WO2019087717A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両 Download PDF

Info

Publication number
WO2019087717A1
WO2019087717A1 PCT/JP2018/037723 JP2018037723W WO2019087717A1 WO 2019087717 A1 WO2019087717 A1 WO 2019087717A1 JP 2018037723 W JP2018037723 W JP 2018037723W WO 2019087717 A1 WO2019087717 A1 WO 2019087717A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
secondary battery
positive electrode
lithium ion
active material
Prior art date
Application number
PCT/JP2018/037723
Other languages
English (en)
French (fr)
Inventor
直明 藪内
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2019550972A priority Critical patent/JP7094570B2/ja
Publication of WO2019087717A1 publication Critical patent/WO2019087717A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, an electronic device, and a vehicle.
  • Lithium ion secondary batteries are widely used as power sources for driving mobile devices such as mobile phones, smartphones and laptop computers. Lithium ion secondary batteries are characterized by high energy density, but higher energy density is required for new applications such as electric vehicles and home storage systems.
  • Solid solution materials have attracted attention as positive electrode materials having the possibility of meeting such requirements.
  • Various materials have been studied as solid solution materials.
  • the material containing LiMnO 2 is one of the materials under study as a positive electrode material.
  • Patent Document 1 discloses solid solution materials such as LiMnO 2 and Li 2 TiO 3 .
  • Patent Document 2 discloses a rock salt type material composed of lithium niobate and lithium manganate.
  • Patent Document 3 has a rock salt type structure represented by a general formula: Li x Ti 2x-1 Mn 2-3x O (0.50 ⁇ x ⁇ 0.67), and has an average particle size of 0.5 ⁇ m or less.
  • the LiMnO 2 -based material is a lithium composite oxide with the potential of further increasing the energy density of the lithium ion secondary battery, but at present, it is sufficient in the positive electrode active material for the LiMnO 2 -based lithium ion secondary battery No one has been found that exhibits charge / discharge capacity and excellent cycle characteristics.
  • Example 3 of Patent Document 1 a substance having a layered structure represented by Li (Ti 0.14 Mn 0.79 Li 0.07 ) O 2 is described.
  • lithium ion secondary batteries using these materials have an initial charge capacity of 179 mAh / g, a reversible capacity of 108 mAh / g, and could not be said to have sufficient charge and discharge capacities.
  • the example of the lithium ion secondary battery which has high charge / discharge capacity is disclosed by patent document 2 and patent document 3, there exists room for further improvement of cycling characteristics.
  • hard specific solid solution obtained in the normal manufacturing process for example, (Li 2 MnO 3 -Li 2 TiO 3) -LiMnO 2 system, Li 3 PO 4 -LiMnO 2 system, Li 2 There is no disclosure of the SO 4 -LiMnO 2 system.
  • the present invention has been made in view of the above-mentioned circumstances, and synthesizes a LiMnO 2 -based solid solution which is difficult to manufacture conventionally by using a mechanical milling method described later, and has high charge-discharge capacity and good cycle characteristics.
  • An object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery, which can be expressed and made of a LiMnO 2 -based lithium transition metal complex oxide having a rock salt structure.
  • Another object of the present invention is to provide a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, an electronic device and a vehicle using the same.
  • the present invention adopts the following means in order to solve the above problems.
  • [1] is represented by the general formula (1) and has a rock salt type structure, A positive electrode active material for a lithium ion secondary battery, having an average particle size of 100 nm or less.
  • a positive electrode active material for a lithium ion secondary battery represented by any one of the general formulas (2) to (3) and having a rock salt type structure.
  • the positive electrode active material for lithium ion secondary batteries represented by the general formulas (1) to (3) is a solid solution of LiMnO 2 and each of (i) to (iii) [1] The positive electrode active material for lithium ion secondary batteries in any one of [3].
  • a positive electrode for a lithium ion secondary battery comprising the positive electrode active material for a lithium ion secondary battery according to any one of [1] to [5], a conductive material, and a binder.
  • a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to [6], a negative electrode, and a non-aqueous electrolyte.
  • the lithium ion secondary battery according to [7] having an initial charge capacity of 280 mAh / g or more.
  • An electronic device comprising the lithium ion secondary battery described in [7] or [8] as a driving power source.
  • a vehicle comprising the lithium ion secondary battery described in [7] or [8] as a driving power source.
  • the positive electrode active material for a lithium ion secondary battery comprising a lithium transition metal composite oxide of LiMnO 2 system.
  • FIG. 16 is a post-ball milled EDS and SEM view of the powder of the composite oxide of Example 3.
  • A EDS mapping result (Ti-Mn), (b) SEM, (c) EDS mapping result (Ti), (d) EDS mapping result (Mn).
  • FIG. 16 is a post-ball milled EDS and SEM view of the powder of the composite oxide of Example 5.
  • A SEM,
  • Mn EDS mapping result
  • P EDS mapping result
  • P-Mn EDS mapping result
  • the charge / discharge characteristic of the obtained electrochemical cell which used complex oxide of Example 8 for positive electrode active material is shown.
  • the charge / discharge characteristic of the obtained electrochemical cell which used complex oxide of Example 8 for positive electrode active material is shown.
  • the result of having evaluated the cycle characteristic of the discharge capacity of the obtained electrochemical cell which used complex oxide of Example 8 for a positive electrode active material is shown. It is an EDS figure of the powder (before carbon compounding) of complex oxide of Example 8.
  • the positive electrode active material for lithium ion secondary batteries concerning this embodiment, the positive electrode for lithium ion secondary batteries, a lithium ion secondary battery, an electronic device, and a vehicle is demonstrated.
  • the positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention has a rock salt type structure (rock-salt (NaCl) structure), has an average particle size of 100 nm or less, and is represented by the general formula (1). It is characterized by being.
  • rock salt type structure rock-salt (NaCl) structure
  • the positive electrode active material for a lithium ion secondary battery according to another embodiment of the present invention has a rock-salt (NaCl) structure, and has any one of the following general formulas (2) to (3): It is characterized by being represented.
  • the positive electrode active material for a lithium ion secondary battery of the present invention has a rock salt type structure in which cations are irregularly arranged. Therefore, when using the positive electrode active material in which another cation is irregularly arranged in the lithium layer at the time of synthesis, the charge / discharge characteristics of the obtained lithium ion secondary battery may be deteriorated. In order to improve it, it is preferable to reduce the particle size to nano size. As a result, the migration of lithium ions becomes easier, and the energy density of the obtained lithium ion secondary battery can be made higher.
  • the average particle diameter of the positive electrode active material for a lithium ion secondary battery of the present invention is preferably 100 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less.
  • the particle size of the present invention refers to primary particle size and crystallite size, and secondary particles may be of micrometer size.
  • the measurement method can not only be determined by Scherrer's formula by X-ray diffraction method, but observation by a transmission electron microscope is also possible.
  • the positive electrode active material for a lithium secondary battery according to the two embodiments of the present invention is preferably a solid solution of LiMnO 2 and each of the following (i) to (iii).
  • the positive electrode active material for a lithium ion secondary battery may contain other materials as long as the effects of the present invention are exhibited.
  • the solid solution of LiMnO 2 and each of (i) to (iii) is preferably produced by a mechanical milling method described later, from the viewpoint of obtaining a solid solution of nanoparticles.
  • the positive electrode active material for a lithium secondary battery according to one aspect of the present invention has an average particle diameter of 100 nm or less, and in the general formula (1), the range of w is 1 ⁇ 5 to 3 ⁇ 5. It is preferable that the range of w is 3/10 to 1/2. It is further preferable that w be 2/5, that is, a positive electrode active material for xLi 2 TiO 3- (2 / 5-x) Li 2 MnO 3 -3 / 5LiMnO 2 -based lithium ion secondary battery.
  • the molar ratio of Li 2 Ti (IV) O 3 to Li 2 Mn (IV) O 3 to LiMn (III) O 2 is x: (w It is preferable that it is a solid solution which is -x) :( 1-w). That is, when the total amount of tetravalent cations Ti (IV) and Mn (IV) is w, the amount of trivalent cations Mn (III) is (1-w). Also, the molar ratio of tetravalent cation Ti (IV) to Mn (IV) is x: (wx). x is 0 to 0.4.
  • the positive electrode active material for a lithium secondary battery is a positive electrode for wLi 2 MnO 3- (1-w) LiMnO 2 -based lithium ion secondary battery It is an active material. Discover high initial discharge capacity but slightly lower cycle characteristics. From that point of view, in the general formula (1), it is preferable that 0 ⁇ x ⁇ 0.4.
  • the positive electrode active material for a lithium secondary battery is a wLi 2 TiO 3- (1-w) LiMnO 2 -based lithium ion secondary battery Positive electrode active material.
  • Good cycle characteristics are found, and the initial discharge capacity is 300 mAh g ⁇ 1 or more, but the capacity is somewhat insufficient depending on the application field. From that point of view, in the general formula (1), it is preferable that 0 ⁇ x ⁇ 0.4, more preferably 0 ⁇ x ⁇ 0.4, and still more preferably 0.05 ⁇ x ⁇ 0.35. .
  • numerical values of fractions such as “1/5", “3/10", “2/5", “1/2", “3/5", “4/5" are target (theoretical) values It is.
  • the numerical value is A
  • it means that it is in the range of 90% A to 110% A from each central value A.
  • the range of 95% A to 105% A is preferable, and the range of 98% A to 102% A is more preferable.
  • the numerical value is "2/5", it is in the range of 0.36 to 0.44. 0.38 to 0.42 is preferable, and 0.392 to 0.408 is more preferable.
  • ⁇ ZLi 2 SO 4 - (1 -z) LiMnO 2 -based lithium-ion secondary battery positive electrode active material Cathode active material for a lithium secondary battery of one embodiment of the present invention, zLi 2 SO 4 - (1 -z) LiMnO 2 system for a positive active material for a lithium ion secondary battery, Li 2 S (VI) O 4 It is preferable that it is a solid solution in which the molar ratio of and LiMn (III) O 2 is z: (1-z). That is, when the amount of hexavalent cation S (VI) is z, the amount of trivalent cation Mn (III) is 1-z. z is 0.05 to 0.5. From the viewpoint of achieving both the initial discharge capacity and the cycle characteristics, 0.05 to 0.4 is preferable, and 0.1 to 0.3 is more preferable.
  • the positive electrode active material for a lithium ion secondary battery according to the present embodiment also includes a complex oxide which is slightly shifted due to the inevitable loss of Li, Ti, Mn, P, S or O.
  • the positive electrode active material for a lithium secondary battery according to one aspect of the present invention is an oxidation-reduction of transition metal ions whose contribution to the oxidation-reduction of oxide ions is contained in a solid solution in charge compensation accompanying movement of lithium ions during charge and discharge. Equal to or greater than the contribution of That is, the positive electrode active material for a lithium ion secondary battery according to one aspect of the present invention is a material that greatly contributes to the oxidation and reduction of oxide ions in charge compensation associated with the movement of lithium ions during charge and discharge.
  • oxidation / reduction of oxide ion or “contribution of oxidation / reduction of transition metal ion” refers to movement of lithium ion during charge and discharge when the redox reaction proceeds reversibly and stably.
  • charge compensation it refers to the contribution of oxidation reduction of oxide ion or transition metal ion.
  • it refers to the contribution of the oxidation reduction of the oxide ion or transition metal ion in charge and discharge when the redox reaction occurs reversibly over at least 30 cycles or more.
  • the positive electrode active material for a lithium ion secondary battery comprises a solid solution containing Li 2 TiO 3 and LiMnO 2
  • the charge compensation of the lithium ion during charge and discharge is accompanied by a change in valence of Mn 3+ / Mn 4 + And the contribution due to the change of the oxide ion O 2 2 ⁇ / 2O 2 ⁇ .
  • the transfer amount of lithium ion during charge and discharge is the sum of the contribution due to the change of Mn 3+ / Mn 4 + valence and the contribution due to the change of O 2 2 ⁇ / 2O 2 ⁇ . That is, the charge / discharge capacity is increased by utilizing not only the contribution of the Mn 3+ / Mn 4 + valence change but also the contribution of the oxide ion to the O 2 2 ⁇ / 2O 2 ⁇ valence change. Can.
  • the “contribution of oxidation reduction of oxide ion” or “contribution of oxidation reduction of transition metal ion” can be investigated by measuring the change in valence of transition metal ion and oxide ion in the charge and discharge cycle process.
  • the valence change of transition metal ions and oxide ions can be determined, for example, by soft X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure analysis (XAFS), transmission electron energy loss analysis (EELS) ) And so on.
  • the positive electrode active material for a lithium ion secondary battery comprises a solid solution of Li 2 TiO 3 and LiMnO 2
  • the valence of Mn 3+ / Mn 4 + of manganese ion and O 2 2 ⁇ / 2O 2 ⁇ of oxide ion The change is measured using soft x-ray absorption spectroscopy or the like.
  • the contribution of the oxidation-reduction reaction of oxide ion can be investigated by 2- and (analog formation).
  • “contribution of oxidation and reduction of oxide ion” or “contribution of oxidation and reduction of transition metal ion” can be theoretically predicted from the composition.
  • Li 2 TiO 3 and Li 2 MnO 3 are known to be electrochemically inactive.
  • Li (I), Mn (III), Mn (IV), Ti (IV), P (V), S (VI) Li (I), Mn (III), Mn (IV), Ti (IV), P (V), S (VI)
  • the respective salts or oxides of the above can be prepared and obtained by the solid phase method according to the composition ratio.
  • the solid phase method coprecipitation method, evaporation to dryness method, spray drying method, etc. can be used.
  • Each salt or oxide of Li (I), Mn (III), Mn (IV), Ti (IV), P (V), S (VI) may be prepared separately, or a complex compound You may prepare as.
  • a lithium titanium composite oxide may be prepared from a lithium compound and a titanium compound, or a lithium manganese composite oxide may be prepared from a lithium compound and a manganese compound in advance.
  • lithium compound lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, lithium carbonate and the like can be used, and these may be used alone or in combination of two or more. From the viewpoint of stability, lithium carbonate or the like is preferably used.
  • titanium compound metal titanium, titanium oxide, titanium hydroxide, titanium nitrate, titanium chloride and the like can be used, and these may be used alone or in combination of two or more. From the viewpoint of stability, it is preferable to use titanium oxide (TiO 2 ) or the like.
  • manganese compound use is made of metal manganese, manganese oxide (III, Mn 2 O 3 ), manganese dioxide (IV, MnO 2 ), manganese hydroxide, manganese nitrate, manganese carbonate, manganese chloride, manganese iodide, manganese sulfate These may be used alone or in combination of two or more. Preferably, they are manganese oxide (III, Mn 2 O 3 ) and manganese dioxide (IV, MnO 2 ).
  • lithium phosphate As a phosphoric acid compound, lithium phosphate, manganese phosphate, etc. can be used, You may use these individually or in mixture of 2 or more types. From the viewpoint of stability and availability, lithium phosphate (Li 3 PO 4 ) is preferable.
  • a lithium sulfate, manganese sulfate etc. can be used as a sulfuric acid compound, You may use these individually or in mixture of 2 or more types. From the viewpoint of stability and availability, lithium sulfate (Li 2 SO 4 ) is preferred.
  • the salts or oxides of these Li (I), Mn (III), Mn (IV), Ti (IV), P (V) and S (VI) are
  • the active material to be adjusted is adjusted to have a desired composition ratio, and the adjusted mixture is fired to obtain a positive electrode active material for a lithium ion secondary battery.
  • the firing temperature is preferably 500 ° C. or higher although it depends on the type of lithium salt used, and may be 800 ° C. or higher to enhance the crystallinity of the positive electrode active material for lithium ion secondary batteries to be produced. More preferable. When the crystallinity of the positive electrode active material for a lithium ion secondary battery to be produced is high, charge and discharge characteristics are improved.
  • the manufacturing method of one embodiment of the present invention is a mechanical milling synthesis method.
  • the mechanical milling synthesis method of the present invention two or more types of oxides are enclosed in a ball mill using conventional metal powder processing and mechanical milling methods in the alloy powder processing field, introduction of strong strain due to ball impact, raw materials It is a method of producing a solid solution of nano-sized particles by forming a solid solution in the nano-size region together with refinement of crystal grains.
  • the ball mill conditions of the mechanical milling synthesis method of the present invention are not particularly limited, it is preferable to use, for example, a ZrO 2 pot and a ZrO 2 ball.
  • the ball size depends on the scale of the manufacturing process. For example, when the total amount of raw materials is 1.5 g, for example, 1 to 5 7 to 15 mm balls, 7 to 20 3 to 7 mm balls, 1 mm 2 g of balls can be used.
  • the rotation speed is preferably 400 to 700 rpm.
  • the mechanical milling time is, for example, preferably 1 to 60 hours, and more preferably 1 to 40 hours.
  • FIG. 3 is a diagram showing a mechanical milling synthesis method for synthesizing a positive electrode active material for xLi 2 TiO 3- (w x) Li 2 MnO 3- (1-w) LiMnO 2 -based lithium ion secondary battery.
  • Complex oxide of Li 2 CO 3 and Mn 2 O 3 to Li 2 MnO 3 (IV), complex oxide of Li 2 CO 3 and Mn 2 O 3 to LiMnO 2 (III), Li 2 CO 3 and TiO 2 Composite oxides of Li 2 TiO 3 (IV) are prepared in advance through mixing and firing steps, respectively. Then, after mixing the three types of complex oxides, synthesis is performed by mechanical milling.
  • An example of the ball mill conditions is as follows.
  • the positive electrode for a lithium ion secondary battery includes the above-described positive electrode active material for a lithium ion secondary battery, a conductive material, and a binder.
  • the positive electrode for a lithium ion secondary battery may be provided with the above-described positive electrode active material for a lithium ion secondary battery alone as a positive electrode active material, or another known positive electrode for a lithium ion secondary battery One or more active materials may be included.
  • the positive electrode for lithium ion secondary batteries which concerns on 1 aspect of this invention, it is preferable to further grind
  • the average particle diameter of the positive electrode active material for a lithium ion secondary battery utilizing the redox reaction of a transition metal such as a general layered oxide is 1 to 5 ⁇ m.
  • the average particle size is a constitution that gives a large contribution to the charge and discharge characteristics.
  • the average particle diameter of the positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention is 100 nm or less.
  • a ball mill or the like When a ball mill or the like is performed, for example, it is preferable to mix a conductive material such as carbon together with a positive electrode active material for a lithium ion secondary battery.
  • the conductive material adheres uniformly to the surface of the pulverized positive electrode active material for a lithium ion secondary battery during the pulverizing process using a ball mill or the like.
  • the complexing agent in which a conductive material such as carbon is uniformly attached to the surface of the positive electrode active material for lithium ion secondary batteries is excellent in charge and discharge characteristics because charge compensation of oxide ions proceeds.
  • a lithium ion secondary battery includes the above-described positive electrode, a negative electrode, and a non-aqueous electrolyte, and includes essential components for a general lithium ion secondary battery.
  • the application of the lithium ion secondary battery is not particularly limited as long as it is a machine, an apparatus, an instrument, an apparatus, or a system combining the same, which can be used as a driving power source, a power storage source, and the like.
  • lithium ion secondary batteries examples include portable electronic devices such as mobile phones, smart phones, notebook computers, and portable information terminals (PDAs: Personal Digital Assistant) equipped with lithium ion secondary batteries as a driving power source. It can be mentioned.
  • portable electronic devices such as mobile phones, smart phones, notebook computers, and portable information terminals (PDAs: Personal Digital Assistant) equipped with lithium ion secondary batteries as a driving power source. It can be mentioned.
  • PDAs Personal Digital Assistant
  • FIG. 1 shows a block diagram of main functions of the mobile phone as an example of the electronic device.
  • the mobile phone 10 includes a battery 1 including at least one lithium ion secondary battery of the present invention, a control unit 2, a display unit 3, an operation unit 4, a communication unit 5, and an antenna 6.
  • the control unit 2 includes a CPU and a memory, and controls various devices mounted.
  • the display unit 3 is for displaying various information such as an operation menu.
  • the operation unit 4 is an input interface for operating a mobile phone. The input from the operation unit 4 is processed by the control unit 2 and it is used as a mobile phone Operation is performed.
  • the communication unit 5 performs wireless communication with the mobile phone base station via the antenna 6.
  • FIG. 2 shows a schematic plan view of a drive system, taking an electric vehicle as an example of a vehicle as another application of the lithium ion secondary battery.
  • the electric vehicle 20 includes a battery module 11 including at least one lithium ion secondary battery of the present invention, an inverter 12, a motor 13, and a control unit 14.
  • the electric vehicle 20 is driven by supplying power from the battery module 11 to the motor 13 via the inverter 12.
  • the electric power regenerated by the motor 13 at the time of deceleration is stored in the battery module 11.
  • the control unit 14 controls the inverter 12 to output torque in the same direction as the rotation direction of the wheel 15 when the accelerator pedal is operated, and when the brake pedal is operated, torque is output in the direction opposite to the rotation direction of the wheel Control the inverter 12 so as to output.
  • the present invention is also applied to a storage battery storing electric power for traveling in a hybrid vehicle provided with a motor and an engine for traveling or a storage battery storing electric power for driving an auxiliary device. be able to.
  • the present invention can also be applied to a storage battery that stores electric power for driving an accessory in an engine vehicle. In this case, the storage battery storing the power for driving the accessory is charged by the power generated by the alternator connected to the engine.
  • FIG. 4 (b) shows an X-ray diffraction image of the powder of the complex oxide obtained in Example 1 after ball milling.
  • the horizontal axis is the diffraction angle (2 ⁇ ), and the vertical axis is the intensity. It was confirmed from the X-ray diffraction image that the crystal structure of the composite oxide obtained in Example 1 is a rock salt type structure.
  • the composition was also analyzed by emission spectroscopy (ICP) to confirm that it was Li 7/6 Ti 1/6 Mn (IV) 1/6 Mn (III) 1/2 O 2 .
  • PVDF polyvinylidene fluoride
  • NMP N-methyl pyrrolidone
  • a charge / discharge test was conducted using an electrolyte solution in which 1M-LiPF 6 was dissolved in EC / DMC (volume ratio 1: 1, EC: ethylene carbonate, DMC; dimethyl carbonate).
  • the charge / discharge test was performed at 25 ° C., at a current density of 10 mA / g, in a voltage range of 1.5 to 4.8 V.
  • the charge-discharge characteristic of the obtained electrochemical cell used is shown.
  • the curve rising to the right corresponds to the charge curve, and the curve falling to the right corresponds to the discharge curve.
  • the first cycle charge capacity was 330 mAh / g, and the discharge capacity was as high as 310 mAh / g.
  • the initial charge capacity of 330 mAh / g is a very high value corresponding to about 85% of the theoretical capacity of 394.9 mAh / g based on Li.
  • capacitance maintenance characteristic of the discharge capacity of the used electrochemical cell is shown.
  • the charge and discharge capacity in each cycle when 30 cycles of charge and discharge are repeated in a voltage range of current density 10 mA / g and 1.5 to 4.8 V is shown.
  • the discharge capacity at the 20th cycle showed 50% of the discharge capacity of the 1st cycle, and showed good cycle characteristics.
  • FIG. 4C shows an X-ray diffraction image of the powder of the complex oxide obtained in Example 3 after ball milling. It was confirmed from the X-ray diffraction image that the crystal structure of the composite oxide obtained in Example 2 is a rock salt type structure. Further, the composition was analyzed by emission spectral analysis (ICP) to confirm that it was Li 7/6 Mn (IV) 1/3 Mn (III) 1/2 O 2 .
  • ICP emission spectral analysis
  • a positive electrode active material for a 5LiMnO 2 -based lithium ion secondary battery was obtained.
  • the particle diameter obtained by using the Scherrer formula from the peak width of the 200 ° diffraction line of 42 degrees in FIG. 4C is about 6 nm.
  • FIG. 7 shows EDS (energy dispersive X-ray spectroscopy) before synthesizing 2 / 5Li 2 TiO 3 -3 / 5LiMnO 2 solid solution after mixing two kinds of Li 2 TiO 3 (IV) and LiMnO 2 (III) And SEM (electron microscope) images.
  • FIG. 8 shows EDS and SEM images of the synthesized 2 / 5Li 2 TiO 3 -3 / 5LiMnO 2 . Also in the EDS image, since Ti-Mn contrast is uniform, solid solution of Ti and Mn was confirmed.
  • the size of the particles before synthesis obtained from the SEM photograph of FIG. 7 (b) is 4 ⁇ m.
  • the size of the secondary particles obtained from the SEM photograph of FIG. 8 (b) is 0.5 to 5 ⁇ m, and the primary particle size is 300 nm or less.
  • Li 3 PO 4 (V) manufactured by Sigma Aldrich
  • synthesized LiMnO 2 (III) are weighed so as to have a molar ratio of 1: 9, except that their phosphoric acid compound and complex oxide are used.
  • a solid solution was synthesized.
  • the particle diameter obtained by using the Scherrer equation from the peak width of the 200 ° diffraction line of 42 degrees in FIG. 9B is about 4 nm.
  • FIG. 11 shows EDS (energy dispersive X-ray spectrometer) and SEM (electron microscope) of 0.2Li 3 PO 4 -0.8LiMnO 2 synthesized from two kinds of Li 3 PO 4 (IV) and LiMnO 2 (III) ) Shows an image.
  • FIG. 11 shows a microscope image of 0.2Li 3 PO 4 -0.8LiMnO 2 synthesized. Also in the EDS image, solid solution of P and Mn was confirmed because the P-Mn contrast is uniform. From the SEM photograph of FIG. 11 (a), the size of the obtained secondary particles is 0.5-10 ⁇ m, and the size of the primary particles is 300 nm or less.
  • the particle diameter obtained by using the Scherrer equation from the peak width of the 200 ° diffraction line of 42 degrees in FIG. 9D is about 5 nm.
  • FIG. 17 and 18 show EDS and SEM images of 0.2Li 2 SO 4 -0.8LiMnO 2 synthesized (before carbon complexing). Even in the EDS image, solid solution of S and Mn was confirmed because the S-Mn contrast is uniform.
  • FIG. 19 shows a SEM image after carbon complexation. The size of secondary particles obtained from the SEM photograph of FIG. 18 is 0.5 to 5 ⁇ m, and the size of primary particles is 300 nm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

高い充放電容量と良好なサイクル特性を発現可能なリチウムイオン二次電池用正極活物質を提供する。本発明のリチウムイオン二次電池用正極活物質は、一般式(1)で表される岩塩型構造を有し、平均粒径が100nm以下であることを特徴とするリチウムイオン二次電池用正極活物質。 xLi2TiO3-(w-x)Li2MnO3-(1-w)LiMnO2(0≦x≦0.4、1/5≦w≦3/5、x≦w)・・・(1)

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
 本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両に関する。
 本願は、2017年10月31日に、日本に出願された特願2017-211346号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、携帯電話、スマートフォンやノートパソコンなどのモバイル機器の駆動用電源として広く普及している。リチウムイオン二次電池はエネルギー密度が大きいという特徴を有するが、電気自動車や家庭用蓄電システムなどの新しい用途に向けてはさらなる高エネルギー密度化が求められている。
 リチウムイオン二次電池のさらなる高エネルギー密度化には正極材料の性能向上が不可欠である。かかる要求に応える可能性を秘めた正極材料として固溶体系材料が注目されている。固溶体系材料としては種々の材料が検討されている。LiMnOを含む材料は、正極材料として研究が進められている材料の一つである。
 例えば、特許文献1には、LiMnOとLiTiOなどの固溶体材料が開示されている。また、特許文献2には、ニオブ酸リチウムとマンガン酸リチウムからなる岩塩型材料が開示されている。特許文献3には、一般式:LiTi2x-1Mn2-3xO(0.50≦x<0.67)で表される岩塩型構造を有し、平均粒径が0.5μm以下であるリチウムイオン二次電池用正極活物質が開示されている。
米国特許第6680143号明細書 国際公開WO2014/156153号公報 国際公開WO2017/122663号公報
 LiMnO系材料は、リチウムイオン二次電池のさらなる高エネルギー密度化の可能性を秘めたリチウム複合酸化物ではあるが、現在、LiMnO系のリチウムイオン二次電池用正極活物質において、充分な充放電容量と優れたサイクル特性を示すものは見つかっていない。
 例えば、特許文献1の実施例3には、Li(Ti0.14Mn0.79Li0.07)Oで表される層状構造の物質が記載されている。しかし、それらの物質を用いるリチウムイオン二次電池は、初期充電容量が179mAh/g、可逆容量が108mAh/gであり、充分な充放電容量を有しているとは言えなかった。特許文献2及び特許文献3には、高い充放電容量を有するリチウムイオン二次電池の例が開示されているが、サイクル特性を更に向上する余地がある。
 また、先行技術のいずれにも、通常の製造方法では得られにくい特定な固溶体、例えば、(LiMnO―LiTiO)―LiMnOLiPO―LiMnOLiSO―LiMnO系について開示がない。
 本発明は、上記事情に鑑みてなされたものであり、後述するメカニカルミリング法を用いて、従来製造することが困難であるLiMnO系固溶体を合成し、高い充放電容量と良好なサイクル特性を発現可能な、岩塩構造のLiMnO系のリチウム遷移金属複合酸化物からなるリチウムイオン二次電池用正極活物質を提供することを目的とする。また、本発明は、それを用いるリチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両を提供することを目的とする。
 本発明は、上記課題を解決するために、以下の手段を採用した。
[1] 一般式(1)で表され、岩塩型構造を有し、
 平均粒径が100nm以下であることを特徴とするリチウムイオン二次電池用正極活物質。
xLiTiO-(w-x)LiMnO-(1-w)LiMnO(0≦x≦0.4、1/5≦w≦3/5、x≦w)・・・(1)
[2] 一般式(2)~(3)のいずれかで表され、岩塩型構造を有するリチウムイオン二次電池用正極活物質。
yLiPO-(1-y)LiMnO(0.05<y<0.5)・・・(2)zLiSO-(1-z)LiMnO(0.05<z<0.5)・・・(3)[3] 平均粒径が100nm以下である[2]に記載のリチウムイオン二次電池用正極活物質。
[4] 前記一般式(1)~(3)で表されるリチウムイオン二次電池用正極活物質は、LiMnOと、(i)~(iii)のそれぞれとの固溶体である[1]~[3]のいずれかに記載のリチウムイオン二次電池用正極活物質。
(i)LiTiOとLiMnO
(ii)LiPO
(iii)LiSO
[5] 前記一般式(1)におけるxが0<x<0.4であり、
 前記一般式(2)におけるyが0.1≦y≦0.3であり、または
 前記一般式(3)におけるzが0.1≦y≦0.3である[1]~[4]のいずれかに記載のリチウムイオン二次電池用正極活物質。
[6] [1]~[5]のいずれかに記載のリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
[7] [6]に記載のリチウムイオン二次電池用正極と負極と非水電解質とを備えるリチウムイオン二次電池。
[8] 初期充電容量が280mAh/g以上である、[7]に記載のリチウムイオン二次電池。
[9] [7]又は[8]に記載したリチウムイオン二次電池を駆動用電源として備える電子機器。
[10] [7]又は[8]に記載したリチウムイオン二次電池を駆動用電源として備える車両。
 本発明によれば、高い充放電容量と良好なサイクル特性を発現可能な、LiMnO系のリチウム遷移金属複合酸化物からなるリチウムイオン二次電池用正極活物質を提供することができる。
本実施形態にかかるリチウムイオン二次電池を駆動用電源として備える携帯電話機の主な機能のブロック図である。 本実施形態にかかるリチウムイオン二次電池を駆動用電源として備える電気自動車の駆動システムのブロック図である。 本発明の一実施態様の正極活物質の合成方法を示すスキーム図である。 実施例1~3で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。 実施例1~3の複合酸化物を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 実施例1~3の複合酸化物を正極活物質に用いた得られた電気化学セルの放電容量のサイクル特性を評価した結果を示す。 実施例3の複合酸化物の粉末についてのボールミル前のEDS(エネルギー分散型X線分光器)とSEM(電子顕微鏡)図である。(a)EDSマッピング結果(Ti-Mn)、(b)SEM、(c)EDSマッピング結果(Ti)、(d)EDSマッピング結果(Mn)。 実施例3の複合酸化物の粉末についてのボールミル後のEDSとSEM図である。(a)EDSマッピング結果(Ti-Mn)、(b)SEM、(c)EDSマッピング結果(Ti)、(d)EDSマッピング結果(Mn)。 実施例4~7で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。 実施例4~7の複合酸化物を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 実施例5の複合酸化物の粉末についてのボールミル後のEDSとSEM図である。(a)SEM、(b)EDSマッピング結果(Mn)、(c)EDSマッピング結果(P)、(d)EDSマッピング結果(P-Mn)。 参考例1において、実施例5複合酸化物の粉末についてボールミル処理時間の依存性を示す図である。 実施例8と参考例2で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。 実施例8の複合酸化物を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 実施例8の複合酸化物を正極活物質に用いた得られた電気化学セルの充放電特性を示す。 実施例8の複合酸化物を正極活物質に用いた得られた電気化学セルの放電容量のサイクル特性を評価した結果を示す。 実施例8の複合酸化物の粉末(炭素複合化前)のEDS図である。(a)EDSマッピング結果(S)、(b)EDSマッピング結果(Mn)、(c)EDSマッピング結果(S-Mn)。 実施例8の複合酸化物の粉末(炭素複合化前)のSEM図である。 実施例8の複合酸化物の粉末(炭素複合化後)のSEM図である。
 以下に、本実施形態にかかるリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両を実施するための形態を説明する。
<リチウムイオン二次電池用正極活物質>
 本発明の一実施態様のリチウムイオン二次電池用正極活物質は、岩塩型構造(rock-salt (NaCl) structure)を有し、平均粒径が100nm以下であり、一般式(1)で表されることを特徴とする。
xLiTiO-(w-x)LiMnO-(1-w)LiMnO(0≦x≦0.4、1/5≦w≦3/5、x≦w)・・・(1)
 本発明の他の実施態様のリチウムイオン二次電池用正極活物質は、岩塩型構造(rock-salt (NaCl) structure)を有し、以下の一般式(2)~(3)のいずれかで表されることを特徴とする。
yLiPO-(1-y)LiMnO(0.05<y<0.5)・・・(2)
zLiSO-(1-z)LiMnO(0.05<z<0.5)・・・(3)
 本発明のリチウムイオン二次電池用正極活物質は、カチオン不規則配列した岩塩型構造である。そのため、合成時にリチウム層に他のカチオンが不規則配列した正極活物質を用いる場合、得られたリチウムイオン二次電池の充放電特性が低下する恐れがある。それを改善するため、ナノサイズまで粒径を小さくすることが好ましい。その結果、リチウムイオンの移動がより容易になり、得られたリチウムイオン二次電池のエネルギー密度がより高くすることができる。本発明のリチウムイオン二次電池用正極活物質の平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることが更に好ましい。
 本発明の粒径とは一次粒子サイズおよび、結晶子サイズのことであり、二次粒子はマイクロメートルサイズでもかまわない。その測定方法は、X線回折法によりシェラー式により決定できるだけでなく、透過型電子顕微鏡で観察も可能である。
 本発明の前記2つの実施態様に係るリチウム二次電池用正極活物質は、LiMnOと、以下(i)~(iii)のそれぞれとの固溶体であることが好ましい。
(i)LiTiOとLiMnO
(ii)LiPO
(iii)LiSO
 また、このリチウムイオン二次電池用正極活物質は、本発明の効果を奏する範囲で他の材料を含んでも構わない。
 また、LiMnOと(i)~(iii)のそれぞれとの固溶体は、ナノ粒子の固溶体が得られる観点から、後述するメカニカルミリング法で製造することが好ましい。
<xLiTiO-(w-x)LiMnO-(1-w)LiMnO系リチウムイオン二次電池用正極活物質>
 本発明の一態様に係るリチウム二次電池用正極活物質は、平均粒径が100nm以下であり、一般式(1)において、wの範囲が1/5~3/5である。wの範囲が3/10~1/2であることが好ましい。wが2/5であること、すなわち、xLiTiO-(2/5-x)LiMnO-3/5LiMnO系リチウムイオン二次電池用正極活物質が更に好ましい。 
 本発明の一態様に係るリチウム二次電池用正極活物質は、LiTi(IV)OとLiMn(IV)OとLiMn(III)Oとのモル比がx:(w-x):(1-w)である固溶体であることが好ましい。すなわち、4価カチオンTi(IV)とMn(IV)の合計量がwである場合、3価カチオンMn(III)の量が(1-w)である。また、4価カチオンTi(IV)とMn(IV)とのモル比は、x:(w-x)である。xが0~0.4である。
 一般式(1)においてxが0である場合、本発明の一態様に係るリチウム二次電池用正極活物質は、wLiMnO-(1-w)LiMnO系リチウムイオン二次電池用正極活物質である。高い初回放電容量を発見するが、サイクル特性がやや低い。その観点から、一般式(1)において、0<x≦0.4であることが好ましい。
 一般式(1)においてxが0.4である場合、本発明の一態様に係るリチウム二次電池用正極活物質は、wLiTiO-(1-w)LiMnO系リチウムイオン二次電池用正極活物質である。良好なサイクル特性を発見し、初回放電容量が300mAhg-1以上であるが、応用分野によって、容量がやや不足である。その観点から、一般式(1)において、0≦x<0.4であることが好ましく、0<x<0.4であることがより好ましく、0.05≦x≦0.35が更に好ましい。
 ここで、「1/5」、「3/10」、「2/5」、「1/2」、「3/5」、「4/5」などの分数の数値は、目標(理論)値である。実際の製造工程、分析工程を考慮する場合、例えば、その数値がAであるとき、それぞれの中心値Aから90%A~110%Aの範囲であることを意味する。95%A~105%Aの範囲であることが好ましく、98%A~102%Aの範囲であることがより好ましい。例えば、その数値が「2/5」の場合、0.36~0.44の範囲である。0.38~0.42が好ましく、0.392~0.408がより好ましい。
<yLiPO-(1-y)LiMnO系リチウムイオン二次電池用正極活物質>
 本発明の一態様に係るリチウム二次電池用正極活物質は、yLiPO-(1-y)LiMnO系リチウムイオン二次電池用正極活物質の場合、LiP(V)OとLiMn(III)Oとのモル比がy:(1-y)である固溶体であることが好ましい。すなわち、5価カチオンP(V)の量がyである場合、3価カチオンMn(III)の量が1-yである。yが0.05~0.5である。初回放電容量とサイクル特性を両立する観点から、0.05~0.4が好ましく、0.1~0.3がより好ましい。
<zLiSO-(1-z)LiMnO系リチウムイオン二次電池用正極活物質>
 本発明の一態様に係るリチウム二次電池用正極活物質は、zLiSO-(1-z)LiMnO系リチウムイオン二次電池用正極活物質の場合、LiS(VI)OとLiMn(III)Oとのモル比がz:(1-z)である固溶体であることが好ましい。すなわち、6価カチオンS(VI)の量がzである場合、3価カチオンMn(III)の量が1-zである。zが0.05~0.5である。初回放電容量とサイクル特性を両立する観点から、0.05~0.4が好ましく、0.1~0.3がより好ましい。
 本実施形態にかかるリチウムイオン二次電池用正極活物質は、不可避的に生じるLi、Ti、Mn、P、SまたはOの欠損により、わずかにずれた複合酸化物をも含む。
<酸化物イオンの酸化還元への寄与>
 本発明の一態様に係るリチウム二次電池用正極活物質は、充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンの酸化還元の寄与が固溶体に含有する遷移金属イオンの酸化還元の寄与と同じか又はそれ以上である。
 すなわち、本発明の一態様に係るリチウムイオン二次電池用正極活物質は、充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンの酸化還元の寄与が大きいものである。
 ここで、「酸化物イオンの酸化還元の寄与」または「遷移金属イオンの酸化還元の寄与」とは、可逆的に安定に酸化還元反応が進行する場合の充放電中のリチウムイオンの移動に伴う電荷補償において、酸化物イオンまたは遷移金属イオンの酸化還元の寄与をいう。
 目安を例示すれば、少なくとも30サイクル以上にわたって可逆的に酸化還元反応が生ずる場合の充放電における、酸化物イオンまたは遷移金属イオンの酸化還元の寄与をいう。
 例えば、リチウムイオン二次電池用正極活物質がLiTiOとLiMnOとを含む固溶体からなる場合、充放電中のリチウムイオンの移動に伴う電荷補償において、Mn3+/Mn4+の価数変化に伴う寄与と、酸化物イオンのO 2-/2O2-の価数変化に伴う寄与が存在する。
 充放電中のリチウムイオンの移動量は、Mn3+/Mn4+の価数変化に伴う寄与とO 2-/2O2-の価数変化に伴う寄与の総和である。つまり、Mn3+/Mn4+の価数変化に伴う寄与のみならず、酸化物イオンのO 2-/2O2-の価数変化に伴う寄与を利用することで、充放電容量を大きくすることができる。
 「酸化物イオンの酸化還元の寄与」または「遷移金属イオンの酸化還元の寄与」は、充放電サイクル過程において、遷移金属イオン及び酸化物イオンの価数変化を測定することによって調べることができる。遷移金属イオン及び酸化物イオンの価数変化は例えば、軟X線吸収分光法(XAS)、X線光電子分光法(XPS)、X線吸収微細構造解析(XAFS)、透過電子エネルギー損失分析(EELS)などによって調べることができる。
 例えば、リチウムイオン二次電池用正極活物質がLiTiOとLiMnOとの固溶体からなる場合、マンガンイオンのMn3+/Mn4+、酸化物イオンのO 2-/2O2-の価数変化を軟X線吸収分光法等を用いて測定する。充電時において、マンガンイオンがMn3+からMn4+への変化(Mn4+の生成)によってマンガンイオンの酸化還元反応の寄与を調べることができ、2O2-からO 2-への変化(O 2-とその類似物生成)によって酸化物イオンの酸化還元反応の寄与を調べることができる。一方、放電時においても、マンガンイオンがMn4+からMn3+への変化(Mn3+の生成)によってマンガンイオンの酸化還元反応の寄与を確認でき、O 2-から2O2-への変化(O2-の生成)によって酸化物イオンの酸化還元反応の寄与を確認できる。
 また、「酸化物イオンの酸化還元の寄与」または「遷移金属イオンの酸化還元の寄与」については、組成から理論的に予測することができる。
 例えば、LiTiO3、LiMnOは電気化学的に不活性であることが知られている。そのため、例えば、
一般式:xLiTiO-(w-x)LiMnO-(1-w)LiMnO(0≦x≦0.4、1/5≦w≦3/5、x≦w)・・・(1)
におけるMn(III)の組成比がTiとMn(IV)の組成比に対して多い場合(w<1/2)は「遷移金属イオンの酸化還元の寄与」が大きくなることが予測され、Mn(III)の組成比とTiとMn(IV)の組成比が同等(w=1/2)となる場合は「酸化物イオンの酸化還元の寄与」が大きくなることが予測される。
<リチウムイオン二次電池用正極活物質の製造方法>
 本発明の一態様に係るリチウムイオン二次電池用正極活物質の製造方法においては、Li(I)、Mn(III),Mn(IV)、Ti(IV)、P(V)、S(VI)のそれぞれの塩又は酸化物を用意し、組成比に合せて固相法により得ることができる。
 また固相法に限られず、共沈法、蒸発乾固法、スプレードライ法等を用いることができる。
 Li(I)、Mn(III),Mn(IV)、Ti(IV)、P(V)、S(VI)のそれぞれの塩又は酸化物は、それぞれ別々に用意してもよいし、複合化合物として用意してもよい。例えば、リチウム化合物とチタン化合物からリチウムチタン複合酸化物、リチウム化合物とマンガン化合物からリチウムマンガン複合酸化物等を事前に作製してもよい。
 リチウム化合物としては、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウム等を用いることができ、これらを単独であるいは2種以上混合して用いてもよい。安定性の観点から炭酸リチウム等を用いることが好ましい。
 チタン化合物としては、金属チタン、酸化チタン、水酸化チタン、硝酸チタン、塩化チタン等を用いることができ、これらを単独であるいは2種以上混合して用いてもよい。安定性の観点から酸化チタン(TiO)等を用いることが好ましい。
 マンガン化合物としては、金属マンガン、酸化マンガン(III、Mn)、二酸化マンガン(IV、MnO)、水酸化マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、ヨウ化マンガン、硫酸マンガンを用いることができ、これらを単独であるいは2種以上混合して用いてもよい。好ましくは、酸化マンガン(III、Mn)、二酸化マンガン(IV、MnO)である。
 リン酸化合物としては、リン酸リチウム塩、リン酸マンガン等を用いることができ、これらを単独であるいは2種以上混合して用いてもよい。安定性、入手の容易さの観点から、リン酸リチウム塩(LiPO)が好ましい。
 硫酸化合物としては、硫酸リチウム塩、硫酸マンガン等を用いることができ、これらを単独であるいは2種以上混合して用いてもよい。安定性、入手の容易さの観点から、硫酸リチウム塩(LiSO)が好ましい。
 固相法により合成する場合、これらのLi(I)、Mn(III),Mn(IV)、Ti(IV)、P(V)、S(VI)のそれぞれの塩又は酸化物を、目的とする活物質が所望の組成比になるように調整し、調整した混合物を焼成することで、リチウムイオン二次電池用正極活物質を得る。
 リチウム原料の量については、焼成中にリチウム原料の一部が消失することがあるため、1~5%程度過剰に含有させることが好ましい。また焼成温度は、用いるリチウム塩の種類にもよるが、500℃以上とすることが好ましく、生成するリチウムイオン二次電池用正極活物質の結晶性を高めるために、800℃以上とすることがより好ましい。生成されるリチウムイオン二次電池用正極活物質の結晶性が高いと、充放電特性が向上する。
<メカニカルミリング合成法(Mechanical Milling(MM)>
 本発明の一実施態様の製造方法は、メカニカルミリング合成法である。本発明のメカニカルミリング合成法は、従来の金属粉末加工、合金粉末加工分野のメカニカルミリング法を利用して、2種類以上の酸化物をボールミルに封入し、ボールの衝撃による強いひずみの導入、原料結晶粒の微細化と共に、ナノサイズ領域で固溶し、ナノサイズ粒子の固溶体を製造する方法である。
 本発明のメカニカルミリング合成法のボールミル条件は特に限定されないが、例えば、ZrOポット、ZrOボールを使用することが好ましい。そのボールサイズは、製造工程のスケールに依存するが、一例としては、例えば、原料のトータル量が1.5gの場合、7~15mm玉1~5個、3~7mm玉7~20個、1mm玉2gを使用することができる。回転速度は、400~700rpmであることが好ましい。メカニカルミリング処理時間は、例えば、1~60時間であることが好ましく、1~40時間であることがより好ましい。
 図3はxLiTiO-(w-x)LiMnO-(1-w)LiMnO系リチウムイオン二次電池用正極活物を合成するメカニカルミリング合成法を示す図である。LiCOとMnからLiMnO(IV)の複合酸化物、LiCOとMnからLiMnO(III)の複合酸化物、LiCOとTiOからLiTiO(IV)の複合酸化物をそれぞれ、混合と焼成工程を経て事前に作成する。そして、その3種類の複合酸化物を混合する後、メカニカルミリングによる合成する。ボールミル条件の一例は以下である。
 ポット材質:     ZrO
 ボール材質:     ZrO
 ボールサイズと数量: 10mm玉3個、5mm玉10個、1mm玉2g
 回転速度:      600rpm
 処理時間:      36時間
<リチウムイオン二次電池用正極>
 本発明の一態様に係るリチウムイオン二次電池用正極は、上記リチウムイオン二次電池用正極活物質と導電材とバインダーとを含む。
 本発明の一態様に係るリチウムイオン二次電池用正極は、正極活物質として上記リチウムイオン二次電池用正極活物質を単独で備えるものでもよいし、他に公知のリチウムイオン二次電池用正極活物質を一種以上含んでいてもよい。
 また本発明の一態様に係るリチウムイオン二次電池用正極を作製する際に、必要がある場合、リチウムイオン二次電池用正極活物質をボールミル等により更に粉砕することが好ましい。
 一般的な層状酸化物など遷移金属の酸化還元反応を利用するリチウムイオン二次電池用正極活物質の平均粒径は1~5μmである。平均粒径は、充放電特性に大きな寄与を与える構成である。本発明の一実施態様のリチウムイオン二次電池用正極活物質の平均粒径を100nm以下とする。
 またボールミル等を行う際には、例えばカーボン等の導電材をリチウムイオン二次電池用正極活物質と共に混入することが好ましい。ボールミル等による粉砕工程時に、導電材は粉砕されたリチウムイオン二次電池用正極活物質の表面に均一に付着する。炭素等の導電材がリチウムイオン二次電池用正極活物質の表面に均一に付着した複合化剤は、酸化物イオンの電荷補償が進行するため充放電特性に優れる。また不要な反応を避けるために、粉砕工程は不活性ガス雰囲気中で行うことが好ましい。
<リチウムイオン二次電池>
 本発明の一態様に係るリチウムイオン二次電池は、上記正極と負極と非水電解質とを含み、一般のリチウムイオン二次電池に必須の構成要素を備える。
<リチウムイオン二次電池の用途>
 リチウムイオン二次電池の用途としては、それを駆動用電源や電力貯蔵源などとして用いることが可能な機械、機器、器具、装置あるいはそれを組み合わせたシステムなどであれば、特に限定されない。
 リチウムイオン二次電池の用途の例としては、リチウムイオン二次電池を駆動用電源として備える携帯電話機、スマートフォン、ノートパソコン、携帯用情報端末(PDA:Personal Digital Assistant)などの携帯用の電子機器が挙げられる。
 図1に、携帯電話機を電子機器の例として主な機能のブロック図を示す。
 携帯電話機10は、本発明のリチウムイオン二次電池を少なくとも1個備えたバッテリ1と、制御部2と、表示部3と、操作部4と、通信部5と、アンテナ6とを備える。
 制御部2はCPU及びメモリとで構成され、実装される各種デバイスの制御を行う。
 表示部3は、操作メニュー等の各種情報を表示するものである 操作部4は、携帯電話の操作を行う入力インターフェースであり、操作部4からの入力は制御部2で処理され、携帯電話機としての動作が行われる。通信部5は、アンテナ6を介して無線通信を携帯電話基地局との間で行うものである。
 図2に、リチウムイオン二次電池の他の用途として、電気自動車を車両の例として駆動システムの概略平面図を示す。
 電気自動車20は、本発明のリチウムイオン二次電池を少なくとも1個備えた電池モジュール11と、インバータ12と、モーター13と、制御部14とを備える。
 電気自動車20は、電池モジュール11から、インバータ12を介して、モーター13に電力が供給されて駆動される。減速時にモーター13により回生された電力は電池モジュール11に貯蔵される。制御部14は、アクセルペダルが操作されたときに車輪15の回転方向と同じ方向にトルクを出力するようインバータ12を制御し、ブレーキペダルが操作されたときに車輪の回転方向と反対方向にトルクを出力するようにインバータ12を制御する。
 図2では電気自動車に適用される例を挙げたが、走行用のモーターとエンジンを備えるハイブリッド車両における走行用の電力を蓄電する蓄電池、あるいは補機駆動用の電力を蓄電する蓄電池にも適用することができる。エンジン車両において補機駆動用の電力を蓄電する蓄電池にも適用することができる。この場合、補機駆動用の電力を蓄電する蓄電池は、エンジンに連結されたオルタネータの発電する電力によって充電される。
 以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。
(実施例1)
 一般式:xLiTiO-(2/5-x)LiMnO-3/5LiMnO(x=0.2)に相当する1/5LiTiO-1/5LiMnO-3/5LiMnO系リチウムイオン二次電池用正極活物質
<LiMnO(IV)の複合酸化物の合成>
 LiCO(和光純薬工業株式会社製)とMn(キシダ化学製炭酸マンガンを700℃で焼成することで得られた)とを、モル比で2.06:1:0となるように秤量した。そして、秤量した粉末をアルミナ乳鉢において十分に均一になるように混合後、ペレット化し、800℃で12時間焼成して、LiMnO(IV)の複合酸化物を得た。この際、焼成雰囲気を空気とした。
<LiMnO(III)の複合酸化物の合成>
 LiCO(和光純薬工業株式会社製)とMn(キシダ化学製炭酸マンガンを700℃で焼成することで得られた)とを、モル比で1.03:1:0となるように秤量した。そして、秤量した粉末をアルミナ乳鉢において十分に均一になるように混合後、ペレット化し、900℃で12時間焼成して、LiMnO(III)の複合酸化物を得た。この際、焼成雰囲気を不活性ガス雰囲気とした。
<LiTiO(IV)の複合酸化物の合成>
 LiCO(和光純薬工業株式会社製)とTiO(関東化学株式会社製)とを、モル比で1.03:1:0となるように秤量した。そして、秤量した粉末をアルミナ乳鉢において十分に均一になるように混合後、ペレット化し、950℃で12時間焼成して、LiTiO(IV)の複合酸化物を得た。この際、焼成雰囲気を空気とした。
<1/5LiTiO-1/5LiMnO-3/5LiMnO固溶体の合成>
 合成したLiMnO(IV)、LiMnO(III)、LiTiO(IV)を、モル比で1.05:1:3となるように秤量した。それら3種類の複合酸化物を混合する後、遊星型ボールミル(FRITSCH社製、型番pluverisette 7)にセットし、メカニカルミリングにより合成した。ボールミル条件は以下である。
 ポット材質:     ZrO
 ボール材質:     ZrO
 ボールサイズと数量: 10mm玉3個、5mm玉10個、1mm玉2g
 回転速度:      600rpm
 処理時間:      36時間
 図4(b)は、実施例1で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。横軸は回折角度(2θ)であり、縦軸は強度である。X線回折像から実施例1で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li7/6Ti1/6Mn(IV)1/6Mn(III)1/2であることを確認した。一般式:xLiTiO-(w-x)LiMnO-(1-w)3/5LiMnO(w=2/5、x=0.2)に相当する1/5LiTiO-1/5LiMnO-3/5LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図4(b)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約6nmである。
(電池特性評価)
 得られた複合酸化物1/5LiTiO-1/5LiMnO-3/5LiMnO(w=2/5、x=0.2)をリチウムイオン二次電池用正極活物質として用い、以下のように評価用の二極式電気化学セルを作製して、その電池特性を評価した。
 まず、得られた正極活物質1/5LiTiO-1/5LiMnO-3/5LiMnO(x=0.2)と、導電材としてアセチレンブラック(AB)とを80:20(重量比)で混合した。この混合物に、N-メチルピロリドン(NMP)に溶解したポリフッ化ビニリデン(PVDF)パインダーを添加してスラリーを作製した。このスラリーにおいて、正極活物質:AB:PVDF=76.5:13.5:10(重量比)とした。このスラリーを、集電体としてのアルミニウム箔上に塗布して乾燥した後、プレスして正極を作製した。 
 この正極を用い、対極をリチウム箔とした評価用の二極式電気化学セルを作製した。
 この電気化学セルにおいて、電解液として1M-LiPFをEC/DMC(体積比1:1、EC;エチレンカーボネート、DMC;ジメチルカーボネートを表す。)に溶解したものを用いて、充放電試験を行った。充放電試験は25℃で、電流密度10mA/g、1.5-4.8Vの電圧範囲で行った。
 図5(b)に、実施例1の複合酸化物1/5LiTiO-1/5LiMnO-3/5LiMnO(w=2/5、x=0.2)を正極活物質に用いた得られた電気化学セルの充放電特性を示す。右上がりの曲線は充電曲線に対応し、右下がりの曲線は放電曲線に対応する。
 1サイクル目の充電容量は330mAh/g、放電容量は310mAh/gと高い充放電容量が得られた。初回充電容量330mAh/gは、Li基準の理論容量394.9mAh/gの約85%に相当する非常に高い値である。
 図6(b)に、実施例1の複合酸化物1/5LiTiO-1/5LiMnO-3/5LiMnO(w=2/5、x=0.2)を正極活物質に用いた電気化学セルの放電容量の容量維持特性を評価した結果を示す。電流密度10mA/g、1.5-4.8Vの電圧範囲で、30サイクル充放電を繰り返した際の各サイクルにおける充放電容量を示す。20サイクル目における放電容量は1サイクル目の放電容量の50%の放電容量を示し、良好なサイクル特性を示した。
 (実施例2)
一般式:xLiTiO-(w-x)LiMnO-(1-w)LiMnO(w=2/5、x=0)に相当する2/5LiMnO-3/5LiMnO系リチウムイオン二次電池用正極活物質
<LiMnO(IV)の複合酸化物の合成>
実施例1と同様に、LiMnO(IV)の複合酸化物を合成した。
<LiMnO(III)の複合酸化物の合成>
実施例1と同様に、LiMnO(III)の複合酸化物を合成した。
<2/5LiMnO-3/5LiMnO固溶体の合成>
 合成したLiMnO(III)、LiTiO(IV)を、モル比で2:3となるように秤量し、それら2種類の複合酸化物を用いる以外は、実施例1と同様に、固溶体を合成した。
 図4(a)は、実施例2で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から実施例2で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li7/6Mn(IV)1/3Mn(III)1/2であることを確認した。一般式:xLiTiO-(w-x)LiMnO-(1-w)LiMnO(w=2/5、x=0)に相当する2/5LiMnO-3/5LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図4(a)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約6nmである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物2/5LiMnO-3/5LiMnO(w=2/5、x=0)の電池特性を評価した。図5(a)と図6(a)に示す。
 (実施例3)
 一般式:xLiTiO-(w-x)LiMnO-(1-w)LiMnO(w=2/5、x=0.4)に相当する2/5LiTiO-3/5LiMnO系リチウムイオン二次電池用正極活物質
<LiTiO(IV)の複合酸化物の合成>
 実施例1と同様に、LiTiO(IV)の複合酸化物を合成した。
<LiMnO(III)の複合酸化物の合成>
 実施例1と同様に、LiMnO(III)の複合酸化物を合成した。
<2/5LiTiO-3/5LiMnO固溶体の合成>
 合成したLiTiO(IV)、LiMnO(III)を、モル比で2:3となるように秤量し、それら2種類の複合酸化物を用いる以外は、実施例1と同様に、固溶体を合成した。
 図4(c)は、実施例3で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から実施例2で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li7/6Mn(IV)1/3Mn(III)1/2であることを確認した。一般式:xLiTiO-(w-x)LiMnO-(1-w)LiMnO(w=2/5、x=0.4)に相当する2/5LiTiO-3/5LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図4(c)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約6nmである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物2/5LiTiO-3/5LiMnO(w=2/5、x=0.4)の電池特性を評価した。図5(c)と図6(c)に示す。
(電子顕微鏡によるEDS及びSEM観察)
 図7は、2種類のLiTiO(IV)、LiMnO(III)を混合した後、2/5LiTiO-3/5LiMnO固溶体を合成する前のEDS(エネルギー分散型X線分光器)及びSEM(電子顕微鏡)画像を示す。図8は、合成した2/5LiTiO-3/5LiMnOのEDS及びSEM画像を示す。EDS画像でも、Ti-Mnのコントラスが均一であるため、TiとMnの固溶を確認した。
 図7(b)のSEM写真から得られた合成前の粒子のサイズは4μmである。
 図8(b)のSEM写真から得られた2次粒子のサイズは0.5~5μmであり、一次粒子サイズは300nm以下である。
(実施例4)
 一般式:yLiPO-(1-y)LiMnO(y=0.1)に相当する0.1LiPO-0.9LiMnO系リチウムイオン二次電池用正極活物質
<LiMnO(III)の複合酸化物の合成>
 実施例1と同様に、LiMnO(III)の複合酸化物を合成した。
<0.1LiPO-0.9LiMnO固溶体の合成>
 LiPO(V)(シグマ・アルドリッチ製)と合成したLiMnO(III)とを、モル比で1:9となるように秤量し、それらのリン酸化合物と複合酸化物を用いる以外は、実施例1と同様に、固溶体を合成した。
 図9(a)は、実施例4で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から実施例2で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li12/111/11Mn9/11であることを確認した。yLiPO-(1-y)LiMnO(y=0.1)に相当する0.1LiPO-0.9LiMnO系リチウムイオン二次電池用正極活物質を得た。
図9(a)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約4nmである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物0.1LiPO-0.9LiMnO(y=0.1)の電池特性を評価した。図10(a)に示す。
(実施例5)
 一般式:yLiPO-(1-y)LiMnO(y=0.2)に相当する0.2LiPO-0.8LiMnO系リチウムイオン二次電池用正極活物質
 LiPO(V)とLiMnO(III)とを、モル比で2:8となるように秤量する以外は、実施例4と同様な方法で、0.2LiPO-0.8LiMnO固溶体を合成した。
 図9(b)は、本実施例で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から本実施例で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li7/61/5Mn4/5であることを確認した。yLiPO-(1-y)LiMnO(y=0.2)に相当する0.2LiPO-0.8LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図9(b)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約4nmである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物0.2LiPO-0.8LiMnO(y=0.2)の電池特性を評価した。図10(b)に示す。
(電子顕微鏡によるEDS及びSEM観察)
 図11は、2種類のLiPO(IV)、LiMnO(III)から合成した0.2LiPO-0.8LiMnOのEDS(エネルギー分散型X線分光器)及びSEM(電子顕微鏡)画像を示す。図11は、合成した0.2LiPO-0.8LiMnOの顕微鏡画像を示す。EDS画像でも、P-Mnのコントラスが均一であるため、PとMnの固溶を確認した。
 図11(a)のSEM写真から、得られた2次粒子のサイズは、0.5-10μmであり、一次粒子のサイズは、300nm以下である。
(参考例1)
(メカニカルミリングによりLiPOとLiMnOの固溶条件の確認)
 メカニカルミリングの処理時間が12時間,24時間である以外は、実施例5と同様な方法で、0.2LiPO-0.8LiMnO固溶体を合成した。それぞれのX線回折像は図12(c)、(d)を示す。実施例5と同様な方法で得た0.2LiPO-0.8LiMnO固溶体がデータ12(e)に示す。比較するために、LiPO(y=0)LiMnO(y=1)のX線回折像も測定した(それぞれ、図12(a)、(b))。また、炭素膜を被覆した後の試料のX線回折像も測定した(図12(f))。メカニカルミリングの処理時間が12時間以上である場合、安定した固溶体が得られることがわかった。
(実施例6)
 一般式:yLiPO-(1-y)LiMnO(y=0.25)に相当する0.25LiPO-0.75LiMnO系リチウムイオン二次電池用正極活物質 LiPO(V)とLiMnO(III)とを、モル比で25:75となるように秤量する以外は、実施例4と同様な方法で、0.25LiPO-0.75LiMnO固溶体を合成した。
 図9(c)は、本実施例で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から本実施例で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li6/51/5Mn4/5であることを確認した。yLiPO-(1-y)LiMnO(y=0.25)に相当する0.25LiPO-0.75LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図9(c)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約4nmであるである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物0.25LiPO-0.75LiMnO(y=0.25)の電池特性を評価した。図10(c)に示す。
(実施例7)
一般式:yLiPO-(1-y)LiMnO(y=0.3)に相当する0.3LiPO-0.7LiMnO系リチウムイオン二次電池用正極活物質 LiPO(V)とLiMnO(III)とを、モル比で3:7となるように秤量する以外は、実施例4と同様な方法で、0.3LiPO-0.7LiMnO固溶体を合成した。
 図9(d)は、本実施例で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から本実施例で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、Li16/133/13Mn7/13であることを確認した。yLiPO-(1-y)LiMnO(y=0.3)に相当する0.3LiPO-0.7LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図9(d)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約5nmである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物0.3LiPO-0.7LiMnO(y=0.3)の電池特性を評価した。図10(d)に示す。
(実施例8)
一般式:zLiSO-(1-z)LiMnO(z=0.2)に相当する0.2LiSO-0.8LiMnO系リチウムイオン二次電池用正極活物質
<LiMnO(III)の複合酸化物の合成>
 実施例1と同様に、LiMnO(III)の複合酸化物を合成した。
<0.2LiSO-0.8LiMnO固溶体の合成>
 LiSO(VI)(シグマ・アルドリッチ製)と合成したLiMnO(III)とを、モル比で1:4となるように秤量し、それらのリン酸化合物と複合酸化物を用いる以外は、実施例1と同様に、固溶体を合成した。
 図13(e)は、実施例4で得られた複合酸化物の粉末についてのボールミル後のX線回折像を示す。X線回折像から実施例2で得られた複合酸化物の結晶構造が岩塩型構造であることを確認した。また、発光分光分析(ICP)により組成を分析して、LiS1/6Mn2/3であることを確認した。zLiSO-(1-z)LiMnO(z=0.2)に相当する0.2LiSO-0.8LiMnO系リチウムイオン二次電池用正極活物質を得た。
 図13(e)の42度の200回折線のピーク幅からシェラー式を用いて計算し得られた粒径が約5nmである。
(電池特性評価)
 実施例1と同様に、得られた複合酸化物0.2LiSO-0.8LiMnO(z=0.2)の電池特性を評価した。図14,15(b),16に示す。比較するために、LiMnO(z=0)の電気特性も同様に評価し、図15(a)に示す。
(電子顕微鏡によるEDS及びSEM観察)
図17、18は、合成した0.2LiSO-0.8LiMnOのEDS及びSEM画像を示す(炭素複合化前)。EDS画像でも、S-Mnのコントラスが均一であるため、SとMnの固溶を確認した。図19は、炭素複合化後のSEM画像を示す。
 図18のSEM写真から得られた2次粒子のサイズは0.5~5μmであり、一次粒子のサイズは300nm以下である。
(参考例2)
(メカニカルミリングによりLiSOとLiMnOの固溶条件の確認)
 メカニカルミリングの処理時間が12時間,24時間,48時間である以外は、実施例8と同様な方法で、0.2LiSO-0.8LiMnO固溶体を合成した。それぞれのX線回折像は図13(c)、(d)、(f)を示す。比較するために、LiSO(z=0)、LiMnO(z=1)のX線回折像も測定した(それぞれ、図13(b)、(a))。また、炭素膜を被覆した後の試料のX線回折像も測定した(図13(g))。メカニカルミリングの処理時間が24時間以上である場合、安定した固溶体が得られることがわかった。
 このような硫酸塩の固溶により、酸化物イオンの電荷補償が安定になり、高容量を発現したものと考えられる。
1…バッテリ、2…制御部、3…表示部、4…操作部、5…通信部、6…アンテナ、10…携帯電話機、11…電池モジュール、12…インバータ、13…モニター、14…制御部、15…車輪、20…電気自動車

Claims (10)

  1.  一般式(1)で表され、
     岩塩型構造を有し、
     平均粒径が100nm以下であることを特徴とするリチウムイオン二次電池用正極活物質。 
    xLiTiO-(w-x)LiMnO-(1-w)LiMnO(0≦x≦0.4、1/5≦w≦3/5、x≦w)・・・(1)
  2.  一般式(2)~(3)のいずれかで表され、
     岩塩型構造を有することを特徴とするリチウムイオン二次電池用正極活物質。
    yLiPO-(1-y)LiMnO(0.05<y<0.5)・・・(2)zLiSO-(1-z)LiMnO(0.05<z<0.5)・・・(3)
  3.  平均粒径が100nm以下である請求項2に記載のリチウムイオン二次電池用正極活物質。
  4.  前記一般式(1)~(3)で表されるリチウムイオン二次電池用正極活物質は、LiMnOと、(i)~(iii)のそれぞれとの固溶体である請求項1~3のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
    (i)LiTiOとLiMnO
    (ii)LiPO
    (iii)LiSO
  5.  前記一般式(1)におけるxが0<x<0.4であり、
     前記一般式(2)におけるyが0.1≦y≦0.3であり、または
     前記一般式(3)におけるzが0.1≦y≦0.3である請求項1~4のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
  6.  請求項1~5のいずれか一項に記載のリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
  7.  請求項6に記載のリチウムイオン二次電池用正極と負極と非水電解質とを備えるリチウムイオン二次電池。
  8.  初期充電容量が280mAh/g以上である、請求項7に記載のリチウムイオン二次電池。
  9.  請求項7又は8に記載したリチウムイオン二次電池を駆動用電源として備える電子機器。
  10.  請求項7又は8に記載したリチウムイオン二次電池を駆動用電源として備える車両。
PCT/JP2018/037723 2017-10-31 2018-10-10 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両 WO2019087717A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550972A JP7094570B2 (ja) 2017-10-31 2018-10-10 リチウムイオン二次電池、電子機器及び車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-211346 2017-10-31
JP2017211346 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087717A1 true WO2019087717A1 (ja) 2019-05-09

Family

ID=66333536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037723 WO2019087717A1 (ja) 2017-10-31 2018-10-10 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両

Country Status (2)

Country Link
JP (1) JP7094570B2 (ja)
WO (1) WO2019087717A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132675A1 (ja) * 2019-12-27 2021-07-01 日本ゼオン株式会社 電気化学デバイス用部材の製造またはリサイクル方法、電気化学デバイスの製造方法、電気化学デバイス用部材、並びに電気化学デバイス
JP2022553967A (ja) * 2019-10-22 2022-12-27 ダイソン・テクノロジー・リミテッド Lmoカソード組成物
JP2022554128A (ja) * 2019-10-22 2022-12-28 ダイソン・テクノロジー・リミテッド Lmoカソード組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274940A (ja) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology 陽イオン規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法
JP2011034943A (ja) * 2009-03-16 2011-02-17 Sanyo Electric Co Ltd 非水電解液二次電池
JP2012041257A (ja) * 2010-07-20 2012-03-01 National Institute Of Advanced Industrial Science & Technology リチウムマンガン系複合酸化物およびその製造方法
JP2014143038A (ja) * 2013-01-23 2014-08-07 Toray Ind Inc 正極活物質と導電性炭素の複合体粒子
WO2017169599A1 (ja) * 2016-03-31 2017-10-05 公立大学法人大阪府立大学 アモルファス酸化物系正極活物質、その製造方法及びその用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691711B2 (ja) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274940A (ja) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology 陽イオン規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法
JP2011034943A (ja) * 2009-03-16 2011-02-17 Sanyo Electric Co Ltd 非水電解液二次電池
JP2012041257A (ja) * 2010-07-20 2012-03-01 National Institute Of Advanced Industrial Science & Technology リチウムマンガン系複合酸化物およびその製造方法
JP2014143038A (ja) * 2013-01-23 2014-08-07 Toray Ind Inc 正極活物質と導電性炭素の複合体粒子
WO2017169599A1 (ja) * 2016-03-31 2017-10-05 公立大学法人大阪府立大学 アモルファス酸化物系正極活物質、その製造方法及びその用途

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553967A (ja) * 2019-10-22 2022-12-27 ダイソン・テクノロジー・リミテッド Lmoカソード組成物
JP2022554128A (ja) * 2019-10-22 2022-12-28 ダイソン・テクノロジー・リミテッド Lmoカソード組成物
WO2021132675A1 (ja) * 2019-12-27 2021-07-01 日本ゼオン株式会社 電気化学デバイス用部材の製造またはリサイクル方法、電気化学デバイスの製造方法、電気化学デバイス用部材、並びに電気化学デバイス
CN114830374A (zh) * 2019-12-27 2022-07-29 日本瑞翁株式会社 电化学装置用构件的制造或再利用方法、电化学装置的制造方法、电化学装置用构件、以及电化学装置

Also Published As

Publication number Publication date
JP7094570B2 (ja) 2022-07-04
JPWO2019087717A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
Akhilash et al. A journey through layered cathode materials for lithium ion cells–from lithium cobalt oxide to lithium-rich transition metal oxides
JP6560917B2 (ja) 正極材料、および正極材料を用いた非水電解質二次電池
US8231810B2 (en) Composite materials of nano-dispersed silicon and tin and methods of making the same
JP5505608B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
EP2203948B1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
US9960413B2 (en) LMFP cathode materials with improved electrochemical performance
CN105355920A (zh) 磷酸铁锂颗粒粉末及其制造方法、正极材料片和二次电池
CN102598372A (zh) 锂离子电池用的经涂覆正电极材料
Xiang et al. Enhanced electrochemical performances of Li 2 MnO 3 cathode materials by Al doping
WO2012035648A1 (ja) 非水電解液二次電池用活物質および非水電解液二次電池
WO2011077932A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体
CN103189316A (zh) 钴酸锂、其制造方法、锂二次电池用正极活性物质及锂二次电池
JP2018503937A (ja) ナトリウムイオン電池用のアノード材料及びその作製方法
WO2019087717A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
Lee et al. Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries
Firdous et al. Effect of Mg+ 2 and Bi+ 3 co-doping on structural and electrochemical properties of lithium titanium oxide for use as anode material in lithium-ion battery
JP6896283B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
Luo et al. Effects of doping Al on the structure and electrochemical performances of Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 cathode materials
CN107195856B (zh) 活性物质、非水电解质电池、电池包及车辆
JP5741882B2 (ja) 電極材料および電極並びにリチウムイオン電池
Zhang et al. Superior electrochemical properties of Zirconium and Fluorine co‐doped Li 1.20 [Mn 0.54 Ni 0.13 Co 0.13] O 2 as cathode material for lithium ion batteries
JP2017041382A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器、及び、車両
Liang et al. Modulating electrochemical properties by Fe3+ doping for cobalt-free Li1. 2Ni0. 26Mn0. 54O2 cathode material
Griffith et al. Translating a Material Discovery into a Commercial Product in the Modern Lithium-ion Battery Market
JP2023092886A (ja) 正極活物質、正極、リチウムイオンポリマー固体二次電池、リチウムイオン無機全固体二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873533

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019550972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873533

Country of ref document: EP

Kind code of ref document: A1