된 뉴클레오사이드, 뉴클레오타이드 및 이의 유사체
CN106573011A (zh) 2014-06-24 2017-04-19 艾丽奥斯生物制药有限公司 取代的核苷、核苷酸和其类似物
CA2972259A1 (en) 2014-12-26 2016-06-30 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
JP2018523665A (ja) 2015-08-06 2018-08-23 キメリックス インコーポレイテッド 抗ウイルス剤として有用なピロロピリミジンヌクレオシドおよびその類縁体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148293A (ja) * 1991-11-28 1993-06-15 Mect Corp 新規カプラマイシン誘導体およびその製造方法
WO1994022454A1 (en) * 1993-03-31 1994-10-13 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
JPH10506915A (ja) * 1994-11-02 1998-07-07 アイ・シー・エヌ・フアーマシユーテイカルズ 糖修飾ヌクレオシドおよびオリゴヌクレオチドを合成するためのその使用
JP2017211339A (ja) 2016-05-27 2017-11-30 日立Geニュークリア・エナジー株式会社 原子炉建屋および建屋用構造体

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 2007, JOHN WILEY AND SONS
BIOORGANIC & CHEMISTRY LETTERS, 1999, pages 2667 - 2672
BIOORGANIC & MEDICAL CHEMISTRY, vol. 11, 2003, pages 211 - 2226
HAMPTON,A. ET AL.: "Design of substrate-site-directed irreversible inhibitors of adenosine 5'-phosphate aminohydrolase. Effect of substrate substituents on affinity for the substrate site", JOURNAL OF MEDICINAL CHEMISTRY, vol. 19, no. 8, 1976, pages 1029 - 1033, XP55612847 *
HELVATICA CHIMICA ACTA, vol. 83, 2000, pages 128 - 151
J. PHARM. SCI., 1977, pages 1 - 19
KAJINO,R. ET AL.: "P012: Synthesis and Property of 5'-C-Aminoalkyl-modified siRNA", 44TH INTERNATIONAL SYMPOSIUM ON NUCLEIC ACIDS CHEMISTRY;: THE 44TH INTERNATIONAL SYMPOSIUM ON NUCLEIC ACIDS CHEMISTRY 2017 // THE 1ST ANNUAL MEETING OF JAPAN SOCIETY OF NUCLEIC ACIDS CHEMISTRY; NOVEMBER 14-16, 2017, vol. 44, 14 November 2017 (2017-11-14), pages 142 - 143, XP009520669 *
KAZINO R.: "Synthesis of 4'C and 5'-C-aminoalkyl-modified siRNA and function evaluation", 48TH ANNUAL CONFERENCE OF NUCLEIC ACIDS THERAPEUTICS SOCIETY OF JAPAN; 11/11/2018, vol. 4, 25 June 2018 (2018-06-25), pages 81, XP009520660 *
KAZINO R: "Synthesis and characteristics of siRNA including 5'-C-aminopropyl-2'-O-methyl nucleoside", LECTURE PROCEEDINGS OF THE SPRING ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN; MARCH 20-23, 2018, vol. 98, 6 March 2018 (2018-03-06), pages 4D7-44, XP009520662 *
MARIE MATURANO ET AL., EUR. J. ORG. CHEM., 2012, pages 721 - 730
NUCLEIC ACIDS RESEARCH, vol. 43, 2015, pages 2993 - 3011
PRAKASH, T. P. ET AL.: "Identification of metabolically stable 5'-phosphate analogs that support single-stranded siRNA activity", NUCLEIC ACIDS RESEARCH, vol. 43, no. 6, 2015, pages 2993 - 3011, XP055224172 *
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 77, 2012, pages 3233 - 3245
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 78, 2013, pages 9956 - 9962
WANG, G. ET AL.: "5 -C-Branched thymidines: synthesis, stereochemistry, and incorporation into oligodeoxynucleotides", TETRAHEDRON LETTERS, vol. 37, no. 16, 1996, pages 2739 - 2742, XP004029784 *
WANG,G. ET AL.: "Biophysical and biochemical properties of oligodeoxynucleotides containing 4'-C- and 5'-C-substituted thymidines", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 9, no. 6, 1999, pages 885 - 890, XP004160493 *

Also Published As

Publication number Publication date
US11780874B2 (en) 2023-10-10
EP3712160A4 (en) 2021-09-01
CN111868067A (zh) 2020-10-30
EP3712160A1 (en) 2020-09-23
CA3080896A1 (en) 2019-05-09
JPWO2019088179A1 (ja) 2020-11-12
US20200385419A1 (en) 2020-12-10
JP7173467B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
US7427672B2 (en) Artificial nucleic acids of n-o bond crosslinkage type
EP1201678B1 (en) Novel bicyclonucleoside analogues
JP5030998B2 (ja) ヌクレオシド類縁体およびそのヌクレオチド類縁体を含むオリゴヌクレオチド誘導体
JP2002521310A (ja) オリゴヌクレオチド類似体
US20230265120A1 (en) Nucleoside derivative and use thereof
EP3330276A1 (en) Novel bicyclic nucleosides and oligomers prepared therefrom
Fujisaka et al. Effective syntheses of 2′, 4′-BNANC monomers bearing adenine, guanine, thymine, and 5-methylcytosine, and the properties of oligonucleotides fully modified with 2′, 4′-BNANC
EP2006293B1 (en) 2'-hydroxyl-modified ribonucleoside derivative
US5674856A (en) Modified oligodeoxyribonucleoditides
WO2021085509A1 (ja) ヌクレオシド誘導体及びその利用
JP7173467B2 (ja) ヌクレオシド誘導体及びその利用
WO2023224108A1 (ja) ヌクレオシド誘導体及びその利用
JP4255227B2 (ja) N3’−p5’結合を有する2’,4’−bnaオリゴヌクレオチド
JP7231147B2 (ja) Rna導入試薬及びその利用
JP2019119739A (ja) ヌクレオシド誘導体の製造方法
JP2016149940A (ja) 新規なヌクレオチド類縁体及びオリゴヌクレオチド類縁体
JP2002284793A (ja) 新規ビシクロヌクレオシド類縁体を含有する核酸試薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3080896

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873256

Country of ref document: EP

Effective date: 20200602