WO2019085953A1 - 参考信号、控制信道单元的确定方法及装置、存储介质 - Google Patents

参考信号、控制信道单元的确定方法及装置、存储介质 Download PDF

Info

Publication number
WO2019085953A1
WO2019085953A1 PCT/CN2018/113117 CN2018113117W WO2019085953A1 WO 2019085953 A1 WO2019085953 A1 WO 2019085953A1 CN 2018113117 W CN2018113117 W CN 2018113117W WO 2019085953 A1 WO2019085953 A1 WO 2019085953A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission time
reference signal
time interval
time intervals
sps
Prior art date
Application number
PCT/CN2018/113117
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
张雯
梁春丽
韩祥辉
任敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/753,376 priority Critical patent/US20200336268A1/en
Priority to EP18872471.0A priority patent/EP3706485A4/en
Publication of WO2019085953A1 publication Critical patent/WO2019085953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, for example, to a reference signal, a method and apparatus for determining a control channel unit, and a storage medium.
  • the 4th Generation mobile communication technology (4G) Long-Term Evolution (LTE)/Long-Term Evolution Advance (LTE-Advance/LTE-A) and the fifth generation The 5th Generation mobile communication technology (5G) faces increasing demands. From the current development trend, both 4G and 5G systems are studying the features of enhanced mobile broadband, ultra-high reliability, ultra-low latency transmission, and massive connectivity.
  • Multi-subframe scheduling has been supported in LTE/LTE-A systems, and this mechanism can be used for multiple short transmission time interval scheduling.
  • the reference information is transmitted in each of the short transmission time intervals of the scheduled short transmission time intervals, the resource utilization is reduced compared to the multi-subframe scheduling, so the reference signal overhead needs to be reduced, whereas the conventional The pilot overhead is not considered in the subframe scheduling process.
  • the embodiment of the present application provides a reference signal, a method and a device for determining a control channel unit, and a storage medium, so as to at least solve the related art, because the reference signal is transmitted in each short time interval, thereby causing a large overhead of the reference signal.
  • the problem because the reference signal is transmitted in each short time interval, thereby causing a large overhead of the reference signal.
  • a method for determining a reference signal including:
  • the reference signal is indicated in the at least one TTI in the scheduled N transmission time intervals TTI by a preset manner, where N is a positive integer.
  • a method for determining a semi-persistent scheduling SPS transmission time including:
  • the upper layer signaling indicates the SPS period, the offset value, and the transmission time interval length joint coding, wherein the transmission time interval length is jointly coded with the SPS period and the offset value; or the SPS period and the offset value are indicated by the high layer signaling, and the SPS is activated at the same time.
  • the physical layer signaling of the transmission is located at the limited transmission time; or the SPS period is notified by the high layer signaling, and the physical layer signaling of the activated SPS transmission is located at the limited transmission time, and the joint coding indicates the offset value and the transmission time interval length;
  • the SPS transmission timing is determined by the following one of the indications: the SPS period, the offset value, and the transmission time interval length; the SPS period and the offset value; the offset value and the transmission time interval length.
  • a method for determining a control channel unit including:
  • the M REGs are grouped at equal intervals in the frequency domain or The interval is discretely composed of one CCE, where M is the number of REGs included in K resource blocks (RBs) in a TTI, where K is a positive integer and N is a positive integer;
  • the mapping between the control channel unit CCE and the resource unit group REG is a distributed mapping, at least the following principle is met: one group is equally spaced or spaced apart in the frequency domain in a single symbol The REGs make up a CCE.
  • a determining device for a reference signal including:
  • the first indication module is configured to indicate, by using a preset manner, that there is a reference signal in the at least one TTI in the scheduled N transmission time intervals TTI, where N is a positive integer.
  • a determining apparatus for a control channel unit including:
  • the selecting module is configured to select a part of the resource unit groups in the N resource unit groups to form one control channel unit, and form a control channel unit by using at least one of the following methods:
  • the mapping between the control channel unit CCE and the resource element group (REG) is a distributed mapping
  • at least the following principle is met: using M REGs as a group
  • the frequency domain is equally spaced or spaced apart to form a CCE, where M is the number of REGs included in K RBs in a TTI, where K is a positive integer and N is a positive integer;
  • the mapping between the control channel unit CCE and the resource unit group REG is a distributed mapping, at least the following principle is met: one group is equally spaced or spaced apart in the frequency domain in a single symbol The REGs make up a CCE.
  • a determining device for a reference signal including:
  • the first determining module is configured to determine, by using a preset manner, that there is a reference signal in at least one transmission time interval in each of the N transmission time intervals in the semi-persistent scheduling SPS transmission, where N is a positive integer.
  • a device for determining a semi-statically scheduled SPS transmission time including:
  • the indication module is configured to jointly code the SPS period, the offset value, and the transmission time interval length by the high layer signaling joint coding; or indicate the SPS period and the offset value by using the high layer signaling, and the physical layer signaling for activating the SPS transmission is located at the Limiting the transmission time; or notifying the SPS period by the high layer signaling, while activating the SPS transmission physical layer signaling is located at the limited transmission moment, and the joint coding indicates the offset value and the transmission time interval length;
  • the second determining module is configured to determine an SPS transmission time by using one of the following: the SPS period, the offset value, and the transmission time interval length; the SPS period and the offset value; the offset value and the transmission time interval length.
  • a storage medium including a stored program, a method of determining a reference signal when the program is executed, or a determining method of a control channel unit.
  • FIG. 1 is a flowchart of a method of determining a reference signal according to an embodiment of the present application
  • FIG. 2 is a structural block diagram of a determining device for a reference signal according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining a control channel unit according to an embodiment of the present application
  • FIG. 4 is a structural block diagram of a determining apparatus of a control channel unit according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a downlink sTTI according to an alternative embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an uplink sTTI according to an alternative embodiment of the present application.
  • FIG. 7 is a schematic diagram of a centralized mapping and a distributed mapping according to an alternative embodiment of the present application.
  • FIG. 8 is another schematic diagram of a centralized mapping and a distributed mapping according to an alternative embodiment of the present application.
  • FIG. 9 is still another flowchart of a method for determining a reference signal according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a method for determining an SPS transmission time according to an embodiment of the present application.
  • FIG. 11 is a block diagram showing another structure of a determining device for a reference signal according to an embodiment of the present application.
  • FIG. 12 is a structural block diagram of an apparatus for determining an SPS transmission time according to an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for determining a reference signal according to an embodiment of the present application. As shown in FIG. 1, the flow includes the following step S102.
  • step S102 it is indicated in a preset manner that there is a reference signal in at least one transmission time interval among the scheduled N transmission time intervals, where N is a positive integer.
  • the reference signal may be indicated in at least one TTI in the scheduled N Transmission Time Intervals (TTIs), and the N transmission time intervals may not be indicated.
  • TTIs Transmission Time Intervals
  • the reference signal exists in the TTI, thereby solving the problem in the related art that the reference signal is transmitted in each short time interval, thereby causing a large overhead of the reference signal, and the overhead of the reference signal is reduced.
  • the reference signal is present in at least one TTI of the N transmission time intervals TTI, but in order to better solve the technical problem, at least one TTI is indicated by a preset manner, and less than or equal to N TTIs exist. Reference signal.
  • the reference signal when the location of the reference signal is fixed in the TTI, the reference signal is indicated in the at least one TTI in the N transmission time intervals by a preset manner, including at least one of the following:
  • Manner 5 indicates, in the N TTIs that are scheduled, whether the reference signal and the location of the reference signal are carried in the remaining TTIs except the first TTI, where the first TTI always has a reference signal, indicating whether another TTI includes the reference signal and The location of another TTI containing the reference signal;
  • the reference signal pattern is a set of patterns when the number of TTIs is scheduled x.
  • the reference signal pattern carries the scheduling TTI quantity information at the same time
  • the reference signal pattern carries the Acknowledgment (ACK)/No Acknowledgment (NACK) timing information.
  • the types of the reference signals are the same.
  • the types of the reference signals are the same.
  • the TTI types are different.
  • Frame type such as a Multicast Broadcast Single Frequency Network (MBSFN) subframe, a non-MBSFN subframe; or a TTI type of different slot types, such as a pure downlink slot, a pure uplink slot, and a downlink portion. + Reserved part + the part of the upstream part.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the manner 5 is implemented by one of the following methods:
  • the TTI position is fixed at the last one of the scheduled N TTIs. .
  • the physical downlink shared channel (also referred to as a short sPDSCH) is used, and the unused resources of the physical downlink control channel (PDCCH) (sPDCCH) are at least included.
  • PDSCH physical downlink shared channel
  • sPDCCH physical downlink control channel
  • the first TTI supports the PDSCH to use resources that are not used by the PDCCH;
  • the PDSCH is not supported to use resources that are not used by the PDCCH;
  • the PDSCH is supported to use resources that are not used by the PDCCH;
  • all TTIs reuse the same PDCCH unused resources as the first TTI.
  • the timing of feeding back ACK/NACK for data carried in the N TTIs is determined according to a reference signal position, and the determining method includes at least one of the following manners:
  • k1, k2, k3, and k4 are all positive numbers.
  • the location of the reference signal is not fixed in the TTI, indicating, in a preset manner, that there are reference signals in the at least one TTI in the N transmission time intervals TTI, including at least one of the following:
  • Manner 1 The reference signal pattern indicating the first TTI of the N TTIs is consistent, wherein the reference signal pattern is consistent with the reference signal pattern when the single TTI is scheduled;
  • Manner 2 By indicating a TTI in the N TTIs and a reference signal pattern in the TTI, where the reference signal pattern is consistent with the reference signal pattern in the single TTI scheduling;
  • Manner 3 The reference signal pattern indicating up to K TTIs in the N TTIs, wherein the reference signal pattern is consistent with the reference signal pattern in single TTI scheduling, where K is a positive integer less than N;
  • Manner 4 The reference signal pattern indicating each TTI of the N TTIs, wherein the reference signal pattern is consistent with the reference signal pattern when the single TTI is scheduled;
  • Manner 5 indicates, in the N TTIs that are scheduled, whether the reference signal and the location of the reference signal are carried in the remaining TTIs except the first TTI, where the first TTI always has a reference signal, indicating whether another TTI includes the reference signal and The location of another TTI including the reference signal and the location of the indication reference signal in the TTI;
  • Manner 6 By indicating a reference signal pattern in the N TTIs, where the reference signal pattern is a set of patterns when the number of TTIs is scheduled x, or the reference signal pattern carries the scheduling TTI quantity information, or the reference The signal pattern carries the feedback ACK/NACK timing information at the same time.
  • implementation manners of the foregoing manners 1 to 6 may be applied to the uplink transmission process, and may also be applied to the downlink transmission process, which is not limited in this embodiment of the present application.
  • Application mode one to mode six are used for a scene in which the reference signal position is not fixed in the TTI.
  • the types of the reference signals are the same.
  • the types of the reference signals are the same, where the TTI type is a different subframe type, such as MBSFN. Subframe, non-MBSFN subframe; or TTI type is a different slot type, such as pure downlink slot, pure uplink slot, downlink part + reserved part + uplink part.
  • the manner 5 is implemented by one of the following methods:
  • the method further includes:
  • the TTI position is fixed at the last of the scheduled N TTIs.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • a determining device for determining a reference signal is also provided in the embodiment, and the device is used to implement the above-described embodiments and application embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of at least one of software and hardware for a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of a determining apparatus for a reference signal according to an embodiment of the present application. As shown in FIG. 2, the apparatus includes: a first indicating module 20.
  • the first indication module 20 is configured to indicate, by using a preset manner, that there is a reference signal in the at least one TTI in the scheduled N transmission time intervals TTI, where N is a positive integer.
  • the first indication module 20 is configured to perform at least one of the following operations:
  • the reference signal is indicated in the at least one TTI in the N transmission time intervals TTI by a preset manner, including at least one of the following:
  • Manner 5 indicates, in the N TTIs that are scheduled, whether the reference signal and the location of the reference signal are carried in the remaining TTIs except the first TTI, where the first TTI always has a reference signal, indicating whether another TTI includes the reference signal and The location of another TTI containing the reference signal;
  • the reference signal pattern is a set of patterns when the number of TTIs is scheduled x.
  • the reference signal pattern carries the scheduling TTI quantity information at the same time
  • the reference signal pattern carries the feedback ACK/NACK timing at the same time.
  • the types of the reference signals are the same.
  • the types of the reference signals are the same.
  • the TTI types are different.
  • the frame type such as an MBSFN subframe or a non-MBSFN subframe; or the TTI type is a different slot type, such as a pure downlink slot, a pure uplink slot, a downlink portion, a reserved portion, and an uplink portion.
  • the manner 5 is implemented by one of the following methods:
  • the use of 1 bit indicates whether there is another TTI in the N TTIs other than the first TTI, and when there is another TTI including the reference signal, the TTI position is fixed at the last one of the scheduled N TTIs.
  • the physical downlink shared channel PDSCH (which may also be understood as a short sPDSCH) is used.
  • the resource that is not used by the physical downlink control channel PDCCH (sPDCCH) includes at least one of the following conditions:
  • the first TTI supports the PDSCH to use resources that are not used by the PDCCH;
  • the PDSCH is not supported to use resources that are not used by the PDCCH;
  • the PDSCH is supported to use resources that are not used by the PDCCH;
  • all TTIs reuse the same PDCCH unused resources as the first TTI.
  • the timing of feeding back ACK/NACK for data carried in the N TTIs is determined according to a reference signal position, and the determining method includes at least one of the following manners:
  • k1, k2, k3, and k4 are all positive numbers.
  • the reference signal when the position of the reference signal is not fixed in the TTI, the reference signal is indicated in the at least one TTI in the N transmission time intervals TTI by a preset manner, and the reference signal position is in the TTI Not fixed internally, including at least one of the following:
  • Manner 1 The reference signal pattern indicating the first TTI of the N TTIs is consistent, wherein the reference signal pattern is consistent with the reference signal pattern when the single TTI is scheduled;
  • Manner 2 By indicating a TTI in the N TTIs and a reference signal pattern in the TTI, where the reference signal pattern is consistent with the reference signal pattern in the single TTI scheduling;
  • Manner 3 The reference signal pattern indicating up to K TTIs in the N TTIs, wherein the reference signal pattern is consistent with the reference signal pattern in single TTI scheduling, where K is a positive integer less than N;
  • Manner 4 The reference signal pattern indicating each TTI of the N TTIs, wherein the reference signal pattern is consistent with the reference signal pattern when the single TTI is scheduled;
  • Manner 5 indicates, in the N TTIs that are scheduled, whether the reference signal and the location of the reference signal are carried in the remaining TTIs except the first TTI, where the first TTI always has a reference signal, indicating whether another TTI includes the reference signal and The location of another TTI containing the reference signal and the location in the TTI;
  • Manner 6 By indicating a reference signal pattern in the N TTIs, where the reference signal pattern is a set of patterns when the number of TTIs is scheduled x, or the reference signal pattern carries the scheduling TTI quantity information, or the reference The signal pattern carries the feedback ACK/NACK timing information at the same time.
  • the types of the reference signals are the same.
  • the types of the reference signals are the same, where the TTI type is a different subframe type, such as MBSFN. Subframe, non-MBSFN subframe; or TTI type is a different slot type, such as pure downlink slot, pure uplink slot, downlink part + reserved part + uplink part.
  • the manner 5 is implemented by one of the following methods:
  • the method further comprises: when there is another TTI including the reference signal, the TTI position is fixed at the last one of the scheduled N TTIs.
  • FIG. 3 is a flowchart of a method for determining a control channel unit according to an embodiment of the present application. As shown in FIG. 3, the process includes the following step S302. .
  • step S302 a part of resource element groups are selected among the N resource unit groups to form one control channel unit, and at least one control channel unit is formed by one of the following methods:
  • the M REGs are grouped at equal intervals in the frequency domain or The interval is discretely composed of one CCE, where M is the number of REGs included in K RBs in one TTI, where K is a positive integer and N is a positive integer;
  • the mapping between the control channel unit CCE and the resource unit group REG is a distributed mapping, at least the following principle is met: one group is equally spaced or spaced apart in the frequency domain in a single symbol The REGs make up a CCE.
  • step S302 a part of the resource element groups are selected from the N resource unit groups to form one control channel unit, thereby being capable of physical downlink control channel PDCCH based on demodulation reference signals and physical downlink control based on cell reference signals.
  • the channel PDCCH provides a determination scheme of a control channel unit, respectively.
  • K may be, for example, 1, 2, 3.
  • the mapping between the Control Channel Element (CCE) and the Resource Element Group (REG) is a centralized mapping
  • a group of consecutive REGs in the frequency domain are composed in a single symbol.
  • a CCE, and the REG resources used to avoid the high aggregation level completely contain the REG resources used by the low aggregation level, and the interleaving method or physical layer signaling is used to indicate the aggregation level, or the information of different aggregation levels is differently scrambled.
  • the interleaving method includes: for a candidate set with an aggregation level of L, the REG index included in the candidate set is sequentially written into the interleaver, and is read out from the interleaver according to the column permutation pattern, and is read out. After the empty element is deleted, where the REG index is greater than X is defined as an empty element.
  • L 1, 2, 4 or 8
  • L may take one of values 1, 2, 4, 8;
  • M represents the number of REGs contained in each CCE.
  • the column permutation pattern comprises at least one of the following:
  • a device for determining a control channel unit is further provided, and the device is used to implement the foregoing embodiments and application embodiments, and details are not described herein.
  • the term "module” may implement a combination of at least one of software and hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 4 is a structural block diagram of a determining apparatus of a control channel unit according to an embodiment of the present application. As shown in FIG. 4, the apparatus includes: a selecting module 40.
  • the selecting module 40 is configured to select a part of resource unit groups among the N resource unit groups to form one control channel unit, and form a control channel unit by using at least one of the following methods:
  • the M REGs are grouped at equal intervals in the frequency domain or The interval is discretely composed of one CCE, where M is the number of REGs included in K RBs in one TTI, where K is a positive integer and N is a positive integer;
  • the mapping between the control channel unit CCE and the resource unit group REG is a distributed mapping, at least the following principle is met: one group is equally spaced or spaced apart in the frequency domain in a single symbol The REGs make up a CCE.
  • a part of the resource element groups are selected from the N resource element groups to form one control channel unit, and the physical downlink control channel PDCCH and the cell reference signal-based physical downlink control channel based on the demodulation reference signal can be further configured.
  • the PDCCH provides a determination scheme of a control channel unit, respectively.
  • FIG. 9 is still another flowchart of a method for determining a reference signal according to an embodiment of the present application. As shown in FIG. :Step S902.
  • step S902 it is determined by a preset manner that a reference signal exists in at least one transmission time interval in every N transmission time intervals in a Semi-Persistent Scheduling (SPS) transmission.
  • SPS Semi-Persistent Scheduling
  • N is a positive integer.
  • N in the application embodiment of the present application may be 2.
  • the time domain position of the reference signal is fixed in a transmission time interval
  • the preset manner includes at least one of the following:
  • Manner 1 Pre-defined in every N transmission time intervals, only the first transmission time interval has a reference signal
  • Manner 2 Whether the reference signal density is reduced in every N transmission time intervals by signaling, wherein not reducing the reference signal density means that the N transmission time intervals all contain reference signals, and decreasing the reference signal density means less than N transmission time intervals Containing a reference signal;
  • the reference signal density is reduced by at least one of the following ways: only the first transmission time interval has a reference signal; only the first transmission time interval and the last transmission time interval have reference signals; only the first transmission time There is a reference signal in the interval and x transmission time intervals with respect to the first offset, where x is an integer taken from the set [0, N].
  • the time domain position of the reference signal is not fixed in the transmission time interval, and the preset manner includes at least one of the following:
  • Manner 2 Predefined that in every N transmission time intervals, only the first transmission time interval has a reference signal
  • Manner 3 Whether the reference signal density is reduced in every N transmission time intervals by signaling, wherein not reducing the reference signal density means that the N transmission time intervals all contain reference signals, and decreasing the reference signal density means less than N transmission time intervals Containing a reference signal, in an embodiment, whether the reference signal density is reduced in every N transmission time intervals can be indicated by 1-bit signaling;
  • Mode 4 The reference signal pattern in every N transmission time intervals is indicated by signaling.
  • only the first Orthogonal Frequency Division Multiplexing (OFDM) symbol contains a reference signal in the transmission time interval including the reference signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the reference signal density is reduced by at least one of the following ways: only the first transmission time interval has a reference signal; only the first transmission time interval and the last transmission time interval have reference signals; only the first transmission time There is a reference signal in the interval and x transmission time intervals with respect to the first offset, where x is an integer taken from the set [0, N].
  • the transmission time interval in which the first service transmission of the activated SPS transmission is located contains a reference signal.
  • the period is 1 transmission time interval, and in other periods, all bits corresponding to the signaling are set to 0 for SPS transmission activation confirmation or deactivation. Acknowledge; or have different meanings in the period of one transmission time interval and other periods, wherein the period is valid for one transmission time interval and is used for reference signal indication in every N transmission time intervals, in other periods Used for single transmission time interval reference signal indication.
  • the method is applied to a semi-persistent scheduling SPS and the SPS period is 1 transmission time interval.
  • FIG. 10 is a flowchart of a method for determining an SPS transmission time according to an embodiment of the present application. As shown in FIG. 10, the method includes the following steps. S1002 and step S1004.
  • step S1002 the SPS period, the offset value, and the transmission time interval length are indicated by the high layer signaling, where the transmission time interval length is jointly coded with the SPS period and the offset value; or the SPS period and the offset value are indicated by high layer signaling,
  • the physical layer signaling for activating the SPS transmission is located at the time of the limited transmission; or the SPS period is notified by the high layer signaling, and the physical layer signaling of the activated SPS transmission is located at the limited transmission time, and the joint coding indicates the offset value and the length of the transmission interval.
  • step S1004 the SPS transmission timing is determined by the following one of the indications: the SPS period, the offset value, and the transmission time interval length; the SPS period and the offset value; and the offset value and the transmission time interval length.
  • the joint coding includes at least: if the SPS period and the offset are uniformly indicated, the value of the offset value for each period is that the SPS period includes one short transmission time interval or one service duration.
  • the number of offset values for each period is less than or equal to the number of times the SPS period contains 1 short transmission time interval or 1 service duration.
  • the restricted transmission time is at least one of the following: located in the PDCCH, in the short transmission time interval sTTI#0 and the short transmission time interval sTTI #3 (ie, the sTTI with the index value of 0, 3)
  • At least one of the control resources set in the slot and the resource set is located in the first P symbols in the slot, and the first control in the time domain in the plurality of control resource sets configured in the slot A set of resources, where the value of P includes: 1, 2, 3, 7, that is, the possible value of P may be one of 1, 2, 3, and 7.
  • a device for determining a reference signal is provided, which is used to implement the foregoing embodiments and application embodiments, and details are not described herein.
  • the term "module” may implement a combination of at least one of software and hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 11 is another structural block diagram of a determining apparatus for a reference signal according to an embodiment of the present application. As shown in FIG. 11, the apparatus includes: a first determining module 1102.
  • the first determining module 1102 is configured to determine, by using a preset manner, that there is a reference signal in at least one transmission time interval in each of the N transmission time intervals in the semi-persistent scheduling SPS transmission, where N is a positive integer.
  • N in the application embodiment of the present application may be 2.
  • the time domain position of the reference signal is fixed in a transmission time interval
  • the preset manner includes at least one of the following:
  • Manner 1 Pre-defined in every N transmission time intervals, only the first transmission time interval has a reference signal
  • Manner 2 Whether the reference signal density is reduced in every N transmission time intervals by signaling, wherein not reducing the reference signal density means that the N transmission time intervals all contain reference signals, and decreasing the reference signal density means less than N transmission time intervals Containing a reference signal;
  • the reference signal density is reduced by at least one of the following ways: only the first transmission time interval has a reference signal; only the first transmission time interval and the last transmission time interval have reference signals; only the first transmission time There is a reference signal in the interval and x transmission time intervals with respect to the first offset, where x is an integer taken from the set [0, N].
  • the time domain position of the reference signal is not fixed in the transmission time interval, and the preset manner includes at least one of the following:
  • Manner 2 Predefined that in every N transmission time intervals, only the first transmission time interval has a reference signal
  • Manner 3 Whether the reference signal density is reduced in every N transmission time intervals by signaling, wherein not reducing the reference signal density means that the N transmission time intervals all contain reference signals, and decreasing the reference signal density means less than N transmission time intervals Containing a reference signal, in an embodiment, whether the reference signal density is reduced in every N transmission time intervals can be indicated by 1-bit signaling;
  • Mode 4 The reference signal pattern in every N transmission time intervals is indicated by signaling.
  • only the first orthogonal frequency division multiplexing OFDM symbol in each transmission time interval contains a reference signal in every N transmission time intervals.
  • the reference signal density is reduced by at least one of the following ways: only the first transmission time interval has a reference signal; only the first transmission time interval and the last transmission time interval have reference signals; only the first transmission time There is a reference signal in the interval and x transmission time intervals with respect to the first offset, where x is an integer taken from the set [0, N].
  • the transmission time interval in which the first service transmission of the activated SPS transmission is located contains a reference signal.
  • the period is 1 transmission time interval, and in other periods, all bits corresponding to the signaling are set to 0 for SPS transmission activation confirmation or deactivation. Acknowledge; or have different meanings in the period of one transmission time interval and other periods, wherein the period is valid for one transmission time interval and is used for reference signal indication in every N transmission time intervals, in other periods Used for single transmission time interval reference signal indication.
  • the method is applied to a semi-persistent scheduling SPS and the SPS period is 1 transmission time interval.
  • a device for determining the SPS transmission time is also provided, and the device is used to implement the foregoing embodiments and application implementation manners, and details are not described herein.
  • the term "module” may implement a combination of at least one of software and hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 12 is a structural block diagram of an apparatus for determining an SPS transmission time according to an embodiment of the present application. As shown in FIG. 12, the apparatus includes: an indication module 1202.
  • the indication module 1202 is configured to jointly code the SPS period, the offset value, and the transmission time interval length by the high layer signaling joint coding; or indicate the SPS period and the offset value by using the high layer signaling, and the physical layer signaling of the activated SPS transmission is located at the same time; The limited transmission time; or the SPS period is notified by the high layer signaling, while the active SPS transmission physical layer signaling is located at the limited transmission time, and the joint coding indicates the offset value and the transmission time interval length.
  • the second determining module 1204 is configured to determine an SPS transmission time by using one of the following: the SPS period, the offset value, and the transmission time interval length; the SPS period and the offset value; and the offset value and the transmission time interval length.
  • the base station schedules the terminal A to transmit downlink data in multiple TTIs.
  • the TTI contains a small number of OFDM symbols, for example, no more than 7 OFDM symbols, but is not limited thereto.
  • the present embodiment is described in the short TTI structure in the Long-Term Evolution (LTE) system, that is, the TTI can be understood as a short TTI (sTTI), but is not limited thereto.
  • the DL short TTI frame structure is as shown in FIG. 5, and includes 6 downlink (DL) short TTIs in a 1 ms subframe, and Pattern 1 when the sPDSCH is configured to start from OFDM symbol #1 or #3. When the sPDSCH is configured to start from OFDM symbol #2, Pattern2 is used. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the DCI that schedules multiple sTTIs may be transmitted in any DL sTTI, and is carried by the PDCCH channel when the DCI is located at DL sTTI #0; and is carried by the sPDCCH channel when the DCI is located at DL sTTI #1 to #5.
  • the DCI scheduling multiple sTTIs may be transmitted in a partial sTTI, for example only in DL sTTI #0, and for example only in DL sTTI #0, 3.
  • N N consecutive sTTIs can be used to transmit the sPDSCH.
  • sPDSCH cannot be in sTTI #0, ie sPDSCH is configured to start from OFDM symbol #2 or #3, at which time sTTI #0 cannot be used for sPDSCH transmission.
  • N 2 or 3 or 4 or 6 or 8 or 12 or 16, but is not limited thereto.
  • the maximum scheduled N sTTI transmissions are determined, the number of transmissions of the actually scheduled multiple sTTIs is 1 to N sTTIs.
  • the Demodulation Reference Signal can also be understood as the reference signal of the above embodiment, and the location of the location is determined by at least one of the following:
  • the manner in which the DMRS is located is not limited to the downlink but also to the uplink. In this embodiment, the scenario in which the DMRS is fixed in the TTI is used.
  • Method 1 By default, there is DMRS in each sTTI;
  • Mode 2 There is DMRS in the first sTTI of the default scheduling, and no DMRS in the remaining sTTIs;
  • Manner 3 indicates that only one sTTI in which the DMRS is located is included in the scheduled N sTTIs;
  • the beneficial effects the DMRS overhead can be saved, and the sTTI including the DMRS is flexibly indicated, and is not limited to the first one of the multiple sTTIs.
  • DMRS overhead can be saved, and the overhead is the largest but the most flexible, and the sTTI including the DMRS can be located at any position and at most N sTTIs contain the DMRS.
  • sTTIs of the N sTTIs contain DMRS.
  • N 4 bits are required at this time to indicate a total of 10 possibilities.
  • One sTTI contains DMRS (6 possible) or 2 sTTIs contain DMRS (15 possible).
  • the sTTI including the DMRS is flexibly indicated, and is located in any two sTTIs at most, indicating that the overhead is equal to or smaller than the mode 4.
  • Manner 6 Indicate whether the DMRS and the location are carried in the remaining sTTIs except the first sTTI among the scheduled N sTTIs. By default, the first sTTI always has DMRS, indicating whether there is another sTTI containing the DMRS and the location of another sTTI containing the DMRS.
  • Sub-mode 6-2 Use 1 bit to indicate whether another sTTI contains a DMRS. For example, when another sTTI contains DMRS, the sTTI location is fixed at the last of the scheduled multiple sTTIs.
  • DMRS overhead can be saved, and another sTTI is included to contain DMRS with a small indication overhead.
  • DMRS overhead can be saved, and another sTTI is included to contain DMRS with a small indication overhead.
  • only a single sTTI includes DMRS that is, the main reason for another sTTI to include DMRS is to support high-speed mobile scenes.
  • Mode 7 Indicate one of the predefined DMRS patterns.
  • the predefined DMRS pattern is defined separately for the actual scheduling quantity of the multiple sTTI scheduling, or the predefined DMRS pattern and the scheduling sTTI number are jointly coded.
  • the predefined DMRS pattern sets are defined separately according to the actual number of sTTIs. According to the actual number of sTTIs, the sTTI location where the DMRSs are actually scheduled for n sTTIs is specified, that is, in the predefined DMRS pattern set. one. It should be noted that the pilot patterns listed in the table are merely examples, but are not limited thereto.
  • R indicates that the sTTI has a DMRS
  • D indicates that the sTTI has no DMRS.
  • RD indicates that the first sTTI has DMRS, and the second sTTI has no DMRS. The rest are similar and will not be repeated.
  • the predefined DMRS pattern set and the scheduled sTTI number are combined in different actual scheduling quantity sTTI, indicating the number of actual scheduling sTTIs and the sTTI position of the DMRS, that is, one of the predefined DMRS pattern sets.
  • the pilot patterns listed in the table are merely examples, but are not limited thereto.
  • R indicates that the sTTI has a DMRS
  • D indicates that the sTTI has no DMRS.
  • RD indicates that the first sTTI has DMRS, and the second sTTI has no DMRS. The rest are similar and will not be repeated.
  • DMRS overhead can be saved
  • another sTTI is included to contain DMRS with a small indication overhead
  • a multi-sTTI pilot pattern suitable for multi-sTTI scheduling can be designed. Suitable for medium and low speed moving scenes and high speed moving scenes.
  • the joint coding indication can further save control overhead.
  • supporting the sPDSCH using the sPDCCH unused resource mode includes at least one of the following modes:
  • Mode 1 When multi-sTTI scheduling is performed, only the resources that are not used by the sPDCCH are supported in the sPDSCH in the first sTTI.
  • the single sTTI scheduling support sPDSCH using the sPDCCH unused resource can only support the current sTTI, and cannot predict the sPDCCH resource usage in the subsequent sTTI, and multiple sPDs scheduled by multiple sTTI are independently coded. So only the first sTTI to support this feature is working. Therefore, when the indication is displayed, the unused/used sCCE indication field is valid only for the first sTTI of the multi-sTTI. That is, when multiple sTTI scheduling is performed, only the first sTTI supports sPDSCH to use resources that are not used by sPDCCH.
  • Mode 2 This function is not supported when scheduling multiple sTTIs.
  • the unused sPDCCH resource is reused by the sPDSCH scheduled by a single sTTI.
  • Mode 3 When multiple sTTIs are scheduled, all sTTIs reuse the same unused sCCE resources as the first sTTI.
  • the limitation is that the sCCE index used by the sPDCCH in the same RB set in the subsequent sTTI cannot be greater than the sCCE index used by the sPDCCH scheduled by the multiple sTTI in the first sTTI.
  • the feedback timing is implicitly determined based on the DMRS location.
  • the feedback timing is a timing of ACK/NACK for the PDSCH or the PUSCH. Determining the feedback timing of the multi-sTTI scheduling service according to the sTTI location of the DMRS included in the multiple sTTI includes at least one of the following methods:
  • the DMRS overhead can be saved during multi-sTTI scheduling, and one or more sTTIs are included in the DMRS with a small indication overhead indication, so as to be suitable for low- and medium-speed mobile scenarios and high-speed mobiles. Scenes.
  • the overhead of the pilot after saving the overhead of the pilot, more resources can be used for data transmission, and the spectrum efficiency of the system is improved.
  • the base station schedules the terminal A to transmit uplink data in multiple TTIs, and the TTI includes a small number of OFDM symbols, for example, no more than 7 OFDM symbols.
  • This application embodiment is described in the short TTI structure in the LTE system, but is not limited thereto.
  • the UL short TTI frame structure is as shown in FIG. 6, and includes 6 Uplink (UL) short TTIs in a 1 ms subframe. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the DCI that schedules multiple sTTIs may be transmitted in any DL sTTI, and is carried by the PDCCH channel when the DCI is located at DL sTTI #0; and is carried by the sPDCCH channel when the DCI is located at DL sTTI #1 to #5.
  • the DCI scheduling multiple sTTIs may be transmitted in a partial sTTI, for example only in DL sTTI #0, and for example only in DL sTTI #0, 3.
  • the maximum scheduled N sTTI transmissions are determined, the number of transmissions of the actually scheduled multiple sTTIs is 1 to N sTTIs.
  • the determining manner of the location of the DMRS is at least one of the following: It should be noted that, although the foregoing uplink transmission is taken as an example for description, the determining manner of the location of the DMRS is not only Restrictions are used for upstream and can also be used for downstream. This embodiment is for example a scenario in which the DMRS is not fixed in the TTI.
  • the DMRS pattern is the same as the DMRS pattern when the single sTTI is scheduled, indicating that the UL DMRS is the same as the single sTTI.
  • the DMRS pattern in the first sTTI of the scheduling is indicated, and the subsequent sTTI is not indicated.
  • the restriction condition is that the pure D pattern and the
  • the included UL DMRS pattern includes at least the patterns listed in Table 1, and may also include other patterns.
  • This method does not need to design a new pattern structure, that is, the pattern or the structure of a single sTTI scheduling. No control overhead has been added.
  • the multiple UL sTTIs scheduled at the same time have no DMRS except the first one.
  • the DMRS pattern is the DMRS pattern when the single sTTI is scheduled, and the bit field is the same as the single sTTI, and the sTTI position indication including the DMRS is added. At this time, the DMRS pattern in one sTTI including the DMRS is indicated, and the remaining sTTIs are not indicated. At this time, the restriction condition is that the pure D pattern and the
  • This method does not need to design a new pattern structure, that is, the pattern or the structure of a single sTTI scheduling. Support for flexible indication of the location of the DMRS. Only one of the multiple UL sTTIs scheduled at the same time contains the DMRS.
  • the DMRS pattern is the same as the DMRS pattern when the single sTTI is scheduled.
  • the method does not need to design a new pattern structure, that is, the pattern or the structure of the single sTTI scheduling, and supports flexible indication with a large control overhead.
  • Manner 4 Indicate whether the DMRS and the location are carried in the remaining sTTIs except the first sTTI among the scheduled N sTTIs.
  • the default first sTTI always has DMRS, indicating whether there is another sTTI containing the DMRS and the location of another sTTI containing the DMRS and indicating the symbol location of the DMRS in the sTTI.
  • the indication that the symbol position of the DMRS in one sTTI is the same as the DMRS position indication method in the single sTTI scheduling.
  • the mode 4 further includes: a sub-mode 4-1 and a sub-mode 4-2, where the sub-mode 4-1: indicates that the DMRS is located in the remaining sTTI except for the first sTTI and indicates the symbol position of the DMRS in the sTTI.
  • the second sTTI contains DMRS 10
  • the third sTTI contains DMRS 11
  • the fourth sTTI contains DMRS
  • Sub-mode 4-2 Indicates whether another sTTI contains a DMRS and indicates the symbol location of the DMRS in the sTTI. For example, when there is another sTTI containing DMRS, the sTTI location is fixed at the last of the scheduled multiple sTTIs. The indication of whether there is another sTTI including the DMRS can be indicated by using 1 bit. The indication that the symbol position of the DMRS in one sTTI is the same as the DMRS position indication method in the single sTTI scheduling.
  • DMRS overhead can be saved, and another sTTI is included to contain DMRS with a small indication overhead. Suitable for medium and low speed moving scenes and high speed moving scenes.
  • Mode 5 Indicate one of the predefined DMRS patterns.
  • the predefined DMRS pattern is defined separately for the actual scheduling quantity of the multiple sTTI scheduling, or the predefined DMRS pattern and the scheduling sTTI number are jointly coded.
  • the UL DMRS pattern at the time of multi-sTTI scheduling is predefined and the specific pattern is determined at the time of multi-sTTI scheduling.
  • One of the patterns is indicated based on the number of consecutively scheduled sTTIs n to determine the meaning of the 2-bit indication.
  • the pilot patterns listed in the table are merely examples, but are not limited thereto.
  • DR corresponds to DDR
  • RD corresponds to RDD.
  • the predefined DMRS pattern set is combined with the number of scheduled sTTIs, indicating the number of actual scheduled sTTIs and the sTTI location of the DMRSs, that is, one of the predefined DMRS pattern sets.
  • the pilot patterns listed in the table are merely examples, but are not limited thereto.
  • DR corresponds to DDR
  • RD corresponds to RDD.
  • This method has less control overhead. At the same time, it is necessary to design a DMRS pattern structure for multiple sTTIs. And the joint coding indication can further save control overhead.
  • the DMRS overhead can be saved in the multi-sTTI scheduling, and the DMRS is included in the DMRS with a small indication overhead indication, so as to be suitable for medium and low-speed mobile scenarios and high-speed mobile. Scenes.
  • the overhead of the pilot after saving the overhead of the pilot, more resources can be used for data transmission, and the spectrum efficiency of the system is improved.
  • the base station schedules the terminal A to transmit downlink data in a single TTI or multiple TTIs, and the TTI includes a small number of OFDM symbols, for example, no more than 7 OFDM symbols.
  • This application embodiment 3 is described in the short TTI structure in the LTE system, but is not limited thereto.
  • the DL short TTI frame structure is as shown in FIG. 5, and includes 6 downlink (DL) short TTIs in a 1 ms subframe, and Pattern 1 when the sPDSCH is configured to start from OFDM symbol #1 or #3. When the sPDSCH is configured to start from OFDM symbol #2, Pattern2 is used. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the DCI of the scheduling single TTI or the multiple TTI may be transmitted in any DL sTTI, and is carried by the PDCCH channel when the DCI is located at DL sTTI #0; and is carried by the sPDCCH channel when the DCI is located at DL sTTI #1 to #5.
  • the DCI scheduling multiple sTTIs may be transmitted in a partial sTTI, for example only in DL sTTI #0, and for example only in DL sTTI #0, 3.
  • Both CRS-based sPDCCH and DMRS-based sPDCCH are supported in sTTI, and both types of sPDCCH support centralized mapping and distributed mapping.
  • both centralized mapping and distributed mapping support frequency-first time-second sCCE-to-sREG mapping.
  • DMRS-based sPDCCH both centralized mapping and distributed mapping support time-first frequency-second sCCE-to-sREG mapping.
  • the sREG numbering sequence is: for the CRS-based sPDCCH, the sREG numbering sequence is frequency-first time-second; for the DMRS-based sPDCCH, the sREG numbering sequence is time-first frequency-second.
  • the RB set in which the CRS-based sPDCCH is located supports 1 or 2 OFDM symbols, and one of them is configured by high layer signaling.
  • the RB set in which the DMRS-based sPDCCH is located has the same number of OFDMs as the OFDM symbol in the sTTI, that is, supports 2 or 3 OFDM symbols.
  • the configured RB set x m contains the number of PRBs of N PRB PRBs , which are configured by higher layer signaling.
  • the number of OFDM symbols included is N OFDM OFDM symbols, which is the same as the number of OFDM symbols included in the sTTI.
  • N sREG N PRB ⁇ N OFDM .
  • one sCCE is continuously formed in the frequency domain by using N OFDM sREGs as a group.
  • sCCE #n contains sREG #m to satisfy the formula Or the sREG number contained in sCCE #n is among them
  • N OFDM sREGs are grouped into a group of sCCEs at equal intervals in the frequency domain.
  • sCCE #n contains sREG #m to satisfy the formula Or the sREG number contained in sCCE #n is among them
  • N OFDM 2
  • the configured RB set x m contains the number of PRBs of N PRB PRBs , which are configured by higher layer signaling.
  • the number of OFDM symbols included is N OFDM OFDM symbols, configured by higher layer signaling.
  • N sREG N PRB ⁇ N OFDM .
  • sCCE #n contains sREG #m to satisfy the formula
  • sCCE #n contains the sREG number as among them
  • sCCE #n contains sREG #m that satisfies the formula as at least one of the following formulas:
  • sREG number contained in sCCE #n is at least one of the following formulas:
  • n 0, ..., N sCCE, p -1 and N sCCE
  • p represents the number of sCCEs in the control channel resource block set p. and Indicates the number of sREGs contained in each sCCE. Represents the number of sREGs included in each OFDM symbol in the control channel resource block set p. Since one sREG is one RB out of one OFDM symbol, Equation 3 applies to the RB set with an arbitrary number of RBs.
  • n 0, ..., N sCCE, p -1 and N sCCE
  • p represents the number of sCCEs in the control channel resource block set p. and Indicates the number of sREGs contained in each sCCE. Represents the number of sREGs included in each OFDM symbol in the control channel resource block set p. Since one sREG is one RB out of one OFDM symbol, And formula 4 only applies to the number of RBs in the RB set is Integer multiple.
  • N OFDM 2
  • the principle is satisfied: the sREG selected at medium intervals of all numbered sREGs constitutes an sCCE.
  • sCCE #n contains sREG #m that satisfies the formula as or Or the sREG number contained in sCCE #n is or among them
  • the mapping between the control channel unit CCE and the resource unit group REG is a centralized mapping
  • a group of consecutive REGs in the frequency domain form a CCE in a single symbol
  • the REG resources used to avoid high aggregation levels are completely included.
  • the REG resources used by the aggregation level cause misunderstanding of different aggregation levels.
  • the interleaving method or physical layer signaling is used to indicate the aggregation level or different scrambling information of different aggregation levels. It is stated that when used for the sPDCCH channel, the CCE corresponds to sCCE, and the REG corresponds to sREG.
  • Another application method is to scramble the DCI+CRC information, or the DCI+CRC encoded information, or the rate-matched information using the scrambling sequence, for example
  • b(i) is the pre-scrambling information
  • the REG index included in the sequence is written to the interleaver, read from the interleaver according to the column permutation pattern, and the empty element is deleted after reading.
  • the REG index is larger than X, it is defined as an empty element.
  • M represents the number of REGs contained in each CCE.
  • the column replacement pattern is at least one of the following:
  • the REG resources used in the low aggregation level do not cause misunderstanding of different aggregation levels.
  • the column displacement pattern is ⁇ 0,4,8,12,16,20,24,28,1,5,9,13,17,21,25,29,2,6,10,14,18 , 22,26,30,3,7,11,15,19,23,27,31>
  • the resource unit group corresponding to the control channel unit used by the downlink control channel can be determined during the single TTI scheduling or the multiple TTI scheduling, so that the terminal and the base station can accurately know the specific control resource location, and the patent is obtained.
  • the distributed scheme implemented can maximize the performance gains for centralized and distributed transmissions, respectively.
  • the base station activates terminal A to perform a semi-persistent scheduling SPS transmission during the execution period.
  • the TTI includes a small number of OFDM symbols, for example, no more than 7 OFDM symbols, but is not limited thereto.
  • This embodiment is described in the short structure in the Long-Term Evolution (LTE) system, that is, the short TTI (sTTI) can be understood, but is not limited thereto.
  • the DL short TTI frame structure is as shown in FIG. 5, and includes 6 downlink (DL) short TTIs in a 1 ms subframe, and Pattern 1 when the sPDSCH is configured to start from OFDM symbol #1 or #3. When the sPDSCH is configured to start from OFDM symbol #2, Pattern2 is used.
  • the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the UL short TTI frame structure is as shown in FIG. 6, and includes 6 Uplink (UL) short TTIs in a 1 ms subframe. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the DCI that schedules the sTTI SPS may be transmitted in any DL sTTI, and is carried by the PDCCH channel when the DCI is located at DL sTTI #0; and is carried by the sPDCCH channel when the DCI is located at DL sTTI #1 to #5.
  • the DCI scheduling the sTTI SPS may be transmitted in a partial sTTI, for example only in DL sTTI #0, and for example only in DL sTTI #0, 3.
  • each sTTI contains a reference signal. If the reference signal density is reduced, at least one sTTI per N sTTIs contains a reference signal.
  • the position of the demodulation reference signal (DMRS, which can also be understood as the reference signal of the above embodiment) is determined in every N DL sTTI transmissions.
  • DMRS demodulation reference signal
  • the manner in which the DMRS is located is not limited to the downlink but also to the uplink. In this example, a scenario in which the DMRS is fixed in the time domain in the TTI may be used.
  • Manner 1 Predefined In every N transmission time intervals, there is only a reference signal in the first transmission time interval, and there is no reference signal in the remaining transmission time intervals; no additional indication is needed at this time.
  • the first PDSCH that activates the SPS transmission contains the DMRS, and only the first sTTI of each of the N sTTIs contains the DMRS.
  • Manner 2 Whether the pilot density is reduced in every N transmission time intervals is indicated by 1-bit signaling.
  • the signaling may be high layer signaling or physical layer signaling. Wherein, when the physical layer signaling reuses a single sTTI scheduling, one bit indicates whether the DMRS is present or not.
  • the reduction of the pilot density means that the N transmission time intervals all contain the reference signal, and the reduction of the pilot density means that the reference signal is contained in less than N transmission time intervals.
  • the reduced pilot density includes at least one of the following: only the first transmission time interval has a reference signal; only the first transmission time interval and the last transmission time interval have reference signals; only the first transmission time interval and relative to the first transmission
  • the time interval offset has a reference signal in the x transmission time interval, and x may be, for example, 1, 2, N/2, N-1, N;
  • Manner 3 The reference signal pattern in every N transmission time intervals is indicated by signaling; for example, as shown in Table 7.
  • R indicates that RS is included in s
  • D indicates that RS is not included in the sTTI.
  • Table 7 indicates the pilot pattern for every N s
  • the position of the demodulation reference signal (DMRS, which can also be understood as the reference signal of the above embodiment) is determined in every N UL sTTI transmissions. At least one of the following: It should be noted that, although the above example transmission is taken as an example, the manner in which the DMRS is located is not limited to the uplink but also to the downlink. In this example, for example, a scenario in which the DMRS is not fixed in the time domain in the TTI.
  • Manner 1 Predefined In every N TTIs, all N TTIs contain reference signals, and the application mode is that only the first OFDM symbol in each transmission time interval contains a reference signal. This approach does not reduce the reference signal density and predefines the symbol location of the reference signal in each sTTI.
  • Manner 2 Pre-defined in each N transmission time interval, only the first transmission time interval has a reference signal and the application mode is that only the first OFDM symbol contains the reference signal in the first transmission time interval, and the remaining transmission time intervals are not included. Reference signal; no additional instructions are needed at this time.
  • the first PUSCH that activates the SPS transmission contains the DMRS, and only the first sTTI of each of the N sTTIs contains the DMRS.
  • Mode 3 Whether the reference signal density is lowered in every N transmission time intervals is indicated by 1-bit signaling.
  • the signaling may be high layer signaling or physical layer signaling. Wherein, when the physical layer signaling reuses a single sTTI scheduling, 2 bits indicate the DMRS position.
  • the reference signal density is not reduced, and the N transmission time intervals all include the reference signal and the application mode is that only the first OFDM symbol contains the reference signal in each transmission time interval, and the reduced reference signal density refers to less than N transmission time intervals.
  • the signal is applied in such a way that only the first OFDM symbol contains a reference signal in the transmission time interval containing the reference signal.
  • Decreasing the reference signal density includes at least one of the following: only the first transmission time interval has a reference signal; only the first transmission time interval and the last transmission time interval have reference signals; only the first transmission time interval and the first deviation There are reference signals in the shifting x transmission time intervals, and x may be, for example, 1, 2, N/2, N-1, N.
  • Manner 4 The reference signal pattern in every N transmission time intervals is indicated by signaling; for example, as shown in Table 8.
  • R indicates that the OFDM symbol includes a DMRS
  • D indicates that the OFDM symbol does not include a DMRS.
  • DR corresponds to DDR
  • RD corresponds to RDD.
  • Table 8 indicates the reference signal pattern in every N sTTIs
  • the TTI in which the first service transmission of the activated SPS transmission is located contains a reference signal.
  • the signaling when the signaling is physical layer signaling, it is valid only in a period of 1 TTI and is not used for SPS transmission activation confirmation or deactivation confirmation, and all bits corresponding to the signaling are set in other periods. 0 is used for SPS transmission activation confirmation or deactivation confirmation; or has different meanings in the period of one transmission time interval and other periods (valid for one transmission time interval in the period and used for reference signals in every N TTIs) Indicates that it is used for a single TTI reference signal indication at other cycles.).
  • the DMRS overhead can be saved during the sTTI SPS scheduling, and the DMRS is supported by the DMT with a small indication overhead indication, so as to be suitable for medium and low speed mobile scenarios and high speed mobile. Scenes.
  • the DMRS overhead can be saved during the sTTI SPS scheduling, and the DMRS is supported by the DMT with a small indication overhead indication, so as to be suitable for medium and low speed mobile scenarios and high speed mobile. Scenes.
  • more resources can be used for data transmission, and the spectrum efficiency of the system is improved.
  • the base station configures terminal A to perform semi-persistent scheduling SPS transmission including one TTI in the execution period.
  • the TTI includes a small number of OFDM symbols, for example, no more than 7 OFDM symbols, but is not limited thereto.
  • the TTI can be understood as a short TTI (sort TTI), but is not limited thereto.
  • sort TTI sort TTI
  • 5G NR new air interface system it should be noted that, in the embodiment, when LTE is used as an example, a slot includes 7 OFDM symbols and a duration of 0.5 ms. When NR is used as an example, the 1 slot includes 14 OFDM symbols and is at 15 kHz.
  • the DL short TTI frame structure is as shown in FIG. 5, and includes 6 downlink (DL) short TTIs in a 1 ms subframe, and Pattern 1 when the sPDSCH is configured to start from OFDM symbol #1 or #3. When the sPDSCH is configured to start from OFDM symbol #2, Pattern2 is used. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the UL short TTI frame structure is as shown in FIG. 6, and includes 6 Uplink (UL) short TTIs in a 1 ms subframe. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDMs in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the DCI that schedules the active sTTI SPS may be transmitted in any DL sTTI.
  • the DCI When the DCI is located in DL sTTI #0, it is carried by the PDCCH channel; when the DCI is located in DL sTTI #1 to #5, it is carried by the sPDCCH channel.
  • the sTTI length is set to 2/3 os or 1-slot through RRC, and the sTTI SPS period is configured through RRC, and respectively configured.
  • the sTTI length and the sTTI SPS period are configured by the RRC joint coding, that is, when the SPS period is set to 1 sTTI, the corresponding sTTI length is also indicated.
  • the states 0 and 1 indicate that the SPS period is 1 sTTI, but the corresponding The length of the sTTI is different.
  • the joint indicates the service duration (time domain length) and the SPS period. Note that the joint coding indications in Tables 9 and 10 are only an example, and the states therein are merely examples, but are not limited thereto.
  • os is an abbreviation of OFDM Symbol, that is, an OFDM symbol.
  • Table 9 Joint coding indicates sTTI SPS period and sTTI length
  • Table 10 Joint coding indicates SPS cycle and service duration
  • Indicating status SPS cycle and business duration 0 1 business duration and business duration is 2os 1 1 business duration and business duration is 7os 2 2 business hours and business duration is 2os 3 3 business hours and business duration is 2os 4 1slot and the service duration is 2os 5 1slot and the service duration is 7os 6 2slot and the business duration is 2os 7 2slot and business time is 7os
  • the DCI that schedules the activation of the sTTI SPS may be transmitted in a partial sTTI, for example only in DL sTTI #0. Or only the first mini-slot in the NR slot (including 14 OFDM symbols) can transmit the DCI scheduling sTTI SPS or only one control channel trigger opportunity.
  • the DCI is carried by the PDCCH at this time.
  • the sTTI length and the sTTI SPS period and offset may be separately configured or jointly encoded.
  • the sTTI length is 2/3 os or 1-slot through RRC, and the sTTI SPS period and offset are configured through RRC.
  • Table 11 shows the configuration for 2/3os
  • Table 12 shows the configuration for 1-slot
  • Table 13 shows the configuration for the service duration of NR for 2os.
  • Table 14 shows the configuration for 7os.
  • the value of the offset value for each period is: when the SPS period is less than 1 ms, the number of offset values is 1 STTI or 1 for the SPS period.
  • Table 11 indicates the sTTI SPS period and offset
  • Indication index I_sps sTTI SPS cycle Offset 0 1sTTI I_sps 1-2 2sTTI I_sps-1 3-5 3sTTI I_sps-3 6-9 4sTTI I_sps-6 10-14 5sTTI I_sps-10 15-20 1ms I_sps-15 21-26 2ms I_sps-21 27-32 3ms I_sps-27 ... ... ... ...
  • Table 12 indicates the sTTI SPS period and offset
  • Indication index I_sps sTTI SPS cycle Offset 0 1sTTI I_sps 1-2 1ms I_sps-1 3-4 2ms I_sps-3 5-6 3ms I_sps-5 ... ... ... ...
  • Table 13 indicates SPS cycle and offset
  • the sTTI length is 2/3 os or 1-slot and the sTTI SPS period and offset are configured by RRC, as shown in Table 15.
  • the service duration is exemplified by 2os and 7os. It should be noted that when the period is greater than 1 ms, regardless of the period and the length of the sTTI, the offset only needs to consider the offset within the range of 1 ms subframe.
  • each period offset value is: when the SPS period is less than 1 ms, the number of offset values is the number of 1s TTI or 1 service duration in the SPS period; when the SPS period is greater than 1 ms
  • the number of offset values is one subframe containing 1 sTTI or the number of one service duration.
  • Table 15 indicates the sTTI SPS period and offset and sTTI length
  • Table 16 indicates SPS cycle and offset and service duration
  • the sTTI length and the SPS offset are indicated by the DCI joint coding at this time.
  • LTE sTTI as shown in Table 17.
  • NR as shown in Table 18. The values in the table are only illustrative, but not limited to this.
  • Table 17 indicates sTTI length and SPS offset
  • Table 18 indicates the service duration and SPS offset
  • Scenario 3 The DCS is not activated to trigger SPS transmission, that is, the SPS transmission is completely configured by RRC, which is also called unscheduled transmission, that is, grant-free transmission.
  • RRC which is also called unscheduled transmission, that is, grant-free transmission.
  • the SPS period, offset, and service time domain length can be separately configured or jointly coded.
  • the service duration is configured through RRC signaling
  • the SPS period and offset are configured through RRC signaling.
  • the duration can be at least one of 2os, 4os, and 7os.
  • the principle is: when a certain sTTI length or service duration is used, the value of the offset value for each period is the number of 1sTTI or 1 service duration in the SPS period. In this case, the SPS period and partial are configured by using 7os as an example.
  • the shift is shown in Table 19.
  • the principle is: when a certain sTTI length or service duration is used, the value of the offset value for each period is less than or equal to the number of 1s TTI or 1 service duration of the SPS period, and 7os is used as an example.
  • the SPS period and offset are shown in Table 20. Note that the values in the table are only indicative, but not limited to this.
  • I_sps SPS cycle Offset 0 1 business duration I_sps 1-2 1ms I_sps-1 3-6 2ms I_sps-3 7-12 3ms I_sps-7 ... ... ... ...
  • the service duration, SPS period, and offset are configured through RRC signaling.
  • the description of the service duration includes 2os and 7os, but it is not limited to this.
  • the principle is that the number of offset values for each period is the number of 1s TTI or 1 service duration in the SPS period, as shown in Table 21. Or the principle is: the number of values for each period offset value is less than or equal to the number of 1s TTI or 1 service duration of the SPS period, as shown in Table 22. Note that the values in the table are only illustrative, but not limited to this.
  • Table 21 indicates SPS cycle and offset and service duration
  • Table 22 indicates SPS cycle and offset and service duration
  • the SPS period, the offset, and the service duration can be flexibly implemented in multiple manners to implement the physical layer signaling overhead. Saving or high-level signaling overhead savings.
  • the embodiment of the present application further provides a storage medium including a stored program, wherein the program runs to perform the method described in any of the above.
  • the above storage medium may be arranged to store program code for performing the following step S1.
  • step S1 it is indicated in a preset manner that there is a reference signal in at least one TTI in the scheduled N transmission time intervals, where N is a positive integer.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), and a mobile hard disk.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk A variety of media that can store program code, such as a disk or a CD.
  • Embodiments of the present application also provide a processor configured to execute a program, wherein the program executes the steps of any of the above methods when executed.
  • the above program is used to perform the following step S1.
  • step S1 it is indicated in a preset manner that there is a reference signal in at least one TTI in the scheduled N transmission time intervals, where N is a positive integer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种参考信号、控制信道单元的确定方法及装置、存储介质,其中,上述参考信号的确定方法包括:通过预设方式指示在调度的N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。

Description

参考信号、控制信道单元的确定方法及装置、存储介质
本申请要求在2017年10月31日提交中国专利局、申请号为201711050997.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种参考信号、控制信道单元的确定方法及装置、存储介质。
背景技术
目前第四代移动通信技术(the 4th Generation mobile communication technology,4G)长期演进(Long-Term Evolution,LTE)/高级长期演进(Long-Term Evolution Advance,LTE-Advance/LTE-A)和第五代移动通信技术(the 5th Generation mobile communication technology,5G)所面临的需求越来越多。从目前发展趋势来看,4G和5G系统都在研究支持增强移动宽带、超高可靠性、超低时延传输、以及海量连接的特征。
为了支持超高可靠性和超低时延传输的特征,需要以较短传输时间间隔传输低时延高可靠业务,同时为了满足在规定的时延需求范围内达到高可靠性需求,或者在规定的时延需求内传输较大的数据包,需要支持多个短传输时间间隔的调度。在LTE/LTE-A系统中已经支持了多子帧调度,该机制可以用于多个短传输时间间隔调度。但是,如果在调度的多个短传输时间间隔中每个短传输时间间隔中都传输参考信息,相较于多子帧调度,会使得资源利用率降低,因此需要降低参考信号开销,而传统的子帧调度过程中并没有考虑降低导频开销。
针对相关技术中,由于在每个短时间间隔中都传输参考信号,进而导致参考信号的开销较大的问题,尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种参考信号、控制信道单元的确定方法及装置、存储介质,以至少解决相关技术中由于在每个短时间间隔中都传输参考信号,进而导致参考信号的开销较大的问题。
根据本申请的一个实施例,提供了一种参考信号的确定方法,包括:
通过预设方式指示在调度的N个传输时间间隔TTI中,至少一个TTI中存在参考信号,其中,N为正整数。
根据本申请的另一个实施例,还提供了一种半静态调度SPS传输时刻的确定方法,包括:
通过高层信令指示SPS周期、偏移值以及传输时间间隔长度联合编码,其中传输时间间隔长度与SPS周期、偏移值联合编码;或者通过高层信令指示SPS周期和偏移值,同时激活SPS传输的物理层信令位于受限传输时刻;或者通过高层信令通知SPS周期,同时激活SPS传输物理层信令位于受限传输时刻,且联合编码指示偏移值和传输时间间隔长度;
通过指示得到的以下之一确定SPS传输时刻:SPS周期、偏移值以及传输时间间隔长度;SPS周期和偏移值;偏移值和传输时间间隔长度。
根据本申请的另一个实施例,还提供了一种控制信道单元的确定方法,包括:
在N个资源单元组中选取部分资源单元组组成一个控制信道单元,至少通过以下方式之一组成一个控制信道单元:
对于基于解调参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:以M个REG为一组在频域上等间隔或间隔离散组成一个CCE,其中M为一个TTI中K个资源块(Resource Block,RB)包含的REG数量,其中,K为正整数,N为正整数;
对于基于小区参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE。
根据本申请的另一个实施例,还提供了一种参考信号的确定装置,包括:
第一指示模块,设置为通过预设方式指示在调度的N个传输时间间隔TTI中,至少一个TTI中存在参考信号,其中,N为正整数。
根据本申请的另一个实施例,还提供了一种控制信道单元的确定装置,包括:
选取模块,设置为在N个资源单元组中选取部分资源单元组组成一个控制信道单元,至少通过以下方式之一组成一个控制信道单元:
对于基于解调参考信号的物理下行控制信道PDCCH,在控制信道单元CCE 与资源单元组(Resource Element Group,REG)的映射为分布式映射时,至少满足以下原则:以M个REG为一组在频域上等间隔或间隔离散组成一个CCE,其中M为一个TTI中K个RB包含的REG数量,其中,K为正整数,N为正整数;
对于基于小区参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE。
根据本申请的另一个实施例,还提供了一种参考信号的确定装置,包括:
第一确定模块,设置为通过预设方式确定在半静态调度SPS传输中的每N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
根据本申请的另一个实施例,还提供了一种半静态调度SPS传输时刻的确定装置,包括:
指示模块,设置为通过高层信令联合编码指示SPS周期、偏移值以及传输时间间隔长度联合编码;或者通过高层信令指示SPS周期和偏移值,同时激活SPS传输的物理层信令位于受限传输时刻;或者通过高层信令通知SPS周期,同时激活SPS传输物理层信令位于受限传输时刻,且联合编码指示偏移值和传输时间间隔长度;
第二确定模块,设置为通过指示得到的以下之一确定SPS传输时刻:SPS周期、偏移值以及传输时间间隔长度;SPS周期和偏移值;偏移值和传输时间间隔长度。
根据本申请的另一个实施例,还一种存储介质,所述存储介质包括存储的程序,所述程序运行时执行参考信号的确定方法,或控制信道单元的确定方法。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的参考信号的确定方法的流程图;
图2是根据本申请实施例的参考信号的确定装置的结构框图;
图3是根据本申请实施例的控制信道单元的确定方法的流程图;
图4是根据本申请实施例的控制信道单元的确定装置的结构框图;
图5是根据本申请可选实施例的下行sTTI的结构示意图;
图6是根据本申请可选实施例的上行sTTI的结构示意图;
图7是根据本申请可选实施例的集中式映射和分布式映射的示意图;
图8是根据本申请可选实施例的集中式映射和分布式映射的另一示意图;
图9是根据本申请实施例的参考信号的确定方法的又一流程图;
图10为根据本申请实施例的SPS传输时刻的确定方法的流程图;
图11是根据本申请实施例的参考信号的确定装置的另一结构框图;
图12是根据本申请实施例的SPS传输时刻的确定装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种参考信号的确定方法,图1是根据本申请实施例的参考信号的确定方法的流程图,如图1所示,该流程包括如下步骤S102。
在步骤S102中,通过预设方式指示在调度的N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
通过本申请,由于可以通过预设方式指示在调度的N个传输时间间隔(Transmission Time Interval,TTI)中,至少一个TTI中存在参考信号,进而可以指示出N个传输时间间隔中不都是每个TTI中存在参考信号,进而解决了相关技术中,由于在每个短时间间隔中都传输参考信号,进而导致参考信号的开销较大的问题,减少了参考信号的开销。
虽然本申请实施例限定的是N个传输时间间隔TTI中的至少一个TTI中存在参考信号,但为了更好的解决技术问题,通过预设方式指示至少一个TTI,且小于或等于N个TTI存在参考信号。
在一实施例中,所述参考信号的位置在TTI中固定时,通过预设方式指示在N个传输时间间隔中,至少一个TTI中存在参考信号,包括以下至少之一:
方式一:在N个传输时间间隔TTI中,首个TTI中存在有参考信号,其余TTI中无参考信号;
方式二:指示调度的N个TTI中含有参考信号所在的一个TTI;
方式三:指示调度的N个TTI中每个TTI是否含有参考信号;
方式四:指示调度的N个TTI中含有参考信号所在的至多K个TTI,其中,K为小于N的正整数;
方式五:指示调度的N个TTI中,除了首个TTI以外其余TTI中是否承载参考信号及承载参考信号的位置,其中,首个TTI始终有参考信号,指示是否有另一个TTI包含参考信号及包含该参考信号的另一个TTI所在位置;
方式六:通过指示N个TTI中参考信号图样,其中,
所述参考信号图样为调度TTI数量x时的一组图样,
或所述参考信号图样同时携带调度TTI数量信息,
或所述参考信号图样同时携带反馈确认(Acknowledgment,ACK)/否认(No Acknowledgment,NACK)定时信息。
需要说明的是,上述方式一至方式六的实现方式可以应用于下行传输过程,也可以应用上行传输过程中,本申请实施例对此不作限定。应用方式一至方式六用于参考信号位置在TTI中固定的场景。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,所述参考信号的类型相同。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,当TTI类型不同时,所述参考信号的类型相同,在本申请实施例中,TTI类型为不同子帧类型,如多播/组播单频网络(Multicast Broadcast Single Frequency Network,MBSFN)子帧、非MBSFN子帧;或TTI类型为不同时隙slot类型,如纯下行slot、纯上行slot、下行部分+预留部分+上行部分组成的slot。
在一实施例中,所述方式五通过以下方式之一实现:
指示N个TTI中,除首个TTI以外其余TTI中1个包含参考信号的TTI的位置;
使用1比特(bit)指示N个TTI中除了首个TTI以外,是否存在另一个TTI包含参考信号,当有另一个TTI包含参考信号时,该TTI位置固定在调度的N个TTI中的最后一个。
在一实施例中,支持物理下行共享信道(Physical Downlink Shared Channel,PDSCH)(也可以理解成是短sPDSCH)使用物理下行控制信道(Physical Downlink Control Channel,PDCCH)(sPDCCH)未使用的资源至少包括以下情 况之一:
在N个TTI中,仅首个TTI支持PDSCH使用PDCCH未使用的资源;
在N>1时,不支持PDSCH使用PDCCH未使用的资源;
在N=1时,支持PDSCH使用PDCCH未使用的资源;
在N个TTI中,所有TTI与首个TTI重用相同的PDCCH未使用的资源。
在一实施例中,对N个TTI中承载的数据反馈ACK/NACK的定时根据参考信号位置确定,确定方法包含以下方式至少之一:
方式1:当多个TTI中仅有1个TTI包含参考信号时,在首个TTI包含参考信号时对应反馈ACK/NACK的定时为k1,以及非首个TTI包含参考信号时对应反馈ACK/NACK的定时为k2时,满足k1<k2;
方式2:当多个TTI中有大于1个TTI包含参考信号时,在最后一个TTI包含参考信号时对应反馈ACK/NACK的定时为k3,且最后一个TTI不包含参考信号时对应反馈ACK/NACK的定时为k4时,满足k3>k4;
其中,k1,k2,k3,k4均为正数。
在一实施例中,所述参考信号的位置在TTI中不固定时,通过预设方式指示在N个传输时间间隔TTI中,至少一个TTI中存在参考信号,包括以下至少之一:
方式一:通过指示N个TTI中首个TTI的参考信号图样,其中,所述参考信号图样与单TTI调度时的参考信号图样一致;
方式二:通过指示N个TTI中一个TTI及该TTI中的参考信号图样,其中,该参考信号图样与单TTI调度时的参考信号图样一致;
方式三:通过指示N个TTI中至多K个TTI的参考信号图样,其中,该参考信号图样与单TTI调度时的参考信号图样一致,其中K为小于N的正整数;
方式四:通过指示N个TTI中每个TTI的参考信号图样,其中,该参考信号图样与单TTI调度时的参考信号图样一致;
方式五:指示调度的N个TTI中,除了首个TTI以外其余TTI中是否承载参考信号及承载参考信号的位置,其中,首个TTI始终有参考信号,指示是否有另一个TTI包含参考信号及包含该参考信号的另一个TTI所在位置以及指示参考信号在该TTI中所在位置;
方式六:通过指示N个TTI中的参考信号图样,其中,所述参考信号图样为调度TTI数量x时的一组图样,或所述参考信号图样同时携带调度TTI数量 信息,或所述参考信号图样同时携带反馈ACK/NACK定时信息。
需要说明的是,上述方式一至方式六的实现方式可以应用于上行传输过程,也可以应用下行传输过程中,本申请实施例对此不作限定。应用方式一至方式六用于参考信号位置在TTI中不固定的场景。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,所述参考信号的类型相同。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,当TTI类型不同时,所述参考信号的类型相同,其中,TTI类型为不同子帧类型,如MBSFN子帧、非MBSFN子帧;或TTI类型为不同时隙slot类型,如纯下行slot、纯上行slot、下行部分+预留部分+上行部分组成的slot。
在一实施例中,所述方式五通过以下方式之一实现:
指示N个传输时间间隔中,除首个传输时间间隔以外其余传输时间间隔中1个包含参考信号的传输时间间隔的位置以及指示参考信号在该传输时间间隔中所在位置;
指示N个传输时间间隔中除了首个传输时间间隔以外,是否存在另一个传输时间间隔包含参考信号以及指示参考信号在该传输时间间隔中所在位置,例如,采用1比特指示N个传输时间间隔中除了首个传输时间间隔以外,是否存在另一个传输时间间隔包含参考信号以及指示参考信号在该传输时间间隔中所在位置。
在一实施例中,所述方法还包括:
当有另一个TTI包含参考信号时,该TTI位置固定在调度的N个TTI中的最后一个。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
实施例2
在本实施例中还提供了一种参考信号的确定装置,该装置用于实现上述实 施例及应用实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少之一的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本申请实施例的参考信号的确定装置的结构框图,如图2所示,该装置包括:第一指示模块20。
第一指示模块20,设置为通过预设方式指示在调度的N个传输时间间隔TTI中,至少一个TTI中存在参考信号,其中,N为正整数。
在一个可选实施例中,第一指示模块20,设置为执行以下至少之一操作:
在所述参考信号的位置在TTI中固定时,通过预设方式指示在N个传输时间间隔TTI中,至少一个TTI中存在参考信号,包括以下至少之一:
方式一:在N个传输时间间隔TTI中,首个TTI中存在有参考信号,其余TTI中无参考信号;
方式二:指示调度的N个TTI中含有参考信号所在的一个TTI;
方式三:指示调度的N个TTI中每个TTI是否含有参考信号;
方式四:指示调度的N个TTI中含有参考信号所在的至多K个TTI,其中,K为小于N的正整数;
方式五:指示调度的N个TTI中,除了首个TTI以外其余TTI中是否承载参考信号及承载参考信号的位置,其中,首个TTI始终有参考信号,指示是否有另一个TTI包含参考信号及包含该参考信号的另一个TTI所在位置;
方式六:通过指示N个TTI中参考信号图样,其中,
所述参考信号图样为调度TTI数量x时的一组图样,
或所述参考信号图样同时携带调度TTI数量信息,
或所述参考信号图样同时携带反馈ACK/NACK定时。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,所述参考信号的类型相同。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,当TTI类型不同时,所述参考信号的类型相同,在本申请实施例中,TTI类型为不同子帧类型,如MBSFN子帧、非MBSFN子帧;或TTI类型为不同时隙slot类型,如纯下行slot、纯上行slot、下行部分+预留部分+上行部分组成的slot。
在一实施例中,所述方式五通过以下方式之一实现:
指示N个TTI中,除首个TTI以外其余TTI中1个包含参考信号的TTI的位置;
使用1比特指示N个TTI中除了首个TTI以外,是否存在另一个TTI包含参考信号,当有另一个TTI包含参考信号时,该TTI位置固定在调度的N个TTI中的最后一个。
在一实施例中,在下行传输过程中,支持物理下行共享信道PDSCH(也可以理解成是短sPDSCH)使用物理下行控制信道PDCCH(sPDCCH)未使用的资源至少包括以下情况之一:
在N个TTI中,仅首个TTI支持PDSCH使用PDCCH未使用的资源;
在N>1时,不支持PDSCH使用PDCCH未使用的资源;
在N=1时,支持PDSCH使用PDCCH未使用的资源;
在N个TTI中,所有TTI与首个TTI重用相同的PDCCH未使用的资源。
在一实施例中,对N个TTI中承载的数据反馈ACK/NACK的定时根据参考信号位置确定,确定方法包含以下方式至少之一:
方式1:当多个TTI中仅有1个TTI包含参考信号时,在首个TTI包含参考信号时对应反馈ACK/NACK的定时为k1,以及非首个TTI包含参考信号时对应反馈ACK/NACK的定时为k2时,满足k1<k2;
方式2:当多个TTI中有大于1个TTI包含参考信号时,在最后一个TTI包含参考信号时对应反馈ACK/NACK的定时为k3,且最后一个TTI不包含参考信号时对应反馈ACK/NACK的定时为k4时,满足k3>k4;
其中,k1,k2,k3,k4均为正数。
在一实施例中,在所述参考信号的位置在TTI中不固定时,通过预设方式指示在N个传输时间间隔TTI中,至少一个TTI中存在参考信号,且所述参考信号位置在TTI内不固定,包括以下至少之一:
方式一:通过指示N个TTI中首个TTI的参考信号图样,其中,所述参考信号图样与单TTI调度时的参考信号图样一致;
方式二:通过指示N个TTI中一个TTI及该TTI中的参考信号图样,其中,该参考信号图样与单TTI调度时的参考信号图样一致;
方式三:通过指示N个TTI中至多K个TTI的参考信号图样,其中,该参考信号图样与单TTI调度时的参考信号图样一致,其中K为小于N的正整数;
方式四:通过指示N个TTI中每个TTI的参考信号图样,其中,该参考信 号图样与单TTI调度时的参考信号图样一致;
方式五:指示调度的N个TTI中,除了首个TTI以外其余TTI中是否承载参考信号及承载参考信号的位置,其中,首个TTI始终有参考信号,指示是否有另一个TTI包含参考信号及包含该参考信号的另一个TTI所在位置以及在该TTI中所在位置;
方式六:通过指示N个TTI中的参考信号图样,其中,所述参考信号图样为调度TTI数量x时的一组图样,或所述参考信号图样同时携带调度TTI数量信息,或所述参考信号图样同时携带反馈ACK/NACK定时信息。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,所述参考信号的类型相同。
在一实施例中,所述N个TTI中2个或2个以上TTI存在参考信号时,当TTI类型不同时,所述参考信号的类型相同,其中,TTI类型为不同子帧类型,如MBSFN子帧、非MBSFN子帧;或TTI类型为不同时隙slot类型,如纯下行slot、纯上行slot、下行部分+预留部分+上行部分组成的slot。
在一实施例中,所述方式五通过以下方式之一实现:
指示N个传输时间间隔中,除首个传输时间间隔以外其余传输时间间隔中1个包含参考信号的传输时间间隔的位置以及指示参考信号在该传输时间间隔中所在位置;
指示N个传输时间间隔中除了首个传输时间间隔以外,是否存在另一个传输时间间隔包含参考信号以及指示参考信号在该传输时间间隔中所在位置。在一实施例中,所述方法还包括:当有另一个TTI包含参考信号时,该TTI位置固定在调度的N个TTI中的最后一个。
需要说明的是,上述方式一至方式五的实现方式可以应用于下行传输过程,也可以应用上行传输过程中,本申请实施例对此不作限定。
实施例3
在本申请实施例中,还提供了一种控制信道单元的确定方法,图3是根据本申请实施例的控制信道单元的确定方法的流程图,如图3所示,该流程包括如下步骤S302。
在步骤S302中,在N个资源单元组中选取部分资源单元组组成一个控制信道单元,至少通过以下方式之一组成一个控制信道单元:
对于基于解调参考信号的物理下行控制信道PDCCH,在控制信道单元CCE 与资源单元组REG的映射为分布式映射时,至少满足以下原则:以M个REG为一组在频域上等间隔或间隔离散组成一个CCE,其中M为一个TTI中K个RB包含的REG数量,其中,K为正整数,N为正整数;
对于基于小区参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE。
通过上述步骤,采用步骤S302的方式在N个资源单元组中选取部分资源单元组组成一个控制信道单元,进而能够针对基于解调参考信号的物理下行控制信道PDCCH和基于小区参考信号的物理下行控制信道PDCCH分别提供了一种控制信道单元的确定方案。
其中,K的取值例如可以是:1,2,3。
在一实施例中,在控制信道单元(Control Channel Element,CCE)与资源单元组(Resource Element Group,REG)的映射为集中式映射时,在单个符号中一组在频域上连续的REG组成一个CCE,并且为了避免高聚合等级使用的REG资源完全包含低聚合等级使用的REG资源,且采用交织方法或物理层信令指示聚合等级,或对不同聚合等级的信息进行不同加扰。
在本申请实施例中,所述交织方法包括:对于一个聚合等级为L的候选集,所述候选集所包含的REG索引顺序写入交织器,按照列置换图样从交织器读出,读出后将空元素删除,其中,REG索引大于X时定义为空元素,
其中,L=1,2,4或8,即L可能取值1,2,4,8中的一种;
其中X=L·M-1,M表示每个CCE中包含的REG数目。
在一实施例中,所述列置换图样包括以下至少之一:
<1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30>;
<0,4,8,12,16,20,24,28,1,5,9,13,17,21,25,29,2,6,10,14,18,22,26,30,3,7,11,15,19,23,27,31>。
实施例4
在本实施例中还提供了一种控制信道单元的确定装置,该装置用于实现上述实施例及应用实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中的至少之一的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现 也是可能并被构想的。
图4是根据本申请实施例的控制信道单元的确定装置的结构框图,如图4所示,该装置包括:选取模块40。
选取模块40,设置为在N个资源单元组中选取部分资源单元组组成一个控制信道单元,至少通过以下方式之一组成一个控制信道单元:
对于基于解调参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:以M个REG为一组在频域上等间隔或间隔离散组成一个CCE,其中M为一个TTI中K个RB包含的REG数量,其中,K为正整数,N为正整数;
对于基于小区参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE。
通过上述技术方案,采用上述方式在N个资源单元组中选取部分资源单元组组成一个控制信道单元,进而能够针对基于解调参考信号的物理下行控制信道PDCCH和基于小区参考信号的物理下行控制信道PDCCH分别提供了一种控制信道单元的确定方案。
实施例5
根据本申请实施例,还提供了一种参考信号的确定方法,如图9所示,图9是根据本申请实施例的参考信号的确定方法的又一流程图,如图9所示,包括:步骤S902。
在步骤S902中,通过预设方式确定在半静态调度(Semi-Persistent Scheduling,SPS)传输中每N个传输时间间隔中,至少一个传输时间间隔中存在参考信号。
其中,N为正整数。
需要说明的是,本申请应用实施例中N的取值可以为2。
在一实施例中,所述参考信号的时域位置在传输时间间隔中固定,所述预设方式至少包括以下之一:
方式一:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号;
方式二:通过信令指示在每N个传输时间间隔中是否降低参考信号密度,其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号,降低参考 信号密度指小于N个传输时间间隔中含有参考信号;
方式三:通过信令指示在每N个传输时间间隔中的参考信号图样。
在一实施例中,至少通过以下方式之一降低参考信号密度:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考信号;仅首个传输时间间隔和相对于首个偏移x个传输时间间隔中有参考信号,其中,x为取自集合[0,N]的整数。
在一实施例中,所述参考信号的时域位置在传输时间间隔中不固定,所述预设方式至少包括以下至少之一:
方式一:预定义在每N个传输时间间隔中,N个传输时间间隔全都含有参考信号;
方式二:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号;
方式三:通过信令指示在每N个传输时间间隔中是否降低参考信号密度,其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号,降低参考信号密度指小于N个传输时间间隔中含有参考信号,在一实施例中,可以通过1比特的信令来指示在每N个传输时间间隔中是否降低参考信号密度;
方式四:通过信令指示在每N个传输时间间隔中的参考信号图样。
在一实施例中,在每N个传输时间间隔中,含有参考信号的传输时间间隔中仅首个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号中含有参考信号。
在一实施例中,至少通过以下方式之一降低参考信号密度:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考信号;仅首个传输时间间隔和相对于首个偏移x个传输时间间隔中有参考信号,其中,x为取自集合[0,N]的整数。
在一实施例中,激活SPS传输的首次业务传输所在的传输时间间隔含有参考信号。
在一实施例中,所述信令为物理层信令时,在周期为1个传输时间间隔有效,在其他周期时该信令对应的所有比特均置0用于SPS传输激活确认或去激活确认;或者在周期为1个传输时间间隔与其他周期时分别具有不同的含义,其中,在周期为1个传输时间间隔有效且用于每N个传输时间间隔中参考信号指示,在其他周期时用于单个传输时间间隔参考信号指示。
在一实施例中,所述方法应用于半静态调度SPS且SPS周期为1个传输时间间隔。
实施例6
在本申请实施例中,还提供了一种半静态调度SPS传输时刻的确定方法,图10为根据本申请实施例的SPS传输时刻的确定方法的流程图,如图10所示,包括:步骤S1002和步骤S1004。
在步骤S1002中,通过高层信令指示SPS周期、偏移值以及传输时间间隔长度,其中传输时间间隔长度与SPS周期、偏移值联合编码;或者通过高层信令指示SPS周期和偏移值,同时激活SPS传输的物理层信令位于受限传输时刻;或者通过高层信令通知SPS周期,同时激活SPS传输物理层信令位于受限传输时刻,且联合编码指示偏移值和传输时间间隔长度。
在步骤S1004中,通过指示得到的以下之一确定SPS传输时刻:SPS周期、偏移值以及传输时间间隔长度;SPS周期和偏移值;以及偏移值和传输时间间隔长度。
在一实施例中,联合编码至少包括:如果所述SPS周期和偏移统一指示,则对于每种周期的偏移值取值数量为SPS周期包含1个短传输时间间隔或1个业务时长的个数;或者对于每种周期的偏移值取值数量为小于或等于SPS周期包含1个短传输时间间隔或1个业务时长的个数。
在一实施例中,所述受限传输时刻为包括以下至少之一:位于PDCCH、位于短传输时间间隔sTTI#0和短传输时间间隔sTTI #3(即索引值为0,3的sTTI)中的至少之一、位于时隙(slot)中配置的控制资源集合且该资源集合位于时隙中前P个符号中、位于时隙中配置的多个控制资源集合中的时域上首个控制资源集合,其中,P取值包括:1,2,3,7,即P的可能取值为1,2,3,7中的一个。
实施例7
在本实施例中还提供了一种参考信号的确定装置,该装置用于实现上述实施例及应用实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中的至少之一的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本申请实施例的参考信号的确定装置的另一结构框图,如图11所示,该装置包括:第一确定模块1102。
第一确定模块1102,设置为通过预设方式确定在半静态调度SPS传输中的每N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
需要说明的是,本申请应用实施例中N的取值可以为2。
在一实施例中,所述参考信号的时域位置在传输时间间隔中固定,所述预设方式包括以下至少之一:
方式一:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号;
方式二:通过信令指示在每N个传输时间间隔中是否降低参考信号密度,其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号,降低参考信号密度指小于N个传输时间间隔中含有参考信号;
方式三:通过信令指示在每N个传输时间间隔中的参考信号图样。
在一实施例中,至少通过以下方式之一降低参考信号密度:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考信号;仅首个传输时间间隔和相对于首个偏移x个传输时间间隔中有参考信号,其中,x为取自集合[0,N]的整数。
在一实施例中,所述参考信号的时域位置在传输时间间隔中不固定,所述预设方式包括以下至少之一:
方式一:预定义在每N个传输时间间隔中,N个传输时间间隔全都含有参考信号;
方式二:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号;
方式三:通过信令指示在每N个传输时间间隔中是否降低参考信号密度,其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号,降低参考信号密度指小于N个传输时间间隔中含有参考信号,在一实施例中,可以通过1比特的信令来指示在每N个传输时间间隔中是否降低参考信号密度;
方式四:通过信令指示在每N个传输时间间隔中的参考信号图样。
在一实施例中,在每N个传输时间间隔中,每个传输时间间隔中仅首个正交频分复用OFDM符号含有参考信号。
在一实施例中,至少通过以下方式之一降低参考信号密度:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考 信号;仅首个传输时间间隔和相对于首个偏移x个传输时间间隔中有参考信号,其中,x为取自集合[0,N]的整数。
在一实施例中,激活SPS传输的首次业务传输所在的传输时间间隔含有参考信号。
在一实施例中,所述信令为物理层信令时,在周期为1个传输时间间隔有效,在其他周期时该信令对应的所有比特均置0用于SPS传输激活确认或去激活确认;或者在周期为1个传输时间间隔与其他周期时分别具有不同的含义,其中,在周期为1个传输时间间隔有效且用于每N个传输时间间隔中参考信号指示,在其他周期时用于单个传输时间间隔参考信号指示。
在一实施例中,所述方法应用于半静态调度SPS且SPS周期为1个传输时间间隔。
实施例8
在本实施例中还提供了一种SPS传输时刻的确定装置,该装置用于实现上述实施例及应用实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中的至少之一的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图12是根据本申请实施例的SPS传输时刻的确定装置的结构框图,如图12所示,该装置包括:指示模块1202。
指示模块1202,设置为通过高层信令联合编码指示SPS周期、偏移值以及传输时间间隔长度联合编码;或者通过高层信令指示SPS周期和偏移值,同时激活SPS传输的物理层信令位于受限传输时刻;或者通过高层信令通知SPS周期,同时激活SPS传输物理层信令位于受限传输时刻,且联合编码指示偏移值和传输时间间隔长度。
第二确定模块1204,设置为通过指示得到的以下之一确定SPS传输时刻:SPS周期、偏移值以及传输时间间隔长度;SPS周期和偏移值;以及偏移值和传输时间间隔长度。
以下结合应用实施例1-5对上述技术方案进行解释说明,但不用于限定本申请实施例的技术方案。
应用实施例1
基站调度终端A在多个TTI传输下行数据。所述TTI包含的OFDM符号数 较少,例如不超过7个OFDM符号,但并不仅限于此。本实施例以长期演进(Long-Term Evolution,LTE)系统中short TTI结构进行说明,即所述TTI可以理解为短TTI(short TTI,sTTI),但并不限于此。DL short TTI帧结构如图5所示,在1ms子帧中包含6个下行链路(Down Link,DL)短TTI,当sPDSCH被配置为从OFDM符号#1或#3起始时,使用Pattern1;当sPDSCH被配置为从OFDM符号#2起始时,使用Pattern2。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。
调度多sTTI的DCI可以在任意DL sTTI中传输,当该DCI位于DL sTTI #0时,由PDCCH信道承载;当该DCI位于DL sTTI #1至#5时,由sPDCCH信道承载。或者,调度多sTTI的DCI可以在部分sTTI中传输,例如仅在DL sTTI #0中传输,又例如仅在DL sTTI #0,3中传输。
调度多sTTI传输时,最大调度N个sTTI传输。此时N个连续可用于传输sPDSCH的sTTI。在一实施例中,存在sPDSCH不能在sTTI #0的场景,即sPDSCH被配置为从OFDM符号#2或#3起始时,此时sTTI #0不能用于sPDSCH传输。例如N=2或3或4或6或8或12或16,但不仅限于此。在确定了最大调度N个sTTI传输时,实际调度的多个sTTI的传输的数量为1至N个sTTI。其中N值的确定方式为预定义,或高层信令配置的取值。下面描述过程中以N=4为例进行描述,并不仅限于此。
在调度的N=4个DL sTTI传输中,解调参考信号(Demodulation Reference Signal,DMRS),也可以理解成上述实施例的参考信号,所在位置的确定方式为以下至少之一:需要说明的是,本实施例虽然以下行传输为例进行说明,但是DMRS所在位置的确定方式并不仅限制用于下行,也可以用于上行。本实施例中针对DMRS在TTI中固定的场景。
方式1:默认每个sTTI中均有DMRS;
有益效果:此时无需额外指示。无需标准化,多sTTI调度机制与eLAA多子帧调度机制相同。DMRS开销与单sTTI调度时开销比例相同,无节省。
方式2:默认调度的首个sTTI中有DMRS,其余sTTI中无DMRS;
有益效果:此时无需额外指示。可以节省DMRS开销,标准化简单。适用于非高速移动场景。
方式3:仅指示调度的N个sTTI中含有DMRS所在的1个sTTI;
此时含有DMRS的sTTI位于调度的多个sTTI中的任意一个,以N=4为例, 若只考虑1个sTTI包含DMRS时,2比特指示4个sTTI中的一个;
有益效果:可以节省DMRS开销,灵活指示包含DMRS的sTTI,并不仅限于多个sTTI中的第一个。
方式4:指示调度的N个sTTI中含有DMRS所在的至多N个sTTI;
此时含有DMRS的sTTI位于调度的多个sTTI中的任意位置且至多N个sTTI都含有DMRS,以N=4为例,4比特以比特位图(bitmap)方式指示至多4个sTTI包含DMRS;
有益效果:可以节省DMRS开销,并且指示开销最大但最具灵活,包含DMRS的sTTI可以位于任意位置且至多N个sTTI都含有DMRS。
方式5:仅指示调度的多个sTTI中含有DMRS所在的至多2个sTTI;
此时指示N个sTTI中最多2个sTTI含有DMRS。例如当N=4时,此时需要4比特指示共计10种可能
Figure PCTCN2018113117-appb-000001
有1个sTTI含有DMRS(4种可能)或2个sTTI中含有DMRS(6种可能)。又例如当N=6时,此时需要5比特指示共计21种可能
Figure PCTCN2018113117-appb-000002
有1个sTTI含有DMRS(6种可能)或2个sTTI中含有DMRS(15种可能)。
有益效果:灵活指示包含DMRS的sTTI,至多位于任意2个sTTI中,指示开销等于或小于方式4。
方式6:指示调度的N个sTTI中除了首个sTTI以外其余sTTI中是否承载DMRS及位置。默认首个sTTI始终有DMRS,指示是否有另一个sTTI包含DMRS及包含DMRS的另一个sTTI所在位置。
方式6还包括:子方式6-1和子方式6-2,其中,子方式6-1:指示包含DMRS位于除首个sTTI以外位于其余sTTI中1个sTTI。例如N=4时,如下表1所示使用2比特指示是否有另一个sTTI包含DMRS及包含DMRS的另一个sTTI所在位置。
表1
2比特指示 是否有其余sTTI包含DMRS及位置
00 无其余sTTI包含DMRS
01 第二个sTTI包含DMRS
10 第三个sTTI包含DMRS
11 第四个sTTI包含DMRS
子方式6-2:使用1比特指示有无另一个sTTI包含DMRS。例如,当有另 一个sTTI包含DMRS时该sTTI位置固定在调度的多个sTTI中的最后一个。
有益效果:可以节省DMRS开销,以较小的指示开销支持另一个sTTI包含DMRS。适用于中低速移动场景和高速移动场景。例如:除了高速场景,其余情况下仅单个sTTI包含DMRS就可以了,即另一个sTTI包含DMRS的主要理由就是为了支持高速移动场景。
方式7:指示预定义DMRS图样中之一。其中预定义DMRS图样针对多sTTI调度的实际调度数量分别定义,或预定义DMRS图样与调度sTTI数量是联合编码的。
预定义DMRS图样针对多sTTI调度的实际调度数量分别定义举例:当N=4时,针对至多N=4个sTTI调度的实际调度数量为n=1或2或3或4个。如下表2所示,在不同实际调度数量sTTI时,预定义DMRS图样集合是分别定义的,根据实际调度的sTTI数量,指示实际调度n个sTTI时DMRS所在sTTI位置,即预定义DMRS图样集合中之一。需要说明的是,表格中所列举的导频图样仅为举例,但并不仅限于此。
表2
Figure PCTCN2018113117-appb-000003
Note:R表示该sTTI有DMRS,D表示该sTTI无DMRS。以N=2为例,RD表示第一个sTTI有DMRS,第二个sTTI无DMRS。其余类似,不再赘述。
预定义DMRS图样与调度sTTI数量是联合编码举例:当N=4时,针对至多N=4个sTTI调度的实际调度数量为n=1或2或3或4个。如表3所示,在不同实际调度数量sTTI时,预定义DMRS图样集合与调度的sTTI数量是联合的,指示实际调度sTTI的数量和DMRS所在sTTI位置,即预定义DMRS图样集合中之一。需要说明的是,表格中所列举的导频图样仅为举例,但并不仅限于此。
表3
Figure PCTCN2018113117-appb-000004
Figure PCTCN2018113117-appb-000005
Note:R表示该sTTI有DMRS,D表示该sTTI无DMRS。以N=2为例,RD表示第一个sTTI有DMRS,第二个sTTI无DMRS。其余类似,不再赘述。
有益效果:可以节省DMRS开销,以较小的指示开销支持另一个sTTI包含DMRS,可以设计适合多sTTI调度的多sTTI导频图样。适用于中低速移动场景和高速移动场景。并且联合编码指示可以进一步节省控制开销。
另外,对于DL多sTTI调度,支持sPDSCH使用sPDCCH未使用资源方式至少包括以下方式之一:
方式1:多sTTI调度时,仅首个sTTI中支持sPDSCH使用sPDCCH未使用的资源。
考虑到单sTTI调度支持sPDSCH使用sPDCCH未使用的资源都只能针对当前sTTI支持该功能,并不能预测后续sTTI中sPDCCH资源使用情况,同时多sTTI调度的多个sPDSCH是独立编码的。因此仅首个sTTI支持该功能是可以工作的。因此,当显示指示时,不可用(unused)/可用(used)sCCE指示域仅针对多sTTI的首个sTTI有效。即多sTTI调度时,仅首个sTTI中支持sPDSCH使 用sPDCCH未使用的资源。
方式2:多sTTI调度时,不支持该功能。
即unused sPDCCH资源由单sTTI调度的sPDSCH重用。
方式3:多sTTI调度时,所有sTTI都与首个sTTI中重用相同unused sCCE资源。
此时存在的限制为:后续sTTI中在相同RB set中的sPDCCH使用的sCCE index不能大于首个sTTI中多sTTI调度的sPDCCH使用的sCCE index。
额外的,对于多TTI调度时,反馈定时根据DMRS位置隐含确定。所述反馈定时为对于PDSCH或PUSCH进行ACK/NACK的定时。根据多sTTI中包含DMRS的sTTI位置确定多sTTI调度业务的反馈定时包含以下方式至少之一:
方式1:当多个TTI中仅有1个TTI包含DMRS时,假定首个sTTI包含DMRS时对应反馈ACK/NACK的定时为k1,假定非首个sTTI包含DMRS时对应反馈ACK/NACK的定时为k2,k1<k2;
方式2:当多个TTI中有大于1个TTI包含DMRS时,假定最后一个sTTI包含DMRS时对应反馈ACK/NACK的定时为k3,假定最后一个sTTI不包含DMRS时对应反馈ACK/NACK的定时为k4,k3>k4;
通过本应用实施例所提供的技术方案,可以实现在多sTTI调度时,实现节省DMRS开销,以较小的指示开销指示支持一个或多个sTTI包含DMRS,以适用于中低速移动场景和高速移动场景。同时节省导频的开销后,可以将更多的资源用于数据传输,提升系统频谱效率。
应用实施例2
基站调度终端A在多个TTI传输上行数据,所述TTI包含的OFDM符号数较少,例如不超过7个OFDM符号。本应用实施例以LTE系统中short TTI结构进行说明,但并不限于此。UL short TTI帧结构如图6所示,在1ms子帧中包含6个上行链路(Up Link,UL)短TTI。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。
调度多sTTI的DCI可以在任意DL sTTI中传输,当该DCI位于DL sTTI #0时,由PDCCH信道承载;当该DCI位于DL sTTI #1至#5时,由sPDCCH信道承载。或者,调度多sTTI的DCI可以在部分sTTI中传输,例如仅在DL sTTI #0中传输,又例如仅在DL sTTI #0,3中传输。
调度多sTTI传输时,最大调度N个sTTI传输。此时N个连续可用于传输 sPUSCH的sTTI。例如N=2或3或4或6或8,但不仅限于此。在确定了最大调度N个sTTI传输时,实际调度的多个sTTI的传输的数量为1至N个sTTI。其中N值的确定方式为预定义,或高层信令配置的取值。下面描述过程中以N=4为例进行描述,并不仅限于此。
在调度的N=4个UL sTTI传输中,DMRS所在位置的确定方式为以下至少之一:需要说明的是,本实施例虽然以上行传输为例进行说明,但是DMRS所在位置的确定方式并不仅限制用于上行,也可以用于下行。本实施例例如针对DMRS在TTI中不固定的场景。
方式1:DMRS图样同单sTTI调度时DMRS图样,指示UL DMRS的方式同单sTTI。此时指示调度的首个sTTI中DMRS pattern,后续sTTI不指示。此时限制条件为首个sTTI中不能指示纯D图样以及|R图样,必须要指示含有R的图样。
需要补充说明的是单sTTI调度时UL DMRS图样如表4所示:包含的UL DMRS图样至少包括表1中所列出的图样,还可以包含其他图样。
表4 单sTTI调度时UL DMRS position
Figure PCTCN2018113117-appb-000006
需要说明的是:表4中“|”表示sTTI n的边界。
有益效果:该方式无需设计新pattern结构,即pattern还是单sTTI调度时的结构。未增加控制开销。同时调度的多个UL sTTI除了第一个以外,其余均没有DMRS。
方式2:DMRS图样同单sTTI调度时DMRS图样,比特域同单sTTI,增加包含DMRS的sTTI位置指示。此时指示包含DMRS的一个sTTI中DMRS pattern,其余sTTI不指示。此时限制条件为指示的sTTI中不能指示纯D图样以及|R图样,必须要指示含有R的图样。
有益效果:该方式无需设计新pattern结构,即pattern还是单sTTI调度时的结构。支持灵活指示包含DMRS的位置。同时调度的多个UL sTTI只有一个包含DMRS。
方式3:DMRS图样同单sTTI调度时DMRS图样,比特域为单sTTI时的N倍,每个sTTI都独立指示。例如当N=4时,比特域为单sTTI调度时指示DMRS position的4倍。此时实际调度的每个sTTI对应的DMRS都指示。此时最灵活,开销最大。例如实际调度n=2个sTTI,假设单sTTI调度时指示UL DMRS position的比特域为2比特,此时多sTTI调度比特域为8比特,此时又因为实际调度的UL sTTI数目为2个,则8比特中前4个比特有效。所述有效的4个比特中前2个比特指示调度的第一个UL sTTI中的UL DMRS position,后2个比特指示调度的第二个sTTI中UL DMRS position。
有益效果:该方式无需设计新pattern结构,即pattern还是单sTTI调度时的结构,同时以较大的控制开销支持灵活指示。
方式4:指示调度的N个sTTI中除了首个sTTI以外其余sTTI中是否承载DMRS及位置。默认首个sTTI始终有DMRS,指示是否有另一个sTTI包含DMRS及包含DMRS的另一个sTTI所在位置以及指示该sTTI中DMRS所在符号位置。其中指示一个sTTI内DMRS所在符号位置与单sTTI调度时DMRS位置指示方法相同。
方式4还包括:子方式4-1和子方式4-2,其中,子方式4-1:指示包含DMRS位于除首个sTTI以外位于其余sTTI中1个sTTI以及指示该sTTI中DMRS所在符号位置。其中指示一个sTTI内DMRS所在符号位置与单sTTI调度时DMRS位置指示方法相同。例如N=4时,如下表1所示使用2比特指示是否有另一个sTTI包含DMRS及包含DMRS的另一个sTTI所在位置。
表1
2比特指示 是否有其余sTTI包含DMRS及位置
00 无其余sTTI包含DMRS
01 第二个sTTI包含DMRS
10 第三个sTTI包含DMRS
11 第四个sTTI包含DMRS
子方式4-2:指示有无另一个sTTI包含DMRS以及指示该sTTI中DMRS所在符号位置。例如,当有另一个sTTI包含DMRS时该sTTI位置固定在调度的多个sTTI中的最后一个。其中指示有无另一个sTTI包含DMRS可以使用1比特进行指示。其中指示一个sTTI内DMRS所在符号位置与单sTTI调度时DMRS位置指示方法相同。
有益效果:可以节省DMRS开销,以较小的指示开销支持另一个sTTI包含DMRS。适用于中低速移动场景和高速移动场景。
方式5:指示预定义DMRS图样中之一。其中预定义DMRS图样针对多sTTI调度的实际调度数量分别定义,或预定义DMRS图样与调度sTTI数量是联合编码的。
即预定义多sTTI调度时UL DMRS图样并在多sTTI调度时确定具体图样。预定义连续2,3,...,N个sTTI调度时DMRS图样。当N=4时,预定义连续2,3,4个sTTI调度的DMRS图样。
当图样在连续2,3,...,N个sTTI调度时分别唯一时,无需指示
当图样在连续2,3,...,N个sTTI调度时分别有多种时,指示其一。
预定义DMRS图样针对多sTTI调度的实际调度数量分别定义举例:如表5所示,N=4,连续调度n=1,2,3,4个sTTI时分别预定义导频图样候选集。根据连续调度的sTTI数目n进而确定2比特指示的含义,指示其中一个图样。需要说明的是,表格中所列举的导频图样仅为举例,但并不仅限于此。
表5
Figure PCTCN2018113117-appb-000007
需要说明的是:当3OS时,DR对应DDR,RD对应RDD。以N=2为例,RD|DD表示第一个sTTI有DMRS且位于第一个sTTI中首个符号,第二个sTTI无DMRS。其余类似,不再赘述。
预定义DMRS图样与调度sTTI数量是联合编码举例:当N=4时,针对至多N=4个sTTI调度的实际调度数量为n=1或2或3或4个。如表6所示,在不同实际调度数量sTTI时,预定义DMRS图样集合与调度的sTTI数量是联合的,指示实际调度sTTI的数量和DMRS所在sTTI位置,即预定义DMRS图样集合中之一。需要说明的是,表格中所列举的导频图样仅为举例,但并不仅限于此。
表6
Figure PCTCN2018113117-appb-000008
Figure PCTCN2018113117-appb-000009
需要说明的是:当3OS时,DR对应DDR,RD对应RDD。以N=2为例,RD|DD表示第一个sTTI有DMRS且位于第一个sTTI中首个符号,第二个sTTI无DMRS。其余类似,不再赘述。
有益效果:该方式控制开销较小。同时需要设计针对多个sTTI的DMRS pattern结构。并且联合编码指示可以进一步节省控制开销。
通过本应用实施例2所提供的方法,可以实现在多sTTI调度时,实现节省DMRS开销,以较小的指示开销指示支持一个或多个sTTI包含DMRS,以适用于中低速移动场景和高速移动场景。同时节省导频的开销后,可以将更多的资源用于数据传输,提升系统频谱效率。
应用实施例3
基站调度终端A在单个TTI或多个TTI传输下行数据,所述TTI包含的OFDM符号数较少,例如不超过7个OFDM符号。本应用实施例3以LTE系统中short TTI结构进行说明,但并不限于此。DL short TTI帧结构如图5所示,在1ms子帧中包含6个下行链路(Down Link,DL)短TTI,当sPDSCH被配置为从OFDM符号#1或#3起始时,使用Pattern1;当sPDSCH被配置为从OFDM符号#2起始时,使用Pattern2。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。
调度单TTI或多TTI的DCI可以在任意DL sTTI中传输,当该DCI位于DL sTTI #0时,由PDCCH信道承载;当该DCI位于DL sTTI #1至#5时,由sPDCCH信道承载。或者,调度多sTTI的DCI可以在部分sTTI中传输,例如仅在DL sTTI #0中传输,又例如仅在DL sTTI #0,3中传输。
sTTI中同时支持CRS-based sPDCCH和DMRS-based sPDCCH,且两种类型的sPDCCH都支持集中式映射和分布式映射。对于CRS-based sPDCCH,集中式映射和分布式映射都支持frequency-first time-second sCCE-to-sREG mapping。对于DMRS-based sPDCCH,集中式映射和分布式映射都支持时间第一频率第二的映射方式(time-first frequency-second sCCE-to-sREG mapping)。并且sREG编号顺序为:对于CRS-based sPDCCH,sREG编号顺序为频率第一时间第二(frequency-first time-second);对于DMRS-based sPDCCH,sREG编号顺序为time-first frequency-second。
因此,在这些条件下,需要确定sCCE-to-sREG mapping具体方案和公式。
需要说明的是,对于sTTI #1-5中,CRS-based sPDCCH所在的RB set支持1或2个OFDM符号,通过高层信令配置其一。DMRS-based sPDCCH所在RB set所具有的OFDM数目与所在sTTI具有的OFDM符号数相同,即支持2或3个OFDM符号。
对于DMRS-based sPDCCH,假设配置的RB set x m包含的PRB数目为N PRB PRBs,由高层信令配置。包含的OFDM符号数目为N OFDMOFDM symbols,与所在sTTI包含的OFDM符号数相同。已知一个sREG为一个OFDM符号中1RB,即12个RE(包含导频),所以sREG数目为N sREG=N PRB·N OFDM。以下描述中
Figure PCTCN2018113117-appb-000010
表示一个sCCE包含的sREG数量。
集中式映射时,满足的原则为:以N OFDM个sREG为一组在频域上连续组成一个sCCE。sCCE #n包含的sREG #m满足公式
Figure PCTCN2018113117-appb-000011
或者sCCE #n包含的sREG编号为
Figure PCTCN2018113117-appb-000012
其中
Figure PCTCN2018113117-appb-000013
分布式映射时,满足的原则为:以N OFDM个sREG为一组在频域上等间隔离散组成一个sCCE。sCCE #n包含的sREG #m满足公式
Figure PCTCN2018113117-appb-000014
或者sCCE #n包含的sREG编号为
Figure PCTCN2018113117-appb-000015
其中
Figure PCTCN2018113117-appb-000016
Figure PCTCN2018113117-appb-000017
以N OFDM=2,
Figure PCTCN2018113117-appb-000018
为例,当N PRB=12PRBs时,集中式映射和分布式映射的示意图如图7所示。
对于CRS-based sPDCCH,假设配置的RB set x m包含的PRB数目为N PRB PRBs,由高层信令配置。包含的OFDM符号数目为N OFDMOFDM symbols,由高层信令配置。已知一个sREG为一个OFDM符号中1RB,即12个RE(包含导频),所以sREG数目为N sREG=N PRB·N OFDM。以下描述中
Figure PCTCN2018113117-appb-000019
表示一个sCCE包含的sREG数量。
集中式映射时,满足的原则为:在单个符号中一组在频域上连续的sREG组成一个sCCE。sCCE #n包含的sREG #m满足公式
Figure PCTCN2018113117-appb-000020
或者sCCE #n 包含的sREG编号为
Figure PCTCN2018113117-appb-000021
其中,
Figure PCTCN2018113117-appb-000022
分布式映射时,满足的原则为:在单个符号中一组在频域上等间隔离散的sREG组成一个sCCE。sCCE #n包含的sREG #m满足公式为以下公式中至少之一:
公式1:
Figure PCTCN2018113117-appb-000023
公式2:
Figure PCTCN2018113117-appb-000024
公式3:
Figure PCTCN2018113117-appb-000025
时,
Figure PCTCN2018113117-appb-000026
Figure PCTCN2018113117-appb-000027
时,
Figure PCTCN2018113117-appb-000028
公式4:
Figure PCTCN2018113117-appb-000029
公式5:
Figure PCTCN2018113117-appb-000030
公式6:
Figure PCTCN2018113117-appb-000031
公式7:
Figure PCTCN2018113117-appb-000032
公式8:
Figure PCTCN2018113117-appb-000033
公式9:
Figure PCTCN2018113117-appb-000034
或者sCCE #n包含的sREG编号为以下公式中至少之一:
公式1:
Figure PCTCN2018113117-appb-000035
其中,
Figure PCTCN2018113117-appb-000036
公式2:
Figure PCTCN2018113117-appb-000037
其中,
Figure PCTCN2018113117-appb-000038
公式3:
Figure PCTCN2018113117-appb-000039
其中,n=0,...,N sCCE,p-1并且N sCCE,p表示控制信道资源块集合p中的sCCE数目。
Figure PCTCN2018113117-appb-000040
并且
Figure PCTCN2018113117-appb-000041
表示每个sCCE中包含的sREG数目。
Figure PCTCN2018113117-appb-000042
表示控制信道资源块集合p中的每个OFDM符号中包含的sREG数目。由于1个sREG为1个OFDM符号中1个RB,所以
Figure PCTCN2018113117-appb-000043
公式3适用于RB set中RB数目为任意值。特别注意,公式3中的中间项不能写为
Figure PCTCN2018113117-appb-000044
因为对于RB set中RB数目不是
Figure PCTCN2018113117-appb-000045
的整数倍时,使用
Figure PCTCN2018113117-appb-000046
会导致本应该映射至第二个符号上的一个sCCE仍然映射至第一个符号中,进而导致两个不同索引的sCCE对应的sREG相同,进而导致歧义和误解,例如:N PRB=18PRBs,N OFDM=2,
Figure PCTCN2018113117-appb-000047
时,n=4对应的sREG与n=0对应的sREG相同,均为sREG #0,4,8,12。而公式3中不会出现该歧义和误解,n=0对应sREG #0,4,8,12,n=4对应sREG #18,22,26,30。
公式4:
Figure PCTCN2018113117-appb-000048
其中n=0,...,N sCCE,p-1并且N sCCE,p表示控制信道资源块集合p中的sCCE数目。
Figure PCTCN2018113117-appb-000049
并且
Figure PCTCN2018113117-appb-000050
表示每个sCCE中包含的sREG数目。 表示控制信 道资源块集合p中的每个OFDM符号中包含的sREG数目。由于1个sREG为1个OFDM符号中1个RB,所以
Figure PCTCN2018113117-appb-000052
并且公式4仅适用于RB set中RB数目是
Figure PCTCN2018113117-appb-000053
的整数倍。
以N OFDM=2,
Figure PCTCN2018113117-appb-000054
为例,当N PRB=16PRBs时,集中式映射和分布式映射的示意图如图8所示。
或者分布式映射时,满足的原则为:在所有编号的sREG中等间隔选取的sREG组成一个sCCE。sCCE #n包含的sREG #m满足公式为
Figure PCTCN2018113117-appb-000055
Figure PCTCN2018113117-appb-000056
或者sCCE #n包含的sREG编号为
Figure PCTCN2018113117-appb-000057
Figure PCTCN2018113117-appb-000058
其中
Figure PCTCN2018113117-appb-000059
Figure PCTCN2018113117-appb-000060
同时,在控制信道单元CCE与资源单元组REG的映射为集中式映射时,在单个符号中一组在频域上连续的REG组成一个CCE,并且为了避免高聚合等级使用的REG资源完全包含低聚合等级使用的REG资源,造成不同聚合等级误解,采用交织方法或物理层信令指示聚合等级或对不同聚合等级的信息进行不同加扰。说明,当用于sPDCCH信道时,CCE对应为sCCE,REG对应为sREG。
通过物理层信令指示聚合等级L时,即在DCI中直接指示使用的聚合等级,例如使用2比特指示L=1、2、4、8中的一种。以用于终端校验。避免不同聚合等级间误解。
通过对不同聚合等级的信息进行不同加扰:一种应用方法为对于不同聚合等级,对CRC加扰不同掩码,例如L=1、2、4、8分别加扰<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>、<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>、<0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0>、<0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1>。另一种应用方法为对于DCI+CRC信息、或DCI+CRC编码后信息、或速率匹配后信息使用扰码序列加扰,例如
Figure PCTCN2018113117-appb-000061
其中b(i)为加扰前信息,c(i)为扰码序列(例如使用LTE系统的使用长度为31的Gold序列的伪随机序列生成的扰码序列),其中扰码序列的初始值使用不同聚合等级区分(例如c init=L)。
对于采用交织方法:对于一个聚合等级为L的候选集,其所包含的REG索引顺序写入交织器,按照列置换图样从交织器读出,读出后将空元素删除。其 中,REG索引大于X时定义为空元素。
其中L=1,2,4或8。
其中X=L·M-1,M表示每个CCE中包含的REG数目。
所述列置换图样为以下至少之一:
<1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30>;
<0,4,8,12,16,20,24,28,1,5,9,13,17,21,25,29,2,6,10,14,18,22,26,30,3,7,11,15,19,23,27,31>;
以L=2,M=4为例,对于列置换图样为<1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30>时,顺序写入REG #0-7,读出后,当REG索引大于7时认为是空元素<NULL>elements,即去除空元素后,REG索引为1,5,3,7,0,4,2,6,即此时相当于L=2的这个候选集的第一个控制信道单元CCE #0包含REG #1,5,3,7,而L=1时的CCE #0包含#1,3,0,2,此时高聚合等级使用的REG资源没有完全包含低聚合等级使用的REG资源,不会造成不同聚合等级误解。
类似的,对于列置换图样为<0,4,8,12,16,20,24,28,1,5,9,13,17,21,25,29,2,6,10,14,18,22,26,30,3,7,11,15,19,23,27,31>时,顺序写入REG #0-7,读出后,当REG索引大于7时认为是空元素<NULL>elements,即去除空元素后,REG索引为0,4,1,5,2,6,3,7,即此时相当于L=2的这个候选集的第一个控制信道单元CCE #0包含REG #0,4,1,5,而L=1时的CCE #0包含#0,1,2,3,此时高聚合等级使用的REG资源没有完全包含低聚合等级使用的REG资源,不会造成不同聚合等级误解。
通过上述应用实施例3的技术方案,可以在单TTI调度或多TTI调度时确定下行控制信道使用的控制信道单元对应的资源单元组,使得终端和基站可以准确获知具体控制资源位置,通过本专利所实施的分布方案可以使得集中式传输和分布式传输分别具有最大的性能增益。
应用实施例4
基站激活终端A在执行周期为1个半静态调度SPS传输。例如所述TTI包含的OFDM符号数较少,例如不超过7个OFDM符号,但并不仅限于此。本实施例以长期演进(Long-Term Evolution,LTE)系统中short结构进行说明,即所述可以理解为短TTI(short TTI,sTTI),但并不限于此。DL short TTI帧结构 如图5所示,在1ms子帧中包含6个下行链路(Down Link,DL)短TTI,当sPDSCH被配置为从OFDM符号#1或#3起始时,使用Pattern1;当sPDSCH被配置为从OFDM符号#2起始时,使用Pattern2。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。UL short TTI帧结构如图6所示,在1ms子帧中包含6个上行链路(Up Link,UL)短TTI。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。
调度sTTI SPS的DCI可以在任意DL sTTI中传输,当该DCI位于DL sTTI #0时,由PDCCH信道承载;当该DCI位于DL sTTI #1至#5时,由sPDCCH信道承载。或者,调度sTTI SPS的DCI可以在部分sTTI中传输,例如仅在DL sTTI #0中传输,又例如仅在DL sTTI #0,3中传输。
调度sTTI SPS传输时,最小周期为1个sTTI。若不考虑参考信号密度降低,则每个sTTI都含有参考信号,若考虑参考信号密度降低,则每N个sTTI中至少1个sTTI含有参考信号。其中N值的确定方式为预定义,或高层信令配置的取值。例如N=2,3,6。
在激活周期为1个sTTI的SPS下行传输时,在每N个DL sTTI传输中,解调参考信号(Demodulation Reference Signal,DMRS,也可以理解成上述实施例的参考信号)所在位置的确定方式为以下至少之一:需要说明的是,本举例虽然以下行传输为例进行说明,但是DMRS所在位置的确定方式并不仅限制用于下行,也可以用于上行。本举例中可以针对DMRS在TTI中时域位置固定的场景。
方式一:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号,其余传输时间间隔中无参考信号;此时无需额外指示。激活SPS传输的首个PDSCH中含有DMRS,且每N个sTTI中仅首个sTTI含有DMRS。
方式二:通过1比特信令指示在每N个传输时间间隔中是否降低导频密度。所述信令可以是高层信令,或物理层信令。其中,物理层信令重用单sTTI调度时1比特指示DMRS有无。其中,不降低导频密度指N个传输时间间隔全都含有参考信号,降低导频密度指小于N个传输时间间隔中含有参考信号。降低导频密度包括以下至少之一:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考信号;仅首个传输时间间隔和相对于首个传输时间间隔偏移x个传输时间间隔中有参考信号,x例如可以是1、2、N/2,N-1,N;
方式三:通过信令指示在每N个传输时间间隔中的参考信号图样;例如表7所示。Note:R表示该s中包含RS,D表示该sTTI中不包含RS。若N=2,使用1比特指示图样为RR或RD。若N=3,使用2比特指示图样为RRR,RDD,RDR或DRD。若N=6,使用2比特指示RRRRRR,RDRDRD,RDDRDD或RDRRDR。例如N=3与slot边界对齐。例如N=6与subframe边界对齐。
表7 指示每N个s中导频图样
N=2 N=3 N=6
RR RRR RRRRRR
RD RDD RDRDRD
  RDR RDDRDD
  DRD RDRRDR
此时,对于其中一组N个sTTI中首个sTTI中没有数据发送,而后续sTTI有数据发送时参考信号如何使用的解决方法包括以下至少之一:(1)使用的参考信号为最近一次接收到的DMRS即可;(2)无数据发送时也发送DMRS;(3)延后至下一个包含DMRS的sTTI发送,此时对于N=2时只需要延后一个sTTI,后一个sTTI为包含DMRS的sTTI。
在激活周期为1个sTTI的SPS上行传输时,在每N个UL sTTI传输中,解调参考信号(Demodulation Reference Signal,DMRS,也可以理解成上述实施例的参考信号)所在位置的确定方式为以下至少之一:需要说明的是,本举例虽然以上行传输为例进行说明,但是DMRS所在位置的确定方式并不仅限制用于上行,也可以用于下行。本举例中例如针对DMRS在TTI中时域位置不固定的场景。
方式一:预定义在每N个TTI中,N个TTI全都含有参考信号,且应用方式为每个传输时间间隔中仅首个OFDM符号含有参考信号。此方式为不降低参考信号密度且预定义每个sTTI中参考信号所在符号位置。
方式二:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号且应用方式为在首个传输时间间隔中仅首个OFDM符号含有参考信号,其余传输时间间隔中无参考信号;此时无需额外指示。激活SPS传输的首个PUSCH中含有DMRS,且每N个sTTI中仅首个sTTI含有DMRS。
方式三:通过1比特信令指示在每N个传输时间间隔中是否降低参考信号密度。所述信令可以是高层信令,或物理层信令。其中,物理层信令重用单sTTI调度时2比特指示DMRS position。其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号且应用方式为每个传输时间间隔中仅首个OFDM符号含有参考信号,降低参考信号密度指小于N个传输时间间隔中含有参考信号且应用方式为在含有参考信号的传输时间间隔中仅首个OFDM符号含有参考信号。降低参考信号密度包括以下至少之一:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考信号;仅首个传输时间间隔和相对于首个偏移x个传输时间间隔中有参考信号,x例如可以是1、2、N/2,N-1,N。
方式四:通过信令指示在每N个传输时间间隔中的参考信号图样;例如表8所示。Note:R表示该OFDM符号中包含DMRS,D表示该OFDM符号不包含DMRS。Note:当3OS时,DR对应DDR,RD对应RDD。若N=2,使用2比特指示图样为RD|RD,RD|DD,DR|DD或DD|RD。若N=3,使用2比特指示图样为RD|RD|RD,RD|DD|DD,RD|DD|RD或DD|RD|DD。若N=6,使用2比特指示RD|RD|RD|RD|RD|RD,RD|DD|RD|DD|RD|DD,RD|DD|DD|RD|DD|DD或DD|RD|DD|DD|RD|DD。例如N=3与slot边界对齐。例如N=6与subframe边界对齐。
表8 指示每N个sTTI中参考信号图样
N=2 N=3 N=6
RD|RD RD|RD|RD RD|RD|RD|RD|RD|RD
RD|DD RD|DD|DD RD|DD|RD|DD|RD|DD
DR|DD RD|DD|RD RD|DD|DD|RD|DD|DD
DD|RD DD|RD|DD DD|RD|DD|DD|RD|DD
Note:|denotes the boundary of sTTI n
此时,对于其中一组N个sTTI中首个sTTI中没有数据发送,而后续sTTI有数据发送时参考信号如何使用的解决方法包括以下至少之一:(1)使用的参考信号为最近一次接收到的DMRS即可;(2)无数据发送时也发送DMRS;(3)延后至下一个包含DMRS的sTTI发送,此时对于N=2时只需要延后一个sTTI, 后一个sTTI为包含DMRS的sTTI。
在一实施例中,激活SPS传输的首次业务传输所在TTI含有参考信号。
在一实施例中,所述信令为物理层信令时,仅在周期为1个TTI有效且不用于SPS传输激活确认或去激活确认,在其他周期时该信令对应的所有比特均置0用于SPS传输激活确认或去激活确认;或者在周期为1个传输时间间隔与其他周期时分别具有不同的含义(在周期为1个传输时间间隔有效且用于每N个TTI中参考信号指示,在其他周期时用于单个TTI参考信号指示。)。
通过本应用实施例所提供的技术方案,可以实现在sTTI SPS调度时,实现节省DMRS开销,以较小的指示开销指示支持一个或多个sTTI包含DMRS,以适用于中低速移动场景和高速移动场景。同时节省参考信号的开销后,可以将更多的资源用于数据传输,提升系统频谱效率。
应用实施例5
基站配置终端A在执行周期包含1个TTI在内的半静态调度SPS传输。例如所述TTI包含的OFDM符号数较少,例如不超过7个OFDM符号,但并不仅限于此。本实施例中当以长期演进(Long-Term Evolution,LTE)系统中short TTI结构进行说明时,即所述TTI可以理解为短TTI(short TTI,sTTI),但并不限于此,还可以用于5G NR新空口系统中。需要说明的是,本实施例中以LTE为例说明时,1时隙(slot)包含7个OFDM符号,时长为0.5ms;以NR为例说明时,1slot包含14个OFDM符号,且在15kHz子载波间隔时,时长为1ms。DL short TTI帧结构如图5所示,在1ms子帧中包含6个下行链路(Down Link,DL)短TTI,当sPDSCH被配置为从OFDM符号#1或#3起始时,使用Pattern1;当sPDSCH被配置为从OFDM符号#2起始时,使用Pattern2。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。UL short TTI帧结构如图6所示,在1ms子帧中包含6个上行链路(Up Link,UL)短TTI。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM有14个,顺序编号为#0至#13。
场景1:调度激活sTTI SPS的DCI可以在任意DL sTTI中传输,当该DCI位于DL sTTI #0时,由PDCCH信道承载;当该DCI位于DL sTTI #1至#5时,由sPDCCH信道承载。此时通过RRC配置sTTI长度为2/3os或1-slot,通过RRC配置sTTI SPS周期,分别配置即可。或者通过RRC联合编码配置sTTI长度和sTTI SPS周期,即在配置SPS周期为1sTTI时同时要指出对应的sTTI长度,例 如表9所示,例如指示状态0和1都指示SPS周期为1sTTI,但对应的sTTI长度不同。例如表10所示NR中示例,联合指示业务时长(时域长度)和SPS周期。注意表9、表10中联合编码指示只是一个例子,其中的状态只是举例,但不限于此。本实施例中os为OFDM Symbol的缩写,即OFDM符号。
表9 联合编码指示sTTI SPS周期和sTTI长度
Figure PCTCN2018113117-appb-000062
Figure PCTCN2018113117-appb-000063
表10 联合编码指示SPS周期和业务时长
指示状态 SPS周期和业务时长
0 1个业务时长且业务时长为2os
1 1个业务时长且业务时长为7os
2 2个业务时长且业务时长为2os
3 3个业务时长且业务时长为2os
4 1slot且业务时长为2os
5 1slot且业务时长为7os
6 2slot且业务时长为2os
7 2slot且业务时长为7os
场景2:调度激活sTTI SPS的DCI可以在部分sTTI中传输,例如仅在DL sTTI #0中传输。或者在NR中slot(含14个OFDM符号)内只有第一个mini-slot可以传输调度sTTI SPS的DCI或只有一次控制信道触发机会。
对于仅在sTTI #0中传输,此时通过PDCCH承载DCI。当sTTI SPS周期和偏移均通过RRC配置时,此时sTTI长度与sTTI SPS周期和偏移可以分别配置或联合编码。
当分别配置时,通过RRC配置sTTI长度为2/3os或1-slot,通过RRC配置sTTI SPS周期和偏移,例如表11所示,需要说明的是,当周期大于1ms时无论周期是多少,偏移仅需要考虑1ms子帧范围内的偏移,如表11表示对于2/3os时的配置,表12表示对1-slot时的配置;表13表示对于NR中业务时长为2os时的配置,表14表示对7os时的配置。综上所述,在一种确定的sTTI长度或业务时长时,对于每种周期偏移值取值数量为:当SPS周期小于1ms时,偏移值取值数目为SPS周期包含1sTTI或1个业务时长的个数;当SPS周期大于1ms时,偏移值取值数目为1ms内包含1sTTI或1个业务时长的个数。
表11 指示sTTI SPS周期和偏移
指示索引I_sps sTTI SPS周期 偏移
0 1sTTI I_sps
1-2 2sTTI I_sps-1
3-5 3sTTI I_sps-3
6-9 4sTTI I_sps-6
10-14 5sTTI I_sps-10
15-20 1ms I_sps-15
21-26 2ms I_sps-21
27-32 3ms I_sps-27
... ... ...
表12 指示sTTI SPS周期和偏移
指示索引I_sps sTTI SPS周期 偏移
0 1sTTI I_sps
1-2 1ms I_sps-1
3-4 2ms I_sps-3
5-6 3ms I_sps-5
... ... ...
表13 指示SPS周期和偏移
指示索引I_sps SPS周期 偏移
0 1个业务时长 I_sps
1-2 2个业务时长 I_sps-1
3-5 3个业务时长 I_sps-3
6-9 4个业务时长 I_sps-6
10-14 5个业务时长 I_sps-10
15-20 6个业务时长 I_sps-15
21-27 1ms I_sps-21
28-34 2ms I_sps-28
35-41 3ms I_sps-35
... ... ...
表14 指示SPS周期和偏移
指示索引I_sps SPS周期 偏移
0 1个业务时长 I_sps
1-2 1ms I_sps-1
3-4 2ms I_sps-3
5-6 3ms I_sps-5
... ... ...
当联合编码配置时,通过RRC配置sTTI长度为2/3os或1-slot以及sTTI SPS周期和偏移,例如表15所示。如表16所示NR中示例,业务时长以2os和7os为例。需要说明的是,当周期大于1ms时无论周期和sTTI长度是多少,偏移仅需要考虑1ms子帧范围内的偏移。综上所述,对于每种周期偏移值取值数量为:当SPS周期小于1ms时,偏移值取值数目为SPS周期包含1sTTI或1个业务时长的个数;当SPS周期大于1ms时,偏移值取值数目为1个子帧包含1sTTI或1个业务时长的个数。
表15 指示sTTI SPS周期和偏移和sTTI长度
Figure PCTCN2018113117-appb-000064
Figure PCTCN2018113117-appb-000065
表16 指示SPS周期和偏移和业务时长
Figure PCTCN2018113117-appb-000066
当sTTI SPS周期通过RRC配置时,此时sTTI长度和SPS偏移通过DCI联 合编码指示。在LTE sTTI中,如表17所示。在NR中,如表18所示。表中取值只是示意,但并不仅限于此。
表17 指示sTTI长度和SPS偏移
指示索引 sTTI长度和SPS偏移
0 2/3os且偏移0sTTI
1 2/3os且偏移1sTTI
2 2/3os且偏移2sTTI
3 2/3os且偏移3sTTI
4 2/3os且偏移4sTTI
5 2/3os且偏移5sTTI
6 1slot且偏移0sTTI
7 1slot且偏移1sTTI
表18 指示业务时长和SPS偏移
指示索引 sTTI长度和SPS偏移
0 2os且偏移0os
1 2os且偏移2os
2 2os且偏移4os
3 2os且偏移7os
4 4os且偏移0os
5 4os且偏移7os
6 7os且偏移0os
7 7os且偏移7os
场景3:没有激活DCI触发SPS传输,即SPS传输完全由RRC配置,此时也称为免调度传输,即grant-free传输。此时SPS周期、偏移、业务时域长度可 以分别配置或联合编码。
当分别配置时,通过RRC信令配置业务时长,通过RRC信令配置SPS周期和偏移。时长可以是2os、4os、7os中至少之一。原则为:在一种确定的sTTI长度或业务时长时,对于每种周期偏移值取值数量为SPS周期包含1sTTI或1个业务时长的个数,此时以7os为例配置SPS周期和偏移如表19所示。或者原则为:在一种确定的sTTI长度或业务时长时,对于每种周期偏移值取值数量为小于或等于SPS周期包含1sTTI或1个业务时长的个数,此时以7os为例配置SPS周期和偏移如表20所示。注意,表中取值只是示意,但并不仅限于此。
表19 指示SPS周期和偏移
指示索引I_sps SPS周期 偏移
0 1个业务时长 I_sps
1-2 1ms I_sps-1
3-6 2ms I_sps-3
7-12 3ms I_sps-7
... ... ...
表20 指示SPS周期和偏移
指示索引I_sps SPS周期 偏移
0 1个业务时长 I_sps
1-2 1ms I_sps-1
3-4 2ms I_sps-3
5-6 3ms I_sps-5
... ... ...
当联合编码配置时,通过RRC信令配置业务时长、SPS周期和偏移。此时以业务时长包含2os和7os为例进行说明,但并不仅限于此。原则为:对于每种周期偏移值取值数量为SPS周期包含1sTTI或1个业务时长的个数,此时如表21所示。或者原则为:对于每种周期偏移值取值数量为小于或等于SPS周期包含1sTTI或1个业务时长的个数,此时如表22所示。注意,表中取值只是示意, 但并不仅限于此。
表21 指示SPS周期和偏移和业务时长
Figure PCTCN2018113117-appb-000067
表22 指示SPS周期和偏移和业务时长
Figure PCTCN2018113117-appb-000068
Figure PCTCN2018113117-appb-000069
通过本应用实施例所提供的技术方案,实现在sTTI SPS或NR中短业务时长SPS传输时,可以通过多种方式灵活实现SPS周期、偏移、以及业务时长的确定,实现物理层信令开销节省或高层信令开销节省。
实施例9
本申请的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
在一实施例中,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤S1的程序代码。
在步骤S1中,通过预设方式指示在调度的N个传输时间间隔中,至少一个TTI中存在参考信号,其中,N为正整数。
在一实施例中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
本申请的实施例还提供了一种处理器,该处理器设置为运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
在本实施例中,上述程序用于执行以下步骤S1。
在步骤S1中,通过预设方式指示在调度的N个传输时间间隔中,至少一个TTI中存在参考信号,其中,N为正整数。
在一实施例中,本实施例中的具体示例可以参考上述实施例及应用实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行 的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (35)

  1. 一种参考信号的确定方法,包括:
    通过预设方式指示在调度的N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
  2. 根据权利要求1所述的方法,其中,在所述参考信号在所述N个传输时间间隔中的位置固定时,通过预设方式指示在N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,包括以下至少之一:
    方式一:在所述N个传输时间间隔中,首个传输时间间隔中存在有参考信号,其余传输时间间隔中无参考信号;
    方式二:指示调度的N个传输时间间隔中含有参考信号所在的一个传输时间间隔;
    方式三:指示调度的N个传输时间间隔中每个传输时间间隔是否含有参考信号;
    方式四:指示调度的N个传输时间间隔中含有参考信号所在的至多K个传输时间间隔,其中,K为小于N的正整数;
    方式五:指示调度的N个传输时间间隔中,除了首个传输时间间隔以外其余传输时间间隔中是否承载参考信号及承载参考信号的位置,其中,首个传输时间间隔始终有参考信号,指示是否有另一个传输时间间隔包含参考信号及包含该参考信号的所述另一个传输时间间隔所在位置;
    方式六:指示N个传输时间间隔中参考信号图样,其中,
    所述参考信号图样为调度传输时间间隔数量x时的一组图样,
    或所述参考信号图样同时携带调度传输时间间隔数量信息,
    或所述参考信号图样同时携带反馈确认ACK/否定NACK定时信息。
  3. 根据权利要求2所述的方法,其中,当所述N个传输时间间隔中至少2个传输时间间隔存在参考信号时,所述参考信号的类型相同。
  4. 根据权利要求2所述的方法,其中,当所述N个传输时间间隔中至少2个传输时间间隔存在参考信号,且传输时间间隔类型不同时,所述参考信号的类型相同。
  5. 根据权利要求2所述的方法,其中,所述方式五通过以下方式之一实现:
    指示N个传输时间间隔中,除首个传输时间间隔以外其余传输时间间隔中1个包含参考信号的传输时间间隔的位置;
    使用1比特指示N个传输时间间隔中除了首个传输时间间隔以外,是否存 在另一个传输时间间隔包含参考信号。
  6. 根据权利要求3所述的方法,所述方法还包括:
    当有另一个传输时间间隔包含参考信号时,所述另一个传输时间间隔位置固定在调度的N个传输时间间隔中的最后一个。
  7. 根据权利要求1所述的方法,其中,
    在下行传输过程中,支持物理下行共享信道PDSCH使用物理下行控制信道PDCCH未使用的资源至少包括以下情况之一:
    在N个传输时间间隔中,仅首个传输时间间隔支持PDSCH使用PDCCH未使用的资源;
    在N>1时,不支持PDSCH使用PDCCH未使用的资源;
    在N=1时,支持PDSCH使用PDCCH未使用的资源;
    在N个传输时间间隔中,所有传输时间间隔与首个传输时间间隔重用相同的PDCCH未使用的资源。
  8. 根据权利要求2或6所述的方法,还包括:根据参考信号的位置确定N个传输时间间隔中承载的数据反馈ACK/NACK的定时根据参考信号位置确定,所述确定包含以下方式至少之一:
    方式1:当多个传输时间间隔中有1个传输时间间隔包含参考信号时,在首个传输时间间隔包含参考信号时对应反馈ACK/NACK的定时为k1,以及非首个传输时间间隔包含参考信号时对应反馈ACK/NACK的定时为k2时,且满足k1<k2;
    方式2:当多个传输时间间隔中有大于1个传输时间间隔包含参考信号时,在最后一个传输时间间隔包含参考信号时对应反馈ACK/NACK的定时为k3,且最后一个传输时间间隔不包含参考信号时对应反馈ACK/NACK的定时为k4时,满足k3>k4;
    其中,k1,k2,k3,k4均为正数。
  9. 根据权利要求1所述的方法,其中,在所述参考信号位置在传输时间间隔内不固定时,通过预设方式指示在N个传输时间间隔中,至少一个传输时间间隔中存在参考信号包括以下至少之一:
    方式一:通过指示N个传输时间间隔中首个传输时间间隔的参考信号图样,其中,所述参考信号图样与单传输时间间隔调度时的参考信号图样一致;
    方式二:通过指示N个传输时间间隔中一个传输时间间隔及该传输时间间 隔中的参考信号图样,其中,该参考信号图样与单传输时间间隔调度时的参考信号图样一致;
    方式三:通过指示N个传输时间间隔中至多K个传输时间间隔的参考信号图样,其中,该参考信号图样与单传输时间间隔调度时的参考信号图样一致,其中K为小于N的正整数;
    方式四:通过指示N个传输时间间隔中每个传输时间间隔的参考信号图样,其中,该参考信号图样与单传输时间间隔调度时的参考信号图样一致;
    方式五:指示调度的N个传输时间间隔中,除了首个传输时间间隔以外其余传输时间间隔中是否承载参考信号及承载参考信号的位置,其中,首个传输时间间隔始终有参考信号,指示是否有另一个传输时间间隔包含参考信号及包含该参考信号的另一个传输时间间隔所在位置以及指示参考信号在该传输时间间隔中所在位置;
    方式六:通过指示N个传输时间间隔中的参考信号图样,其中,
    所述参考信号图样为调度传输时间间隔数量x时的一组图样,
    或所述参考信号图样同时携带调度传输时间间隔数量信息,
    或所述参考信号图样同时携带反馈ACK/NACK定时信息。
  10. 根据权利要求9所述的方法,其中,当所述N个传输时间间隔中至少2个传输时间间隔存在参考信号时,所述参考信号的类型相同。
  11. 根据权利要求9所述的方法,其中,当所述N个传输时间间隔中至少2个传输时间间隔存在参考信号,且传输时间间隔类型不同时,所述参考信号的类型相同。
  12. 根据权利要求9所述的方法,其中,所述方式五通过以下方式之一实现:
    指示N个传输时间间隔中,除首个传输时间间隔以外其余传输时间间隔中1个包含参考信号的传输时间间隔的位置以及指示参考信号在该传输时间间隔中所在位置;
    指示N个传输时间间隔中除了首个传输时间间隔以外,是否存在另一个传输时间间隔包含参考信号以及指示参考信号在该传输时间间隔中所在位置。
  13. 根据权利要求12所述的方法,还包括:
    当有另一个传输时间间隔包含参考信号时,所述另一个传输时间间隔位置固定在调度的N个传输时间间隔中的最后一个。
  14. 一种参考信号的确定方法,包括:
    通过预设方式确定在半静态调度SPS传输中的每N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
  15. 根据权利要求14所述的方法,其中,所述参考信号的时域位置在传输时间间隔中固定,所述预设方式至少包括以下之一:
    方式一:预定义在每N个传输时间间隔中,仅首个传输时间间隔中有参考信号;
    方式二:通过信令指示在每N个传输时间间隔中是否降低参考信号密度,其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号,降低参考信号密度指小于N个传输时间间隔中含有参考信号;
    方式三:通过信令指示在每N个传输时间间隔中的参考信号图样。
  16. 根据权利要求15所述的方法,其中,在所述方式二中,至少通过以下之一降低参考信号密度:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参考信号;仅首个传输时间间隔和相对于首个传输时间间隔偏移x个传输时间间隔中有参考信号,其中,x为取自集合[0,N]的整数。
  17. 根据权利要求14所述的方法,其中,所述参考信号的时域位置在传输时间间隔中不固定,所述预设方式包括以下至少之一:
    方式一:预定义在每N个传输时间间隔中,N个传输时间间隔全都含有参考信号;
    方式二:预定义在每N个传输时间间隔中,仅首个传输时间间隔中含有参考信号;
    方式三:通过信令指示在每N个传输时间间隔中是否降低参考信号密度,其中,不降低参考信号密度指N个传输时间间隔全都含有参考信号,降低参考信号密度指小于N个传输时间间隔中含有参考信号;
    方式四:通过信令指示在每N个传输时间间隔中的参考信号图样。
  18. 根据权利要求17所述的方法,其中,在每N个传输时间间隔中,含有参考信号的传输时间间隔中仅首个正交频分复用OFDM符号中含有参考信号。
  19. 根据权利要求17所述的方法,其中,
    在所述方式三中,至少通过以下方式之一降低参考信号密度:仅首个传输时间间隔中有参考信号;仅首个传输时间间隔和最后一个传输时间间隔中有参 考信号;仅首个传输时间间隔和相对于首个传输时间间隔偏移x个传输时间间隔中有参考信号,其中,x为取自集合[0,N]的整数。
  20. 根据权利要求15-19任一项所述的方法,其中,激活SPS传输的首次业务传输所在的传输时间间隔含有参考信号。
  21. 根据权利要求15-19任一项所述的方法,其中,所述信令为物理层信令时,所述信令在周期为1个传输时间间隔有效,在其他周期时该信令对应的所有比特均置0用于SPS传输激活确认或去激活确认;或者所述信令在周期为1个传输时间间隔与其他周期时分别具有不同的含义,其中,所述信令在周期为1个传输时间间隔有效且用于每N个传输时间间隔中参考信号指示,在其他周期时用于单个传输时间间隔参考信号指示。
  22. 根据权利要求14-19任一项所述的方法,其中,所述方法应用于半静态调度SPS且SPS周期为1个传输时间间隔。
  23. 一种半静态调度SPS传输时刻的确定方法,包括:
    通过高层信令指示SPS周期、偏移值以及传输时间间隔长度,其中传输时间间隔长度与SPS周期、偏移值联合编码;或者通过高层信令指示SPS周期和偏移值,同时激活SPS传输的物理层信令位于受限传输时刻;或者通过高层信令通知SPS周期,同时激活SPS传输物理层信令位于受限传输时刻且联合编码指示偏移值和传输时间间隔长度;
    通过指示得到的以下之一确定SPS传输时刻:(i)SPS周期、偏移值以及传输时间间隔长度;(ii)SPS周期和偏移值;以及(iii)偏移值和传输时间间隔长度。
  24. 根据权利要求23所述的方法,其中,所述受限传输时刻包括以下至少之一:位于物理下行控制信道PDCCH、位于短传输时间间隔#0和短传输时间间隔#3中的至少之一、位于时隙中配置的控制资源集合且该资源集合位于时隙中前P个符号中、以及位于时隙中配置的多个控制资源集合中的时域上首个控制资源集合,其中,P取值包括:1,2,3,7。
  25. 根据权利要求23所述的方法,其中,所述联合编码至少包括:如果所述SPS周期和偏移统一指示,则对于每种周期的偏移值取值数量为SPS周期包含1个短传输时间间隔或1个业务时长的个数;或者对于每种周期的偏移值取值数量为小于或等于SPS周期包含1个短传输时间间隔或1个业务时长的个数。
  26. 一种控制信道单元的确定方法,包括:
    在N个资源单元组中选取部分资源单元组以组成一个控制信道单元,至少通过以下方式之一组成一个控制信道单元:
    对于基于解调参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:以M个REG为一组在频域上等间隔或间隔离散组成一个CCE,其中M为一个传输时间间隔中K个资源块RB包含的REG数量,其中,K为正整数,N为正整数;
    对于基于小区参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE。
  27. 根据权利要求26所述的方法,所述方法还包括:
    在控制信道单元CCE与资源单元组REG的映射为集中式映射时,在单个符号中一组在频域上连续的REG组成一个CCE,且采用交织方法或物理层信令指示聚合等级,或对不同聚合等级的信息进行不同加扰。
  28. 根据权利要求26所述的方法,其中,所述在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE,用于短物理下行控制信道sPDCCH时,组成sCCE#n的sREG索引包括以下方式至少之一:
    方式一:
    Figure PCTCN2018113117-appb-100001
    方式二:
    Figure PCTCN2018113117-appb-100002
    其中n=0,...,N sCCE,p-1并且N sCCE,p表示控制信道资源块集合p中的sCCE数目,
    Figure PCTCN2018113117-appb-100003
    Figure PCTCN2018113117-appb-100004
    表示每个sCCE中包含的sREG数目,
    Figure PCTCN2018113117-appb-100005
    表示控制信道资源块集合p中的每个OFDM符号中包含的sREG数目。
  29. 根据权利要求27所述的方法,其中,所述交织方法包括:对于一个聚合等级为L的候选集,所述候选集所包含的REG索引顺序写入交织器,按照列置换图样从交织器读出,读出后将空元素删除,其中,REG索引大于X时定义为空元素,
    其中,L=1,2,4或8;
    其中X=L·M-1,M表示每个CCE中包含的REG数目。
  30. 根据权利要求29所述的方法,其中,所述列置换图样包括以下至少之一:
    <1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30>;
    <0,4,8,12,16,20,24,28,1,5,9,13,17,21,25,29,2,6,10,14,18,22,26,30,3,7,11,15,19,23,27,31>。
  31. 一种参考信号的确定装置,包括:
    指示模块,设置为通过预设方式指示在调度的N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
  32. 一种控制信道单元的确定装置,包括:
    选取模块,设置为在N个资源单元组中选取部分资源单元组组成一个控制信道单元,至少通过以下方式之一组成一个控制信道单元:
    对于基于解调参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:以M个REG为一组在频域上等间隔或间隔离散组成一个CCE,其中M为一个传输时间间隔中K个RB包含的REG数量,其中,K为正整数,N为正整数;
    对于基于小区参考信号的物理下行控制信道PDCCH,在控制信道单元CCE与资源单元组REG的映射为分布式映射时,至少满足以下原则:在单个符号中一组在频域上等间隔或间隔离散的REG组成一个CCE。
  33. 一种参考信号的确定装置,包括:
    确定模块,设置为通过预设方式确定在半静态调度SPS传输中的每N个传输时间间隔中,至少一个传输时间间隔中存在参考信号,其中,N为正整数。
  34. 一种半静态调度SPS传输时刻的确定装置,包括:
    指示模块,设置为通过高层信令联合编码指示SPS周期、偏移值以及传输时间间隔长度联合编码;或者通过高层信令指示SPS周期和偏移值,同时激活SPS传输的物理层信令位于受限传输时刻;或者通过高层信令通知SPS周期,同时激活SPS传输物理层信令位于受限传输时刻,且联合编码指示偏移值和传输时间间隔长度;
    确定模块,设置为通过指示得到的以下之一确定SPS传输时刻:(i)SPS周期、(ii)偏移值以及传输时间间隔长度;SPS周期和偏移值;以及(iii)偏移值和传输时间间隔长度。
  35. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至13中任一项所述的方法,或权利要求14-22任一项所述的方法,或权利要求23-25任一项所述的方法,或权利要求26-30任一项所述的方法。
PCT/CN2018/113117 2017-09-29 2018-10-31 参考信号、控制信道单元的确定方法及装置、存储介质 WO2019085953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/753,376 US20200336268A1 (en) 2017-10-31 2018-10-31 Method and device for determining reference signal, method and device for determining control channel unit, and storage medium
EP18872471.0A EP3706485A4 (en) 2017-10-31 2018-10-31 METHOD AND DEVICE FOR DETERMINING A REFERENCE SIGNAL, METHOD AND DEVICE FOR DETERMINING A CONTROL CHANNEL UNIT, AND STORAGE MEDIA

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710911133 2017-09-29
CN201711050997.1 2017-10-31
CN201711050997.1A CN109587798B (zh) 2017-09-29 2017-10-31 参考信号、控制信道单元的确定方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2019085953A1 true WO2019085953A1 (zh) 2019-05-09

Family

ID=65919512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113117 WO2019085953A1 (zh) 2017-09-29 2018-10-31 参考信号、控制信道单元的确定方法及装置、存储介质

Country Status (2)

Country Link
CN (2) CN109587798B (zh)
WO (1) WO2019085953A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281878A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 一种资源单元映射方法及装置
CN111918393B (zh) * 2019-05-09 2022-05-06 华为技术有限公司 下行数据信道的传输方法、通信装置和计算机存储介质
WO2021062815A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 调制解调参考信号的配置信息获取方法、配置方法及装置
KR20230007446A (ko) * 2020-04-29 2023-01-12 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법 및 통신 디바이스
CN115913497A (zh) * 2021-09-30 2023-04-04 中兴通讯股份有限公司 传输解调参考信号的方法、节点和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769871A (zh) * 2012-09-07 2015-07-08 三星电子株式会社 用于控制信道的控制信道元素的复用资源元素组
CN104919879A (zh) * 2013-01-14 2015-09-16 苹果公司 连接非连续接收模式中的半持续调度
CN106465391A (zh) * 2016-08-12 2017-02-22 北京小米移动软件有限公司 资源调度方法、调度器、基站、终端及系统
WO2017052706A1 (en) * 2015-09-25 2017-03-30 Intel IP Corporation Supporting semi-persistent scheduling for varied transmission time intervals
WO2017056020A1 (en) * 2015-09-30 2017-04-06 Nokia Technologies Oy Short physical uplink shared channel arrangement
CN107154911A (zh) * 2017-07-19 2017-09-12 珠海市魅族科技有限公司 解调参考信号的配置方法及配置装置、网络侧设备和终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998247A (zh) * 2016-01-22 2017-08-01 中兴通讯股份有限公司 一种传输参考信号的方法及网络设备
KR101980716B1 (ko) * 2016-02-04 2019-05-21 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치
WO2017132969A1 (zh) * 2016-02-04 2017-08-10 华为技术有限公司 传输参考信号的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769871A (zh) * 2012-09-07 2015-07-08 三星电子株式会社 用于控制信道的控制信道元素的复用资源元素组
CN104919879A (zh) * 2013-01-14 2015-09-16 苹果公司 连接非连续接收模式中的半持续调度
WO2017052706A1 (en) * 2015-09-25 2017-03-30 Intel IP Corporation Supporting semi-persistent scheduling for varied transmission time intervals
WO2017056020A1 (en) * 2015-09-30 2017-04-06 Nokia Technologies Oy Short physical uplink shared channel arrangement
CN106465391A (zh) * 2016-08-12 2017-02-22 北京小米移动软件有限公司 资源调度方法、调度器、基站、终端及系统
CN107154911A (zh) * 2017-07-19 2017-09-12 珠海市魅族科技有限公司 解调参考信号的配置方法及配置装置、网络侧设备和终端

Also Published As

Publication number Publication date
CN109587798B (zh) 2023-07-14
CN116600404A (zh) 2023-08-15
CN109587798A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US11729748B2 (en) Method, apparatus and system for transmitting and receiving control channel of wireless communication system
WO2019085953A1 (zh) 参考信号、控制信道单元的确定方法及装置、存储介质
JP5932931B2 (ja) 不連続的なアップリンクリソース割当のための方法及び装置
KR102214855B1 (ko) 낮은 레이턴시 전송들을 위한 방법 및 장치
RU2529880C1 (ru) Способ и устройство для распределения ресурсов восходящей линии связи
JP5433792B2 (ja) アップリンク制御チャンネル資源配置方法および装置
RU2617999C2 (ru) Расширение физических каналов управления нисходящей линии связи
US9661624B2 (en) Resource allocation signalling
WO2020199958A1 (zh) 下行控制信息传输方法及装置
CN108111281B (zh) 数据信道参数配置方法及装置
KR20180061341A (ko) 낮은 레이턴시 전송들을 위한 방법 및 장치
KR20180070600A (ko) 낮은 레이턴시 전송들을 위한 방법 및 장치
WO2017167271A1 (zh) 下行信息发送、接收方法及装置
BRPI1013964B1 (pt) método em uma unidade base para transmitir informação de controle para um dispositivo de comunicação, método em um dispositivo de comunicação para determinar informação de controle e dispositivo de comunicação para determinar informação de controle
WO2020143286A1 (zh) 下行控制信道的传输方法及装置、存储介质
WO2017193377A1 (zh) 下行控制信息的发送方法、检测方法和设备
WO2018018776A1 (zh) 上下行数据处理方法、装置及计算机存储介质
WO2017075787A1 (zh) 用户设备、接入网设备、上行控制信息的收发方法及装置
WO2015018082A1 (en) An eNB for notifying UE the TDD reconfiguration of the serving cell
WO2019041671A1 (zh) 下行控制信道配置方法、装置和存储介质
JP6687808B2 (ja) 制御情報を送信するための方法、装置、およびシステム
EP3706485A1 (en) Method and device for determining reference signal, method and device for determining control channel unit, and storage medium
CN111131121A (zh) 信息传输方法、装置、设备和存储介质
WO2024027656A1 (zh) 一种pdcch候选的频域位置确定方法及终端
WO2021026788A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872471

Country of ref document: EP

Effective date: 20200602