WO2019087485A1 - 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム - Google Patents

使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム Download PDF

Info

Publication number
WO2019087485A1
WO2019087485A1 PCT/JP2018/028138 JP2018028138W WO2019087485A1 WO 2019087485 A1 WO2019087485 A1 WO 2019087485A1 JP 2018028138 W JP2018028138 W JP 2018028138W WO 2019087485 A1 WO2019087485 A1 WO 2019087485A1
Authority
WO
WIPO (PCT)
Prior art keywords
superabsorbent polymer
aqueous solution
acidic aqueous
pulp fiber
size
Prior art date
Application number
PCT/JP2018/028138
Other languages
English (en)
French (fr)
Inventor
孝義 小西
利夫 平岡
加藤 孝
範朋 栗田
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to AU2018360432A priority Critical patent/AU2018360432B2/en
Priority to BR112020008506-5A priority patent/BR112020008506B1/pt
Priority to KR1020207002979A priority patent/KR102559361B1/ko
Priority to RU2020117217A priority patent/RU2020117217A/ru
Priority to CN201880068643.6A priority patent/CN111263670B/zh
Publication of WO2019087485A1 publication Critical patent/WO2019087485A1/ja
Priority to PH12020550527A priority patent/PH12020550527A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/44Devices worn by the patient for reception of urine, faeces, catamenial or other discharge; Portable urination aids; Colostomy devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • B03B1/04Conditioning for facilitating separation by altering physical properties of the matter to be treated by additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/32Defibrating by other means of waste paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to methods and systems for recovering pulp fibers and superabsorbent polymers from used absorbent articles.
  • Patent Document 1 discloses a method of separating and recovering a fiber and a superabsorbent polymer from a used disposable diaper.
  • a used disposable diaper is put into a pulper and dispersed in water to form a slurry.
  • the slurry is then treated with a screen, a cleaner to recover the superabsorbent polymer.
  • the dispersion containing the remaining fibers is treated by a washer / dehydrator or screen to recover the fibers.
  • the superabsorbent polymer is first separated and recovered from the mixture of the superabsorbent polymer of the used disposable diaper, the fiber and the other material, and then the fiber from the mixture of the pulp fiber and the other material Are separated and recovered.
  • the superabsorbent polymer / pulp fiber is separated from the mixture in which the other ingredients are mixed. Therefore, in order to obtain a highly water-absorptive polymer or pulp fiber containing hardly any other material, it is necessary to perform high-precision separation for each of the separation of the highly water-absorptive polymer and the separation of pulp fiber. In this case, the time taken for the separation process may be long, and the efficiency of the separation process may be reduced.
  • An object of the present invention is to provide a method and system capable of separating superabsorbent polymer and pulp fiber with high processing efficiency when recovering pulp fibers and superabsorbent polymer from used absorbent articles. is there.
  • the method for recovering pulp fibers and superabsorbent polymer from used absorbent articles containing pulp fibers and superabsorbent polymer in the present invention is as follows.
  • a method for recovering pulp fibers and superabsorbent polymer from used absorbent articles comprising pulp fibers and superabsorbent polymer, which comprises pulp fibers and superabsorbent polymer separated from used absorbent articles
  • the difference between the specific gravity of the superabsorbent polymer and the specific gravity of the pulp fiber is within a predetermined range
  • the difference between the size of the superabsorbent polymer and the size of the pulp fiber is within a predetermined range.
  • the specific gravity for separating the pulp fiber and the superabsorbent polymer from other materials using a difference in specific gravity while maintaining the pH in a predetermined range in the acidic aqueous solution containing the superabsorbent polymer A separation step.
  • the specific gravity of the superabsorbent polymer is larger than that of water, when the superabsorbent polymer absorbs water, it approaches the specific gravity of water according to the amount of water absorption.
  • the size of the superabsorbent polymer is small, when the superabsorbent polymer absorbs water, the size increases according to the amount of water absorption.
  • the amount of water that can be absorbed and retained by the superabsorbent polymer is very large, but the amount is limited to a certain extent by subjecting the superabsorbent polymer to inactivation treatment.
  • the size and specific gravity of the superabsorbent polymer can be adjusted to desired values by adjusting the amount of water retained by the superabsorbent polymer depending on the degree of inactivation treatment of the superabsorbent polymer.
  • a treatment of immersing the super absorbent polymer in a predetermined solution (example: acidic aqueous solution) may be mentioned.
  • the superabsorbent polymer is inactivated with the pH-adjusted acidic aqueous solution in the inactivation step to adjust the water absorption amount of the superabsorbent polymer, and the specific gravity and size of the superabsorbent polymer And the difference between the specific gravity and the size of the pulp fibers is within a predetermined range.
  • one within the predetermined range is, for example, within the range of 0.2 to 5 times the other.
  • the difference between the pulp fiber and the superabsorbent polymer is that the specific gravity is within a predetermined range and the size is within a predetermined range.
  • pulp fibers and superabsorbent polymers are used in size differences with other materials (mainly resin materials) other than pulp fibers and superabsorbent polymers among materials of used absorbent articles. It can be easily separated, and it can be easily separated by using the material having a large specific gravity (mainly a metal material) among other materials and the difference in specific gravity. Then, by separating the pulp fiber and the superabsorbent polymer from each other, the pulp fiber and the superabsorbent polymer can be recovered from the used absorbent article. At this time, it is possible to reduce the number of processes for separating the pulp fiber and the superabsorbent polymer from the other materials.
  • the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • a film such as a back sheet
  • a non-woven cloth such as a top sheet
  • an elastic body a leak-proof wall
  • Rubber etc.
  • materials having a large specific gravity such as metal materials, include clips and staple needles which are not included in the original absorbent article but are mixed at the time of recovery of the used absorbent article.
  • the size of the superabsorbent polymer refers to the particle size of the superabsorbent polymer, which is the diameter when the superabsorbent polymer is spherical, and the longest width when it is massive.
  • the size of pulp fibers is the average fiber length of pulp fibers.
  • the predetermined range of pH is a range of fluctuation of pH within ⁇ 1.0.
  • the method comprises the step of: (2) the specific gravity separation step separating the pulp fiber and the superabsorbent polymer from the other material by centrifugation. It may be.
  • the difference in specific gravity between the pulp fiber and the superabsorbent polymer is within a predetermined range. Therefore, it is possible to more accurately separate the pulp fibers and the superabsorbent polymer from other materials (materials with high specific gravity, such as metal materials) by centrifugation. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the size separation step is a screen separation step in which the pulp fiber and the superabsorbent polymer and the other material are separated using a screen having a plurality of openings of a predetermined size.
  • the method according to the above (1) or (2) may be included.
  • the difference in size between the pulp fiber and the superabsorbent polymer is within a predetermined range. Therefore, by passing a screen having a plurality of openings of a predetermined size, the pulp fiber and the highly water-absorptive polymer can be more accurately extracted from other materials (mainly resin members, for example, films such as back sheets, top sheets, etc. Can be separated from non-woven fabric, rubber, etc.). This can increase the efficiency of the process of separating the superabsorbent polymer and the pulp fibers.
  • the present method comprises the steps of: (4) prior to the size separation step, in the acidic aqueous solution containing the pulp fiber and the superabsorbent polymer, maintaining the pH within a predetermined range, A coarse-size separation step of separating the water-absorbent polymer and the other material by passing through a screen having a plurality of openings larger than a plurality of openings of the screen used in the size separation step;
  • the method according to any one of (1) to (3) may be used.
  • the method can remove relatively large other materials by passing through a screen with larger openings prior to the size separation step. As a result, in the size separation step, it is possible to prevent the screen from being clogged with a relatively large other material and lowering the efficiency of the separation processing.
  • a ratio of the pulp fiber and the superabsorbent polymer in the acidic aqueous solution formed in the inactivating step is 0.1% by mass or more and 10% by mass or less.
  • the method according to any one of (1) to (4) may be used. In this method, by setting the ratio of pulp fiber and super absorbent polymer in the acidic aqueous solution to 0.1 mass% or more and 10 mass% or less, separation of pulp fiber and super absorbent polymer from other materials is further ensured. Can be done. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the acidic aqueous solution has a pH of 1 or more and 4 or less.
  • the pH of the acidic aqueous solution is adjusted to 1 or more and 4 or less, the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fiber can be made closer to each other. .
  • the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the acidic aqueous solution may be a method according to any one of the above (1) to (6), which comprises citric acid.
  • the acidic aqueous solution contains citric acid (example: concentration of 0.5 to 2.0% by mass)
  • the superabsorbent polymer is reliably dewatered, and the specific gravity and size of the superabsorbent polymer,
  • the specific gravity and size of the pulp fibers can be made closer to each other, respectively. Thereby, it is possible to more reliably separate the pulp fibers and superabsorbent polymer from the other materials.
  • the bad influence to the worker by an acid and the corrosion of the apparatus of each process can be suppressed. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the method further comprises (8) a polymer separation step of separating the superabsorbent polymer from the aqueous pulp containing the pulp fibers separated in the specific gravity separation step and the superabsorbent polymer.
  • the method according to any one of (7) may be used. In this method, since the pulp fiber and the superabsorbent polymer are removed from the other materials, the pulp fiber and the superabsorbent polymer are easily separated from each other by separating the pulp fiber and the superabsorbent polymer from each other. Can be collected.
  • the system used to recover pulp fibers and superabsorbent polymers from used absorbent articles comprising pulp fibers and superabsorbent polymers in the present invention is as follows.
  • a system for recovering pulp fibers and superabsorbent polymer from used absorbent articles comprising pulp fibers and superabsorbent polymer, wherein the pulp fibers and superabsorbent polymer are separated from the used absorbent articles The difference between the specific gravity of the polymer, the superabsorbent polymer and the specific gravity of the pulp fiber is within a predetermined range, and the difference between the size of the superabsorbent polymer and the size of the pulp fiber is within a predetermined range
  • the pH is adjusted within a predetermined range in the acidic aqueous solution containing the pulp fiber and the superabsorbent polymer, wherein the superabsorbent polymer is inactivated by mixing an acidic aqueous solution whose pH is adjusted as described above.
  • a screen that separates the pulp fibers and the superabsorbent polymer and other materials using a screen having a plurality of openings of a predetermined size while maintaining the And the acidic aqueous solution containing the pulp fiber and the superabsorbent polymer, the pulp fiber, the superabsorbent polymer, and the other material are centrifuged while maintaining the pH within a predetermined range. And (c) separating by means of a cyclone separator. This system inactivates super absorbent polymer with pH adjusted acidic aqueous solution, adjusts the water absorption of super absorbent polymer, and specific gravity and size of super absorbent polymer, specific gravity and size of pulp fiber respectively So that the difference between them is within a predetermined range.
  • pulp fibers and superabsorbent polymers can be easily utilized by taking advantage of differences in size, mainly from resin materials among other materials of used absorbent articles other than pulp fibers and superabsorbent polymers. It can be separated and easily separated from other materials having a higher specific gravity, such as metal materials, using the difference in specific gravity. Then, by separating the pulp fiber and the superabsorbent polymer from each other, the pulp fiber and the superabsorbent polymer can be recovered from the used absorbent article.
  • the superabsorbent polymer and the pulp fiber are not separated from the mixture in which the other materials are separately mixed, it is possible to reduce the number of times of separating the pulp fiber and the superabsorbent polymer from the other material. That is, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the pulp fiber and the high water content are maintained in a predetermined range in the acidic aqueous solution containing the pulp fiber and the superabsorbent polymer before the screen separator.
  • the system of The present system is equipped with a coarse screen separator in front of the screen separator, so by passing the screen with a plurality of larger openings it removes relatively large other material in front of the screen separator be able to. Thereby, in front of the screen separator, it is possible to prevent the screen from being clogged with a relatively large other material and reducing the efficiency of the separating process.
  • the ratio of the pulp fiber and the superabsorbent polymer in the acidic aqueous solution containing the inactivated superabsorbent polymer is 0.1% by mass or more and 10% by mass or less.
  • the system described in the above (9) or (10) may be used. In this system, by setting the ratio of pulp fiber and super absorbent polymer in the acidic aqueous solution to 0.1 mass% or more and 10 mass% or less, separation of pulp fiber and super absorbent polymer from other materials is further assured. Can be done. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • This system may be the system according to any one of the above (9) to (11), wherein (12) the acidic aqueous solution has a pH of 1 or more and 4 or less.
  • the pH of the acidic aqueous solution is adjusted to 1 or more and 4 or less, the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fiber can be made closer to each other. . Thereby, it is possible to more reliably separate the pulp fibers and superabsorbent polymer from the other materials. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the system may be (13) a system according to any one of (9) to (12) above, wherein the acidic aqueous solution comprises citric acid.
  • the acidic aqueous solution contains citric acid (example: concentration of 0.5 to 2.0% by mass)
  • the superabsorbent polymer is reliably dewatered, and the specific gravity and size of the superabsorbent polymer,
  • the specific gravity and size of the pulp fibers can be made closer to each other, respectively. Thereby, it is possible to more reliably separate the pulp fibers and superabsorbent polymer from the other materials.
  • the bad influence to the worker by an acid and the corrosion of the apparatus of each process can be suppressed. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the system further comprises: (14) a drum screen separator for separating the superabsorbent polymer from the aqueous acidic solution containing the pulp fibers and the superabsorbent polymer separated by the cyclone separator by a drum screen.
  • a drum screen separator for separating the superabsorbent polymer from the aqueous acidic solution containing the pulp fibers and the superabsorbent polymer separated by the cyclone separator by a drum screen.
  • the system according to any one of (9) to (13) may be used. Since the present system is equipped with a drum screen separator, it is easy to separate the pulp fibers and the superabsorbent polymer from each other after the pulp fibers and superabsorbent polymer have been removed from the other materials, Pulp fibers and superabsorbent polymer can be recovered separately.
  • FIG. 1 It is a block diagram showing an example of a system concerning an embodiment. It is a schematic diagram which shows the structural example of the bag-breaking apparatus of FIG. 1, and a crushing apparatus. It is a flowchart which shows an example of the method concerning embodiment.
  • a used absorbent article is an absorbent article used by the user, and includes an absorbent article in a state where it absorbs and holds the user's excrement, and although it is used, it absorbs the excrement. It includes items that are not held and those that are unused but discarded.
  • a disposable diaper, a urine absorption pad, a sanitary napkin, a bed sheet, and a pet sheet are mentioned, for example.
  • the method for recovering pulp fibers from the used absorbent article according to the present embodiment can be said to be a method for producing recycled pulp fibers from used absorbent articles because recycled pulp fibers are produced. Furthermore, in the method for recovering pulp fibers from the used absorbent article according to the present embodiment, the super absorbent polymer is recovered along with the pulp fibers along the way, and the recycled super absorbent polymer is generated by separation. It can also be said to be a method for recovering superabsorbent polymer from absorbent articles or a method for producing recycled superabsorbent polymer. Here, it demonstrates as a method of collect
  • the absorbent article comprises a top sheet, a back sheet, and an absorber disposed between the top sheet and the back sheet.
  • An example of the size of the absorbent article includes a length of about 15 to 100 cm and a width of 5 to 100 cm.
  • the absorbent article may further contain other members, such as a diffusion sheet, a leak-barrier, etc. with which a general absorbent article is provided.
  • the nonwoven fabric of liquid permeability, the synthetic resin film which has a liquid permeation hole, the composite sheet of these, etc. are mentioned, for example.
  • the liquid impervious nonwoven fabric, the liquid impervious synthetic resin film, and these composite sheets are mentioned, for example.
  • a structural member of a diffusion sheet a liquid permeable nonwoven fabric is mentioned, for example.
  • the component of the leak-proof wall include a liquid-impervious non-woven fabric, and may include an elastic member such as rubber.
  • the material of the non-woven fabric and the synthetic resin film is not particularly limited as long as it can be used as an absorbent article, but, for example, olefin resins such as polyethylene and polypropylene, and polyamides such as 6-nylon and 6,6-nylon And polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • olefin resins such as polyethylene and polypropylene
  • polyamides such as 6-nylon and 6,6-nylon
  • polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the components of the absorber include absorber materials, i.e. pulp fibers and superabsorbent polymers.
  • the pulp fiber is not particularly limited as long as it can be used as an absorbent article, and examples thereof include cellulosic fibers.
  • Examples of cellulose fibers include wood pulp, crosslinked pulp, non-wood pulp, regenerated cellulose, semi-synthetic cellulose and the like.
  • As the size of the pulp fiber for example, an average value of the major axis of the fiber may be several tens ⁇ m, preferably 20 to 40 ⁇ m, an average value of the fiber length may be several mm, for example 2 to 5 mm.
  • the super absorbent polymer (SuperAbsorbent Polymer: SAP) is not particularly limited as long as it can be used as an absorbent article, but for example, a polyacrylate based, polysulfonate based, and anhydrous maleate based water absorbing polymer It can be mentioned.
  • the size (at the time of drying) of the superabsorbent polymer is, for example, several hundred ⁇ m in average particle diameter, preferably 200 to 500 ⁇ m.
  • One side and the other side of the absorber are respectively bonded to the top sheet and the back sheet via an adhesive.
  • a portion (peripheral portion) of the top sheet extending to the outside of the absorber so as to surround the absorber is a portion on the outside of the absorber so as to surround the absorber of the back sheet. It is joined with the extended part (peripheral part) via an adhesive. Therefore, the absorber is encased within the joined body of the top sheet and the back sheet.
  • the adhesive is not particularly limited as long as it can be used as an absorbent article and the bonding strength is reduced by softening or the like with warm water described later, and examples thereof include a hot melt adhesive.
  • a hot-melt adhesive for example, a pressure-sensitive adhesive or a heat-sensitive adhesive mainly composed of rubber such as styrene-ethylene-butadiene-styrene, styrene-butadiene-styrene, styrene-isoprene-styrene or olefin based such as polyethylene Agents.
  • used absorbent articles are recovered and obtained from the outside for reuse (recycling).
  • a plurality of used absorbent articles are enclosed in a collection bag (hereinafter also referred to as “collection bag”) so that dirt (excrements etc.), fungi and odor do not leak to the outside.
  • the individual used absorbent articles in the collection bag are mainly rolled up inside the surface sheet on which the excrement is excreted so that the excrement is not exposed to the front side and the odor is not diffused to the surroundings. It is recovered etc. in the closed or folded state.
  • FIG. 1 is a block diagram showing an example of a system 1 according to the present embodiment.
  • the system 1 includes a second dust remover 15 and a third dust remover 16, and preferably, the bag removing device 11, the shredding device 12, the first separating device 13, and the first dust remover 14 , A second separation device 17, a third separation device 18, an oxidant processing device 19, and a fourth separation device 20. The details will be described below.
  • the bag-breaking device 11 punctures the collection bag containing the used absorbent article in the inactivated aqueous solution.
  • the crusher 12 crushes the used absorbent articles in the inactivated aqueous solution, which is sunk below the surface of the inert aqueous solution, together with the collection bag.
  • the inactivating aqueous solution is an aqueous solution which inactivates the super absorbent polymer, and the water absorption performance of the super absorbent polymer is lowered by the inactivation. Thereby, the superabsorbent polymer releases water, i.e. dehydrates, to an amount that is acceptable for water absorption if it is absorbing more water than the reduced water absorption capacity.
  • an acidic aqueous solution is used as an inactivation aqueous solution is demonstrated to an example.
  • FIG. 2 is a schematic view showing a configuration example of the bag removing device 11 and the crushing device 12 of FIG.
  • the bag-breaking apparatus 11 stores, for example, the acidic aqueous solution B supplied via a pipe provided with a valve, and punctures the collection bag A placed in the acidic aqueous solution B.
  • the bag tearing apparatus 11 includes a solution tank V and a perforation 50.
  • the solution tank V holds the acidic aqueous solution B.
  • the perforations 50 are provided in the solution tank V, and when the collection bag A is placed in the solution tank V, holes are formed in the surface of the collection bag A in contact with the acidic aqueous solution B.
  • the piercing unit 50 includes a feeding unit 30 and a bag opening 40.
  • the feed unit 30 feeds (pulls) the collection bag A into the acidic aqueous solution B in the solution tank V (physically forced).
  • the feed unit 30 is, for example, a stirrer, and includes a stirring blade 33, a support shaft (rotary shaft) 32 for supporting the stirring blade 33, and a drive device 31 that rotates the support shaft 32 along the axis.
  • the stirring blade 33 rotates around the rotation shaft (support shaft 32) by the drive device 31 to generate a swirling flow in the acidic aqueous solution B.
  • the feed unit 30 draws the collection bag A toward the bottom of the acidic aqueous solution B (solution tank V) by the swirling flow.
  • the tear-off portion 40 is disposed at the lower portion (preferably the bottom) of the solution tank V, and the tear-off blade 41, a support shaft (rotation shaft) 42 for supporting the tear-off blade 41, and the support shaft 42 And a driving device 43 that rotates along with the driving device.
  • the tearing blade 41 makes a hole in the collection bag A moved to the lower part of the acidic aqueous solution B (solution tank V) by rotating around the rotating shaft (supporting shaft 42) by the drive device 43.
  • the lower part of the solution tank V indicates a portion below the half position in the height direction of the solution tank V.
  • the tearing blade 41 of the punching portion 50 of the tearing device 11 may move up and down in the solution tank V while rotating around the rotation shaft (supporting shaft 42). In that case, by moving the tear-off blade 41 upward, even if the collection bag A does not move to the lower part of the acidic aqueous solution B (solution tank V), a hole can be made in the collection bag A.
  • the crushing apparatus 12 crushes the used absorbent articles in the collection bag A sunk below the surface of the acidic aqueous solution B together with the collection bag A.
  • the crushing apparatus 12 includes a crushing unit 60 and a pump 63.
  • the crushing unit 60 is connected to the solution tank V by the pipe 61, and the used absorbent article (mixed liquid 91) in the collection bag A delivered together with the acidic aqueous solution B from the solution tank V is acidified with the collection bag A. Crush in aqueous solution B.
  • a twin screw crusher (example: twin screw rotary crusher, twin screw differential crusher, twin screw shearing crusher) may be mentioned, and for example, a smear cutter (Sumitomo Heavy Industries Environment Co., Ltd.) Manufactured by The pump 63 is connected by the crushing unit 60 and the pipe 62, and the crushed material obtained in the crushing unit 60 is drawn out from the crushing unit 60 together with the acidic aqueous solution B (mixed liquid 92) and delivered to the next process.
  • the crushed material includes pulp fiber and super absorbent polymer, and other materials (material of collection bag A, film, nonwoven fabric, elastic body, etc.). It is preferable that the bag removing device 11 and the shredding device 12 be different devices.
  • the first separation device 13 is a wash that stirs the liquid mixture 92 containing the crushed material obtained by the crushing device 12 and the acidic aqueous solution to remove dirt (excrement etc.) from the crushed material.
  • the pulp fiber, the superabsorbent polymer and the acidic aqueous solution are separated from the mixed solution 92 (mixed solution 93) and sent to the first dust remover 14.
  • the first separation device 13 may be, for example, a washing machine equipped with a washing and dewatering tank and a water tub surrounding the same. However, a washing tank and dewatering tank (rotary drum) is used as a washing tank and sieving tank (separation tank).
  • the size of the plurality of through holes provided on the circumferential surface of the washing tank is such that pulp fibers and highly water-absorptive polymer in the crushed material can easily pass through and other materials can not easily pass through.
  • the washing machine include a horizontal washing machine ECO-22B (manufactured by Inamoto Seisakusho Co., Ltd.).
  • the used absorbent article may be crushed in a gas (e.g., in the air) in a gas (e.g., in the air) without crushing the used absorbent article together with the collection bag in the inactivated aqueous solution (e.g., acidic aqueous solution).
  • the bag-breaking device 11 is unnecessary, and the crushing device 12 shreds in the air without the inactivating aqueous solution. Thereafter, the crushed material of the crushing device 12 and the inactivated aqueous solution are supplied to the first separation device 13.
  • an acidic aqueous solution is not used as the inactivating aqueous solution between the bag removing device 11 to the first separation device 13, the acidic aqueous solution is added from the first dust removing device 14 and the pulp supplied to the first dust removing device 14
  • An inactivated aqueous solution containing a fiber and a superabsorbent polymer is a substantially acidic aqueous solution.
  • the first dust remover 14 has a plurality of openings with an acidic aqueous solution (mixed liquid 93) containing pulp fibers and super absorbent polymer delivered from the first separator 13 while maintaining the pH within a predetermined range.
  • the screen separates the pulp fiber and the superabsorbent polymer (mixed liquid 94) in the acidic aqueous solution and other materials (foreign matter).
  • a liquid example: water
  • a liquid with substantially the same pH (example: (Acidic aqueous solution)
  • the predetermined range is a range of fluctuation of pH within ⁇ 1.0.
  • the first dust remover 14 is, for example, a screen separator (coarse screen separator).
  • the openings of the screen are not particularly limited, and examples thereof include slits, round holes, square holes, and meshes.
  • round holes are used.
  • the size of the opening, that is, the size (diameter) of the round hole is such a size that the pulp fiber and the superabsorbent polymer can pass, and other materials (foreign material) which can not be removed by the first separating device 13 can not pass easily And the size of the opening of the screen of the second dust remover 15.
  • the size of the round hole is, for example, 2 to 5 mm in diameter, whereby other materials (foreign matter) of at least about 10 mm square can be removed.
  • the size (width) of the slit is, for example, 2 to 5 mm.
  • the mixed solution 93 delivered from the first separating device 13 may be supplied to the first dust removing device 14 while being pressurized (example: 0.5 to 1 kgf / cm 2 ). Good.
  • the first dust remover 14 include pack pulper (manufactured by Satomi Seisakusho Co., Ltd.).
  • the second dust remover 15 has a plurality of openings with an acidic aqueous solution (mixed liquid 94) containing pulp fibers and super absorbent polymer delivered from the first dust remover 14 while maintaining the pH within a predetermined range.
  • the screen separates the pulp fiber and the superabsorbent polymer (mixed liquid 95) in the acidic aqueous solution and other materials (foreign matter).
  • the second dust remover 15 is, for example, a screen separator.
  • the opening of the screen (sieve) is not particularly limited, and examples thereof include slits, round holes, square holes, and meshes. Here, slits are used.
  • the size (width) of the slit is a size through which the pulp fiber and the superabsorbent polymer can pass, and the size through which other materials (foreign matter) which can not be removed by the first dust remover 14 can not pass easily.
  • the size of the slit is, for example, 0.2 to 0.5 mm in width, whereby other materials (foreign matter) of at least about 3 mm square can be removed.
  • the size (diameter) of the round hole is, for example, 0.2 to 0.5 mm in diameter.
  • the mixed solution 94 delivered from the first dust removing device 14 may be supplied to the second dust removing device 15 while being pressurized (example: 0.5 to 2 kgf / cm 2 ). Good.
  • the pressure is preferably higher than the pressure of the first dust remover 14 from the viewpoint of removing relatively small foreign matter.
  • the second dust remover 15 include Lamo Screen (manufactured by Aikawa Tekko Co., Ltd.).
  • the third dust remover 16 centrifuges the acidic aqueous solution (mixed liquid 95) containing the pulp fiber and the superabsorbent polymer delivered from the second dust remover 15, while maintaining the pH within a predetermined range, Pulp fibers and super absorbent polymer (mixed liquid 96) in an acidic aqueous solution and other materials (foreign matter) are separated.
  • the third dust remover 16 is, for example, a cyclone separator. Pulp fiber and super absorbent polymer at a predetermined flow rate so that pulp fibers and super absorbent polymer in an acidic aqueous solution having a relatively low specific gravity rise and foreign substances (such as metals) having a higher specific gravity lower than those. Is supplied into an inverted conical housing (not shown) of the third dust remover 16.
  • the third dust remover 16 is exemplified by an ACT low concentration cleaner (manufactured by Aikawa Tekko Co., Ltd.).
  • the second separation device 17 mixes the pulp fiber in the acidic aqueous solution (mixture 96) with the pulp aqueous solution (mixed liquid 96) containing the pulp fiber and the superabsorbent polymer delivered from the third dust collector 16 by the screen having a plurality of openings.
  • the solution 97) and the superabsorbent polymer in an acidic aqueous solution are separated. Therefore, it can also be viewed as a dehydrator that removes the acidic aqueous solution from the liquid mixture 96 together with the superabsorbent polymer.
  • the second separation device 17 is, for example, a drum screen separator.
  • the opening of the drum screen is not particularly limited, and may be, for example, a slit, a round hole, a square, or a mesh hole.
  • a slit is used.
  • the size (width) of the slit is a size through which the superabsorbent polymer can pass, and a size through which pulp fibers can not pass easily.
  • the size of the slit is, for example, 0.2 to 0.8 mm wide, which allows at least many superabsorbent polymers to be removed.
  • the size of the round hole is, for example, 0.2 to 0.8 mm in diameter.
  • Examples of the second separation device 17 include a drum screen dehydrator (manufactured by Toyo Screen Co., Ltd.).
  • the third separation device 18 is a pulp fiber and a high water content polymer that has been delivered from the second separation device 17, and the superabsorbent polymer remaining after separation and the acidic aqueous solution (mixture liquid 97) with a screen having a plurality of openings. While separating into a solid (mixture 98) containing a water absorbing polymer and a liquid containing a high water absorbing polymer and an acidic aqueous solution, pressure is applied to the solid to crush the high water absorbing polymer in the solid. Therefore, the third separation device 18 can also be viewed as a pressure dehydration type dehydrator that removes the acidic aqueous solution from the liquid mixture 97 together with the superabsorbent polymer.
  • the third separation device 18 is, for example, a screw press dehydrator.
  • the opening of the drum screen (sieve) is not particularly limited, and may be, for example, a slit, a round hole, a square, or a mesh hole.
  • a slit is used.
  • the size (width) of the slit is a size through which the superabsorbent polymer can pass and a size through which the pulp fiber can not pass easily.
  • the size of the slit is, for example, 0.1 to 0.5 mm in width, and at least the remaining superabsorbent polymer can be removed.
  • the third separation device 18 delivers the liquid containing the superabsorbent polymer and the acidic aqueous solution from the slit of the side surface of the drum screen, and the pulp fiber and the superabsorbent polymer from the gap of the lid in which the pressure of the tip of the drum screen is adjusted. The solids contained are delivered while crushing the superabsorbent polymer.
  • the pressure applied to the lid may be, for example, 0.01 MPa or more and 1 MPa or less.
  • a screw press dehydrator manufactured by Kawaguchi Seiki Co., Ltd.
  • the oxidizing agent processing unit 19 processes the pulp fiber (mixture 98) containing the crushed super absorbent polymer in the solid delivered from the third separating unit 18 with an aqueous solution (processing solution) containing an oxidizing agent. Thereby, the superabsorbent polymer is oxidatively decomposed to be removed from the pulp fibers, and the pulp fibers not containing the superabsorbent polymer are delivered together with the treatment liquid (mixed liquid 99).
  • an oxidizing agent processing apparatus is equipped with a processing tank and an ozone supply apparatus, for example.
  • the treatment tank stores the acidic aqueous solution as a treatment liquid.
  • An ozone supply apparatus supplies ozone containing gas which is a gaseous substance to a processing tank.
  • the ozone generator of the ozone supply apparatus include an ozone water exposure tester ED-OWX-2 manufactured by Ecodesign Co., Ltd. and an ozone generator OS-25V manufactured by Mitsubishi Electric Corporation.
  • the nozzle of the ozone supply device is disposed at the lower part of the treatment tank and has, for example, a tubular or flat shape.
  • the nozzle supplies the ozone-containing gas Z into the processing liquid as a plurality of fine bubbles.
  • an acidic aqueous solution is preferable from a viewpoint of suppression of the deactivation of ozone, and inactivation of a super absorbent polymer.
  • an organic acid is preferable from the viewpoint of reducing the influence of an acid on a worker or a device, and citric acid is more preferable from the viewpoint of metal removal.
  • ozone gas is used as the oxidizing agent, the present embodiment is not limited to this example, and another oxidizing agent may be used, and a liquid oxidizing agent even if it is not a gaseous oxidizing agent Or, a solid oxidizing agent may be melted in a liquid.
  • the oxidizing agent include chlorine dioxide, peracetic acid, sodium hypochlorite and hydrogen peroxide.
  • the fourth separation device 20 recovers pulp fibers by separating the pulp fibers from the treatment liquid (mixed liquid 99) containing the pulp fibers treated by the oxidant treatment device 19 with a screen having a plurality of openings. And recycled pulp fibers are produced.
  • the fourth separation device 20 include a screen separator.
  • the opening of the screen (sieve) is not particularly limited, and examples thereof include slits, round holes, square holes, and meshes.
  • slits are used.
  • the size (width) of the slit is such that pulp fibers can not easily pass through.
  • the size of the slit is, for example, 0.2 to 0.8 mm in width. In the case of a round hole, the size of the round hole is, for example, 0.2 to 0.8 mm in diameter.
  • the system 1 preferably includes an ozone treatment device 22, a pH adjustment device 23, and a water storage tank 24. These devices are devices for regenerating and reusing the acidic aqueous solution used in the system 1. Reuse of the acidic aqueous solution can reduce the cost of the acidic aqueous solution.
  • the ozone treatment device 22 sterilizes the superabsorbent polymer separated by the second separator 17 and the acidic aqueous solution 101 after the superabsorbent polymer is further separated from the acidic aqueous solution with an ozone-containing aqueous solution.
  • the pH adjusting device 23 adjusts the pH of the acidic aqueous solution 102 sterilized with the ozone-containing aqueous solution to generate a regenerated acidic aqueous solution 103.
  • the water storage tank 24 stores the surplus of the regenerated acidic aqueous solution 103.
  • FIG. 6 is a flowchart showing an example of a method according to the present embodiment.
  • This method comprises a second dust removal step S15 and a third dust removal step S16, and preferably includes a drilling step S11, a crushing step S12, a first separation step S13, a first dust removal step S14, and a first dust removal step S14.
  • the third separation process S18, the oxidizing agent treatment process S19, the second separation process S17, and the fourth separation process S20 are provided. The details will be described below.
  • the punching process S11 is performed by the bag opening apparatus 11.
  • the collection bag A in which the used absorbent article is sealed is put into the solution tank V storing the acidic aqueous solution B, and a hole is made in the surface of the collection bag A in contact with the acidic aqueous solution B.
  • the acidic aqueous solution B is enclosed and sealed around the collection bag A so that the dirt, fungus and odor of the used absorbent article in the collection bag A are not released to the outside when the collection bag A is punctured. Do.
  • the acidic aqueous solution intrudes into the collection bag A from the hole, the gas in the collection bag A escapes to the outside of the collection bag A, and the specific gravity of the collection bag A becomes heavier than the acidic aqueous solution B. Settle down.
  • the acidic aqueous solution B inactivates the superabsorbent polymer in the used absorbent article in the collection bag A.
  • the superabsorbent polymer in the used absorbent article is inactivated and its ability to absorb water is reduced, so that the superabsorbent polymer is dewatered and the particle size is reduced, making it easy to handle in each subsequent step Process efficiency is improved.
  • the reason for using an acidic aqueous solution, ie, an aqueous solution of an inorganic acid and an organic acid, as the inactivating aqueous solution is that ash does not remain in the pulp fiber as compared with an aqueous solution such as lime or calcium chloride. It is because it is easy to adjust the particle size and the size of specific gravity by pH.
  • the pH of the acidic aqueous solution is preferably 1.0 or more and 4.0 or less, and more preferably 1.2 or more and 2.5 or less. If the pH is too high, the water absorbing ability of the superabsorbent polymer can not be sufficiently reduced. In addition, the sterilization capacity may be reduced. If the pH is too low, equipment may be corroded, and a large amount of alkali chemicals are required for neutralization treatment during wastewater treatment. In particular, in order to separate the pulp fibers and the superabsorbent polymer from the other materials, it is preferable that the size and specific gravity of the pulp fibers be relatively close to the size and specific gravity of the superabsorbent polymer.
  • the superabsorbent polymer can be made smaller by inactivation, whereby the size and specific gravity of pulp fiber and superabsorbent property
  • the size and specific gravity of the polymers can be relatively close to one another.
  • the organic acid include citric acid, tartaric acid, glycolic acid, malic acid, succinic acid, acetic acid, ascorbic acid and the like, with hydroxycarbonate organic acids such as citric acid, tartaric acid and gluconic acid being particularly preferable. .
  • the inorganic acid include sulfuric acid, hydrochloric acid and nitric acid, but sulfuric acid is preferable from the viewpoint of containing no chlorine and cost.
  • the pH in the present invention refers to the pH measured at an aqueous solution temperature of 20 ° C.
  • the organic acid concentration of the organic acid aqueous solution is not particularly limited, but when the organic acid is citric acid, 0.5 mass% or more and 4 mass% or less is preferable.
  • the inorganic acid concentration of the inorganic acid aqueous solution is not particularly limited, but when the inorganic acid is sulfuric acid, 0.1 mass% or more and 0.5 mass% or less is preferable.
  • the swirling flow is generated in the acidic aqueous solution B by rotation of the stirring blade 33 around the rotation shaft (support shaft 32), and the collection bag A is physically forced. It is drawn toward the bottom of the aqueous solution B (solution tank V). Then, the collection bag A moved to the bottom portion contacts the tear-off blade 41 by the rotation of the tear-off blade 41 around the rotation axis (supporting shaft 42), and a hole is made. It should be noted that if the tearing blade 41 can move up and down in the solution tank V, the tearing blade 41 does not draw in the direction of the bottom of the acidic aqueous solution B (solution tank V) by the swirling flow. It may move upward and make a hole in the collection bag A.
  • the crushing step S12 is performed by the crushing device 12.
  • the whole is crushed in the acidic aqueous solution B.
  • the crushing apparatus 12 of FIG. 2 first, the used absorbent articles in the collection bag A delivered together with the acidic aqueous solution B from the solution tank V by the crushing unit 60 are crushed in the acidic aqueous solution B together with the collection bag A It is done (in-liquid crushing process).
  • the mixed solution 91 is supplied to the rotary blades and spacers in the twin-screw crusher which are engaged with each other to rotate inward, and the collection bag A is crushed together with the bag. Then, the acidic aqueous solution B (mixed liquid 92) containing the crushed material obtained in the crushing part 60 (in-liquid crushing step) is drawn out from the crushing part 60 by the pump 63 (draw-out step) and delivered to the next step.
  • the crushing step S12 it is preferable to have a step of crushing the used absorbent article together with the collection bag A such that the average value of the size of the crushed material is 50 mm or more and 100 mm or less.
  • the absorbent article a length of about 150 to 1000 mm and a width of 100 mm to 1000 mm are assumed.
  • the recovery rate of the pulp fibers (total amount of pulp fibers regenerated / the pulp fibers of the used absorbent articles supplied Total amount).
  • the average size is less than 50 mm, materials other than pulp fiber (example: film (material of collection bag A, back sheet, etc.), non-woven fabric (surface sheet, etc.), elastic body (leakage barrier rubber, etc.) ) Is cut too small to make it difficult to separate the material and the pulp fibers in the subsequent step.
  • foreign matter (other materials) mixed in the pulp fiber to be regenerated increases, and the recovery rate of the pulp fiber decreases.
  • the average value of the size is larger than 100 mm, it becomes difficult to cut the used absorbent article. As a result, the used absorbent article which can not take out pulp fiber will arise, and the recovery rate of pulp fiber falls.
  • the first separation step S13 is performed by the first separation device 13.
  • the mixed liquid 92 containing the crushed material obtained by the crushing device 12 and the acidic aqueous solution is stirred to remove dirt from the crushed material, and the mixed liquid 92 is a pulp fiber, a super absorbent polymer, and an acid. It is separated into aqueous solution and other materials.
  • an acidic aqueous solution may be separately added in order to enhance the cleaning effect and / or adjust the pH.
  • the pulp fiber, the superabsorbent polymer and the acidic aqueous solution (including a part, other materials, etc.) in the mixed solution 92 are separated through the through holes and sent out from the first separation device 13 (Mixed solution 93).
  • the pulp fiber of the liquid mixture 92, the superabsorbent polymer, and other materials except the acidic aqueous solution can not pass through the through holes and remain in the first separation device 13 or are delivered by another route. However, some of the other materials are delivered together with the liquid mixture 93 without being completely separated.
  • the size of the through hole of the washing tub functioning as a sieve may be 5 mm to 20 mm in the case of a round hole, and holes of other shapes may be used. In the case, the size of the area substantially the same as that of the round hole may be mentioned.
  • the present method includes at least the crushing process (punching step S11 (bag opening apparatus 11) to the first separation step S13 (first separation apparatus 13)) for crushing the used absorbent article as described above. It is provided with the punching process S11 (bag removing apparatus 11) and the crushing process S12 (shredding apparatus 12). Therefore, since the used absorbent articles in the collection bag are crushed together with the collection bag in the inactivated water solution, the inactivated water solution mixes with dirt and fungi, and an odor is generated, at least until crushing is started. There is almost nothing.
  • the inactivated aqueous solution may be mixed with dirt or fungi, or odor may be generated, but the inactivated aqueous solution mixed with dirt or fungi is destroyed at almost the same time as the disruption. Since it is sent out from the solution tank together with it, almost no dirt or fungus remains in the solution tank and it can be washed away. In addition, since the odor can be sealed with the inactivating aqueous solution, the generation of the odor can be suppressed low. Thereby, when the used absorbent article is crushed, it is possible to suppress the scattering of dirt and fungi and the release of odor.
  • the used absorbent article may be crushed in a gas (e.g., in the air) in a gas (e.g., in the air) without crushing the used absorbent article together with the collection bag in the inactivated aqueous solution (e.g., acidic aqueous solution).
  • the drilling step S11 is unnecessary, and the crushing step S12 performs the crushing in the air without the inactivated aqueous solution.
  • the inactivated aqueous solution is supplied to the first separation step S13 together with the crushed material in the crushing step S12.
  • an acidic aqueous solution is added from the first dust removing step S14 to substantially remove the inactivating aqueous solution containing pulp fiber and super absorbent polymer supplied to the first dust removing step S14.
  • Acid aqueous solution is added from the first dust removing step S14 to substantially remove the inactivating aqueous solution containing pulp fiber and super absorbent polymer supplied to the first dust removing step S14.
  • the first dust removing step S14 is executed by the first dust removing device 14.
  • the acidic aqueous solution containing the pulp fibers and the superabsorbent polymer delivered from the first separation device 13, ie, the mixed liquid 93 contains the pulp fibers and the superabsorbent polymer by the screen while the pH is maintained within the predetermined range. It is separated into acidic aqueous solution and other materials (foreign matter). As a result, the pulp fiber, the superabsorbent polymer, and the acidic aqueous solution (including a part, other materials, etc.) in the mixed liquid 93 are separated through the screen and delivered from the first dust removing device 14 ( Liquid mixture 94).
  • the pulp fiber of the liquid mixture 93, the superabsorbent polymer, and other materials except for the acidic aqueous solution can not pass through the screen and remain in the first dust remover 14, or are delivered by another route. However, some of the other materials are delivered together with the mixture 94 without being completely separated.
  • the pH of the acidic aqueous solution is adjusted so that the difference between the specific gravity and the size of the superabsorbent polymer and the specific gravity and the size of the pulp fibers is within a predetermined range at least by the first dust removal step S14.
  • one within the predetermined range is, for example, within the range of 0.2 to 5 times the other.
  • separation is performed by the difference in size
  • specific gravity separation is performed by the difference in specific gravity. Therefore, in the steps prior to the first dust removal step S14, the pulp fiber and the superabsorbent polymer, the specific gravity and size of the superabsorbent polymer, and the difference in the specific gravity and size of the pulp fiber respectively fall within a predetermined range.
  • the adjusted acidic aqueous solution can be viewed as an inactivation step of inactivating the superabsorbent polymer.
  • concentration which united the pulp fiber and super absorbent polymer in the acidic solution in 1st dust removal process S14 0.1 mass% or more and 10 mass% or less are mentioned, for example, 0.1 mass% or more 5 mass% or less is preferable.
  • the ratio of pulp fiber to super absorbent polymer in the acidic solution is, for example, 50 to 90% by mass: 50 to 10% by mass.
  • the second dust removing step S15 is executed by the second dust removing device 15.
  • An acidic aqueous solution containing pulp fibers and super absorbent polymer delivered from the first dust collector 14, that is, the mixed liquid 94 contains pulp fibers and super absorbent polymer by a screen while the pH is maintained within a predetermined range. It is separated into acidic aqueous solution and other materials (foreign matter).
  • the pulp fiber, the superabsorbent polymer and the acidic aqueous solution (including a part, other materials, etc.) of the mixed solution 94 pass through the screen and are separated, and are delivered from the second dust remover 15 (mixture Liquid 95).
  • the pulp fiber of the liquid mixture 94, the superabsorbent polymer, and other materials except the acidic aqueous solution can not pass through the screen and remain in the second dust remover 15, or are delivered by another route. However, some of the other materials are delivered together with the mixture 95 without separation.
  • the pH of the acidic aqueous solution is adjusted such that the difference between the specific gravity and the size of the superabsorbent polymer and the specific gravity and the size of the pulp fiber is within a predetermined range.
  • the third dust removing step S16 is executed by the third dust removing device 16.
  • An acidic aqueous solution containing pulp fibers and a superabsorbent polymer delivered from the second dust collector 15, ie, a mixed solution 95 is centrifuged in an inverted conical housing while maintaining the pH within a predetermined range, It is separated into pulp fibers and super absorbent polymer in acidic aqueous solution and other materials (foreign matter).
  • the pulp fiber, the superabsorbent polymer and the acidic aqueous solution in the mixed solution 95 are delivered from the upper part of the third dust remover 16 (cyclone separator) (mixed solution 96).
  • the present method is a dust removing process (first dust removing step S14 (first dust removing device 14) to third dust removing step S16 (third dust removing device 16) for removing foreign substances (other materials) as described above. At least a second dust removing step S15 (second dust removing device 15) and a third dust removing step S16 (third dust removing device 16)).
  • the second separation step S17 is performed by the second separation device 17.
  • the acidic aqueous solution containing the pulp fibers and super absorbent polymer delivered from the third dust collector 16, ie, the mixed liquid 96 is separated by the drum screen into pulp fibers in the acidic aqueous solution and super absorbent polymer in the acidic aqueous solution Be done.
  • the acidic aqueous solution containing the superabsorbent polymer is separated from the mixed solution 96 through the drum screen and delivered from the second separation device 17.
  • the acidic aqueous solution containing the pulp fiber in the mixed solution 96 can not pass through the drum screen, and is sent out from the second separation device 17 through another route (mixed solution 97).
  • the superabsorbent polymer can be separated from the separated superabsorbent polymer and the acidic aqueous solution by a screen separator or the like. Therefore, the above steps can be said to be the steps of separating and recovering the superabsorbent polymer, and thus the steps of producing a recycled superabsorbent polymer.
  • the third separation step S18 is performed by the third separation device 18.
  • Pulp fibers, a non-separable remaining super absorbent polymer and an acidic aqueous solution, ie, mixed liquid 97, delivered from the second separation device 17 are mixed with a solid containing pulp fibers and super absorbent polymer by a drum screen, And the liquid containing the acidic aqueous solution. And with the separation, the superabsorbent polymer in the solid is pressurized and crushed. Crushing is exemplified by crushing the gel superabsorbent polymer at a pressure higher than the gel strength. As a result, the acidic aqueous solution containing the superabsorbent polymer is separated from the mixed solution 97 through the drum screen and delivered from the third separation device 18.
  • the pulp fiber in which the highly water-absorptive polymer of the mixed liquid 97 is crushed can not be added to the drum screen, and is delivered to the outside of the third separation device 18 from the gap of the lid of the drum screen 98).
  • the pressure applied to the lid is, for example, 0.01 MPa or more and 1 MPa or less, and preferably 0.02 MPa or more and 0.5 MPa or less. If the pressure is less than 0.02 MPa, it becomes difficult to crush the superabsorbent polymer and the time for oxidizing agent treatment can not be shortened so much, and if the pressure is larger than 0.5 MPa, the superabsorbent polymer can be crushed sufficiently. It may damage pulp fibers.
  • the oxidizing agent processing step S19 is performed by the oxidizing agent processing device 19.
  • the pulp fibers in solid and the crushed superabsorbent polymer delivered from the third separation device 18 are treated with an aqueous solution containing an oxidizing agent.
  • the superabsorbent polymer is oxidatively decomposed and removed from the pulp fiber.
  • the superabsorbent polymer adhering to the pulp fibers of mixture 98 (example: remaining on the surface of pulp fibers) is oxidized and decomposed by an aqueous solution (treatment liquid) containing an oxidizing agent (example: ozone) to obtain an aqueous solution It is removed from the pulp fibers by converting it to soluble low molecular weight organics.
  • the state in which the superabsorbent polymer is oxidatively decomposed to change to a low molecular weight organic substance soluble in an aqueous solution means that the superabsorbent polymer passes through a 2 mm screen.
  • impurities such as superabsorbent polymers contained in the pulp fibers can be removed, and pulp fibers with high purity can be generated, and sterilization, bleaching and deodorization of pulp fibers can be performed by oxidizing agent treatment.
  • the mixture 98 is introduced from the upper portion of the processing tank and settles from the upper portion to the lower portion of the processing solution, that is, the aqueous solution containing the oxidizing agent.
  • the ozone-containing gas is continuously released from the nozzles in the treatment tank into the treatment liquid in the form of fine bubbles (eg, micro bubbles or nano bubbles). That is, the ozone-containing gas rises from the lower portion to the upper portion of the treatment liquid P.
  • the settling pulp fibers and the rising ozone-containing gas collide with each other while advancing in the opposite direction. Then, the ozone-containing gas adheres to the surface of the pulp fiber so as to wrap the pulp fiber.
  • ozone in the ozone-containing gas reacts with the superabsorbent polymer in the pulp fiber to oxidatively decompose the superabsorbent polymer and dissolve it in the treatment liquid. Thereby, the superabsorbent polymer contained in the pulp fibers of the mixture 98 is oxidatively decomposed to be removed from the pulp fibers.
  • the method (system) described above is at least at least in the recovery process (the second separation step S17 (second separation device 17) to the fourth separation step S20 (fourth separation device 20)) for recovering pulp fibers and the like as described above.
  • a third separation step S18 (third separation device 18) and an oxidant treatment step S19 (oxidant treatment device 19) are provided. Therefore, the surface area of the superabsorbent polymer can be greatly expanded by crushing the substantially spherical or massive superabsorbent polymer, and the exposed part can be increased by, for example, exposing the inner part of the superabsorbent polymer to the front side. it can.
  • the oxidizing agent treatment step S19 (oxidizing agent treatment device 19)
  • the inner portion of the superabsorbent polymer which was difficult to contact with the oxidant is contacted with the oxidant.
  • the contact area with the oxidizing agent in the superabsorbent polymer can be increased.
  • the oxidative decomposition of the superabsorbent polymer can be advanced more efficiently, and the time of oxidant treatment can be shortened.
  • the efficiency of the process of removing the superabsorbent polymer from the pulp fibers can be increased.
  • the fourth separation step S20 is executed by the fourth separation device 20, and the treatment liquid containing pulp fibers processed by the oxidant treatment device 19, that is, the mixed liquid 99 passes through a screen having a plurality of openings, Pulp fibers and the treatment liquid are separated from the liquid mixture 99.
  • the treatment liquid 104 is separated from the liquid mixture 99 through the screen and delivered from the fourth separation device 20.
  • the separated processing liquid 104 ie, the oxidizing agent processing liquid, may be returned to the oxidizing agent processing device 19 for reuse.
  • the cost of the oxidant treatment solution can be reduced.
  • pulp fibers in the mixed solution 99 can not pass through the screen and remain in the fourth separation device 20 or are delivered by another route.
  • the above process can be said to be a process of separating and recovering pulp fibers, and thus a process of producing recycled pulp fibers.
  • the specific gravity of the superabsorbent polymer and the specific gravity of the superabsorbent polymer were measured by the pycnometer method of the method for measuring the density and specific gravity of chemical products according to JIS K 0061.
  • the specific gravity of the water-absorbing polymer before water absorption was 1.32 g / ml.
  • the specific gravity at the time of inactivation with citric acid aqueous solution (pH 2) was 1.04 g / ml
  • the specific gravity at the time of citric acid aqueous solution (pH 4) inactivation was 1.01 g / ml.
  • the size (diameter) of the superabsorbent polymer (after water absorption) was calculated as follows, assuming that the superabsorbent polymer is a sphere, because measurement is difficult. That is, the average diameter of the superabsorbent polymer before water absorption is 200 ⁇ m, and the size (diameter) of the superabsorbent polymer after water absorption is estimated from the amount of water in the aqueous solution in which the superabsorbent polymer has absorbed water by volume expansion calculation. did.
  • volume expansion calculation was performed as follows. First, the amount (per particle) of water absorbed by the superabsorbent polymer was measured.
  • the gel diameter at the time of inactivation with citric acid aqueous solution (pH 2) was about 420 ⁇ m
  • the gel diameter at the time of inactivation with citric acid aqueous solution (pH 4) was about 540 ⁇ m.
  • the ratio of pulp fiber and super absorbent polymer in the acidic aqueous solution was measured as follows. First, a part of the acidic aqueous solution was taken as a sample, and the sample was put into a 200 mesh filter to measure the sample weight W0. Next, the sample on the filter was suspended for 5 minutes, drained, and was completely dried by a predetermined method of drying (heating at 120 ° C. for 10 minutes and drying), and the bone-dry weight W1 of the resulting bone-dry material was measured. . Subsequently, the fasted material was immersed in an aqueous solution containing ozone, and the obtained material was completely dried by the above-described fast drying method to measure a dead weight W2 as pulp fiber.
  • this method preferably includes an ozone treatment step S22 and a pH adjustment step S23. These steps are steps for regenerating and reusing the acidic aqueous solution used in this method. Reuse of the acidic aqueous solution can reduce the cost of the acidic aqueous solution.
  • the ozone treatment step S22 the superabsorbent polymer separated in the second separation step S17 and the acidic aqueous solution 101 after the superabsorbent polymer are further separated from the acidic aqueous solution are sterilized with an ozone-containing aqueous solution.
  • the pH of the acidic aqueous solution sterilized with the ozone-containing aqueous solution is adjusted to generate a regenerated acidic aqueous solution 103.
  • the acidic aqueous solution 103 is supplied to, for example, the bag-breaking device 11.
  • it is supplied to the first separation step S13.
  • an acidic aqueous solution may be supplied to other processes (apparatus) that require it.
  • the surplus of the acidic aqueous solution 103 is stored in the water storage tank 24.
  • the specific gravity of the superabsorbent polymer is larger than that of water, when the superabsorbent polymer absorbs water, it approaches the specific gravity of water according to the amount of water absorption.
  • the size of the superabsorbent polymer is small, when the superabsorbent polymer absorbs water, the size increases according to the amount of water absorption.
  • the amount of water that can be absorbed and retained by the superabsorbent polymer is very large, but the amount is limited to a certain extent by subjecting the superabsorbent polymer to inactivation treatment.
  • the size and specific gravity of the superabsorbent polymer can be adjusted to desired values by adjusting the amount of water retained by the superabsorbent polymer depending on the degree of inactivation treatment of the superabsorbent polymer.
  • a treatment of immersing the super absorbent polymer in a predetermined solution (example: acidic aqueous solution) may be mentioned.
  • the method of recovering (system) pulp fibers and superabsorbent polymer from used absorbent articles containing the above-mentioned pulp fibers and superabsorbent polymer is a dust removal process (first dust removal) for removing foreign substances (other materials).
  • Step S14 (first dust remover 14) to third dust remover S16 (third dust remover 16), at least second dust remover S15 (second dust remover 15), third dust remover S16 (third dust remover 16)
  • the second dust removal step S15 is also a size separation step
  • the third dust removal step S16 is also a specific gravity separation step
  • the second dust remover 15 is also a screen separator
  • the third dust remover 16 is a cyclone separator It is also a centrifuge, and the superabsorbent polymer is inactivated with an acidic aqueous solution whose pH has been adjusted in advance, and the water absorption amount of the superabsorbent polymer is adjusted, and the ratio of the superabsorbent polymer And the difference between the specific gravity and the size of the pulp fiber in the predetermined range (inactivation step), in this case, for example, one within the range of the other Thus, the difference between the pulp fiber and the superabsorbent polymer is that the specific gravity is within a predetermined range
  • the resin material of the used absorbent articles other than the pulp fiber and the superabsorbent polymer is a film (such as a back sheet), a non-woven (such as a surface sheet), an elastic body (such as a leak-proof) (Rubber rubber, etc.) etc.
  • the material with the higher specific gravity such as a metal material
  • the used absorbent article is not Examples include clips and staples that are mixed during harvest.
  • the size of the superabsorbent polymer refers to the particle size of the superabsorbent polymer, which is the diameter when the superabsorbent polymer is spherical, and the longest width when it is massive.
  • the size of pulp fibers is the average fiber length of pulp fibers.
  • the specific gravity separation step that is, the third dust removal step S16 (specific gravity separation step) includes a step of separating pulp fibers and a superabsorbent polymer from other materials by a centrifugal separation method. Good.
  • the pulp fiber and the superabsorbent polymer can be made of other materials (materials having a large specific gravity) more accurately by centrifugation. , For example, metal materials). Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the second dust removal step S15 separates the pulp fiber and the superabsorbent polymer from the other material using a screen having a plurality of openings of a predetermined size. May include a screen separation step.
  • the pulp fiber and the superabsorbent polymer can be more accurately passed through a screen having a plurality of openings of a predetermined size.
  • the superabsorbent polymer can be separated from other materials (resin members, for example, films such as back sheets, nonwovens such as top sheets, and bodies such as rubber for leakproof walls). Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the second dust removal step S15 or the size separation step (the first dust removal step S14 or the coarse size separation step (the first dust removal device 14 or the rough) is performed before the second dust remover 15 or the screen separator. Screen separators).
  • the method system passes pulp fibers and superabsorbent polymer and other materials through a screen having a plurality of larger openings prior to the second dust removal step S15 (second dust removal device 15). Therefore, other relatively large materials can be removed in advance.
  • the second dust removal step S15 (the second dust removal device 15) it is possible to prevent the screen from being clogged with another relatively large material, and the efficiency of the separation process being reduced.
  • the proportion of the pulp fiber and the superabsorbent polymer in the acidic aqueous solution containing the inactivated superabsorbent polymer may be 0.1% by mass or more and 10% by mass or less.
  • the pulp fiber and the superabsorbent polymer are separated from the other materials by setting the proportion of the pulp fiber and the superabsorbent polymer in the acidic aqueous solution to 0.1% by mass or more and 10% by mass or less. Can be done more reliably. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the pH of the acidic aqueous solution may be 1 or more and 4 or less.
  • the specific gravity and size of the superabsorbent polymer and the specific gravity and size of the pulp fiber are made closer to each other. be able to. Thereby, it is possible to more reliably separate the pulp fibers and superabsorbent polymer from the other materials. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • the acidic aqueous solution may contain citric acid.
  • the acidic aqueous solution contains citric acid (example: concentration of 0.5 to 2.0% by mass)
  • the superabsorbent polymer is reliably dewatered, and the specific gravity of the superabsorbent polymer and The size and the specific gravity and size of the pulp fibers can be made closer to each other.
  • pulp fibers and superabsorbent polymers can be more reliably separated from other materials.
  • the bad influence to the worker by an acid and the corrosion of the apparatus of each process can be suppressed. Thereby, the efficiency of the process of separating the superabsorbent polymer and the pulp fibers can be increased.
  • a superabsorbent polymer is prepared from an acidic aqueous solution containing pulp fibers and superabsorbent polymer separated in the third dust removal step S16 or the specific gravity separation step (third dust remover 16 or cyclone separator). It may further comprise a second separation step S17 or a polymer separation step (second separation device 17 or ram screen separator) to be separated.
  • the pulp fiber and the superabsorbent polymer since the pulp fiber and the superabsorbent polymer are removed from the other materials, the pulp fiber and the superabsorbent polymer can be easily separated by separating the pulp fiber and the superabsorbent polymer from each other. And can be collected separately.
  • the above embodiment describes the case where the component of the back sheet is a film and the component of the top sheet is a non-woven fabric.
  • the constituent member of the back sheet is a non-woven fabric and the constituent member of the top sheet is a film, or when the constituent members of both the back sheet and the top sheet are films, the embodiments described above. Can be realized by the same method as the above, and the same function and effect can be exhibited.
  • the absorbent article of the present invention is not limited to the above-described embodiments, and can be appropriately combined or changed without departing from the object and the purpose of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nursing (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Paper (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するとき、高処理効率で高吸水性ポリマー及びパルプ繊維を分離する方法を提供する。 本法は、使用済み吸収性物品から分離されたパルプ繊維及び高吸水性ポリマーと、高吸水性ポリマーの比重及び大きさとそれぞれ前記パルプ繊維の比重及び大きさとの相違が所定の範囲内になるようにpHを調整された酸性水溶液と、を混合して、高吸水性ポリマーを不活化する不活化工程(S13)と、パルプ繊維及び高吸水性ポリマーを含む酸性水溶液中にて、pHを所定の範囲内で維持しつつ、パルプ繊維及び高吸水性ポリマーと他の資材とを、大きさの相違を利用して分離するサイズ分離工程(S15)と、パルプ繊維及び高吸水性ポリマーを含む酸性水溶液中にて、pHを所定の範囲内で維持しつつ、パルプ繊維及び高吸水性ポリマーと他の資材とを、比重の相違を利用して分離する比重分離工程(S16)と、を備える。

Description

使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム
 本発明は、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステムに関する。
 使用済みの使い捨ておむつ等の吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法が知られている。例えば、特許文献1に、使用済み紙おむつから繊維及び高吸水性ポリマーを分離回収する方法が開示されている。この方法では、まず、使用済み紙おむつがパルパーに投入され、水に分散されて、スラリーが生成される。次いで、そのスラリーがスクリーン、クリーナーにより処理されて、高吸水性ポリマーが回収される。その後、残部である繊維を含む分散液が洗浄機・脱水機やスクリーンにより処理されて、繊維が回収される。
国際公開第2014/007105号
 特許文献1の方法では、使用済み紙おむつの高吸水性ポリマーと繊維と他の素材との混合物から、まず、高吸水性ポリマーが分離・回収され、その後、パルプ繊維と他の素材の混合物から繊維が分離・回収される。したがって、いずれの場合にも、他の素材が混合された混合物から、高吸水性ポリマー/パルプ繊維が分離される。そのため、他の素材をほとんど含まない高吸水性ポリマーやパルプ繊維を得ようとすれば、高吸水性ポリマーの分離及びパルプ繊維の分離のそれぞれに対して精度の高い分離を行う必要がある。その場合、分離の処理に掛かる時間が長くなり、分離の処理の効率が低下するおそれがある。したがって、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するとき、分離の処理の効率の向上という観点で改良の余地がある。使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するとき、高い処理効率で高吸水性ポリマー及びパルプ繊維を分離することが可能な技術が望まれる。
 本発明の目的は、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するとき、高い処理効率で高吸水性ポリマー及びパルプ繊維を分離することが可能な方法及びシステムを提供することにある。
 本発明におけるパルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法は次のとおりである。(1)パルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法であって、使用済み吸収性物品から分離されたパルプ繊維及び高吸水性ポリマーと、前記高吸水性ポリマーの比重と前記パルプ繊維の比重との相違が所定の範囲内になり且つ前記高吸水性ポリマーの大きさと前記パルプ繊維の大きさとの相違が所定の範囲内になるようにpHを調整された酸性水溶液と、を混合して、前記高吸水性ポリマーを不活化する不活化工程と、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと他の資材とを、大きさの相違を利用して分離するサイズ分離工程と、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと他の資材とを、比重の相違を利用して分離する比重分離工程と、を備える方法。
 一般に、高吸水性ポリマーの比重は水より大きいが、高吸水性ポリマーが水を吸収すると、吸水量に応じて水の比重に近づく。また、高吸水性ポリマーの大きさは小さいが、高吸水性ポリマーが水を吸収すると、吸水量に応じて大きさは大きくなる。また、高吸水性ポリマーが吸収し、保持できる水の量は非常に多いが、高吸水性ポリマーに不活化処理を施すことにより、ある程度の量に制限される。以上のことから、高吸水性ポリマーの不活化処理の程度によって高吸水性ポリマーが保持する水の量を調整して、高吸水性ポリマーの大きさ及び比重を所望の値に調整できる。高吸水性ポリマーの不活化処理としては、高吸水性ポリマーを所定の溶液(例示:酸性水溶液)に浸漬する処理が挙げられる。
 そこで本方法は、不活化工程にて、pHを調整された酸性水溶液で高吸水性ポリマーを不活化し、高吸水性ポリマーの吸水量を調整して、高吸水性ポリマーの比重さ及び大きと、それぞれパルプ繊維の比重及び大きさとの相違が、所定の範囲内になるようにする。この場合、所定の範囲内とは、例えば一方が他方の0.2~5倍の範囲内とする。それにより、パルプ繊維と高吸水性ポリマーとの相違は、比重が所定の範囲内であり、かつ、大きさが所定の範囲内である。その結果、パルプ繊維及び高吸水性ポリマーを、使用済み吸収性物品の資材のうちのパルプ繊維及び高吸水性ポリマーを除いた他の資材(主に樹脂材料)と、大きさの相違を利用して容易に分離し、他の資材のうちの比重の大きい材料(主に金属材料)と、比重の相違を利用して容易に分離できる。そして、その後に、パルプ繊維と高吸水性ポリマーとを互いに分離することにより、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収できる。このとき、パルプ繊維及び高吸水性ポリマーと他の資材とを分離する処理の回数を低減できる。すなわち、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。ここで、パルプ繊維及び高吸水性ポリマーを除いた使用済み吸収性物品の他の資材のうちの樹脂材料としては、フィルム(裏面シートなど)、不織布(表面シートなど)、弾性体(防漏壁用ゴムなど)などが挙げられる。他の資材のうちの比重の大きい材料、例えば金属材料としては、元の吸収性物品には含まれないが使用済み吸収性物品の回収時に混入したクリップやステープラの針などが挙げられる。また、高吸水性ポリマーの大きさとは、高吸水性ポリマーの粒径であり、高吸水性ポリマーが球形の場合には直径とし、塊状の場合には最も長い幅とする。パルプ繊維の大きさとは、パルプ繊維の平均の繊維長とする。pHの所定の範囲とは、pHの変動が±1.0以内の範囲とする。
 本方法は、(2)前記比重分離工程は、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、遠心分離法により分離する工程を含む、上記(1)に記載の方法、であってもよい。
 本方法は、パルプ繊維と高吸水性ポリマーとは比重の相違が所定の範囲内である。そのため、遠心分離法により、より的確に、パルプ繊維及び高吸水性ポリマーを他の資材(比重の大きい材料、例えば金属材料)から分離することができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本方法は、(3)前記サイズ分離工程は、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、所定の大きさの複数の開口を有するスクリーンを用いて分離するスクリーン分離工程を含む、上記(1)又は(2)に記載の方法、であってもよい。
 本方法は、パルプ繊維と高吸水性ポリマーとは大きさの相違が所定の範囲内である。そのため、所定の大きさの複数の開口を有するスクリーンを通過させることにより、より的確に、パルプ繊維及び高吸水性ポリマーを他の資材(主に樹脂部材、例えば裏面シートなどのフィルム、表面シートなどの不織布、弾防漏壁用ゴムなど)から分離できる。それにより高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本方法は、(4)前記サイズ分離工程の前に、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、前記サイズ分離工程で使用されるスクリーンの複数の開口よりも大きい複数の開口を有するスクリーンを通過させることにより分離する粗サイズ分離工程を含む、上記(1)乃至(3)のいずれか一項に記載の方法、であってもよい。
 本方法は、サイズ分離工程の前に、より大きい開口を有するスクリーンを通過させることにより、相対的に大きい他の資材を除去することができる。それにより、サイズ分離工程において、相対的に大きい他の資材でスクリーンが詰まり、分離する処理の効率が低下することを抑制できる。
 本方法は、(5)前記不活化工程で形成される前記酸性水溶液における前記パルプ繊維及び前記高吸水性ポリマーの割合は、0.1質量%以上、10%質量以下である、上記(1)乃至(4)のいずれか一項に記載の方法、であってもよい。
 本方法では、酸性水溶液におけるパルプ繊維及び高吸水性ポリマーの割合を0.1質量%以上、10質量%以下にすることにより、パルプ繊維及び高吸水性ポリマーと他の資材との分離をより確実に行うことができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。ただし、0.1質量%未満にすると、分離すべき高吸水性ポリマー及びパルプ繊維の量が少な過ぎて、分離処理の能力が無駄になり、10質量%より大きいと、分離しきれずに他の資材と共に排出されてしまい、いずれもの場合にも処理の効率が低下する。
 本方法は、(6)酸性水溶液は、pHが1以上、4以下である、上記(1)乃至(5)のいずれか一項に記載の方法、でもよい。
 本方法では、酸性水溶液のpHを1以上、4以下に調整しているため、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとを、互いにより近い値にすることができる。それにより、より確実に、パルプ繊維及び高吸水性ポリマーと他の資材とを分離することができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本方法は、(7)酸性水溶液は、クエン酸を含む、上記(1)乃至(6)のいずれか一項に記載の方法、でもよい。
 本方法では、酸性水溶液はクエン酸を含んでいるので(例示:濃度0.5~2.0質量%)、高吸水性ポリマーを確実に脱水して、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとを、互いにより近い値にすることができる。それにより、より確実に、パルプ繊維及び高吸水性ポリマーと他の資材とを分離することができる。また、酸による作業者への悪影響や、各工程の機器の腐食を抑制できる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本方法は、(8)前記比重分離工程で分離された前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液から前記高吸水性ポリマーを分離するポリマー分離工程を更に備える、上記(1)乃至(7)のいずれか一項に記載の方法、であってもよい。
 本方法では、パルプ繊維及び高吸水性ポリマーから他の資材が除去されているので、パルプ繊維と高吸水性ポリマーとを互いに分離することにより、容易に、パルプ繊維と高吸水性ポリマーとを別々に回収できる。
 本発明におけるパルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するために使用されるシステムは次のとおりである。(9)パルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するためのシステムであって、使用済み吸収性物品から分離されたパルプ繊維及び高吸水性ポリマーと、前記高吸水性ポリマーの比重と前記パルプ繊維の比重との相違が所定の範囲内になり且つ前記高吸水性ポリマーの大きさと前記パルプ繊維の大きさとの相違が所定の範囲内になるようにpHを調整された酸性水溶液と、を混合して、前記高吸水性ポリマーを不活化した、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと他の資材とを、所定の大きさの複数の開口を有するスクリーンを用いて分離するスクリーン分離機と、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを遠心分離法により分離するサイクロン分離機と、を備えるシステム。
 本システムは、pHを調整された酸性水溶液で高吸水性ポリマーを不活化し、高吸水性ポリマーの吸水量を調整して、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとの相違が、所定の範囲内になるようにする。それにより、パルプ繊維と高吸水性ポリマーとの相違は、比重が所定の範囲内であり、かつ、大きさが所定の範囲内である。その結果、パルプ繊維及び高吸水性ポリマーを、パルプ繊維及び高吸水性ポリマーを除いた使用済み吸収性物品の他の資材のうちの主に樹脂材料から、大きさの相違を利用して容易に分離し、他の資材のうちの比重の大きい材料、例えば金属材料から比重の相違を利用して容易に分離することができる。そして、その後に、パルプ繊維と高吸水性ポリマーとを互いに分離することにより、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収できる。このとき、高吸水性ポリマー及びパルプ繊維が、それぞれ個別に他の資材が混合された混合物から分離されていないので、パルプ繊維及び高吸水性ポリマーと他の資材とを分離する回数を低減できる。すなわち、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本システムは、(10)前記スクリーン分離機の前に、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、前記所定の大きさの複数の開口よりも大きい複数の開口を有するスクリーンを通過させることにより分離する粗スクリーン分離機を更に備える、上記(9)に記載のシステム、であってもよい。
 本システムは、スクリーン分離機の前に粗スクリーン分離機を備えているので、より大きい複数の開口を有するスクリーンを通過させることにより、相対的に大きい他の資材をスクリーン分離機の前で除去することができる。それにより、スクリーン分離機の前において、相対的に大きい他の資材でスクリーンが詰まり、分離する処理の効率が低下することを抑制できる。
 本システムは、(11)前記不活化された前記高吸水性ポリマーを含む前記酸性水溶液における前記パルプ繊維及び前記高吸水性ポリマーの割合は、0.1質量%以上、10質量%以下である、上記(9)又は(10)に記載のシステム、であってもよい。
 本システムでは、酸性水溶液におけるパルプ繊維及び高吸水性ポリマーの割合を0.1質量%以上、10質量%以下にすることにより、パルプ繊維及び高吸水性ポリマーと他の資材との分離をより確実に行うことができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。ただし、0.1質量%未満にすると、分離すべき高吸水性ポリマー及びパルプ繊維の量が少な過ぎて、分離処理の能力が無駄になり、10質量%より大きいと、分離しきれずに他の資材と共に排出されてしまい、いずれもの場合にも処理の効率が低下する。
 本システムは、(12)酸性水溶液は、pHが1以上、4以下である、上記(9)乃至(11)のいずれか一項に記載のシステム、であってもよい。
 本システムでは、酸性水溶液のpHを1以上、4以下に調整しているため、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとを、互いにより近い値にすることができる。それにより、より確実に、パルプ繊維及び高吸水性ポリマーと他の資材とを分離することができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本システムは、(13)酸性水溶液は、クエン酸を含む、上記(9)乃至(12)のいずれか一項に記載のシステム、であってもよい。
 本システムでは、酸性水溶液はクエン酸を含んでいるので(例示:濃度0.5~2.0質量%)、高吸水性ポリマーを確実に脱水して、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとを、互いにより近い値にすることができる。それにより、より確実に、パルプ繊維及び高吸水性ポリマーと他の資材とを分離することができる。また、酸による作業者への悪影響や、各工程の機器の腐食を抑制できる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本システムは、(14)前記サイクロン分離機で分離された前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液から前記高吸水性ポリマーをドラムスクリーンにより分離するドラムスクリーン分離機を更に備える、上記(9)乃至(13)のいずれか一項に記載のシステム、であってもよい。
 本システムでは、ドラムスクリーン分離機を備えているので、パルプ繊維及び高吸水性ポリマーから他の資材が除去された後で、パルプ繊維と高吸水性ポリマーとを互いに分離することにより、容易に、パルプ繊維と高吸水性ポリマーとを別々に回収できる。
 本発明の方法及びシステムによれば、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するとき、高い処理効率で高吸水性ポリマー及びパルプ繊維を分離することが可能となる。
実施の形態に係るシステムの一例を示すブロック図である。 図1の破袋装置及び破砕装置の構成例を示す模式図である。 実施の形態に係る方法の一例を示すフローチャートである。
 以下、実施の形態に係るパルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維を回収する方法について説明する。ただし、使用済み吸収性物品とは、使用者によって使用された吸収性物品であって、使用者の排泄物を吸収・保持した状態の吸収性物品を含み、使用されたが排泄物を吸収・保持していないものや未使用だが廃棄されたものも含む。吸収性物品としては、例えば紙おむつ、尿取りパッド、生理用ナプキン、ベッドシート、ペットシートが挙げられる。なお、本実施の形態に係る使用済み吸収性物品からパルプ繊維を回収する方法は、リサイクルパルプ繊維が生成されるから、使用済み吸収性物品からリサイクルパルプ繊維を生成する方法ともいえる。更に、本実施の形態に係る使用済み吸収性物品からパルプ繊維を回収する方法は、途中でパルプ繊維と共に高吸水性ポリマーが回収され、分離によりリサイクル高吸水性ポリマーが生成されるから、使用済み吸収性物品から高吸水性ポリマーを回収する方法又はリサイクル高吸水性ポリマーを生成する方法ともいえる。ここでは、使用済み吸収性物品からパルプ繊維を回収する方法として説明する。
 まず、吸収性物品の構成例について説明する。吸収性物品は、表面シートと、裏面シートと、表面シートと裏面シートとの間に配置された吸収体とを備える。吸収性物品の大きさの一例としては長さ約15~100cm、幅5~100cmが挙げられる。なお、吸収性物品は、一般的な吸収性物品が備える更に他の部材、例えば拡散シートや防漏壁などを含んでいてもよい。
 表面シートの構成部材としては、例えば液透過性の不織布、液透過孔を有する合成樹脂フィルム、これらの複合シート等が挙げられる。裏面シートの構成部材としては、例えば液不透過性の不織布、液不透過性の合成樹脂フィルム、これらの複合シートが挙げられる。拡散シートの構成部材としては、例えば液透過性の不織布が挙げられる。防漏壁の構成部材としては、例えば液不透過性の不織布が挙げられ、ゴムのような弾性部材を含んでもよい。ここで、不織布や合成樹脂フィルムの材料としては、吸収性物品として使用可能であれば特に制限はないが、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂、6-ナイロン、6,6-ナイロン等のポリアミド系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレタレート(PBT)等のポリエステル系樹脂等が挙げられる。本実施の形態では、裏面シートの構成部材をフィルムとし、表面シートの構成部材を不織布とする吸収性物品を例にして説明する。
 吸収体の構成部材としては吸収体材料、すなわちパルプ繊維及び高吸水性ポリマーが挙げられる。パルプ繊維としては、吸収性物品として使用可能であれば特に制限はないが、例えば、セルロース系繊維が挙げられる。セルロース系繊維としては、例えば木材パルプ、架橋パルプ、非木材パルプ、再生セルロース、半合成セルロース等が挙げられる。パルプ繊維の大きさとしては、繊維の長径の平均値が例えば数十μmが挙げられ、20~40μmが好ましく、繊維長の平均値が例えば数mmが挙げられ、2~5mmが好ましい。高吸水性ポリマー(SuperAbsorbent Polymer:SAP)としては、吸収性物品として使用可能であれば特に制限はないが、例えばポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系の吸水性ポリマーが挙げられる。高吸水性ポリマーの大きさ(乾燥時)としては、粒径の平均値が例えば数百μmが挙げられ、200~500μmが好ましい。
 吸収体の一方の面及び他方の面は、それぞれ表面シート及び裏面シートに接着剤を介して接合されている。平面視で、表面シートのうちの、吸収体を囲むように、吸収体の外側に延出した部分(周縁部分)は、裏面シートのうちの、吸収体を囲むように、吸収体の外側に延出した部分(周縁部分)と接着剤を介して接合されている。したがって、吸収体は表面シートと裏面シートとの接合体の内部に包み込まれている。接着剤としては、吸収性物品として使用可能であり、後述の温水により軟化等して接合力が低下するものであれば特に制限はないが、例えばホットメルト型接着剤が挙げられる。ホットメルト型接着剤としては、例えばスチレン-エチレン-ブタジエン-スチレン、スチレン-ブタジエン-スチレン、スチレン-イソプレン-スチレン等のゴム系主体、又はポリエチレン等のオレフィン系主体の感圧型接着剤又は感熱型接着剤が挙げられる。
 次に、実施の形態に係るパルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維を回収する方法について説明する。本実施の形態では、使用済みの吸収性物品を、再利用(リサイクル)のために外部から回収・取得して用いる。その際、使用済みの吸収性物品は、複数個、収集用の袋(以下、「収集袋」ともいう。)に、汚れ(排泄物など)や菌類や臭気が外部に漏れないように封入されている。収集袋内の個々の使用済みの吸収性物品は、排泄物が表側に露出しないように、かつ、臭気が周囲に拡散しないように、排泄物が排泄される表面シートを内側に、主に丸められた状態や折り畳まれた状態で回収等される。
 まず、使用済み吸収性物品からパルプ繊維を回収する方法に使用されるシステム1について説明する。システム1は、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収し、したがってリサイクルパルプ繊維及びリサイクル高吸水性ポリマーを生成するシステムである。図1は、本実施の形態に係るシステム1の一例を示すブロック図である。システム1は、第2除塵装置15と、第3除塵装置16と、を備え、更に、好ましくは、破袋装置11と、破砕装置12と、第1分離装置13と、第1除塵装置14と、第2分離装置17と、第3分離装置18と、酸化剤処理装置19と、第4分離装置20と、を備える。以下、詳細に説明する。
 まず、破袋装置11及び破砕装置12について説明する。破袋装置11は使用済み吸収性物品を含む収集袋に不活化水溶液中で穴を開ける。破砕装置12は不活性水溶液の水面下に沈んだ不活化水溶液中の使用済み吸収性物品を収集袋ごと破砕する。ただし、不活化水溶液とは、高吸水性ポリマーを不活化する水溶液であり、不活化により高吸水性ポリマーの吸水性能が低下する。それにより、高吸水性ポリマーは、低下した吸水性能より多く水を吸収している場合には、吸水性能で許容できる量まで水を放出する、すなわち脱水する。以下では、不活化水溶液として酸性水溶液を用いる場合を例に説明する。
 図2は、図1の破袋装置11及び破砕装置12の構成例を示す模式図である。
 破袋装置11は、例えばバルブを備える配管を介して供給された酸性水溶液Bを溜めていて、その酸性水溶液B中に入れられた収集袋Aに穴を開ける。破袋装置11は、溶液槽Vと、穴開け部50と、を含む。溶液槽Vは、酸性水溶液Bを溜める。穴開け部50は、溶液槽V内に設けられており、収集袋Aが溶液槽Vに入れられたときに、収集袋Aにおける酸性水溶液Bに接する表面に穴を開ける。
 穴開け部50は、送り込み部30と、破袋部40と、を含む。送り込み部30は、収集袋Aを(物理的に強制的に)溶液槽V内の酸性水溶液B中に送り込む(引き込む)。送り込み部30は、例えば攪拌機が挙げられ、撹拌羽根33と、撹拌羽根33を支持する支持軸(回転軸)32と、支持軸32を軸に沿って回転する駆動装置31とを備える。撹拌羽根33が、駆動装置31により回転軸(支持軸32)の周りを回転することで、酸性水溶液Bに旋回流を起こす。送り込み部30は、旋回流により、収集袋Aを酸性水溶液B(溶液槽V)の底部方向へ引き込む。
 破袋部40は、溶液槽Vの下部(好ましくは底部)に配置されており、破袋刃41と、破袋刃41を支持する支持軸(回転軸)42と、支持軸42を軸に沿って回転する駆動装置43と、を備える。破袋刃41は、駆動装置43により回転軸(支持軸42)の周りを回転することで、酸性水溶液B(溶液槽V)の下部に移動した収集袋Aに穴を開ける。ただし、溶液槽Vの下部とは、溶液槽Vの高さ方向の半分の位置より下側の部分を示す。
 なお、破袋装置11の穴開け部50の破袋刃41は、回転軸(支持軸42)の周りを回転しながら溶液槽V中を上下方向に移動可能であってもよい。その場合、破袋刃41が上方へ移動することで、収集袋Aが酸性水溶液B(溶液槽V)の下部に移動しなくても、収集袋Aに穴を開けることができる。
 破砕装置12は、酸性水溶液Bの水面下に沈んだ収集袋A内の使用済み吸収性物品を収集袋Aごと破砕する。破砕装置12は、破砕部60と、ポンプ63と、を含む。破砕部60は、溶液槽Vと配管61で連接されており、溶液槽Vから酸性水溶液Bと共に送出された収集袋A内の使用済み吸収性物品(混合液91)を、収集袋Aごと酸性水溶液B中で破砕する。破砕部60としては、二軸破砕機(例示:二軸回転式破砕機、二軸差動式破砕機、二軸せん断式破砕機)が挙げられ、例えばスミカッター(住友重機械エンバイロメント株式会社製)が挙げられる。ポンプ63は、破砕部60と配管62で連接されており、破砕部60で得られる破砕物を酸性水溶液Bと共に破砕部60から引き出して(混合液92)、次工程へ送出する。ただし、破砕物は、パルプ繊維及び高吸水性ポリマーと、その他の資材(収集袋Aの素材、フィルム、不織布、弾性体など)を含んでいる。破袋装置11と破砕装置12とは、互いに異なる装置であることが好ましい。
 図1を参照して、第1分離装置13は、破砕装置12で得られた破砕物と酸性水溶液とを含む混合液92を撹拌して、破砕物から汚れ(排泄物など)を除去する洗浄を行いつつ、混合液92からパルプ繊維、高吸水性ポリマー及び酸性水溶液を分離して(混合液93)、第1除塵装置14へ送出する。
 第1分離装置13としては、例えば洗濯槽兼脱水槽及びそれを囲む水槽を備える洗濯機が挙げられる。ただし、洗濯槽兼脱水槽(回転ドラム)が洗浄槽兼ふるい槽(分離槽)として用いられる。洗濯槽の周面に設けられた複数の貫通孔の大きさは、破砕物のうちのパルプ繊維及び高吸水性ポリマーが通過し易く、他の資材が通過し難い大きさとする。洗濯機としては、例えば横型洗濯機ECO-22B(株式会社稲本製作所製)が挙げられる。
 なお、不活化水溶液(例示:酸性水溶液)中で収集袋ごと使用済み吸収性物品を破砕せず、気体中(例示:空気中)で収集袋ごと使用済み吸収性物品を破砕してもよい。その場合には、破袋装置11は不要であり、不活化水溶液の無い状態の空気中で破砕装置12が破砕を行う。その後、破砕装置12の破砕物と不活化水溶液とが第1分離装置13に供給される。
 なお、破袋装置11~第1分離装置13の間で、不活化水溶液として酸性水溶液が用いられない場合、第1除塵装置14から酸性水溶液を加えて、第1除塵装置14に供給されるパルプ繊維及び高吸水性ポリマーを含む不活化水溶液を実質的に酸性水溶液とする。
 第1除塵装置14は、pHを所定の範囲内で維持しつつ、第1分離装置13から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液(混合液93)を、複数の開口を有するスクリーンにより、酸性水溶液中のパルプ繊維及び高吸水性ポリマー(混合液94)と他の資材(異物)とに分離する。pHを所定の範囲内で維持するには、例えば、途中でpHを変動させるような液体(例示:水)を加えないか、又は、液体を加える場合には、概ね同じpHの液体(例示:酸性水溶液)とする。所定の範囲とは、pHの変動が±1.0以内の範囲とする。
 第1除塵装置14は、例えばスクリーン分離機が挙げられる(粗スクリーン分離機)。ただし、スクリーン(ふるい)の開口には特に制限はなく、例えばスリット、丸孔、四角孔、メッシュが挙げられるが、ここでは丸孔を用いる。開口の大きさ、すなわち丸孔の大きさ(直径)は、パルプ繊維及び高吸水性ポリマーが通過可能な大きさで、第1分離装置13で除去できなかった他の資材(異物)が通過困難な大きさで、かつ第2除塵装置15のスクリーンの開口の大きさより大きい大きさとする。丸孔の大きさは、例えば、直径2~5mmφであり、それにより少なくとも10mm角程度以上の他の資材(異物)を除去できる。スリットの場合、スリットの大きさ(幅)は例えば2~5mmである。
 なお、異物除去の効率向上の観点から、第1分離装置13から送出された混合液93を加圧しつつ(例示:0.5~1kgf/cm)、第1除塵装置14に供給してもよい。第1除塵装置14は、例えばパックパルパー(株式会社サトミ製作所製)が挙げられる。
 第2除塵装置15は、pHを所定の範囲内で維持しつつ、第1除塵装置14から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液(混合液94)を、複数の開口を有するスクリーンにより、酸性水溶液中のパルプ繊維及び高吸水性ポリマー(混合液95)と他の資材(異物)とに分離する。
 第2除塵装置15は、例えばスクリーン分離機が挙げられる。ただし、スクリーン(ふるい)の開口には特に制限はなく、例えばスリット、丸孔、四角孔、メッシュが挙げられるが、ここではスリットを用いる。スリットの大きさ(幅)は、パルプ繊維及び高吸水性ポリマーが通過可能な大きさで、かつ第1除塵装置14で除去できなかった他の資材(異物)が通過困難な大きさとする。スリットの大きさは、例えば、幅0.2~0.5mmであり、それにより少なくとも3mm角程度以上の他の資材(異物)を除去できる。丸孔の場合、丸孔の大きさ(直径)は例えば直径0.2~0.5mmφである。
 なお、異物除去の効率向上の観点から、第1除塵装置14から送出された混合液94を加圧しつつ(例示:0.5~2kgf/cm)、第2除塵装置15に供給してもよい。その圧力は、相対的に小さい異物を除去する観点から、第1除塵装置14の圧力よりも高いことが好ましい。第2除塵装置15としては例えばラモスクリーン(相川鉄工株式会社製)が挙げられる。
 第3除塵装置16は、pHを所定の範囲内で維持しつつ、第2除塵装置15から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液(混合液95)を、遠心分離して、酸性水溶液中のパルプ繊維及び高吸水性ポリマー(混合液96)と他の資材(重量の大きい異物)とを分離する。
 第3除塵装置16は、例えばサイクロン分離機が挙げられる。相対的に比重の軽い酸性水溶液中のパルプ繊維及び高吸水性ポリマーが上昇し、それらよりも比重の重い異物(金属など)が下降するように、所定の流速で、パルプ繊維及び高吸水性ポリマーを含む酸性水溶液(混合液95)を、第3除塵装置16の逆さ向きの円錐筐体(図示されず)内に供給する。第3除塵装置16としては、ACT低濃度クリーナー(相川鉄工株式会社製)に例示される。
 第2分離装置17は、第3除塵装置16から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液(混合液96)を、複数の開口を有するスクリーンにより、酸性水溶液中のパルプ繊維(混合液97)と、酸性水溶液中の高吸水性ポリマーとに分離する。したがって、混合液96から高吸水性ポリマーと共に酸性水溶液を除去する脱水機と見ることもできる。
 第2分離装置17は、例えばドラムスクリーン分離機が挙げられる。ただし、ドラムスクリーン(ふるい)の開口には特に制限はなく、例えばスリット、丸孔、四角、メッシュ孔が挙げられるが、ここではスリットを用いる。スリットの大きさ(幅)は、高吸水性ポリマーが通過可能な大きさで、かつパルプ繊維が通過困難な大きさとする。スリットの場合、スリットの大きさは、例えば幅0.2~0.8mmであり、それにより少なくとも多くの高吸水性ポリマーを除去できる。丸孔の場合、丸孔の大きさは、例えば直径0.2~0.8mmφである。第2分離装置17としては、ドラムスクリーン脱水機(東洋スクリーン株式会社製)が挙げられる。
 第3分離装置18は、第2分離装置17から送出されたパルプ繊維、分離できず残った高吸水性ポリマー及び酸性水溶液(混合液97)を、複数の開口を有するスクリーンにより、パルプ繊維及び高吸水性ポリマーを含む固体(混合物98)と、高吸水性ポリマー及び酸性水溶液を含む液体とに分離しつつ、固体に圧力を印加して、固体中の高吸水性ポリマーを押し潰す。したがって、第3分離装置18は、混合液97から高吸水性ポリマーと共に酸性水溶液を除去する加圧脱水方式の脱水機と見ることもできる。ただし、固体(混合物98)は若干の酸性水溶性を含んでいる。
 第3分離装置18は、例えばスクリュープレス脱水機が挙げられる。円筒状のドラムスクリーンと、ドラムスクリーンの円筒の軸に沿って延びるスクリュー軸と、スクリュー軸の外側に設けられドラムスクリーンの内周面に沿って回転するスクリュー羽根と、を備える。ただし、ドラムスクリーン(ふるい)の開口には特に制限はなく、例えばスリット、丸孔、四角、メッシュ孔が挙げられるが、ここではスリットを用いる。スリットの大きさ(幅)は、高吸水性ポリマーが通過可能な大きさで、かつパルプ繊維を通過困難な大きさとする。スリットの場合、スリットの大きさは、例えば幅0.1~0.5mmであり、少なくとも残りの高吸水性ポリマーを除去できる。第3分離装置18は、ドラムスクリーン側面のスリットから高吸水性ポリマーと酸性水溶液を含む液体を送出しつつ、ドラムスクリーン先端の押圧が調整された蓋体の隙間からパルプ繊維と高吸水性ポリマーを含む固体を、高吸水性ポリマーを押し潰しつつ送出する。蓋体に印加される押圧の圧力は、例えば、0.01MPa以上、1MPa以下が挙げられる。第3分離装置18としてはスクリュープレス脱水機(川口精機株式会社製)が挙げられる。
 酸化剤処理装置19は、第3分離装置18から送出された固体中の押し潰された高吸水性ポリマーを含むパルプ繊維(混合物98)を、酸化剤を含む水溶液(処理液)で処理する。それにより、高吸水性ポリマーを酸化分解してパルプ繊維から除去して、高吸水性ポリマーを含まないパルプ繊維を処理液と共に送出する(混合液99)。
 酸化剤処理装置は、酸化剤としてオゾンを用いる場合、例えば、処理槽と、オゾン供給装置と、を備える。処理槽は、酸性水溶液を処理液として貯蔵する。オゾン供給装置は、処理槽にガス状物質であるオゾン含有ガスを供給する。オゾン供給装置のオゾン発生装置としては、例えばエコデザイン株式会社製オゾン水曝露試験機ED-OWX-2、三菱電機株式会社製オゾン発生装置OS-25Vが挙げられる。オゾン供給装置のノズルは、処理槽の下部に配置され、例えば管状又は平板状の形状を有する。ノズルは、オゾン含有ガスZを複数の細かい気泡として処理液中に供給する。処理液としては、オゾンの失活の抑制や、高吸水性ポリマーの不活化の観点から、酸性水溶液が好ましい。更に、破砕処理や除塵処理で酸性水溶液を用いている場合には、各処理間に連続性があるので、各処理間で水溶液が相違することで何らかの不都合が生じるおそれがなく、安定的かつ確実に処理を行うことができる。また、酸による作業者や装置への影響の低減の観点から有機酸が好ましく、中でも金属の除去の観点からクエン酸が好ましい。
 なお、酸化剤としてオゾンガスを用いているが、本実施の形態はこの例に限定されるものではなく、他の酸化剤を用いてもよく、ガス状の酸化剤でなくても液体の酸化剤や固体の酸化剤を液中に溶融させたものであってもよい。酸化剤としては、例えば二酸化塩素、過酢酸、次亜塩素酸ナトリウム、過酸化水素が挙げられる。
 第4分離装置20は、酸化剤処理装置19にて処理されたパルプ繊維を含む処理液(混合液99)から、複数の開口を有するスクリーンにより、パルプ繊維を分離することで、パルプ繊維が回収され、リサイクルパルプ繊維が生成される。
 第4分離装置20としては、例えばスクリーン分離機が挙げられる。ただし、スクリーン(ふるい)の開口には特に制限はなく、例えばスリット、丸孔、四角孔、メッシュが挙げられるが、ここではスリットを用いる。スリットの大きさ(幅)は、パルプ繊維が通過困難な大きさである。スリットの大きさは、例えば、幅0.2~0.8mmである。丸孔の場合、丸孔の大きさは、例えば直径0.2~0.8mmφである。
 なお、システム1は、好ましくは、オゾン処理装置22と、pH調整装置23と、貯水槽24と、を備える。これらの装置は、システム1で使用する酸性水溶液を再生し、再利用するための装置である。酸性水溶液の再利用により、酸性水溶液のコストを削減できる。オゾン処理装置22は、第2分離装置17で分離された高吸水性ポリマー及び酸性水溶液から更に高吸水性ポリマーを分離された後の酸性水溶液101を、オゾン含有水溶液で殺菌処理する。pH調整装置23は、オゾン含有水溶液で殺菌処理された酸性水溶液102のpHを調整して、再生された酸性水溶液103を生成する。貯水槽24は、再生された酸性水溶液103のうちの余剰分を貯留する。
 次に、使用済み吸収性物品からパルプ繊維を回収する方法について説明する。この方法は、使用済み吸収性物品からパルプ繊維(好ましくは更に高吸水性ポリマー)を回収し、したがってリサイクルパルプ繊維(好ましくは更にリサイクル高吸水性ポリマー)を生成する方法である。図6は、本実施の形態に係る方法の一例を示すフローチャートである。この方法は、第2除塵工程S15と、第3除塵工程S16と、を備え、好ましくは、穴開け工程S11と、破砕工程S12と、第1分離工程S13と、第1除塵工程S14と、第3分離工程S18と、酸化剤処理工程S19と、第2分離工程S17と、第4分離工程S20と、を備える。以下、詳細に説明する。
 穴開け工程S11は、破袋装置11により実行される。使用済み吸収性物品を封入した収集袋Aが、酸性水溶液Bを溜めた溶液槽Vに投入されて、収集袋Aにおける酸性水溶液Bに接する表面に穴が開けられる。酸性水溶液Bは、収集袋Aに穴が開けられたとき、収集袋A内の使用済み吸収性物品の汚れや菌類や臭気が外部に放出されないように、収集袋Aの周りを囲んで封止する。穴から酸性水溶液が収集袋A内に浸入すると、収集袋A内の気体が収集袋Aの外部へ抜け、収集袋Aの比重が酸性水溶液Bより重くなり、収集袋Aが酸性水溶液B内に沈降する。また、酸性水溶液Bは、収集袋A内の使用済み吸収性物品内の高吸水性ポリマーを不活化する。
 使用済み吸収性物品内の高吸水性ポリマーが不活化し、その吸水能力が低下することで、高吸水性ポリマーが脱水して、粒径が小さくなるので、後続の各工程での取り扱いが容易になり、処理の効率が向上する。不活化水溶液として酸性水溶液、すなわち無機酸及び有機酸の水溶液を用いるのは、石灰や塩化カルシウムなどの水溶液と比較して、パルプ繊維に灰分が残留しないからであり、更に、不活化の程度(粒径や比重の大きさ)をpHで調整し易いからである。酸性水溶液のpHとしては1.0以上、4.0以下が好ましく、1.2以上、2.5以下がより好ましい。pHが高過ぎると、高吸水性ポリマーの吸水能力を十分に低下させることができない。また、殺菌能力が低下するおそれもある。pHが低過ぎると、設備の腐食のおそれがあり、排水処理時の中和処理に多くのアルカリ薬品が必要となる。特に、パルプ繊維及び高吸水性ポリマーと、その他の資材とに分離するためには、パルプ繊維の大きさや比重と高吸水性ポリマーの大きさや比重とが比較的近い方が好ましい。したがって、酸性水溶液のpHとしては1.0以上、4.0以下とすることで、不活化により高吸水性ポリマーをより小さくすることができ、それにより、パルプ繊維の大きさや比重と高吸水性ポリマーの大きさや比重とを互いに比較的近くできる。有機酸としては、例えばクエン酸、酒石酸、グリコール酸、リンゴ酸、コハク酸、酢酸、アスコルビン酸、等が挙げられるが、クエン酸、酒石酸、グルコン酸、等のヒドロキシカーボネート系の有機酸が特に好ましい。クエン酸のキレート効果により、排泄物中の金属イオン等がトラップされ除去可能であり、かつクエン酸の洗浄効果で、高い汚れ成分除去効果が期待できる。一方、無機酸としては、例えば硫酸、塩酸、硝酸が挙げられるが、塩素を含まないことやコスト等の観点から硫酸が好ましい。pHは水温により変化するため、本発明におけるpHは、水溶液温度20℃で測定したpHをいうものとする。有機酸水溶液の有機酸濃度は、特に限定されないが、有機酸がクエン酸の場合は、0.5質量%以上4質量%以下が好ましい。無機酸水溶液の無機酸濃度は、特に限定されないが、無機酸が硫酸の場合は、0.1質量%以上0.5質量%以下が好ましい。
 例えば図2の破袋装置11では、まず、撹拌羽根33の回転軸(支持軸32)の周りの回転により、酸性水溶液Bに旋回流が生じて、収集袋Aが物理的に強制的に酸性水溶液B(溶液槽V)の底部方向へ引き込まれる。そして、底部に移動してきた収集袋Aが、破袋刃41の回転軸(支持軸42)の周りの回転により、破袋刃41に接触して穴を開けられる。なお、破袋刃41が溶液槽V中を上下方向に移動可能の場合、収集袋Aが旋回流で酸性水溶液B(溶液槽V)の底部方向へ引き込まれなくても、破袋刃41が上方へ移動して収集袋Aに穴を開けてもよい。
 破砕工程S12は、破砕装置12により実行される。穴が開いて酸性水溶液Bの水面下に沈んだ収集袋Aを含む酸性水溶液B、すなわち混合液91が溶液槽Vから排出されつつ、収集袋A内の使用済み吸収性物品が、収集袋Aごと酸性水溶液B中で破砕される。
 例えば、図2の破砕装置12では、まず、破砕部60により、溶液槽Vから酸性水溶液Bと共に送出された収集袋A内の使用済み吸収性物品が、収集袋Aごと酸性水溶液B中で破砕される(液中破砕工程)。このとき、破砕部60では、二軸破砕機における互いに噛み合って内向きに回転する回転刃及びスペーサに、混合液91が供給され、収集袋Aが袋ごと破砕される。そして、ポンプ63により、破砕部60(液中破砕工程)で得られた破砕物を含む酸性水溶液B(混合液92)が破砕部60から引き出され(引出工程)、次工程へ送出される。
 ここで、破砕工程S12において、破砕物の大きさの平均値が50mm以上、100mm以下となるように、使用済み吸収性物品が収集袋Aごと破砕される工程を有することが好ましい。吸収性物品としては、長さ約150~1000mm、幅100mm~1000mmが想定されている。破砕物の大きさの平均値を50mm以上、100mm以下となるように破砕することで、各使用済み吸収性物品の裏面シート及び/又は表面シートに確実に切れ目を入れることができる。それにより、各使用済み吸収性物品において切れ目から概ね残らずパルプ繊維を取り出すことができるので、パルプ繊維の回収率(再生されるパルプ繊維の総量/供給される使用済み吸収性物品のパルプ繊維の総量)を高めることができる。大きさの平均値を50mm未満にすると、パルプ繊維以外の他の資材(例示:フィルム(収集袋Aの素材、裏面シートなど)、不織布(表面シートなど)、弾性体(防漏壁用ゴムなど))が小さく切断され過ぎて、後続の工程においてそれら資材とパルプ繊維とを分離し難くなる。その結果、再生されるパルプ繊維に混入する異物(他の資材)が増加し、パルプ繊維の回収率が低下する。一方、大きさの平均値を100mmより大きくすると、使用済みの吸収性物品に切り目を入れ難くなる。その結果、パルプ繊維を取り出せない使用済み吸収性物品が生じてしまい、パルプ繊維の回収率が低下する。
 第1分離工程S13は、第1分離装置13により実行される。破砕装置12で得られた破砕物と酸性水溶液とを含む混合液92が撹拌されて、破砕物から汚れが除去される洗浄が行われつつ、混合液92がパルプ繊維、高吸水性ポリマー及び酸性水溶液と他の資材とに分離される。このとき、洗浄効果を高めるため、及び/又は、pHを調整するために、別途、酸性水溶液を添加してもよい。その結果、混合液92のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液(一部、他の資材等を含む)が貫通孔を通過して分離されて、第1分離装置13から送出される(混合液93)。一方、混合液92のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液を除いた他の資材が貫通孔を通過できず第1分離装置13内に残存する、又は別経路で送出される。ただし、他の資材の一部は分離しきれずに混合液93と共に送出される。ここで、第1分離装置13として洗濯機を用いるとき、ふるいとして機能する洗濯槽の貫通孔の大きさとしては、丸孔の場合には5mm~20mmφが挙げられ、それ以外の形状の孔の場合には丸孔と略同一面積の大きさが挙げられる。
 本方法(システム)は、上記のように使用済み吸収性物品を破砕する破砕処理(穴開け工程S11(破袋装置11)~第1分離工程S13(第1分離装置13))において、少なくとも、穴開け工程S11(破袋装置11)、破砕工程S12(破砕装置12)を備えている。したがって、収集袋に入った状態の使用済み吸収性物品を収集袋ごと不活化水溶液中で破砕するので、少なくとも破砕を開始するまでは不活化水溶液に汚れや菌類が混ざったり、臭気が生じたりすることはほとんどない。そして、使用済み吸収性物品が破砕されるときに、不活化水溶液に汚れや菌類が混ざったり、臭気が生じたりするとしても、破砕とほぼ同時に、汚れや菌類の混入した不活化水溶液が破砕物と共に溶液槽から送出されるので、溶液槽に汚れや菌類をほとんど残さず、流し去ることができる。加えて、臭気を不活化水溶液で封止できるので、臭気の発生も低く抑えられる。それにより、使用済み吸収性物品の破砕のときに、汚れや菌類が飛散したり、臭気が放出されたりすることを抑制できる。
 なお、不活化水溶液(例示:酸性水溶液)中で収集袋ごと使用済み吸収性物品を破砕せず、気体中(例示:空気中)で収集袋ごと使用済み吸収性物品を破砕してもよい。その場合には、穴開け工程S11は不要であり、不活化水溶液の無い状態の空気中で破砕工程S12は破砕を行う。その後、破砕工程S12の破砕物と共に不活化水溶液を第1分離工程S13に供給する。ただし、その不活化水溶液として酸性水溶液を用いない場合、第1除塵工程S14から酸性水溶液を加えて、第1除塵工程S14に供給されるパルプ繊維及び高吸水性ポリマーを含む不活化水溶液を実質的に酸性水溶液とする。
 第1除塵工程S14は、第1除塵装置14により実行される。第1分離装置13から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液、すなわち混合液93は、pHが所定の範囲内で維持されつつ、スクリーンにより、パルプ繊維及び高吸水性ポリマーを含む酸性水溶液と他の資材(異物)とに分離される。その結果、混合液93のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液(一部、他の資材等を含む)がスクリーンを通過して分離されて、第1除塵装置14から送出される(混合液94)。一方、混合液93のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液を除いた他の資材がスクリーンを通過できず第1除塵装置14内に残存する、又は別経路で送出される。ただし、他の資材の一部は、分離しきれずに混合液94と共に送出される。
 なお、酸性水溶液は、少なくとも第1除塵工程S14までに、高吸水性ポリマーの比重及び大きさとそれぞれパルプ繊維の比重及び大きさとの相違が所定の範囲内になるようにpHを調整されている。この場合、所定の範囲内とは、例えば一方が他方の0.2~5倍の範囲内とする。大きさに関しては、大きさの相違により分離を行うためであり、比重に関しては、比重の相違により分離を行うためである。したがって、第1除塵工程S14以前の工程は、パルプ繊維及び高吸水性ポリマーと、高吸水性ポリマーの比重及び大きさとそれぞれパルプ繊維の比重及び大きさとの相違が所定の範囲内になるようにpHを調整された酸性水溶液と、を混合して、高吸水性ポリマーを不活化する不活化工程と見ることができる。
 また、第1除塵工程S14での酸性溶液中のパルプ繊維と高吸水性ポリマーとを合わせた濃度としては、例えば0.1質量%以上、10質量%以下が挙げられ、0.1質量%以上、5質量%以下が好ましい。また、酸性溶液中のパルプ繊維と高吸水性ポリマーとの比は、例えば50~90質量%:50~10質量%が挙げられる。
 第2除塵工程S15は、第2除塵装置15により実行される。第1除塵装置14から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液、すなわち混合液94が、pHが所定の範囲内で維持されつつ、スクリーンにより、パルプ繊維及び高吸水性ポリマーを含む酸性水溶液と他の資材(異物)とに分離される。その結果、混合液94のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液(一部、他の資材等を含む)がスクリーンを通過して分離され、第2除塵装置15から送出される(混合液95)。一方、混合液94のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液を除いた他の資材がスクリーンを通過できず第2除塵装置15内に残存する、又は別経路で送出される。ただし、他の資材の一部は、分離しきれずに混合液95と共に送出される。なお、酸性水溶液は、高吸水性ポリマーの比重及び大きさとそれぞれパルプ繊維の比重及び大きさとの相違が所定の範囲内になるようにpHを調整されている。
 第3除塵工程S16は、第3除塵装置16により実行される。第2除塵装置15から送出されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液、すなわち混合液95が、pHが所定の範囲内で維持されつつ、逆さ向きの円錐筐体内で遠心分離されて、酸性水溶液中のパルプ繊維及び高吸水性ポリマーと他の資材(重量の大きい異物)とに分離される。その結果、混合液95のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液が第3除塵装置16(サイクロン分離機)の上部から送出される(混合液96)。一方、混合液95のうちのパルプ繊維、高吸水性ポリマー及び酸性水溶液を除いた金属のような重い他の資材が第3除塵装置16(サイクロン分離機)の下部から送出される。なお、酸性水溶液は、高吸水性ポリマーの比重及び大きさとそれぞれパルプ繊維の比重及び大きさとの相違が所定の範囲内になるようにpHを調整されている。
 本方法(システム)は、上記のように異物(他の資材)を除去する除塵処理(第1除塵工程S14(第1除塵装置14)~第3除塵工程S16(第3除塵装置16)にて、少なくとも第2除塵工程S15(第2除塵装置15)、第3除塵工程S16(第3除塵装置16))を備えている。
 第2分離工程S17は、第2分離装置17により実行される。第3除塵装置16から送出されたパルプ繊維及び高吸水性ポリマーを含む前記酸性水溶液、すなわち混合液96が、ドラムスクリーンにより、酸性水溶液中のパルプ繊維と酸性水溶液中の高吸水性ポリマーとに分離される。その結果、混合液96から高吸水性ポリマーを含む酸性水溶液がドラムスクリーンを通過して分離され、第2分離装置17から送出される。一方、混合液96のうちのパルプ繊維を含む酸性水溶液がドラムスクリーンを通過できず第2分離装置17から別経路で送出される(混合液97)。なお、その後、分離された高吸水性ポリマー及び酸性水溶液から高吸水性ポリマーをスクリーン分離機等で分離できる。したがって、以上の工程は、高吸水性ポリマーを分離・回収する工程、よってリサイクル高吸水性ポリマーを生成する工程ということができる。
 第3分離工程S18は、第3分離装置18により実行される。第2分離装置17から送出された、パルプ繊維、分離できず残った高吸水性ポリマー及び酸性水溶液、すなわち混合液97が、ドラムスクリーンにより、パルプ繊維及び高吸水性ポリマーを含む固体と、高吸水性ポリマー及び酸性水溶液を含む液体とに分離される。そして分離と共に、固体中の高吸水性ポリマーが加圧されて押し潰される。押し潰しは、ゲル状の高吸水性ポリマーをゲル強度以上の圧力で潰すことに例示される。その結果、混合液97から高吸水性ポリマーを含む酸性水溶液がドラムスクリーンを通過して分離され、第3分離装置18から送出される。一方、混合液97のうちの高吸水性ポリマーが押し潰されたパルプ繊維がドラムスクリーンを追加できず、ドラムスクリーン先端部の蓋体の隙間から第3分離装置18の外側へ送出される(混合物98)。蓋体に印加される押圧の圧力は、例えば0.01MPa以上、1MPa以下であり、0.02MPa以上、0.5MPa以下が好ましい。圧力を0.02MPa未満にすると、高吸水性ポリマーを押し潰し難くなり、酸化剤処理の時間をあまり短縮できず、圧力を0.5MPaより大きくすると、高吸水性ポリマーを十分に押し潰せるが、パルプ繊維を傷めるおそれがある。
 酸化剤処理工程S19は、酸化剤処理装置19により実行される。第3分離装置18から送出された固体中のパルプ繊維及び押し潰された高吸水性ポリマーが、酸化剤を含む水溶液で処理される。それにより、高吸水性ポリマーが酸化分解してパルプ繊維から除去される。その結果、混合物98のパルプ繊維に付着(例示:パルプ繊維の表面に残存)していた高吸水性ポリマーが、酸化剤(例示:オゾン)を含む水溶液(処理液)により酸化分解して、水溶液に可溶な低分子量の有機物に変化することにより、パルプ繊維から除去する。ここで、高吸水性ポリマーが酸化分解し、水溶液に可溶な低分子量の有機物に変化した状態とは、高吸水性ポリマーが2mmのスクリーンを通過する状態をいう。それにより、パルプ繊維に含まれる高吸水性ポリマー等の不純物を除去し、純度の高いパルプ繊維を生成でき、酸化剤処理によるパルプ繊維の殺菌、漂白及び消臭を行うことができる。
 例えば酸化剤処理装置19では、混合物98が処理槽の上部から投入され、処理液、すなわち酸化剤を含む水溶液の上部から下部へ向かって沈降してゆく。一方、オゾン含有ガスが、処理槽内のノズルから処理液内に細かい気泡の状態(例示:マイクロバブル又はナノバブル)で連続的に放出される。すなわちオゾン含有ガスは、処理液Pの下部から上部へ向かって上昇してゆく。処理液内で、沈降するパルプ繊維と、上昇するオゾン含有ガスとが、対向して進みつつ衝突し合う。そして、オゾン含有ガスは、パルプ繊維の表面に、パルプ繊維を包み込むように付着する。そのとき、オゾン含有ガス中のオゾンが、パルプ繊維中の高吸水性ポリマーと反応して、高吸水性ポリマーを酸化分解して、処理液に溶解させる。それにより、混合物98のパルプ繊維に含まれる高吸水性ポリマーを酸化分解してパルプ繊維から除去する。
 上記の方法(システム)は、上記のようにパルプ繊維などを回収する回収処理(第2分離工程S17(第2分離装置17)~第4分離工程S20(第4分離装置20))において、少なくとも第3分離工程S18(第3分離装置18)と、酸化剤処理工程S19(酸化剤処理装置19)と、を備えている。したがって、略球状又は塊状の高吸水性ポリマーの押し潰しにより、高吸水性ポリマーの表面積を大きく拡げることができ、高吸水性ポリマーの内側の部分を表側に露出させるなど露出する部分を増やすことができる。それゆえ、酸化剤処理工程S19(酸化剤処理装置19)において、塊状又は略球状の高吸水性ポリマーの場合には酸化剤と接触し難かった高吸水性ポリマーの内側の部分を酸化剤に接触させることができるなど、高吸水性ポリマーおける酸化剤との接触面積を大きくすることができる。それにより、高吸水性ポリマーの酸化分解をより効率的に進めることができ、酸化剤処理の時間を短縮できる。したがって、パルプ繊維から高吸水性ポリマーを除去する処理の効率を高めることができる。
 第4分離工程S20は、第4分離装置20により実行され、酸化剤処理装置19にて処理されたパルプ繊維を含む処理液、すなわち混合液99が、複数の開口を有するスクリーンを通過して、混合液99からパルプ繊維と処理液とが分離される。その結果、混合液99から処理液104がスクリーンを通過して分離され、第4分離装置20から送出される。分離された処理液104、すなわち酸化剤処理液は、酸化剤処理装置19に戻して再利用してもよい。酸化剤処理液のコストを削減できる。一方、混合液99のうちのパルプ繊維がスクリーンを通過できず第4分離装置20に残存する、又は別経路で送出される。以上の工程は、パルプ繊維を分離・回収する工程、したがってリサイクルパルプ繊維を生成する工程ということができる。
 ただし、高吸水性ポリマーの比重は、高吸水性ポリマーの比重は、JIS K 0061の化学製品の密度及び比重測定方法の比重瓶法で測定した。その結果、吸水前の吸水性ポリマーの比重は1.32g/mlであった。クエン酸水溶液(pH2)で不活化時の比重は1.04g/mlであり、クエン酸水溶液(pH4)不活化時の比重は1.01g/mlであった。
 一方、高吸水性ポリマー(吸水後)の大きさは、実測が難しいため、高吸水性ポリマーを球と仮定して、その大きさ(直径)を以下のようにして算出した。すなわち、高吸水性ポリマーの吸水前の平均直径を200μmとし、高吸水性ポリマーが吸水した水溶液中の水の量から体積膨張計算により、高吸水性ポリマーの吸水後の大きさ(直径)を推定した。ここで、体積膨張計算は以下のようにして行った。まず、高吸水性ポリマーが吸水した水の量(1粒当たり)を計測した。次いで、その水の量に相当する水の体積を吸水後の高吸水性ポリマーの体積Vと仮定して、V=4/3πrに基づいて、吸水後の高吸水性ポリマーの半径rを求めた。そして、半径rを2倍である直径を、高吸水性ポリマー(吸水後)の大きさとした。その結果、クエン酸水溶液(pH2)で不活化時のゲル直径は約420μmであり、クエン酸水溶液(pH4)での不活化時のゲル直径は約540μmであった。
 ただし、酸性水溶液中のパルプ繊維及び高吸水性ポリマーの割合は以下のようにして測定した。まず、酸性水溶液の一部を試料として採取して、その試料を200メッシュのフィルターに入れて試料重量W0を測定した。次いで、フィルター上の試料を5分間吊るして水切りし、所定の絶乾方法(120℃で10分間加熱し、乾燥させる方法)で絶乾し、得られた絶乾物の絶乾重量W1を測定した。次いで、絶乾物を、オゾンを含有する水溶液中に浸漬して、得られた物を上記の絶乾方法で絶乾し、パルプ繊維として絶乾重量W2を測定した。そして、絶乾重量W1から絶乾重量W2を引いた重量を高吸水性ポリマーの重量とし、酸性水溶液中のパルプ繊維及び高吸水性ポリマーの割合を、以下の式で計算した。すなわち、(パルプ繊維の割合)=(絶乾重量W2)/(試料重量W0)とし、(高吸水性ポリマーの割合)=(絶乾重量W1-絶乾重量W2)/(試料重量W0)とした。重量割合的には、汚物の固形重量は極めて小さいので無視できる。
 なお、この方法は、好ましくは、オゾン処理工程S22と、pH調整工程S23と、を備える。これらの工程は、この方法で使用する酸性水溶液を再生し、再利用するための工程である。酸性水溶液の再利用により、酸性水溶液のコストを削減できる。オゾン処理工程S22は、第2分離工程S17で分離された高吸水性ポリマー及び酸性水溶液から更に高吸水性ポリマーを分離された後の酸性水溶液101を、オゾン含有水溶液で殺菌処理する。pH調整工程S23は、オゾン含有水溶液で殺菌処理された酸性水溶液のpHを調整して、再生された酸性水溶液103を生成する。酸性水溶液103は、例えば、破袋装置11へ供給される。あるいは、穴開け工程S11がなく、破砕工程S12において不活化水溶液を用いずに破砕する場合は、第1分離工程S13に供給される。あるいは、必要に応じて酸性水溶液が必要な他の工程(装置)へ供給されてもよい。酸性水溶液103の余剰分は貯水槽24に貯留される。
 一般に、高吸水性ポリマーの比重は水より大きいが、高吸水性ポリマーが水を吸収すると、吸水量に応じて水の比重に近づく。また、高吸水性ポリマーの大きさは小さいが、高吸水性ポリマーが水を吸収すると、吸水量に応じて大きさは大きくなる。また、高吸水性ポリマーが吸収し、保持できる水の量は非常に多いが、高吸水性ポリマーに不活化処理を施すことにより、ある程度の量に制限される。以上のことから、高吸水性ポリマーの不活化処理の程度によって高吸水性ポリマーが保持する水の量を調整して、高吸水性ポリマーの大きさ及び比重を所望の値に調整できる。高吸水性ポリマーの不活化処理としては、高吸水性ポリマーを所定の溶液(例示:酸性水溶液)に浸漬する処理が挙げられる。
 そこで、上述のパルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収(システム)する方法は、異物(他の資材)を除去する除塵処理(第1除塵工程S14(第1除塵装置14)~第3除塵工程S16(第3除塵装置16)にて、少なくとも第2除塵工程S15(第2除塵装置15)、第3除塵工程S16(第3除塵装置16)を備える。第2除塵工程S15はサイズ分離工程でもあり、第3除塵工程S16は比重分離工程でもある。第2除塵装置15はスクリーン分離機でもあり、第3除塵装置16はサイクロン分離機(遠心分離機)でもある。そして、予め、pHを調整された酸性水溶液で高吸水性ポリマーを不活化し、高吸水性ポリマーの吸水量を調整して、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとの相違が、所定の範囲内になるようにする(不活化工程)。この場合、所定の範囲内とは、例えば一方が他方の0.2~5倍の範囲内とする。それにより、パルプ繊維と高吸水性ポリマーとの相違は、比重が所定の範囲内であり、かつ、大きさが所定の範囲内である。その結果、パルプ繊維及び高吸水性ポリマーを、使用済み吸収性物品の資材のうちのパルプ繊維及び高吸水性ポリマーを除いた他の資材(主に樹脂材料)と、大きさの相違を利用して容易に分離し(第2除塵工程S15(第2除塵装置15))、他の資材のうちの比重の大きい材料(主に金属材料)と、比重の相違を利用して容易に分離することができる(第3除塵工程S16(第3除塵装置16))。そして、その後に、パルプ繊維と高吸水性ポリマーとを互いに分離することにより(第2、3分離工程S17、S18(第2、3分離装置17、18)、使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収できる。このとき、パルプ繊維及び高吸水性ポリマーと他の資材とを分離する処理の回数を低減できる。すなわち、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。ここで、パルプ繊維及び高吸水性ポリマーを除いた使用済み吸収性物品の他の資材のうちの樹脂材料としては、フィルム(裏面シートなど)、不織布(表面シートなど)、弾性体(防漏壁用ゴムなど)などが挙げられる。他の資材のうちの比重の大きい材料、例えば金属材料としては、元の吸収性物品には含まれないが使用済み吸収性物品の回収時に混入したクリップやステープラの針などが挙げられる。また、高吸水性ポリマーの大きさとは、高吸水性ポリマーの粒径であり、高吸水性ポリマーが球形の場合には直径とし、塊状の場合には最も長い幅とする。パルプ繊維の大きさとは、パルプ繊維の平均の繊維長とする。
 本実施の形態では好ましい態様として、比重分離工程、すなわち第3除塵工程S16(比重分離工程)は、パルプ繊維及び高吸水性ポリマーと他の資材とを、遠心分離法により分離する工程を含んでもよい。
 本方法は、パルプ繊維と高吸水性ポリマーとは比重の相違が所定の範囲内であるため、遠心分離法により、より的確に、パルプ繊維及び高吸水性ポリマーを他の資材(比重の大きい材料、例えば金属材料)から分離することができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本実施の形態では好ましい態様として、第2除塵工程S15(サイズ分離工程)は、パルプ繊維及び高吸水性ポリマーと他の資材とを、所定の大きさの複数の開口を有するスクリーンを用いて分離するスクリーン分離工程を含んでもよい。
 本方法は、パルプ繊維と高吸水性ポリマーとは大きさの相違が所定の範囲内であるため、所定の大きさの複数の開口を有するスクリーンを通過させることで、より的確に、パルプ繊維及び高吸水性ポリマーを他の資材(樹脂部材、例えば裏面シートなどのフィルム、表面シートなどの不織布、弾防漏壁用ゴムなど性体)から分離することができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本実施の形態では好ましい態様として、第2除塵工程S15又はサイズ分離工程(第2除塵装置15又はスクリーン分離機の前に、第1除塵工程S14又は粗サイズ分離工程(第1除塵装置14又は粗スクリーン分離機)を含んでもよい。
 本方法システムは、第2除塵工程S15(第2除塵装置15)の前に、パルプ繊維及び高吸水性ポリマーと他の資材とを、より大きい複数の開口を有するスクリーンを通過させる。そのため、相対的に大きい他の資材を予め除去することができる。それにより、第2除塵工程S15(第2除塵装置15)において、相対的に大きい他の資材でスクリーンが詰まり、分離する処理の効率が低下することを抑制できる。
 本実施の形態では好ましい態様として、不活化された高吸水性ポリマーを含む酸性水溶液におけるパルプ繊維及び高吸水性ポリマーの割合は、0.1質量%以上、10%質量以下であってもよい。
 本方法(システム)では、酸性水溶液におけるパルプ繊維及び高吸水性ポリマーの割合を0.1質量%以上、10質量%以下にすることにより、パルプ繊維及び高吸水性ポリマーと他の資材との分離をより確実に行うことができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。ただし、0.1質量%未満にすると、分離すべき高吸水性ポリマー及びパルプ繊維の量が少な過ぎて、分離処理の能力が無駄になり、10質量%より大きいと、分離しきれずに他の資材と共に排出されてしまい、いずれもの場合にも処理の効率が低下する。
 本実施の形態では好ましい態様として、酸性水溶液は、pHが1以上、4以下であってもよい。
 本方法(システム)では、酸性水溶液のpHを1以上、4以下に調整しているため、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとを、互いにより近い値にすることができる。それにより、より確実に、パルプ繊維及び高吸水性ポリマーと他の資材とを分離することができる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本実施の形態では好ましい態様として、酸性水溶液は、クエン酸を含んでいてもよい。
 本方法(システム)では、酸性水溶液はクエン酸を含んでいるので(例示:濃度0.5~2.0質量%)、高吸水性ポリマーを確実に脱水して、高吸水性ポリマーの比重及び大きさと、それぞれパルプ繊維の比重及び大きさとを、互いにより近い値にすることができる。それにより、より確実に、パルプ繊維及び高吸水性ポリマーと他の資材とを分離できる。また、酸による作業者への悪影響や、各工程の機器の腐食を抑制できる。それにより、高吸水性ポリマー及びパルプ繊維を分離する処理の効率を高めることができる。
 本実施の形態では好ましい態様として、第3除塵工程S16又は比重分離工程(第3除塵装置16又はサイクロン分離機)で分離されたパルプ繊維及び高吸水性ポリマーを含む酸性水溶液から高吸水性ポリマーを分離する第2分離工程S17又はポリマー分離工程(第2分離装置17又はラムスクリーン分離機)を更に備えてもよい。
 本方法(システム)では、パルプ繊維及び高吸水性ポリマーから他の資材が除去されているので、パルプ繊維と高吸水性ポリマーとを互いに分離することにより、容易に、パルプ繊維と高吸水性ポリマーとを別々に回収できる。
 上記の実施の形態は、裏面シートの構成部材をフィルムとし、表面シートの構成部材を不織布とする場合について説明している。しかし、裏面シートの構成部材を不織布とし、表面シートの構成部材をフィルムとする場合や、裏面シート及び表面シートの両方の構成部材をフィルムとする場合の実施の形態についても、上記の実施の形態と同様の方法で実現でき、同様の作用効果を奏することができる。
 本発明の吸収性物品は、上述した各実施の形態に制限されることなく、本発明の目的、趣旨を逸脱しない範囲内において、適宜組合せや変更等が可能である。
  S13 第1分離工程(不活化工程)
  S15 第2除塵工程(サイズ分離工程)
  S16 第3除塵工程(比重分離工程)

Claims (14)

  1.  パルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法であって、
     使用済み吸収性物品から分離されたパルプ繊維及び高吸水性ポリマーと、前記高吸水性ポリマーの比重と前記パルプ繊維の比重との相違が所定の範囲内になり且つ前記高吸水性ポリマーの大きさと前記パルプ繊維の大きさとの相違が所定の範囲内になるようにpHを調整された酸性水溶液と、を混合して、前記高吸水性ポリマーを不活化する不活化工程と、
     前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと他の資材とを、大きさの相違を利用して分離するサイズ分離工程と、
     前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと他の資材とを、比重の相違を利用して分離する比重分離工程と、
     を備える方法。
  2.  前記比重分離工程は、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、遠心分離法により分離する工程を含む、
     請求項1に記載の方法。
  3.  前記サイズ分離工程は、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、所定の大きさの複数の開口を有するスクリーンを用いて分離するスクリーン分離工程を含む、
     請求項1又は2に記載の方法。
  4.  前記サイズ分離工程の前に、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、前記サイズ分離工程で使用されるスクリーンの複数の開口よりも大きい複数の開口を有するスクリーンを通過させることにより分離する粗サイズ分離工程を含む、
     請求項1乃至3のいずれか一項に記載の方法。
  5.  前記不活化工程で形成される前記酸性水溶液における前記パルプ繊維及び前記高吸水性ポリマーの割合は、0.1質量%以上、10%質量以下である、
     請求項1乃至4のいずれか一項に記載の方法。
  6.  前記酸性水溶液は、pHが1以上、4以下である、
     請求項1乃至5のいずれか一項に記載の方法。
  7.  前記酸性水溶液は、クエン酸を含む、
     請求項1乃至6のいずれか一項に記載の方法。
  8.  前記比重分離工程で分離された前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液から前記高吸水性ポリマーを分離するポリマー分離工程を更に備える、
     請求項1乃至7のいずれか一項に記載の方法。
  9.  パルプ繊維及び高吸水性ポリマーを含む使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収するためのシステムであって、
     使用済み吸収性物品から分離されたパルプ繊維及び高吸水性ポリマーと、前記高吸水性ポリマーの比重と前記パルプ繊維の比重との相違が所定の範囲内になり且つ前記高吸水性ポリマーの大きさと前記パルプ繊維の大きさとの相違が所定の範囲内になるようにpHを調整された酸性水溶液と、を混合して、前記高吸水性ポリマーを不活化した、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと他の資材とを、所定の大きさの複数の開口を有するスクリーンを用いて分離するスクリーン分離機と、
     前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを遠心分離法により分離するサイクロン分離機と、
     を備えるシステム。
  10.  前記スクリーン分離機の前に、前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液中において、前記pHを所定の範囲内で維持しつつ、前記パルプ繊維及び前記高吸水性ポリマーと前記他の資材とを、前記所定の大きさの複数の開口よりも大きい複数の開口を有するスクリーンを通過させることにより分離する粗スクリーン分離機を更に備える、
     請求項9に記載のシステム。
  11.  前記不活化された前記高吸水性ポリマーを含む前記酸性水溶液における前記パルプ繊維及び前記高吸水性ポリマーの割合は、0.1質量%以上、10質量%以下である、
     請求項9又は10に記載のシステム。
  12.  前記酸性水溶液は、pHが1以上、4以下である、
     請求項9乃至11のいずれか一項に記載のシステム。
  13.  前記酸性水溶液は、クエン酸を含む、
     請求項9乃至12のいずれか一項に記載のシステム。
  14.  前記サイクロン分離機で分離された前記パルプ繊維及び前記高吸水性ポリマーを含む前記酸性水溶液から前記高吸水性ポリマーをドラムスクリーンにより分離するドラムスクリーン分離機を更に備える、
     請求項9乃至13のいずれか一項に記載のシステム。
PCT/JP2018/028138 2017-11-01 2018-07-26 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム WO2019087485A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2018360432A AU2018360432B2 (en) 2017-11-01 2018-07-26 Method and system for recovering pulp fibers and highly water-absorbent polymer from used absorbent articles
BR112020008506-5A BR112020008506B1 (pt) 2017-11-01 2018-07-26 Método e sistema para recuperação de fibras de polpa e polímero altamente absorvente em água de artigos absorventes usados
KR1020207002979A KR102559361B1 (ko) 2017-11-01 2018-07-26 사용이 끝난 흡수성 물품으로부터 펄프 섬유 및 고흡수성 폴리머를 회수하는 방법 및 시스템
RU2020117217A RU2020117217A (ru) 2017-11-01 2018-07-26 Способ и система для извлечения волокон целлюлозы и супервпитывающего полимера из использованных впитывающих изделий
CN201880068643.6A CN111263670B (zh) 2017-11-01 2018-07-26 自使用过的吸收性物品回收浆粕纤维和高吸水性聚合物的方法和系统
PH12020550527A PH12020550527A1 (en) 2017-11-01 2020-04-30 Method and system for recovering pulp fibers and highly water-absorbent polymer from used absorbent articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212270A JP6843030B2 (ja) 2017-11-01 2017-11-01 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム
JP2017-212270 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019087485A1 true WO2019087485A1 (ja) 2019-05-09

Family

ID=66333482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028138 WO2019087485A1 (ja) 2017-11-01 2018-07-26 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム

Country Status (8)

Country Link
JP (1) JP6843030B2 (ja)
KR (1) KR102559361B1 (ja)
CN (1) CN111263670B (ja)
AU (1) AU2018360432B2 (ja)
BR (1) BR112020008506B1 (ja)
PH (1) PH12020550527A1 (ja)
RU (1) RU2020117217A (ja)
WO (1) WO2019087485A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241025A1 (ja) * 2019-05-30 2020-12-03 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
JP2021098164A (ja) * 2019-12-20 2021-07-01 ユニ・チャーム株式会社 パルプ繊維及び高吸水性ポリマーの混合物から、それらを分離回収する方法、並びに分離用溶液の、パルプ繊維及び高吸水性ポリマーの混合物から、それらを分離回収するための使用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162082A1 (ja) 2020-02-14 2021-08-19 株式会社日本触媒 吸水性樹脂をリサイクルする方法
JPWO2022091975A1 (ja) * 2020-10-30 2022-05-05
WO2022097645A1 (ja) * 2020-11-04 2022-05-12 株式会社Ihi 分離方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150976A (ja) * 2011-12-28 2013-08-08 Nippon Paper Industries Co Ltd 使用済み衛生用品の処理方法
JP2016079525A (ja) * 2014-10-15 2016-05-16 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007105A1 (ja) 2012-07-06 2014-01-09 日本製紙株式会社 再生繊維および再生繊維成型品
JP6199243B2 (ja) * 2014-06-12 2017-09-20 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法
JP6646924B2 (ja) * 2014-09-22 2020-02-14 ユニ・チャーム株式会社 使用済み衛生用品からパルプ繊維を回収する方法およびその方法により得られる再生パルプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150976A (ja) * 2011-12-28 2013-08-08 Nippon Paper Industries Co Ltd 使用済み衛生用品の処理方法
JP2016079525A (ja) * 2014-10-15 2016-05-16 ユニ・チャーム株式会社 使用済み衛生用品からリサイクルパルプを製造する方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241025A1 (ja) * 2019-05-30 2020-12-03 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
JP2020195994A (ja) * 2019-05-30 2020-12-10 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
US11358123B2 (en) 2019-05-30 2022-06-14 Unicharm Corporation Method for recycling superabsorbent polymer derived from used absorbent article and recycled superabsorbent polymer derived from used absorbent article
JP7378374B2 (ja) 2019-05-30 2023-11-13 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
JP2021098164A (ja) * 2019-12-20 2021-07-01 ユニ・チャーム株式会社 パルプ繊維及び高吸水性ポリマーの混合物から、それらを分離回収する方法、並びに分離用溶液の、パルプ繊維及び高吸水性ポリマーの混合物から、それらを分離回収するための使用
JP7361597B2 (ja) 2019-12-20 2023-10-16 ユニ・チャーム株式会社 パルプ繊維及び高吸水性ポリマーの混合物から、それらを分離回収する方法、並びに分離用溶液の、パルプ繊維及び高吸水性ポリマーの混合物から、それらを分離回収するための使用

Also Published As

Publication number Publication date
KR20200076664A (ko) 2020-06-29
CN111263670A (zh) 2020-06-09
JP6843030B2 (ja) 2021-03-17
RU2020117217A (ru) 2021-12-01
AU2018360432B2 (en) 2022-10-20
KR102559361B1 (ko) 2023-07-25
BR112020008506A2 (pt) 2020-10-06
AU2018360432A1 (en) 2020-05-14
BR112020008506B1 (pt) 2021-12-14
CN111263670B (zh) 2022-06-28
RU2020117217A3 (ja) 2021-12-07
PH12020550527A1 (en) 2021-04-26
JP2019084470A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019087485A1 (ja) 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム
JP7168350B2 (ja) 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム
WO2019087489A1 (ja) 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム
JP7446384B2 (ja) 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム
JP6847028B2 (ja) リサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤
JP7379076B2 (ja) 使用済み衛生用品を用いたバイオガスの製造方法
JP6818164B2 (ja) 糖化用パルプ繊維の製造方法
WO2020217757A1 (ja) 高吸水性ポリマー、パルプ繊維及び排泄物を含む使用済みの吸収性物品からリサイクルパルプ繊維を製造する方法
WO2019123580A1 (ja) リサイクルパルプ繊維を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018360432

Country of ref document: AU

Date of ref document: 20180726

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008506

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020008506

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200429

122 Ep: pct application non-entry in european phase

Ref document number: 18872487

Country of ref document: EP

Kind code of ref document: A1