WO2017167271A1 - 下行信息发送、接收方法及装置 - Google Patents

下行信息发送、接收方法及装置 Download PDF

Info

Publication number
WO2017167271A1
WO2017167271A1 PCT/CN2017/078996 CN2017078996W WO2017167271A1 WO 2017167271 A1 WO2017167271 A1 WO 2017167271A1 CN 2017078996 W CN2017078996 W CN 2017078996W WO 2017167271 A1 WO2017167271 A1 WO 2017167271A1
Authority
WO
WIPO (PCT)
Prior art keywords
stti
resource
dci
spdcch
search space
Prior art date
Application number
PCT/CN2017/078996
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
戴博
张雯
任敏
韩祥辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017167271A1 publication Critical patent/WO2017167271A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting and receiving downlink information.
  • next-generation mobile communication technology Long-Term Evolution (LTE)/Long-Term Evolution Advance (LTE-Advance/LTE) -A
  • LTE Long-Term Evolution
  • LTE-Advance/LTE Long-Term Evolution Advance
  • 5G 5th Generation mobile communication technology
  • ultra-high speed ultra-high capacity
  • ultra-high reliability ultra-high reliability
  • ultra-low-latency transmission characteristics For the ultra-low latency index in 5G systems, it is currently recognized that the air interface delay is on the order of 1 ms.
  • a method for effectively implementing the ultra-low latency is to reduce the processing delay interval by reducing the Transmission Time Interval (TTI) of the LTE system to support the characteristic requirement of the above 1 ms air interface delay.
  • TTI Transmission Time Interval
  • One is to reduce the duration of a single OFDM symbol by expanding the subcarrier spacing of the Orthogonal Frequency Division Multiplexing (OFDM) system.
  • the method is high at 5G. Both frequency communication systems and ultra-dense networks are involved; another method is to reduce the TTI length by reducing the number of OFDM symbols in a single TTI as currently discussed by 3GPP.
  • the advantage of this method is that it can be completely compatible with existing LTE systems. compatible.
  • the downlink control channel (Physical Downlink Control Channel, hereinafter referred to as PDCCH) occupies the resource region of the first 0-4 OFDM symbols in the system bandwidth, and the Enhanced Physical Downlink Control Channel (EPDCCH) uses the physics.
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the shortened TTI of the number is a new granularity of TTI, and the existing downlink control channel and scheduling indication method cannot support the new granularity TTI very well.
  • the processing method for the downlink information in the related art cannot support the problem of the new granularity of sTTI, and an effective solution has not been proposed.
  • the embodiments of the present invention provide a method and an apparatus for transmitting and receiving downlink information, so as to at least solve the problem that the processing method of the downlink information in the related art cannot support the new granularity of the sTTI.
  • a downlink information receiving method includes: determining one or more search spaces including one or more short physical downlink control channels sPDCCH for receiving downlink control information, where
  • the search space includes at least one of the following resources: a part of resources in a subframe, a part of resources in a short transmission time interval sTTI, and a part of resources in an OFDM symbol; the one or more searches determined by the determining
  • the downlink control information DCI is received on the one or more sPDCCHs included in the space.
  • the method further includes: determining, according to the allocation indication of the DCI, at least one of resource locations where the DCI is located, a resource location of the traffic channel, including at least one of: using continuous or non-in the sTTI frequency band Continuous resource allocation, where the resource allocation includes an area occupied by part or all of the sPDCCH; whether the sPDSCH occupies all resources in the sTTI frequency band by signaling in the sTTI frequency band; and the short physical downlink shared sPDSCH is implicitly determined according to the resource occupied by the sPDCCH
  • the resource location is determined according to the resource occupied by the sPDCCH, and the resource location of the sPDSCH is determined according to the indication information, where the implicit determination is to determine the resource location occupied by the scheduled sPDSCH according to the resource location occupied by the sPDCCH.
  • the implicit rule includes at least one of the following: the start or end short physical resource block sPRB where the sPDCCH is located is the same as the sPDSCH start, end or intermediate sPRB scheduled by the sPDCCH; the scheduled sPDSCH is indicated in the DCI Resource occupancy length; the resource start offset value of the scheduled sPDSCH in the DCI; the sPRB index at which the sPDCCH is located is multiplied by a multiple or coefficient of a predefined, DCI notification, RRC notification, or SIB notification to determine its scheduled sPDSCH start, end or intermediate sPRB; sPRB index at which the sPDCCH is located is multiplied by a multiple or coefficient of a predefined, DCI notification, RRC notification or SIB notification to determine its scheduling The resource occupation length of the sPDSCH.
  • the method further includes: performing, by the sPDSCH, the resource mapping in the allocated resource block, where the rate matching manner of the resource mapping includes: performing rate matching on the sPDCCH and the pilot that schedules the sPDSCH; or, scheduling The search space in which the sPDCCH of the sPDSCH is located and the pilot are rate matched.
  • the method further includes: the terminal detecting the search space, where the usage resource of the search space is configured by at least one of: configuring a partial resource in the first x OFDM symbols in the sTTI, Partial sPRB resources are configured in the sTTI, and some resources are configured in one or more OFDM symbols.
  • the part of the resources is one of the following: at least one physical resource bearer (Physical Resource Bearer, sPRB for short) or a resource element group (REG) resource; at least one sPRB in the sTTI or REG resource; at least one sPRB or REG resource of one or more OFDM symbols, wherein the sPRB resource comprises 12 subcarrier resource units in a frequency domain within a limited number of time domain OFDM symbols.
  • Physical Resource Bearer Physical Resource Bearer
  • REG resource element group
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the method further includes: detecting at least one of the sPDCCH and the sPDSCH in the sTTI, where the frequency domain location of the sTTI is configured by using a high layer signaling configuration and/or a physical layer signaling,
  • the sTTI band position is configured by using the RRC or the DCI to configure multiple sTTI band positions by using the RRC or the DCI, and the RRC is used to indicate multiple sTTI band positions by using the DCI; or the time domain length of the sTTI is adopted by the upper layer.
  • At least one of the following configurations is configured: configuring an sTTI length or a pattern, configuring the sTTI length or pattern independently according to different sTTI bands, and configuring the dynamic sTTI length, and combining the dynamic indication The minimum sTTI length supported in a subframe or radio frame.
  • the search space is one or more
  • the bearer DCI message format includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, and an Acknowledgement/Negative Acknowledgement (abbreviated as ACK/ NACK) uplink grant UL grant for ACK/NACK, downlink grant DL grant for scheduling public messages For common messages.
  • ACK/ NACK Acknowledgement/Negative Acknowledgement
  • the DCI message format carried by the search space includes at least one of the following: a DL grant, a UL grant, a UL grant for ACK/NACK, and a DL grant for common messages;
  • the DCI message format carried by one of the search spaces includes only the DL grant
  • the DCI message format carried by the other search space includes at least one of the following: DL grant, UL grant, UL grant for ACK/NACK, DL grant for common messages.
  • the search space is plural, at least one of the plurality of search spaces is located in an sTTI band.
  • the method further includes: when the sPDCCH is scrambled in the sTTI, the initial value of the sPDCCH scrambling sequence is determined by at least one of: an sTTI sequence number, a radio frame sequence number, a subframe sequence number, a slot number, and an OFDM. Symbol sequence number, sTTI subband sequence number, physical resource block PRB sequence number.
  • a downlink information sending method including: configuring one or more search spaces including one or more short physical downlink control channels sPDCCH for receiving downlink control information, where
  • the search space includes at least one of the following: a subframe, a partial resource of a short transmission time interval sTTI, and a portion of an OFDM symbol, wherein the sTTI is a TTI with a time less than 1 ms;
  • transmitting downlink control information where the downlink control information is used by the terminal to receive by using the one or more sPDCCHs included in the one or more search spaces determined from the configured one or more search spaces.
  • configuring one or more search spaces including one or more sPDCCHs for receiving downlink control information includes: configuring usage resources of the search space by at least one of: first x OFDM in sTTI Some resources are configured in the symbol, a part of the short sPRB resource is configured in the sTTI, and some resources are configured in one or more OFDM symbols.
  • the part of the resources is one of: at least one sPRB or REG resource in the subframe; at least one sPRB or REG resource in the sTTI; at least one sPRB or REG resource in the one or more OFDM symbols, where sPRB resource is a restricted time domain OFDM symbol There are 12 subcarrier resource units in the frequency domain within the number.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the method further includes: configuring the frequency domain location of the sTTI by using at least one of the following manners by using the high layer signaling configuration and/or the physical layer signaling: configuring an sTTI frequency band position, and configuring multiple times through the SIB by using RRC or DCI
  • the sTTI band position is used to indicate multiple sTTI band positions by DCI
  • the time domain length of the sTTI is configured by using at least one of the following manners by using high layer signaling configuration and/or physical layer signaling: configuring an sTTI length or pattern
  • the sTTI length or pattern is independently configured according to different sTTI bands, and the dynamic sTTI length is configured, and combined with the minimum sTTI length supported in the dynamic indication subframe or the radio frame.
  • the search space is one or more
  • the bearer DCI message format includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, an uplink grant UL ACK/NACK for transmitting an ACK/NACK, and scheduling public ownership.
  • the downstream authorization of the message is DL grant for common messages.
  • the DCI message format carried by the search space includes at least one of the following: a DL grant, a UL grant, a UL grant for ACK/NACK, and a DL grant for common messages;
  • the DCI message format carried by one of the search spaces includes only the DL grant
  • the DCI message format carried by the other search space includes at least one of the following: DL grant, UL grant, UL grant for ACK/NACK, DL grant for common messages.
  • the search space is plural, at least one of the plurality of search spaces is located in an sTTI band.
  • a downlink information receiving apparatus including: a first determining module, configured to determine one of one or more physical downlink control channels sPDCCH for receiving downlink control information or a plurality of search spaces, wherein the search space includes at least one of: a part of resources in a subframe, a part of resources in a short transmission time interval sTTI, and a part of resources in an OFDM symbol, where The sTTI is a TTI with a time less than 1 ms; the receiving module is configured to pass the determined one or more search space packages The downlink control information is received on the one or more sPDCCHs.
  • the device further includes: the device further includes: a second determining module, configured to determine, according to the allocation indication of the DCI, at least one of resource locations where the DCI is located, a resource location of the traffic channel, including at least one of the following manners : using continuous or non-contiguous resource allocation in the sTTI band band, wherein the resource allocation includes an area occupied by part or all of the sPDCCH; signaling in the sTTI band whether the sPDSCH occupies all resources in the sTTI band; The resource implicitly determines the resource location of the sPDSCH.
  • the resource location of the sPDSCH is determined according to the resource occupied by the sPDCCH, and the resource location of the sPDSCH is determined according to the resource location occupied by the sPDCCH.
  • the apparatus further includes: a resource mapping module, configured to perform resource mapping on the allocated resource block by the sPDSCH, where the rate matching manner in the resource mapping includes: performing a rate on the sPDCCH and the pilot that schedules the sPDSCH Matching; or, rate matching is performed on a search space and a pilot where the sPDCCH scheduling the sPDSCH is located.
  • a resource mapping module configured to perform resource mapping on the allocated resource block by the sPDSCH, where the rate matching manner in the resource mapping includes: performing a rate on the sPDCCH and the pilot that schedules the sPDSCH Matching; or, rate matching is performed on a search space and a pilot where the sPDCCH scheduling the sPDSCH is located.
  • the apparatus further includes: a first detecting module, configured to detect the search space, where the usage resource of the search space is configured by at least one of: first x OFDM in sTTI Some resources are configured in the symbol; part of the short sPRB resources are configured in the sTTI; and some resources are configured in one or more OFDM symbols.
  • a first detecting module configured to detect the search space, where the usage resource of the search space is configured by at least one of: first x OFDM in sTTI Some resources are configured in the symbol; part of the short sPRB resources are configured in the sTTI; and some resources are configured in one or more OFDM symbols.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the apparatus further includes: a second detecting module, configured to detect the sPDCCH and the sPDSCH in the sTTI, where the frequency domain location of the sTTI adopts a high layer signaling configuration and/or a physical layer signaling configuration
  • a second detecting module configured to detect the sPDCCH and the sPDSCH in the sTTI, where the frequency domain location of the sTTI adopts a high layer signaling configuration and/or a physical layer signaling configuration
  • configuring one sTTI band position configuring multiple sTTI band positions through the SIB by using RRC or DCI, and indicating multiple sTTI band positions by DCI by using RRC
  • the time domain length of the sTTI is In the case of the high-level signaling configuration and/or the physical layer signaling configuration, at least one of the following configurations is configured: configuring an sTTI length or pattern, configuring the sTTI length or pattern independently according to different sTTI bands, and configuring the dynamic
  • a downlink information sending apparatus configured to configure one or more search spaces including one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of the following resources: a subframe, a short sending time a part of the sTTI, the part of the OFDM symbol, where the sTTI is a TTI with a time less than 1 ms, and the sending module is configured to send downlink control information to the terminal, where the downlink control information DCI
  • the terminal is configured to receive on the one or more sPDCCHs included in one or more search spaces determined from the one or more search spaces configured.
  • the first configuration module includes: a configuration unit, configured to configure a usage resource of the search space by at least one of: configuring a part of resources in the first x OFDM symbols in the sTTI; configuring in the sTTI Partial short sPRB resources; some resources are configured in one or more OFDM symbols.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the apparatus further includes: a second configuration module, configured to configure a frequency domain location of the sTTI by using at least one of the following manners by using a high layer signaling configuration and/or physical layer signaling: configuring an sTTI frequency band position, adopting The RRC or the DCI configures a plurality of sTTI band positions by using the SIB, and uses the RRC to indicate a plurality of sTTI band positions by using the DCI; and configuring the time domain length of the sTTI by using at least one of the following manners by using the high layer signaling configuration and/or the physical layer signaling: Configure an sTTI length or pattern, configure the sTTI length or pattern independently according to different sTTI bands, and configure the dynamic sTTI length, combined with the minimum sTTI length supported in the dynamic indication subframe or radio frame.
  • a second configuration module configured to configure a frequency domain location of the sTTI by using at least one of the following manners by using a high layer signaling
  • the search space is one or more
  • the bearer DCI message format includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, an uplink grant UL ACK/NACK for transmitting an ACK/NACK, and scheduling public ownership.
  • the downstream authorization of the message is DL grant for common messages.
  • a computer storage medium having stored therein computer executable instructions configured to perform the random access channel congestion processing method described above.
  • determining to receive downlink control information includes one or more One or more search spaces of the sPDCCH, where the search space includes at least one of the following resources: part of the resources in the subframe, part of the resources in the short transmission time interval sTTI, in the orthogonal frequency division multiplexing OFDM symbol
  • Receiving the downlink control information on the one or more sPDCCHs included in the one or more search spaces and solving the problem that the processing method of the downlink information in the related art cannot support the new granularity of sTTI To ensure the delay of communication needs.
  • FIG. 1 is a flowchart of a downlink information receiving method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting downlink information according to an embodiment of the present invention
  • FIG. 3 is a block diagram of a downlink information receiving apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram 1 of a downlink information receiving apparatus according to a preferred embodiment of the present invention.
  • FIG. 5 is a second block diagram of a downlink information receiving apparatus according to a preferred embodiment of the present invention.
  • FIG. 6 is a block diagram of a downlink information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a block diagram 1 of a downlink information transmitting apparatus according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a search space configuration in a short TTI in which a sPDCCH is located, and occupying a part of frequency domain resources in a first OFDM symbol according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of occupied resources when a search space is configured in two short TTIs in which a sPDCCH is located according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of determining, according to a resource implicit determination of an sPDCCH, or determining a resource location of an sPDSCH according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of independently determining sTTI lengths in different sTTI bands and having the same sTTI length in the same sTTI band according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of the sTTI length in the two-stage DCI determining sTTI band being a variable value according to the present invention.
  • the application scenario of the present invention is that the low latency service works in an LTE system or a 5G system, wherein the low latency service operates in a short transmission time interval in the system.
  • the downlink control channel Physical Downlink Control Channel, hereinafter referred to as PDCCH
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the shortened TTI with fewer OFDM symbols is used as a new granularity of TTI, and the existing downlink control channel and scheduling indication method cannot support the new granularity TTI well.
  • the shortened TTI with fewer OFDM symbols is used as a new granularity of TTI, and the downlink control channel and scheduling indication method in the original system cannot support the new granularity TTI well. It is necessary to design transmission downlink control information and a scheduling indication method for sTTI in sTTI.
  • the terminal blind detection obtains the downlink control, and then obtains the resource location in the sTTI where the downlink service information is located according to at least one of the downlink control information indication and the location.
  • FIG. 1 is a flowchart of a downlink information receiving method according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step S102 determining one or more search spaces including one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of the following resources: a part of resources in a subframe, and a short transmission time interval sTTI Part of the resources, Orthogonal Frequency Division Multiplexing of some resources in the OFDM symbol;
  • Step S104 Receive the downlink control information DCI on the one or more sPDCCHs included in the one or more search spaces.
  • Determining, by the above steps, that the downlink control information is received includes one or more One or more search spaces of the sPDCCH, where the search space includes at least one of the following resources: a part of the resources in the subframe, a part of the resources in the short transmission time interval sTTI, and some resources in the orthogonal frequency division multiplexing OFDM symbol
  • Receiving the downlink control information on the one or more sPDCCHs included in the one or more search spaces which solves the problem that the processing method of the downlink information in the related technology cannot support the new granularity of the sTTI, and ensures the delay communication requirement.
  • determining the resource location of the traffic channel according to the allocation indication of the DCI and the resource location of the DCI may include at least one of: using continuous or non-contiguous resource allocation in the sTTI frequency band, where The resource allocation includes an area occupied by part or all of the sPDCCH; whether the sPDSCH occupies all resources in the sTTI band by signaling in the sTTI band; and the resource location of the sPDSCH is implicitly determined according to the resource occupied by the sPDCCH, the signaling may be 1 bit; according to the sPDCCH
  • the occupied resource implicitly determines and determines the resource location of the sPDSCH according to the indication information, where the implicit determination is to determine the resource location occupied by the scheduled sPDSCH according to the resource location occupied by the sPDCCH, and the foregoing implicit determination is required to be described. Determining the location of the traffic channel resource can be applied to non-sTTI situations.
  • the implicit rule includes at least one of the following: the start or end sPRB where the sPDCCH is located is the same as the sPDSCH start, end, or intermediate sPRB scheduled by the sPDCCH; and the resource occupation length of the scheduled sPDSCH is indicated in the DCI.
  • the DCC indicates the resource start offset value of the scheduled sPDSCH; the start or end sPRB index of the sPDCCH is multiplied by a multiple or coefficient of a predefined, DCI notification, RRC notification, or SIB notification to determine the scheduled sPDSCH start.
  • the start or end sPRB index of the sPDCCH is multiplied by a multiple, or a factor of a predefined, DCI notification, RRC notification, or SIB notification, to determine the resource occupation length of its scheduled sPDSCH.
  • the method further includes: performing, by the sPDSCH, the resource mapping in the allocated resource block, where the rate matching manner of the resource mapping includes: performing rate matching on the sPDCCH and the pilot that schedules the sPDSCH; or, scheduling The search space in which the sPDCCH of the sPDSCH is located and the pilot are rate matched.
  • the method further includes: the terminal detecting the search space, where the usage resource of the search space is configured by at least one of the following: the first x in the sTTI Some resources are configured in the OFDM symbol, a part of the short sPRB resources are configured in the sTTI, and some resources are configured in one or more OFDM symbols.
  • the part of the resources is one of: a physical resource bearer (Physical Resource Bearer, sPRB for short) or a REG resource; at least one sPRB or REG resource in the sTTI; and one or more OFDM symbols At least one sPRB or REG resource, wherein the sPRB resource comprises 12 subcarrier resource units in a frequency domain within a limited number of time domain OFDM symbols.
  • a physical resource bearer Physical Resource Bearer, sPRB for short
  • REG resource Physical Resource Bearer
  • the sPRB resource comprises 12 subcarrier resource units in a frequency domain within a limited number of time domain OFDM symbols.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the X bandwidths are divided into system bandwidths, and the number of PRBs included in each frequency band is preferably the same, or different values may be used secondarily.
  • the predetermined pattern may preferably define X frequency bands of different frequency band sizes, or may suboptimally X frequency bands of the same frequency band size.
  • the predetermined pattern is a sTTI length pattern defined in one subframe, for example, four sTTI lengths in one subframe are 4, 3, 4, and 3 OFDM symbols, respectively.
  • the method further includes: detecting at least one of the sPDCCH and the sPDSCH in the sTTI, where the frequency domain location of the sTTI is configured by using a high layer signaling configuration and/or a physical layer signaling, And configuring at least one of the following manners: configuring one sTTI frequency band position, configuring multiple sTTI frequency band positions through the SIB by using RRC or DCI, and indicating multiple sTTI frequency band positions by DCI by using RRC; the time domain length of the sTTI is using high layer signaling
  • at least one of the following configurations is configured: configuring an sTTI length or a pattern, configuring an sTTI length or a pattern independently according to different sTTI bands, configuring a dynamic sTTI length, and combining the dynamic indication subframes Or the minimum sTTI length supported in the radio frame.
  • the search space is one or more
  • the bearer DCI message format includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, and an uplink ACK/NACK transmission.
  • the DCI message format carried by the search space includes at least one of the following: a DL grant, a UL grant, a UL grant for ACK/NACK, and a DL grant for common messages; the search space is two In one case, the DCI message format carried by one of the search spaces includes only the DL grant, and the DCI message format carried by the other search space includes at least one of the following: DL grant, UL grant, UL grant for ACK/NACK, DL grant for Common messages.
  • the search space is plural, at least one of the plurality of search spaces is located in an sTTI band.
  • the initial value of the sPDCCH scrambling sequence is determined by at least one of the following: an sTTI sequence number, a radio frame sequence number, a subframe sequence number, a slot number, an OFDM symbol sequence number, and an sTTI subband sequence number. Physical resource block PRB serial number.
  • the sTTI scrambling is better than the frame-based scrambling randomization.
  • the scrambling is based on the existing parameters, and the dynamic sTTI index is not needed to be learned in advance, and when the sPDCCH of the sTTIs of different lengths shares the search space, the initial OFDM symbol based on the sPDCCH can avoid scrambling based on the initial value of the sTTI.
  • the above scrambling method can be applied to the case of non-sTTI.
  • FIG. 2 is a flowchart of a downlink information sending method according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step S202 configuring one or more search spaces including one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of the following resources: a subframe, a partial resource of a short transmission time interval sTTI, Compensating for a portion of the OFDM symbol, wherein the sTTI is a TTI with a time less than 1 ms;
  • Step S204 Send downlink control information to the terminal, where the downlink control information is used by the terminal by using one or more search spaces determined from the configured one or more search spaces. Received on the one or more sPDCCHs included.
  • configuring one or more search spaces including one or more sPDCCHs for receiving downlink control information includes: configuring usage resources of the search space by at least one of: first x OFDM in sTTI Some resources are configured in the symbol, a part of the short sPRB resource is configured in the sTTI, and some resources are configured in one or more OFDM symbols.
  • the part of the resources is one of: at least one sPRB or REG resource in the subframe; at least one sPRB or REG resource in the sTTI; at least one sPRB or REG resource in the one or more OFDM symbols, where
  • the sPRB resource contains 12 subcarrier resource units in the frequency domain within the limited number of time domain OFDM symbols.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the method further includes: configuring the frequency domain location of the sTTI by using at least one of the following manners by using the high layer signaling configuration and/or the physical layer signaling: configuring an sTTI frequency band position, and configuring multiple times through the SIB by using RRC or DCI
  • the sTTI band position is used to indicate multiple sTTI band positions by DCI
  • the time domain length of the sTTI is configured by using at least one of the following manners by using high layer signaling configuration and/or physical layer signaling: configuring an sTTI length or pattern
  • the sTTI length or pattern is independently configured according to different sTTI bands, and the dynamic sTTI length is configured, and combined with the minimum sTTI length supported in the dynamic indication subframe or the radio frame.
  • the search space is one or more
  • the bearer DCI message format includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, an uplink grant UL grant for ACK/NACK for transmitting an ACK/NACK, and scheduling a public message.
  • Downstream authorization DL grant for common messages includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, an uplink grant UL grant for ACK/NACK for transmitting an ACK/NACK, and scheduling a public message.
  • the DCI message format carried by the search space includes at least one of the following: a DL grant, a UL grant, a UL grant for ACK/NACK, and a DL grant for common messages;
  • the DCI message format carried by one search space includes only the DL grant
  • the DCI message format carried by the other search space includes at least one of the following: DL grant, UL grant, UL grant for ACK/ NACK, DL grant for common Messages.
  • the search space is plural, at least one of the plurality of search spaces is located in an sTTI band.
  • FIG. 3 is a block diagram of a downlink information receiving apparatus according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the first determining module 32 is configured to determine one or more search spaces that include one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of the following resources: a part of resources in the subframe, short Transmitting a part of the resources in the time interval sTTI, and orthogonally frequency-multiplexing a part of the resources in the OFDM symbol, where the sTTI is a TTI with a time less than 1 ms;
  • the receiving module 34 is configured to receive the downlink control information by using the determined one or more sPDCCHs included in the one or more search spaces.
  • FIG. 4 is a block diagram of a downlink information receiving apparatus according to a preferred embodiment of the present invention. As shown in FIG. 4, the apparatus further includes:
  • the second determining module 42 is configured to determine, according to the allocation indication of the DCI, at least one of resource locations where the DCI is located, a resource location of the traffic channel, including at least one of: using continuous or non-contiguous resource allocation in the sTTI band band,
  • the resource allocation includes an area occupied by part or all of the sPDCCH; using 1 bit in the sTTI band indicates whether the sPDSCH occupies all resources in the sTTI band; the resource occupied by the sPDCCH implicitly determines the resource position of the sPDSCH; and the resource hidden according to the sPDCCH
  • the apparatus further includes: a resource mapping module, configured to perform resource mapping on the allocated resource block by the sPDSCH, where the rate matching manner of the resource mapping includes: performing rate matching on the sPDCCH and the pilot that schedule the sPDSCH Or, for scheduling The search space in which the sPDCCH of the sPDSCH is located and the pilot are rate matched.
  • a resource mapping module configured to perform resource mapping on the allocated resource block by the sPDSCH, where the rate matching manner of the resource mapping includes: performing rate matching on the sPDCCH and the pilot that schedule the sPDSCH Or, for scheduling The search space in which the sPDCCH of the sPDSCH is located and the pilot are rate matched.
  • the apparatus further includes: a first detecting module 52 configured to detect the search space, wherein the search space
  • the use of resources is configured by at least one of: configuring a partial resource in the first x OFDM symbols in the sTTI; configuring a partial short sPRB resource in the sTTI; and configuring a partial resource in one or more OFDM symbols.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the apparatus further includes: a second detecting module, configured to detect the sPDCCH and the sPDSCH in the sTTI, where the frequency domain location of the sTTI is configured by using a high layer signaling configuration and/or a physical layer signaling
  • a second detecting module configured to detect the sPDCCH and the sPDSCH in the sTTI, where the frequency domain location of the sTTI is configured by using a high layer signaling configuration and/or a physical layer signaling
  • at least one of the following modes is configured: configuring one sTTI band position, configuring multiple sTTI band positions through the SIB by using RRC or DCI, and indicating multiple sTTI band positions by using DCI through RRC; the time domain length of the sTTI is adopted
  • the high-level signaling configuration and/or the physical layer signaling configuration at least one of the following configurations is configured: configuring an sTTI length or pattern, configuring the sTTI length or pattern independently according to different
  • FIG. 6 is a block diagram of a downlink information sending apparatus according to an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • the first configuration module 62 is configured to configure one or more search spaces including one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of the following resources: a subframe, a short transmission interval sTTI Part of the resource, the portion of the OFDM symbol in the orthogonal frequency division multiplexing, wherein the sTTI is a TTI with a time less than 1 ms;
  • the sending module 64 is configured to send downlink control information to the terminal, where the downlink control information is used by the terminal by one or more determined from the configured one or more search spaces.
  • the search space includes the one or more sPDCCHs received.
  • FIG. 7 is a block diagram of a downlink information transmitting apparatus according to a preferred embodiment of the present invention.
  • the first configuration module 62 includes:
  • the configuration unit 72 is configured to configure the usage resource of the search space by at least one of: configuring a partial resource in the first x OFDM symbols in the sTTI; configuring a partial short sPRB resource in the sTTI; and one or more Some resources are configured in the OFDM symbol.
  • the frequency domain location and the time domain length of the sTTI are at least one of the following: a predetermined value, a predetermined pattern, a value of a high layer signaling configuration, and a value of a physical layer signaling configuration.
  • the apparatus further includes: a second configuration module, configured to configure the frequency domain location of the sTTI by using at least one of the following manners by using a high layer signaling configuration and/or physical layer signaling: configuring an sTTI frequency band position, adopting RRC Or the DCI configures a plurality of sTTI band positions by using the SIB, and uses the RRC to indicate a plurality of sTTI band positions by using the DCI; and configuring the time domain length of the sTTI by using at least one of the following manners by using the high layer signaling configuration and/or the physical layer signaling: An sTTI length or pattern, configured with a sTTI length or pattern independently according to different sTTI bands, configured with a dynamic sTTI length, combined with a dynamic indication subframe or a minimum sTTI length supported in the radio frame.
  • a second configuration module configured to configure the frequency domain location of the sTTI by using at least one of the following manners by using a high layer signal
  • the search space is one or more
  • the bearer DCI message format includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, an uplink grant UL grant for ACK/NACK for transmitting an ACK/NACK, and scheduling a public message.
  • Downstream authorization DL grant for common messages includes at least one of the following: a downlink grant DL grant, an uplink grant UL grant, an uplink grant UL grant for ACK/NACK for transmitting an ACK/NACK, and scheduling a public message.
  • the embodiment of the invention further provides a terminal, including a processor, wherein the processor is configured to perform the following steps:
  • search space including one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of: a resource in a subframe, a short transmission interval sTTI Part of resources, orthogonal frequency division multiplexing part of resources in OFDM symbols;
  • the one or more sPDCCHs included by the one or more search spaces determined The downlink control information DCI is received.
  • An embodiment of the present invention further provides a downlink information processing system, including a server and a terminal, where the terminal includes a processor.
  • the server is configured to configure one or more search spaces including one or more physical downlink control channels PDCCH for receiving downlink control information, where the search space includes at least one of the following resources: a subframe, a short transmission Part of the time interval sTTI, the portion of the OFDM symbol in the orthogonal frequency division multiplexing, wherein the sTTI is a TTI with a time less than 1 ms;
  • the terminal is configured to receive, by using, the one or more sPDCCHs included in one or more search spaces determined from the configured one or more search spaces.
  • the embodiment of the present invention proposes a downlink information reception suitable for low latency requirements.
  • the method mainly solves the problem of downlink control channel detection and data reception in a short TTI including fewer OFDM symbols, and can reduce the complexity of detection processing, and can obtain a shorter RTT delay in the case of a new granularity short TTI. Low latency communication needs.
  • the terminal obtains downlink control information DCI by detecting a downlink control channel in a corresponding candidate set of the search space in the configured downlink control channel search space.
  • the downlink control channel search space is located at a partial resource location in a subframe or sTTI or OFDM symbol.
  • the sTTI length is a fixed value or a fixed pattern, or configured by high layer signaling or physical layer signaling, preferably RRC or SIB signaling.
  • the DCI is an independent DCI, or a second-level DCI after obtaining a partial parameter according to the first-level DCI or high-level signaling configuration.
  • the short downlink control channel may be simply referred to as sPDCCH (Short PDCCH), and the sTTI is a TTI that is less than 1 ms in time.
  • the short TTI is composed of N OFDM symbols, and the number of OFDM symbols included is N. At least one of ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the sTTI includes N OFDM symbols
  • the sPDCCH or the search space occupies X OFDM symbols in the time domain, X ⁇ N, and X preferably takes a value of 1.
  • the symbol is located in the first X OFDM symbols among the N OFDM symbols of the sTTI.
  • the value of X can be fixed or configured by the base station.
  • the downlink control channel search space is located in a subframe or a partial resource position in an OFDM symbol or an OFDM symbol, and a part of the resource is a partial sPRB or REG resource in one or more OFDM symbols in a subframe or an sTTI, or a part of the resource is a part in the OFDM symbol.
  • the sPRB resource includes 12 subcarrier resource units in a frequency domain within a limited number of time domain OFDM symbols; further, the resource unit in the frequency domain may also use sPRB aggregation, with N sPRBs as A group is used or configured; similar REGs can also be aggregated.
  • the configured search space is one or more
  • the bearer DCI message format includes at least one of the following: a DL grant, a UL grant, a UL grant for ACK/NACK, and a DL grant for common messages.
  • the DCI message format carried by the search space includes at least one of the following: DL grant, UL grant, UL grant for ACK/NACK, and DL grant for common messages.
  • the DCI message format carried by one of the search spaces includes only the DL grant
  • the DCI message format carried by the other search space includes at least one of the following: DL grant, UL grant, UL grant for ACK/NACK, DL grant for common messages.
  • at least one of the plurality of search spaces is located within the sTTI band.
  • one search space only carries a DL grant
  • another search space carries at least one of a UL grant, a UL grant for ACK/NACK.
  • the manner of configuring the search space to use the resource includes at least one of: configuring a partial resource in the first x OFDM symbols in the sTTI; configuring a partial short PRB resource in the sTTI; and configuring the part in the one or more OFDM symbols Resources, it should be noted that the above configuration method of the search space can be applied to the case of non-sTTI.
  • the sTTI length is dynamically determined. Different sTTI lengths can share the same search space. For example, the sTTI lengths of the two UEs are different. Detecting the search space configured by the base station in one or more OFDM symbols in the coincident OFDM symbols, it should be noted that all may be included The search space configured by the base station is detected in the OFDM symbol, preferably coincident with the first one of the OFDM symbols.
  • FIG. 8 is a schematic diagram of the search space configured in the short TTI where the sPDCCH is located and occupying some frequency domain resources in the first OFDM symbol, as shown in FIG. 8 .
  • there is only one search space configured in the sTTI which is located in a part of the sPRB or REG resource in the first OFDM symbol in the sTTI. Configured by the SIB or RRC to the terminal.
  • FIG. 9 is a schematic diagram of occupied resources when the search space is configured as two in the short TTI where the sPDCCH is located according to the embodiment of the present invention.
  • the search space containing only the DL grant is the first OFDM symbol in the sTTI.
  • Part of the sPRB or REG resources are occupied.
  • Another search space containing a UL grant and a DL ACK/NACK occupies part of the sPRB in all OFDM symbols in the sTTI band or sPRB or PRB out of the sTTI band.
  • the configured search space is two, and one of them is located in the sTTI band.
  • one of the search spaces configures partial resources (located in the sTTI band) in the first x OFDM symbols in the sTTI
  • the other search space configures partial PRB resources in the subframe (not limited by the sTTI band, located outside the sTTI band).
  • a search space containing only DL grants occupies part of the sPRB or REG resources in the first OFDM symbol in the sTTI. Configured by the SIB or RRC to the terminal.
  • Another search space containing a UL grant and a DL ACK/NACK occupies a portion of the PRB in all OFDM symbols in the subframe.
  • the sPDSCH resource allocation indication in the DCI includes at least one of: using continuous or non-contiguous resource allocation in the sTTI frequency band, the resource allocation includes an area occupied by the sPDCCH, and using 1 bit in the sTTI frequency band to indicate whether the sPDSCH occupies the sTTI. All resources, if not, determine the resource location of the sPDSCH according to the resource implicitly determined by the sPDCCH or combined with the partial indication information. The implicit determination manner is to determine, according to the resource location occupied by the sPDCCH, the resource location occupied by the scheduled sPDSCH.
  • the number of sPDSCHs is divided according to the number of sPDCCHs in the sTTI band, and frequency domain resources of different sPDSCHs are predefined.
  • the search space includes two sPDCCH candidate sets, and the sPDSCH resource occupation corresponding to each sPDCCH is predefined, such as 1/2 of the frequency domain range of the sTTI band, and resources occupied by the sPDSCH.
  • the candidate set occupied by the sPDCCH is a discrete PRB or REG, and the resource position occupied by the scheduled sPDSCH is started by the PRB occupied by the sPDCCH, and is occupied.
  • the frequency domain width is implicitly determined by the search space allocation PRB.
  • the search space is configured as 2 candidate sets, occupying 4 positions, and the sPDSCH occupying the frequency domain width is between the PRB start occupied by the sPDCCH and the start of the PRB start by another candidate set.
  • the range of the sPRB where the configured candidate set is located has taken into account the location of the sPRB allocated by the sPDSCH resource.
  • the resource location occupied by the sPDSCH of the scheduled sPDSCH is the start, middle or end of the PRB occupied by the sPDCCH, and the occupied frequency domain width is indicated by the DCI indicating the sPRB occupied by the sPDCCH after the sPRB is occupied by the sPDCCH.
  • the foregoing implicit rule includes at least one of the following: the start or end sPRB of the sPDCCH is the same as the sPDSCH start, end or intermediate sPRB scheduled by the sPDCCH; the resource occupation length of the scheduled sPDSCH is indicated in the DCI; Indicates the resource start offset value of the scheduled sPDSCH; the start or end sPRB index of the sPDCCH is multiplied by a multiple or coefficient of a predefined, DCI notification, RRC notification, or SIB notification to determine the start or end of its scheduled sPDSCH or The intermediate sPRB; the start or end sPRB index of the sPDCCH is multiplied by a multiple or coefficient of a predefined, DCI notification, RRC notification, or SIB notification to determine the resource occupation length of the scheduled sPDSCH.
  • the rate matching manner of the sPDSCH when the allocated resource blocks perform resource mapping includes performing rate matching on the sPDCCH and the pilot that schedule the sPDCCH. Rate matching is performed on the search space and the pilot in which the sPDCCH is scheduled.
  • FIG. 10 is a schematic diagram of determining a resource location of an sPDSCH according to a resource implicit determination or a combination of partial indication information according to an embodiment of the present invention, as shown in (a) of FIG. 10, regardless of a sPDSCH occupied by a continuous or non-contiguous resource,
  • the sPDCCH can use part of the resources in the resource area used by the sPDSCCH in a self-contained mode or an embedded manner.
  • the self-contained mode is implemented by performing rate matching only on the sPDCCH and the pilot that schedule it, as shown in (b) of FIG.
  • the embedded mode speeds up the search space and pilots in which the sPDCCH or sPDCCH is scheduled.
  • the rate matching is implemented as shown in (c) of FIG.
  • the pilots herein include a cell public reference signal, a UE-specific reference signal, and the like.
  • the sTTI frequency domain location obtaining manner includes at least one of: configuring only one sTTI frequency band frequency domain location; configuring multiple sTTI frequency band locations by using an SIB, configuring a specific sTTI frequency band position by using RRC or DCI; indicating multiple sTTIs by DCI
  • the band position is configured by the RRC specific sTTI band position.
  • the configuration signaling includes at least one of a semi-static configuration of the high-level signaling and physical layer signaling.
  • the mode 1 uses only the high-level signaling semi-static configuration, including the configuration using the SIB or the RRC; specifically, the SIB is configured with one sTTI band; or the SIB is configured with multiple sTTI bands, and the sTTI band of the UE is displayed (RRC) or implicit (UE). ID/RNTI) determines; or RRC configures the sTTI band in which the UE is located.
  • Mode 2 uses only physical layer signaling including CFI or DCI to indicate the frequency domain location of the sTTI band, where DCI is preferably the first level of the two-level DCI.
  • Mode 3 Indicates an sTTI band, or indicates multiple sTTI bands, and the UE determines by implicit (UE ID/RNTI); mode 3 uses both high-level signaling semi-static configuration and physical layer signaling dynamic indication.
  • the first level DCI notifies multiple sTTI band positions, the RRC configures which sTTI band the UE specifically uses; or the SIB notifies multiple sTTI band positions, and the first level DCI indicates which sTTI band the UE specifically uses.
  • the time domain length obtaining manner of the sTTI includes at least one of: configuring only one sTTI length or pattern; independently configuring an sTTI length or a pattern according to different sTTI bands; configuring a dynamic sTTI length, and optionally combining a dynamic indication book
  • the configuration signaling includes at least one of a semi-static configuration of the high-level signaling and physical layer signaling. Where method 1: sTTI length is configured by SIB or RRC (semi-statically variable).
  • the following includes: (1) configuring one type of sTTI length for the SIB; (2) (optionally, configuring multiple sTTI length sets for the SIB), and configuring the specific sTTI length according to different sTTI bands, that is, the combination of the ⁇ sTTI band and the sTTI Length ⁇ , can also be configured separately.
  • Method 2 The sTTI length is indicated by a similar CFI configuration or a first level DCI (sub-frame level variable), wherein when indicated by the first level DCI, includes an sTTI length indicating a fixed length or a fixed pattern.
  • Method 3 sTTI length is configured by the second level DCI (sTTI level variable).
  • Method 4 Commonly indicated by the first level DCI and the second level DCI. The first level indicates the minimum sTTI length supported in the subframe, and the second level DCI indicates the length of the sTTI corresponding to the actual PDSCH.
  • the initial value of the sPDCCH scrambling sequence includes at least one of the following
  • the initial value of the scrambling sequence passes at least one of a short TTI sequence number, a radio frame sequence number, a subframe sequence number, a slot number, an OFDM symbol sequence number, an sTTI subband sequence number, and a PRB sequence number. Make a decision.
  • the initial value determining manner used by the scrambling sequence includes at least one of the following:
  • the initial value of the scrambling is determined by a short TTI sequence number, wherein the initial value of the scrambling sequence may be specifically considered: based on a short TTI sequence sTTI within a 1 ms subframe or based on a short TTI sequence sTTI within a 10 ms radio frame, n TTI indicates the sTTI number in the subframe or the sTTI number in the radio frame.
  • the terminal can determine the value of the sTTI index. The previous sTTI length is used before the SIB update. If the sTTI length is dynamically variable, for example, the sTTI length is configured by the DCI, the terminal determines the sTTI index by receiving a physical layer signaling notifying the sTTI number/serial number, for example, when the sTTI length is indicated by the second level DCI, the first level The DCI notifies the sTTI number/serial number; when the sTTI length is indicated by the DCI, the additional physical layer signaling such as the CFI notification sTTI number/serial number.
  • the scrambling initial value is determined by the short TTI sequence number and the slot number to distinguish the scrambling sequences of different short TTIs in the radio frame. For example, there are 7 short TTIs with a length of 2 OFDM symbols in one subframe, and the initial value is determined by the slot number and the sTTI sequence number.
  • the initial value of the scrambling is determined by a subframe number or a radio frame number or a slot number, wherein the initial value is determined based on the subframe number as If using a wireless frame number, If using a slot number,
  • the scrambling initial value is determined by the OFDM symbol number OFDM index, and the sPDCCH uses only the starting OFDM symbol in the occupied resource position as the scrambling parameter regardless of the sTTI length corresponding to the sPDSCH.
  • the OFDM symbol based scrambling is applied to the sTTI dynamically determined scenario, and the sPDCCH in the different sTTI lengths uses the OFDM index as the scrambling parameter in the same OFDM symbol.
  • the initial value of the scrambling is determined by the sTTI subband sequence number or the PRB sequence number, and the starting PRB index or the sTTI band index in the sTTI band is used as the scrambling parameter.
  • Different scrambling sequences are used for different sTTI bands in the subframe.
  • the same scrambling sequence is used for the same sTTI band in the subframe.
  • Based on PRB index, or - The scrambling sequence of different sTTI bands in the molecular frame of the region, n sTTI_band 0 or 0, 1 or 0, 1, 2, 3.
  • the method for determining the starting PRB index or the sTTI band index in the sTTI band includes the sTTI frequency domain location determining method in the patent, for example, the first-level DCI notification in the two-level DCI, and the SIB or RRC signaling configuration.
  • the sPDCCH is self-contained/embedded, the sPDCCH is no longer shared, and the C-RNTI or the Group-RNTI is used instead.
  • a scrambling initial value is generated, or a UE-specific parameter value configured by RRC.
  • the base station schedules the sPDSCH through two-stage DCI.
  • the first level of DCI indicates a fixed sTTI length/pattern in the sTTI band, and the different sTTI bands independently determine the respective sTTI length/pattern.
  • the first level DCI is located in the Legacy PDCCH, or in the first sTTI.
  • FIG. 11 is a schematic diagram of independently determining sTTI lengths in different sTTI bands and having the same sTTI length in the same sTTI band according to an embodiment of the present invention.
  • different sTTI bands are used for terminal groups or service groups with different delay requirements.
  • the sTTI length in the same sTTI band is unique.
  • the sTTI band is determined independently in the subframe, and the sTTI length is determined independently in the different sTTI bands, and there is only one sTTI length in the same sTTI band.
  • the specific signaling content is that the first-level DCI indicates the sTTI frequency band and each frequency band has a length.
  • the second level DCI indicates the remaining control information. Such as MCS, RV, NDI, etc.
  • the first level may be independently indicated or jointly indicated for the sTTI length and/or the sTTI frequency band of the multiple sTTI bands. As shown in Table 1.
  • FIG. 11 is only an illustration. There may be no sPDCCH or sPDCCH in the first sTTI.
  • the first sTTI has no sPDCCH, and the two-level DCI One sTTI has sPDCCH; or the sTTI partition starts after the legacy PDCCH region, and the first sTTI has sPDCCH.
  • the plurality of sTTI bands and the frequency domain position of each band may be represented by a joint coded value r, such as one of the preferred modes shown in the formula (1).
  • r indicates M sTTI bands
  • the start and end sPRB positions of each sTTI band are represented.
  • N is the system bandwidth corresponding to the number of PRBs.
  • i 0, 1, 2..., 2M-1.
  • S i ranges from 1 to N.
  • S i is a mutually different positive integer in the monotonic function, that is, S 0 ⁇ S 1 ⁇ S 2 . Or S 0 >S 1 >S 2 .
  • the joint coding is only for sTTI band joint coding, and there is no particular limitation on other bit fields included in the DCI including the sTTI band joint coding bit field.
  • the sTTI length bit field is included in the DCI of the joint coding bit field of the sTTI band is not particularly limited, and whether or not it is included, does not affect the indication implementation of the joint coding bit field of the sTTI band.
  • the frequency domain location joint resource allocation of multiple TTI bands is also applicable to non-sTTI.
  • the terminal first receives the detection downlink control information, and then receives the downlink service information according to the downlink control information indication.
  • the terminal detects two levels of DCI in the Legacy PDCCH region and the configured search space.
  • the principle is that the complexity of blind detection is not increased compared to the complexity of blind detection in the existing 1 ms subframe.
  • the total number of blind detections of the two-level DCI is the same as the number of blind detections of the legacy PDCCH in the 1 ms subframe.
  • the first level of DCI is blindly detected in the Legacy PDCCH region.
  • Method 1 You can refer to the number of blind checks of CSS. The total number of candidate sets is four. Two aggregation levels are supported, with 2 candidate sets for each aggregation level.
  • Method 2 Define a Group-SS between CSS and USS. The candidate set is between 4 and 16.
  • the terminal first receives, in the Legacy PDCCH region, a sTTI band position that detects the first stage DCI to determine subsequent reception detection, and detects a second level DCI in the predefined or configured search space in the corresponding sTTI band. Or the terminal first receives, in the Legacy PDCCH region, a plurality of sTTI bands that detect the first-level DCI determination, and detects the second-level DCI in the corresponding sTTI band according to the specific sTTI band configured by the RRC.
  • the second level DCI is detected in the first L OFDM symbols in the sTTI band.
  • L is less than or equal to the number of symbols included in the sTTI.
  • the total number of sPDCCH detection candidate sets in each sTTI is x, and the value of x is suggested to be 1 or 2 or 4.
  • the location of the detected sPDCCH can be determined by the search space configuration.
  • Method 1 Detect the number of fixed candidate sets x. The sum of the candidate sets corresponding to the y-type aggregation levels is detected as a total of x.
  • the terminal When the terminal receives the sPDSCH, it is in an sTTI band:
  • the sPDSCH channel matches rates in REs other than sPDCCH and RS occupancy.
  • the second level DCI does not need to indicate the frequency domain resource allocation of the sPDSCH.
  • the sPDSCH channel is rate matched in REs other than sPDCCH and RS occupation.
  • the allocated sPDSCH resource occupation is in the form of self-contained/embedded if it includes the sPDCCH resource occupation range in which it is scheduled.
  • the second level DCI needs to indicate the frequency domain resource allocation of the sPDSCH. (1) using continuous or non-contiguous resource allocation in the sTTI band, the resource allocation including the area occupied by the sPDCCH;
  • the use of 1 bit in the sTTI band indicates whether the sPDSCH occupies all the resources in the sTTI. If not, the resource location of the sPDSCH is determined according to the resource implicitly determined by the sPDCCH or combined with the partial indication information.
  • the implicit determination manner is to determine, according to the resource location occupied by the sPDCCH, the resource location occupied by the scheduled sPDSCH. Specifically, the number of sPDSCHs is divided according to the number of sPDCCHs in the sTTI band, and a frequency domain resource range of different sPDSCHs is predefined. For example, as shown in (a) of FIG. 10, the search space includes two sPDCCH candidate sets, and each sPDCCH corresponds to The sPDSCH resource occupation is predefined, such as 1/2 of the frequency domain range of the sTTI band, and the resource occupied by the sPDSCH is a frequency domain range including the sPDCCH of its scheduling information. Or, as shown in (b) of FIG.
  • the candidate set occupied by the sPDCCH is a discrete PRB or REG, and the resource position occupied by the scheduled sPDSCH is started by the PRB occupied by the sPDCCH, and is occupied.
  • the frequency domain width is implicitly determined by the search space allocation PRB or indicated by the DCI, for example, the search space is configured as 2 candidate sets.
  • the sPDSCH occupies 4 locations, and the sPDSCH occupies a frequency domain width ranging from a PRB start occupied by the sPDCCH to a range in which the other candidate set occupies the PRB start, or the sPDSCH occupies the frequency domain resource size after the start of the sPRB occupied by the sPDCCH by the DCI.
  • the rate matching manner of the sPDSCH when the allocated resource blocks perform resource mapping includes performing rate matching on the sPDCCH and the pilot that schedule the sPDCCH. Or rate matching the search space and the pilot where the sPDCCH is scheduled.
  • the second-level DCI is detected in the configured search space by indicating the short TTI length in the sTTI band by using the first-level DCI, and the detection position does not need to be performed on each OFDM symbol, thereby reducing detection complexity. degree.
  • the resource location of the sPDSCH is obtained according to the partial DCI information, which saves resource allocation overhead.
  • the base station schedules the sPDSCH through two-stage DCI.
  • the first level indicates the minimum sTTI length in this subframe, and the second level indicates sTTI length.
  • the first level DCI is located in the Legacy PDCCH, or in the first sTTI.
  • the detection of the sPDCCH requires knowledge of the minimum sTTI length, such that the dynamic sTTI length is notified at the second level, at least the possible detected OFDM symbol positions can be known and not necessarily detected for each OFDM symbol. Multiple sTTI bands are still available at the same time.
  • 12 is a schematic diagram of determining a sTTI length in a sTTI band in a two-stage DCI according to the present invention. As shown in FIG. 12, taking sTTI bands in a subframe as an example, the sTTI lengths in different sTTI bands are independently determined.
  • the minimum granularity sTTI with the first level indication, the second level DCI indicating the variable length of the sTTI.
  • the specific signaling content is that the first-level DCI indicates the sTTI frequency band, the sTTI minimum length sTTI_length_min, the PRB allocation, and the like, as shown in Table 1.
  • the second level DCI indicates the sTTI length and remaining control information such as MCS, RV, NDI, and the like.
  • the terminal first receives the detection downlink control information, and then receives the downlink service information according to the downlink control information indication.
  • the terminal detects two levels of DCI in the Legacy PDCCH region and the configured search space.
  • the principle is that the complexity of blind detection is not increased compared to the complexity of blind detection in the existing 1 ms subframe.
  • the total number of blind detections of the two-level DCI is the same as the number of blind detections of the legacy PDCCH in the 1 ms subframe.
  • the configured search space is configured with a minimum sTTI granularity, for example, the minimum sTTI is 1 OFDM symbol, and the search space is configured in each OFDM symbol in the subframe except the legacy PDCCH region, for example, the minimum sTTI is 2 OFDM. Symbol, according to the inclusion or exclusion of the Legacy PDCCH region in the sub
  • the sTTI is divided in the frame, and the search space is configured in the sTTI without the legacy PDCCH.
  • the first level of DCI is blindly detected in the Legacy PDCCH region.
  • Method 1 You can refer to the number of blind checks of CSS. The total number of candidate sets is four. Two aggregation levels are supported, with 2 candidate sets for each aggregation level.
  • Method 2 Define a Group-SS between CSS and USS. The candidate set is between 4 and 16.
  • the terminal first receives the sTTI frequency band position in the Legacy PDCCH region that detects the first-level DCI to determine the subsequent reception detection, and detects the second-level DCI in the corresponding search space according to the minimum sTTI length in the corresponding sTTI frequency band.
  • the second level DCI is detected in the first L OFDM symbols in the sTTI band.
  • the total number of sPDCCH detection candidate sets in each sTTI is x, and the value of x is suggested to be 1 or 2 or 4.
  • the location of the detected sPDCCH can be determined by the search space configuration.
  • Method 1 Detect the number of fixed candidate sets x. The sum of the candidate sets corresponding to the y-type aggregation levels is detected as a total of x.
  • the terminal When the terminal receives the sPDSCH, it is in an sTTI band:
  • the sPDSCH channel matches rates in REs other than sPDCCH and RS occupancy.
  • the second level DCI does not need to indicate the frequency domain resource allocation of the sPDSCH.
  • the sPDSCH channel is rate matched in REs other than sPDCCH and RS occupation.
  • the allocated sPDSCH resource occupation is in the form of self-contained/embedded if it includes the sPDCCH resource occupation range in which it is scheduled.
  • the second level DCI needs to indicate the frequency domain resource allocation of the sPDSCH. (1) using continuous or non-contiguous resource allocation in the sTTI band, the resource allocation including the area occupied by the sPDCCH;
  • the implicit determination manner is to determine, according to the resource location occupied by the sPDCCH, the resource location occupied by the scheduled sPDSCH. Specifically, the number of sPDSCHs is divided according to the number of sPDCCHs in the sTTI band, and a frequency domain resource range of different sPDSCHs is predefined. For example, as shown in (a) of FIG. 10, the search space includes two sPDCCH candidate sets, and each sPDCCH corresponds to The sPDSCH resource occupation is predefined, such as 1/2 of the frequency domain range of the sTTI band, and the resource occupied by the sPDSCH is a frequency domain range including the sPDCCH of its scheduling information. Or, as shown in (b) of FIG.
  • the candidate set occupied by the sPDCCH is a discrete PRB or REG
  • the resource location occupied by the scheduled sPDSCH is started by the PRB occupied by the sPDCCH, and is occupied.
  • the frequency domain width is implicitly determined by the search space allocation PRB or indicated by the DCI.
  • the search space is configured as 2 candidate sets, occupying 4 positions, and the sPDSCH occupying the frequency domain width is the PRB start occupied by the sPDCCH to the other candidate set occupying the PRB.
  • the range between the start, or the sPRSCH occupies the frequency domain resource size after the start of the sPRB occupied by the sPDCCH by the DCI.
  • the rate matching manner of the sPDSCH when the allocated resource blocks perform resource mapping includes performing rate matching on the sPDCCH and the pilot that schedule the sPDCCH. Or rate matching the search space and the pilot where the sPDCCH is scheduled.
  • the second-level DCI is detected in the search space of the minimum sTTI corresponding configuration by the first-level DCI indicating the short minimum TTI length in the sTTI band, and is avoided when the minimum sTTI is greater than 1 OFDM symbol. Performed on each OFDM symbol, reducing detection complexity.
  • the resource location of the sPDSCH is obtained according to the partial DCI information, which saves resource allocation overhead.
  • the base station schedules the sPDSCH through a single DCI.
  • the sTTI band determination method includes:
  • the sTTI band is configured by SIB or RRC (semi-statically variable).
  • the SIB is configured with one sTTI band; (2) the SIB is configured with multiple sTTI bands, and the sTTI band display (RRC) or implicit (UE ID/RNTI) of the UE is determined. (3) RRC matching Set the sTTI band where the UE is located.
  • RRC sTTI band display
  • UE ID/RNTI implicit
  • Method B The sTTI band is configured by a similar CFI. (subframe level is variable)
  • sTTI length is configured by SIB or RRC (semi-statically variable). Specifically, the following includes: (1) configuring one type of sTTI length for the SIB; (2) (optionally, configuring multiple sTTI length sets for the SIB), and configuring the specific sTTI length according to different sTTI bands, that is, the combination of the ⁇ sTTI band and the sTTI Length ⁇ , can also be configured separately.
  • Method 2 sTTI length is configured by a similar CFI (sub-frame level variable).
  • sTTI length is configured by DCI (sTTI level variable).
  • the above sTTI band and sTTI length configuration can be combined with each other, preferably as A1, A2, B2.
  • Single DCI content sTTI length (optional), RA for traffic (optional), MCS, RV, NDI, etc.
  • the sTTI length indication depends on whether the sTTI dynamic variable in the subframe is supported, and the previous second level DCI analysis; the RA for traffic indication depends on whether more than one UE is supported in the sTTI, and the previous second level DCI analysis.
  • the terminal first receives the detection downlink control information, and then receives the downlink service information according to the downlink control information indication.
  • the terminal detects DCI in different sTTIs in the Legacy PDCCH region and the configured search space.
  • the principle is that the complexity of blind detection is not increased compared to the complexity of blind detection in the existing 1 ms subframe.
  • the total number of blind detections of the DCI in the short TTI included in the 1 ms subframe is the same as the number of blind detections in the 1 ms subframe of the legacy PDCCH.
  • the DCI in the first sTTI is blindly detected in the Legacy PDCCH region.
  • Method 1 You can refer to the number of blind checks of CSS. The total number of candidate sets is four. Two aggregation levels are supported, with 2 candidate sets for each aggregation level.
  • Method 2 Define a Group-SS between CSS and USS. The candidate set is between 4 and 16.
  • the terminal receives the sPDSCH reception in the first sTTI in the detection DCI determination subframe in the Legacy PDCCH region, and detects the DCI in the configured search space in the corresponding subsequent sTTI.
  • the sPDSCH is received.
  • the DCI of all sTTIs in the subframe (this case corresponds to the sTTI being divided into sTTIs after the Legacy PDCCH region), or the DCI of the remaining sTTIs except the sTTI including the legacy PDCCH in the subframe is in the sTTI band.
  • the total number of sPDCCH detection candidate sets in each sTTI is x, and the value of x is suggested to be 1 or 2 or 4.
  • the location of the detected sPDCCH can be determined by the search space configuration.
  • Method 1 Detect the number of fixed candidate sets x. The sum of the candidate sets corresponding to the y-type aggregation levels is detected as a total of x.
  • the terminal When the terminal receives the sPDSCH, it is in an sTTI band:
  • the sPDSCH channel matches rates in REs other than sPDCCH and RS occupancy.
  • the second level DCI does not need to indicate the frequency domain resource allocation of the sPDSCH.
  • the sPDSCH channel is rate matched in REs other than sPDCCH and RS occupation.
  • the allocated sPDSCH resource occupation is in the form of self-contained/embedded if it includes the sPDCCH resource occupation range in which it is scheduled.
  • the DCI needs to indicate the frequency domain resource allocation of the sPDSCH. (1) using continuous or non-contiguous resource allocation in the sTTI band, the resource allocation including the area occupied by the sPDCCH;
  • the use of 1 bit in the sTTI band indicates whether the sPDSCH occupies all the resources in the sTTI. If not, the resource location of the sPDSCH is determined according to the resource implicitly determined by the sPDCCH or combined with the partial indication information.
  • the implicit determination manner is to determine, according to the resource location occupied by the sPDCCH, the resource location occupied by the scheduled sPDSCH. Specifically, the number of sPDSCHs is divided according to the number of sPDCCHs in the sTTI band, and a frequency domain resource range of different sPDSCHs is predefined. For example, as shown in (a) of FIG. 10, the search space includes two sPDCCH candidate sets, and each sPDCCH corresponds to sPDSCH The source occupancy is predefined, such as 1/2 of the frequency domain range of the sTTI band, and the resource occupied by the sPDSCH is the frequency domain range including the sPDCCH of its scheduling information. Or, as shown in (b) or (c) of FIG.
  • the candidate set occupied by the sPDCCH is a discrete PRB or REG, and the resource position occupied by the scheduled sPDSCH is started by the PRB occupied by the sPDCCH, and the frequency domain is occupied.
  • the width is implicitly determined by the search space allocation PRB or indicated by the DCI.
  • the search space is configured as 2 candidate sets, occupying 4 positions, and the sPDSCH occupying the frequency domain width is the PRB start occupied by the sPDCCH to the other candidate set occupying the PRB start.
  • the range between the sPRSCH and the frequency domain resource size after the start of the sPRB occupied by the sPDCCH is indicated by the DCI.
  • the rate matching manner of the sPDSCH when the allocated resource blocks perform resource mapping includes performing rate matching on the sPDCCH and the pilot that schedule the sPDCCH. Or rate matching the search space and the pilot where the sPDCCH is scheduled.
  • the UL grant and the candidate set of the DL A/N are reserved, that is, the resources used by the sPDSCH are Rate matching is performed on the DL grant and the RS that are scheduled, and the rate matching is performed on the UL grant and the DL A/N, that is, the rate matching of the configured sPDCCH search space is as shown in FIG. 8 .
  • an independent search space such as an independent PRB
  • the downlink sPDSCH is still completely self-contained, that is, the resources used by the sPDSCH are only for scheduling. Its DL grant and RS perform rate matching. Or the UL grant and DL A/N are only transmitted in the Legacy PDCCH.
  • the single DCI is detected in the search space configured by the partial resource location, and the resource location of the sPDSCH is obtained according to the partial DCI information, thereby saving resource overhead and processing complexity.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S1 determining one or more search spaces including one or more sPDCCHs for receiving downlink control information, where the search space includes at least one of: resources in a subframe, a short transmission interval Part of resources in the sTTI, orthogonal frequency division multiplexing part of resources in the OFDM symbol;
  • Step S2 Receive the downlink control information DCI by using the determined one or more sPDCCHs included in the one or more search spaces.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the embodiments of the present invention are applied to the field of communication technologies, and solve the problem that the downlink information processing method in the related art cannot support the new granularity of sTTI, and ensures the delay communication requirement.

Abstract

本发明公开了一种下行信息发送、接收方法及装置,其中,该方法包括:确定用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,该搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;通过确定的该一个或多个搜索空间包括的该一个或多个sPDCCH上接收该下行控制信息,解决了相关技术中下行信息的处理方法不能支持新粒度的sTTI的问题,保证时延通信需求。

Description

下行信息发送、接收方法及装置 技术领域
本发明涉及通信技术领域,具体而言,涉及一种下行信息发送、接收方法及装置。
背景技术
随着第四代移动通信技术(the 4th Generation mobile communication technology,简称为4G)长期演进(Long-Term Evolution,简称为LTE)/高级长期演进(Long-Term Evolution Advance,简称为LTE-Advance/LTE-A)系统商用的日益完善,对下一代移动通信技术即第五代移动通信技术(the5th Generation mobile communication technology,简称为5G)的技术指标要求也越来越高。业内普遍认为,下一代移动通信系统应具有超高速率、超高容量、超高可靠性、以及超低延时传输特性等特征。对于5G系统中超低时延的指标目前公认的为空口时延约1ms的数量级。
一种有效实现超低时延的方法是通过减少LTE系统的发送时间间隔(Transmission Time Interval,简称为TTI),充分缩短处理时延单元,以支持上述1ms空口时延的特性需求。目前存在两种缩小TTI的方法,一种是通过扩大正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM,)系统的子载波间隔来缩小单个OFDM符号的时长,该方法在5G的高频通信系统和超密集网络中均有涉及;另一种方法是目前3GPP所讨论的通过减少单个TTI中OFDM符号的数量来减小TTI长度,该方法的好处是可以和现有的LTE系统完全兼容。
现有LTE系统中下行控制信道(Physical Downlink Control Channel,简称为PDCCH)占用系统带宽中前0-4个OFDM符号的资源区域,增强下行控制信道(Enhanced Physical Downlink Control Channel,简称为EPDCCH)使用物理下行共享信道(Physical Downlink Shared Channel,简称为PDSCH)中部分PRB资源区域。相对于现有1ms TTI长度的子帧,含有较少OFDM符 号的缩短TTI作为一种新粒度的TTI,现有下行控制信道以及调度指示方法不能很好的支持新粒度TTI。
针对相关技术中下行信息的处理方法不能支持新粒度的sTTI的问题,还未提出有效的解决方案。
发明内容
本发明实施例提供了一种下行信息发送、接收方法及装置,以至少解决相关技术中下行信息的处理方法不能支持新粒度的sTTI的问题。
根据本发明实施例的一个方面,提供了一种下行信息接收方法,包括:确定用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;通过确定的所述一个或多个搜索空间包括的所述一个或多个sPDCCH上接收所述下行控制信息DCI。
进一步地,所述方法还包括:根据所述DCI的分配指示、DCI所在资源位置至少之一确定业务信道的资源位置,包括以下方式至少之一:在sTTI频带(frequency band)中使用连续或非连续资源分配,其中,所述资源分配包含部分或全部sPDCCH占用的区域;在sTTI频带中通过信令指示sPDSCH是否占用sTTI频带中所有资源;根据sPDCCH占用的资源隐含确定短物理下行共享sPDSCH的资源位置;根据sPDCCH占用的资源隐含确定且结合指示信息确定sPDSCH的资源位置,其中,所述隐含确定为根据sPDCCH占用的资源位置确定所调度的sPDSCH占用的资源位置。
进一步地,所述隐含的规则包括以下至少之一:sPDCCH所在起始或结束短物理资源块sPRB与所述sPDCCH所调度的sPDSCH起始、结束或中间sPRB相同;DCI中指示所调度的sPDSCH的资源占用长度;DCI中指示所调度的sPDSCH的资源起始偏移值;sPDCCH所在起始或结束sPRB index乘以预先定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH起始、结束或中间sPRB;sPDCCH所在起始或结束sPRB index乘以预定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度 的sPDSCH的资源占用长度。
进一步地,所述方法还包括:所述sPDSCH在所分配的资源块进行资源映射,其中,资源映射时速率匹配方式包括:对调度所述sPDSCH的sPDCCH和导频进行速率匹配;或者,对调度所述sPDSCH的sPDCCH所在的搜索空间和导频进行速率匹配。
进一步地,所述方法还包括:终端检测所述搜索空间,其中,所述搜索空间的使用资源是通过以下至少之一的方式配置的:在sTTI中的前x个OFDM符号中配置部分资源,在sTTI中配置部分sPRB资源,在一个或多个OFDM符号中配置部分资源。
进一步地,所述部分资源为以下之一:子帧中至少一个物理资源承载(Physical Resource Bearer,简称为sPRB)或资源单元组(Resource element group,简称为REG)资源;sTTI中至少一个sPRB或REG资源;一个或多个OFDM符号中的至少一个sPRB或REG资源,其中,所述sPRB资源为在限制的时域OFDM符号数目内的频域上包含12个子载波资源单位。
进一步地,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,所述方法还包括:在所述sTTI内检测所述sPDCCH、sPDSCH至少之一,其中,所述sTTI的频域位置采用高层信令配置和/或物理层信令配置的情况下,通过以下方式至少之一配置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;或者,所述sTTI的时域长度是采用高层信令配置和/或物理层信令的情况下,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
进一步地,所述搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输正确/错误应答消息(Acknowledgement/Negative Acknowledgement,简称为ACK/NACK)的上行授权UL grant for ACK/NACK、调度公有消息的下行授权DL grant  for common messages。
进一步地,所述搜索空间为一个的情况下,所述搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages;所述搜索空间为两个的情况下,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages。
进一步地,所述搜索空间为多个的情况下,所述多个搜索空间中至少之一位于sTTI频带内。
进一步地,所述方法还包括:所述sPDCCH在sTTI内加扰时,所述sPDCCH加扰序列初始值通过以下至少之一确定:sTTI序号、无线帧序号、子帧序号、时隙号、OFDM符号序号、sTTI子带序号、物理资源块PRB序号。
根据本发明实施例的另一方面,还提供了一种下行信息发送方法,包括:配置用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,所述sTTI为时间小于1ms的TTI;向终端发送下行控制信息,其中,所述下行控制信息用于所述终端通过从配置的所述一个或多个搜索空间中确定的一个或多个搜索空间包括的所述一个或多个sPDCCH上接收。
进一步地,配置用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间包括:通过以下至少之一的方式配置所述搜索空间的使用资源:在sTTI中的前x个OFDM符号中配置部分资源,在sTTI中配置部分短sPRB资源,在一个或多个OFDM符号中配置部分资源。
进一步地,所述部分资源为以下之一:子帧中至少一个sPRB或REG资源;sTTI中至少一个sPRB或REG资源;一个或多个OFDM符号中的至少一个sPRB或REG资源,其中,所述sPRB资源为在限制的时域OFDM符号 数目内的频域上包含12个子载波资源单位。
进一步地,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,所述方法还包括:采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的频域位置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的时域长度:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
进一步地,所述搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输ACK/NACK的上行授权UL grant for ACK/NACK、调度公有消息的下行授权DL grant for common messages。
进一步地,所述搜索空间为一个的情况下,所述搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages;所述搜索空间为两个的情况下,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages。
进一步地,所述搜索空间为多个的情况下,所述多个搜索空间中至少之一位于sTTI频带内。
根据本发明实施例的另一方面,还提供了一种下行信息接收装置,包括:第一确定模块,设置为确定用于接收下行控制信息的包括一个或多个物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源,其中,所述sTTI为时间小于1ms的TTI;接收模块,设置为通过确定的所述一个或多个搜索空间包 括的所述一个或多个sPDCCH上接收所述下行控制信息。
进一步地,所述装置还包括:所述装置还包括:第二确定模块,设置为根据所述DCI的分配指示、DCI所在资源位置至少之一确定业务信道的资源位置,包括以下方式至少之一:在sTTI频带频带中使用连续或非连续资源分配,其中,所述资源分配包含部分或全部sPDCCH占用的区域;在sTTI频带中通过信令指示sPDSCH是否占用sTTI频带中所有资源;根据sPDCCH占用的资源隐含确定sPDSCH的资源位置;根据sPDCCH占用的资源隐含确定且结合指示信息确定sPDSCH的资源位置,其中,所述隐含确定为根据sPDCCH占用的资源位置确定调度的sPDSCH占用的资源位置。
进一步地,所述装置还包括:资源映射模块,设置为所述sPDSCH在所分配的资源块进行资源映射,其中,资源映射时速率匹配方式包括:对调度所述sPDSCH的sPDCCH和导频进行速率匹配;或者,对调度所述sPDSCH的sPDCCH所在的搜索空间和导频进行速率匹配。
进一步地,所述装置还包括:第一检测模块,设置为检测所述搜索空间,其中,所述搜索空间的使用资源是通过以下至少之一的方式配置的:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短sPRB资源;在一个或多个OFDM符号中配置部分资源。
进一步地,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,所述装置还包括:第二检测模块,设置为在所述sTTI内检测所述sPDCCH和sPDSCH,其中,所述sTTI的频域位置采用高层信令配置和/或物理层信令配置的情况下,通过以下方式至少之一配置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;所述sTTI的时域长度是采用高层信令配置和/或物理层信令配置的情况下,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
根据本发明实施例的再一方面,还提供了一种下行信息发送装置,包 括:第一配置模块,设置为配置用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,所述sTTI为时间小于1ms的TTI;发送模块,设置为向终端发送下行控制信息,其中,所述下行控制信息DCI用于所述终端通过从配置的所述一个或多个搜索空间中确定的一个或多个搜索空间包括的所述一个或多个sPDCCH上接收。
进一步地,所述第一配置模块包括:配置单元,设置为通过以下至少之一的方式配置所述搜索空间的使用资源:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短sPRB资源;在一个或多个OFDM符号中配置部分资源。
进一步地,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,所述装置还包括:第二配置模块,设置为采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的频域位置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的时域长度:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
进一步地,所述搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输ACK/NACK的上行授权UL grant for ACK/NACK、调度公有消息的下行授权DL grant for common messages。
根据本发明实施例的另一方面,还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行上述的随机接入信道拥塞处理方法。
通过本发明实施例,采用确定用于接收下行控制信息的包括一个或多 个sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下至少之一的资源:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;通过确定的所述一个或多个搜索空间包括的所述一个或多个sPDCCH上接收所述下行控制信息,解决了相关技术中下行信息的处理方法不能支持新粒度的sTTI的问题,保证时延通信需求。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的下行信息接收方法的流程图;
图2是根据本发明实施例的下行信息发送方法的流程图;
图3是根据本发明实施例的下行信息接收装置的框图;
图4是根据本发明优选实施例的下行信息接收装置的框图一;
图5是根据本发明优选实施例的下行信息接收装置的框图二;
图6是根据本发明实施例的下行信息发送装置的框图;
图7是根据本发明优选实施例的下行信息发送装置的框图一;
图8是根据本发明实施例的sPDCCH所在短TTI中搜索空间配置为一个且占用第一个OFDM符号中部分频域资源的示意图;
图9是根据本发明实施例的sPDCCH所在短TTI中搜索空间配置为两个时占用资源示意图;
图10是根据本发明实施例的根据sPDCCH占用的资源隐含确定或结合部分指示信息确定sPDSCH的资源位置的示意图;
图11是根据本发明实施例的不同sTTI band中独立确定sTTI长度且同一个sTTI band中sTTI长度相同的示意图;
图12为本发明所述两级DCI确定sTTI band中sTTI长度为可变值的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明的应用场景为低时延业务工作于LTE系统或5G系统,其中低时延业务工作于系统中的短传输时间间隔。现有LTE系统中下行控制信道(Physical Downlink Control Channel,简称为PDCCH)占用系统带宽中前0-4个OFDM符号的资源区域,增强下行控制信道(Enhanced Physical Downlink Control Channel,简称为EPDCCH)使用短物理下行共享信道(short Physical Downlink Shared Channel,简称为sPDSCH)中部分PRB资源区域。相对于现有1ms TTI长度的子帧,含有较少OFDM符号的缩短TTI作为一种新粒度的TTI,现有下行控制信道以及调度指示方法不能很好的支持新粒度TTI。在短传输时间间隔中,含有较少OFDM符号的缩短TTI作为一种新粒度的TTI,原有系统中下行控制信道以及调度指示方法不能很好的支持新粒度TTI。需要在sTTI中设计传输下行控制信息以及针对sTTI的调度指示方法。通过在sTTI中配置检测下行控制信息的资源,终端盲检测得到下行控制,进而根据下行控制信息指示、所在位置中至少之一得到下行业务信息所在sTTI中资源位置。
实施例一
本发明实施例提供了一种下行信息接收方法,图1是根据本发明实施例的下行信息接收方法的流程图,如图1所示,包括:
步骤S102,确定用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,该搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;
步骤S104,通过确定的该一个或多个搜索空间包括的该一个或多个sPDCCH上接收该下行控制信息DCI。
通过上述步骤,确定用于接收下行控制信息的包括一个或多个 sPDCCH的一个或多个搜索空间,其中,该搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;通过确定的该一个或多个搜索空间包括的该一个或多个sPDCCH上接收该下行控制信息,解决了相关技术中下行信息的处理方法不能支持新粒度的sTTI的问题,保证时延通信需求。
进一步地,根据所述DCI的分配指示、DCI所在资源位置至少之一确定业务信道的资源位置,可以包括以下方式至少之一:在sTTI频带频带中使用连续或非连续资源分配,其中,所述资源分配包含部分或全部sPDCCH占用的区域;在sTTI频带中通过信令指示sPDSCH是否占用sTTI频带中所有资源;根据sPDCCH占用的资源隐含确定sPDSCH的资源位置,该信令可以为1bit;根据sPDCCH占用的资源隐含确定且结合指示信息确定sPDSCH的资源位置,其中,所述隐含确定为根据sPDCCH占用的资源位置确定所调度的sPDSCH占用的资源位置,需要说明的是,上述的隐含确定确定业务信道资源位置可以应用于非sTTI的情况。
进一步地,所述隐含的规则包括以下至少之一:sPDCCH所在起始或结束sPRB与所述sPDCCH所调度的sPDSCH起始、结束或中间sPRB相同;DCI中指示所调度的sPDSCH的资源占用长度;DCI中指示所调度的sPDSCH的资源起始偏移值;sPDCCH所在起始或结束sPRB index乘以预先定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH起始或结束或中间sPRB;sPDCCH所在起始或结束sPRB index乘以预定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH的资源占用长度。
进一步地,所述方法还包括:所述sPDSCH在所分配的资源块进行资源映射,其中,资源映射时速率匹配方式包括:对调度所述sPDSCH的sPDCCH和导频进行速率匹配;或者,对调度所述sPDSCH的sPDCCH所在的搜索空间和导频进行速率匹配。
进一步地,所述方法还包括:终端检测所述搜索空间,其中,所述搜索空间的使用资源是通过以下至少之一的方式配置的:在sTTI中的前x个 OFDM符号中配置部分资源,在sTTI中配置部分短sPRB资源,在一个或多个OFDM符号中配置部分资源。
进一步地,所述部分资源为以下之一:子帧中至少一个物理资源承载(Physical Resource Bearer,简称为sPRB)或REG资源;sTTI中至少一个sPRB或REG资源;一个或多个OFDM符号中的至少一个sPRB或REG资源,其中,所述sPRB资源为在限制的时域OFDM符号数目内的频域上包含12个子载波资源单位。
进一步地,该sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
频域位置预定值为确定的频带位置,如系统带宽两侧、系统带宽中划分出X个频带中的一个或多个、系统带宽中心等。具体的如:系统带宽两侧频域位置最低和最高各k个PRBs,k=2、4、8、10等。系统带宽中划分X个频带,各频带包含的PRB数量优选相同,或也可以次优选不同的取值。预定图样可以优选定义不同频带大小的X个频带,也可以次优选相同的频带大小的X个频带。
时域长度预定义为sTTI=1~7个OFDM符号中的一个。预定图样为定义1个子帧中确定的sTTI长度图样,例如1个子帧中的4个sTTI长度分别为4、3、4、3个OFDM符号。
进一步地,所述方法还包括:在所述sTTI内检测所述sPDCCH、sPDSCH至少之一,其中,所述sTTI的频域位置采用高层信令配置和/或物理层信令配置的情况下,通过以下方式至少之一配置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;所述sTTI的时域长度是采用高层信令配置和/或物理层信令的情况下,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
进一步地,该搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输ACK/NACK的上 行授权UL grant for ACK/NACK、调度公有消息的下行授权DL grant for common messages。
进一步地,该搜索空间为一个的情况下,该搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages;该搜索空间为两个的情况下,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages。
进一步地,该搜索空间为多个的情况下,该多个搜索空间中至少之一位于sTTI频带内。
进一步地,该sPDCCH在sTTI内加扰时,该sPDCCH加扰序列初始值通过以下至少之一确定:sTTI序号、无线帧序号、子帧序号、时隙号、OFDM符号序号、sTTI子带序号、物理资源块PRB序号。在能够准确得知sTTI index的情况下,基于sTTI加扰相对于基于subframe加扰随机化效果好。若sTTI为动态指示时,加扰基于现有参数,无需提前获知动态sTTI index,并且不同长度的sTTI的sPDCCH共享搜索空间时,基于sPDCCH起始OFDM符号可以避免加扰基于sTTI的初始值取值冲突,需要说明的是,上述的加扰方法可以应用于非sTTI的情况。
实施例二
本发明实施例还提供了一种下行信息发送方法,图2是根据本发明实施例的下行信息发送方法的流程图,如图2所示,包括:
步骤S202,配置用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,该搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,该sTTI为时间小于1ms的TTI;
步骤S204,向终端发送下行控制信息,其中,该下行控制信息用于该终端通过从配置的该一个或多个搜索空间中确定的一个或多个搜索空间 包括的该一个或多个sPDCCH上接收。
进一步地,配置用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间包括:通过以下至少之一的方式配置所述搜索空间的使用资源:在sTTI中的前x个OFDM符号中配置部分资源,在sTTI中配置部分短sPRB资源,在一个或多个OFDM符号中配置部分资源。
进一步地,所述部分资源为以下之一:子帧中至少一个sPRB或REG资源;sTTI中至少一个sPRB或REG资源;一个或多个OFDM符号中的至少一个sPRB或REG资源,其中,所述sPRB资源为在限制的时域OFDM符号数目内的频域上包含12个子载波资源单位。
进一步地,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,所述方法还包括:采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的频域位置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的时域长度:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
进一步地,该搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输ACK/NACK的上行授权UL grant for ACK/NACK、调度公有消息的下行授权DL grant for common messages。
进一步地,该搜索空间为一个的情况下,该搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages;
该搜索空间为两个的情况下,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common  messages。
进一步地,该搜索空间为多个的情况下,该多个搜索空间中至少之一位于sTTI频带内。
实施例三
本发明实施例提供了一种下行信息接收装置,图3是根据本发明实施例的下行信息接收装置的框图,如图3所示,包括:
第一确定模块32,设置为确定用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,该搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源,其中,该sTTI为时间小于1ms的TTI;
接收模块34,设置为通过确定的该一个或多个搜索空间包括的该一个或多个sPDCCH上接收该下行控制信息。
实施例四
图4是根据本发明优选实施例的下行信息接收装置的框图一,如图4所示,该装置还包括:
第二确定模块42,设置为根据所述DCI的分配指示、DCI所在资源位置至少之一确定业务信道的资源位置,包括以下方式至少之一:在sTTI频带频带中使用连续或非连续资源分配,其中,所述资源分配包含部分或全部sPDCCH占用的区域;在sTTI频带中使用1bit指示sPDSCH是否占用sTTI频带中所有资源;根据sPDCCH占用的资源隐含确定sPDSCH的资源位置;根据sPDCCH占用的资源隐含确定且结合指示信息确定sPDSCH的资源位置,其中,所述隐含确定为根据sPDCCH占用的资源位置确定调度的sPDSCH占用的资源位置。
进一步地,该装置还包括:资源映射模块,设置为所述sPDSCH在所分配的资源块进行资源映射,其中,资源映射时速率匹配方式包括:对调度所述sPDSCH的sPDCCH和导频进行速率匹配;或者,对调度所述 sPDSCH的sPDCCH所在的搜索空间和导频进行速率匹配。
实施例五
图5是根据本发明优选实施例的下行信息接收装置的框图二,如图5所示,该装置还包括:第一检测模块52,设置为检测所述搜索空间,其中,所述搜索空间的使用资源是通过以下至少之一的方式配置的:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短sPRB资源;在一个或多个OFDM符号中配置部分资源。
进一步地,该sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,该装置还包括:第二检测模块,设置为在所述sTTI内检测所述sPDCCH和sPDSCH,其中,所述sTTI的频域位置采用高层信令配置和/或物理层信令配置的情况下,通过以下方式至少之一配置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;所述sTTI的时域长度是采用高层信令配置和/或物理层信令配置的情况下,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
实施例六
本发明实施例还提供了一种下行信息发送装置,图6是根据本发明实施例的下行信息发送装置的框图,如图6所示,包括:
第一配置模块62,设置为配置用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,该搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,该sTTI为时间小于1ms的TTI;
发送模块64,设置为向终端发送下行控制信息,其中,该下行控制信息用于该终端通过从配置的该一个或多个搜索空间中确定的一个或多个 搜索空间包括的该一个或多个sPDCCH上接收。
实施例七
图7是根据本发明优选实施例的下行信息发送装置的框图一,如图7所示,第一配置模块62包括:
配置单元72,设置为通过以下至少之一的方式配置所述搜索空间的使用资源:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短sPRB资源;在一个或多个OFDM符号中配置部分资源。
进一步地,该sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
进一步地,该装置还包括:第二配置模块,设置为采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的频域位置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;采用高层信令配置和/或物理层信令通过以下方式至少之一配置所述sTTI的时域长度:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
进一步地,该搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输ACK/NACK的上行授权UL grant for ACK/NACK、调度公有消息的下行授权DL grant for common messages。
本发明实施例还提供了一种终端,包括处理器,其中所述处理器用于执行以下步骤:
确定用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下至少之一的资源:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;
通过确定的所述一个或多个搜索空间包括的所述一个或多个sPDCCH 上接收所述下行控制信息DCI。
本发明实施例还提供了一种下行信息处理系统,包括服务器和终端,其中,所述终端包括处理器,
所述服务器,用于配置用于接收下行控制信息的包括一个或多个物理下行控制信道PDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,所述sTTI为时间小于1ms的TTI;
向终端发送下行控制信息DCI;
所述终端,用于通过从配置的所述一个或多个搜索空间中确定的一个或多个搜索空间包括的所述一个或多个sPDCCH上接收。
实施例八
为了解决低时延通信场景中现有下行控制信道以及调度指示方法不能很好的支持新粒度TTI以及降低接收检测复杂度,本发明实施例提出了一种适用于低时延需求的下行信息接收方法,主要解决包含较少OFDM符号的短TTI中下行控制信道检测以及数据接收问题,同时可以降低检测处理复杂度,可以在新粒度短TTI的情况下相应的获得较短的RTT时延,保证低时延通信需求。
终端在配置的下行控制信道搜索空间中,通过检测搜索空间相应候选集中的下行控制信道获得下行控制信息DCI。所述下行控制信道搜索空间位于子帧或sTTI或OFDM符号中的部分资源位置。所述sTTI长度为固定值或固定图样,或通过高层信令或物理层信令配置,优选RRC或SIB信令。
所述DCI为独立的DCI,或根据第一级DCI或高层信令配置获得部分参数后的第二级DCI。其中,短下行控制信道可简称为sPDCCH(Short PDCCH),所述sTTI为时间上小于1ms的TTI,对于应用于LTE系统而言,短TTI由N个OFDM符号组成,包含的OFDM符号数目N为{1、2、3、4、5、6、7}中的至少一种。其中,若sTTI包含N个OFDM符号,sPDCCH或搜索空间在时域上占用X个OFDM符号,X≤N,X优选取值为1。并且X个OFDM 符号位于sTTI的N个OFDM符号中前X个OFDM符号。X取值可以固定或由基站配置。其中,下行控制信道搜索空间位于子帧或sTTI或OFDM符号中部分资源位置,部分资源为子帧或sTTI或中一个或多个OFDM符号中部分sPRB或REG资源,或者部分资源为OFDM符号中部分sPRB或REG资源,所述sPRB资源为在限制的时域OFDM符号数目内的频域上包含12个子载波资源单位;进一步的,频域上资源单位也可以将sPRB聚合使用,以N个sPRB为一组进行使用或配置;类似的REG也可以聚合使用。
进一步地,所述配置的搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages。
(1)配置的搜索空间为一个时,所述搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages。
(2)配置的搜索空间为两个时,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、UL grant for ACK/NACK、DL grant for common messages。所述搜索空间为多个时,多个搜索空间中至少之一位于sTTI频带内。
优选地,一个搜索空间仅承载DL grant,另一个搜索空间承载UL grant、UL grant for ACK/NACK至少之一。
更进一步地,配置搜索空间使用资源的方式包括以下至少之一:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短PRB资源;在一个或多个OFDM符号中配置部分资源,需要说明的是,上述搜素空间的配置方法可以应用于非sTTI的情况。
其中,在一个或多个OFDM符号中配置部分资源时,无sTTI限制,适用于sTTI长度动态确定的场景,不同sTTI长度可以共用同一个搜索空间,例如两个UE对应的sTTI长度不同,均在重合的OFDM符号中的一个或多个OFDM符号中检测基站配置的搜索空间,需要说明的是,可以包括所有 OFDM符号中检测基站配置的搜索空间,优选重合OFDM符号中第一个。
配置的搜索空间为一个时,上述方式均可,图8是根据本发明实施例的sPDCCH所在短TTI中搜索空间配置为一个且占用第一个OFDM符号中部分频域资源的示意图,如图8所示,在sTTI中配置的搜索空间仅有一个,位于sTTI中第一个OFDM符号中部分sPRB或REG资源。由SIB或RRC配置给终端。
配置的搜索空间为两个时,且均位于sTTI频带中。优选其中一个搜索空间在sTTI中的前x个OFDM符号中配置部分资源,另一个搜索空间在sTTI中配置部分短PRB资源。图9是根据本发明实施例的sPDCCH所在短TTI中搜索空间配置为两个时占用资源示意图,如图9所示一种优选方式,仅包含DL grant的搜索空间在sTTI中第一个OFDM符号中占用部分sPRB或REG资源。由SIB或RRC配置给终端。另一个包含UL grant以及DL ACK/NACK的搜索空间在sTTI频带中所有OFDM符号中占用部分sPRB或在sTTI频带外占用部分sPRB或PRB。
配置的搜索空间为两个时,且其中一个均位于sTTI频带中。优选其中一个搜索空间在sTTI中的前x个OFDM符号中配置部分资源(位于sTTI频带中),另一个搜索空间在子帧中配置部分PRB资源(不受sTTI频带限制,位于sTTI频带外)。仅包含DL grant的搜索空间在sTTI中第一个OFDM符号中占用部分sPRB或REG资源。由SIB或RRC配置给终端。另一个包含UL grant以及DL ACK/NACK的搜索空间在子帧中所有OFDM符号中占用部分PRB。
进一步地,所述DCI中sPDSCH资源分配指示包括以下方式至少之一:在sTTI频带中使用连续或非连续资源分配,资源分配包含sPDCCH占用的区域;在sTTI频带中使用1bit指示sPDSCH是否占用sTTI中所有资源,若不是,根据sPDCCH占用的资源隐含确定或结合部分指示信息确定sPDSCH的资源位置。其中,所述隐含确定方式为根据sPDCCH占用的资源位置确定其调度的sPDSCH占用的资源位置。具体的,在sTTI频带中根据sPDCCH数量划分出sPDSCH数量,并且预定义不同sPDSCH的频域资源 范围,例如图10的(a)所示,搜索空间包含2个sPDCCH候选集,每个sPDCCH对应的sPDSCH资源占用为预定义好的,如sTTI频带频域范围的1/2,sPDSCH占用的资源为包含其调度信息的sPDCCH在内的频域范围。或者如图10的(b)或图10的(c)所示,sPDCCH占用的候选集为离散的PRB或REG,其所调度的sPDSCH占用的资源位置为以sPDCCH占用的PRB为起始,占用频域宽度由搜索空间分配PRB隐含确定,例如搜索空间配置为2个候选集,占用4个位置,sPDSCH占用频域宽度为sPDCCH占用的PRB起始至另一个候选集占用PRB起始之间的范围,即配置的候选集所在sPRB位置已经考虑到了sPDSCH资源分配的sPRB的位置。或者其所调度的sPDSCH占用的资源位置为以sPDCCH占用的PRB为起始、中间或结束,占用频域宽度由DCI指示由sPDCCH占用的sPRB起始之后sPDSCH占用频域资源大小。上述的隐含的规则包括以下至少之一:sPDCCH所在起始或结束sPRB与所述sPDCCH所调度的sPDSCH起始、结束或中间sPRB相同;DCI中指示所调度的sPDSCH的资源占用长度;DCI中指示所调度的sPDSCH的资源起始偏移值;sPDCCH所在起始或结束sPRB index乘以预先定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH起始或结束或中间sPRB;sPDCCH所在起始或结束sPRB index乘以预定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH的资源占用长度。
更进一步地,所述sPDSCH在所分配的资源块进行资源映射时速率匹配方式包括:对调度其的sPDCCH和导频进行速率匹配。对调度其的sPDCCH所在搜索空间和导频进行速率匹配。
图10是根据本发明实施例且根据sPDCCH占用的资源隐含确定或结合部分指示信息确定sPDSCH的资源位置的示意图,如图10的(a)所示,无论连续或非连续资源占用的sPDSCH,sPDCCH均可以通过自包含方式或嵌入方式在sPDSCCH使用的资源区域中使用部分资源。其中自包含方式通过仅对调度其的sPDCCH和导频进行速率匹配实现,如图10的(b)所示。嵌入式方式通过对调度其sPDCCH或sPDCCH所在搜索空间和导频进行速 率匹配实现,如图10的(c)所示。这里所述导频包括小区公有参考信号和UE专有参考信号等。
进一步,所述sTTI频域位置获得方式包括以下至少之一:仅配置一个sTTI频带频域位置;通过SIB配置多个sTTI频带位置,由RRC或DCI配置具体sTTI频带位置;通过DCI指示多个sTTI频带位置,由RRC配置具体sTTI频带位置。其中,配置信令包括高层信令半静态配置、物理层信令至少之一。其中方式一仅使用高层信令半静态配置包括使用SIB或RRC进行配置;具体包括:SIB配置1个sTTI频带;或者SIB配置多个sTTI频带,UE所在sTTI频带显示(RRC)或隐式(UE ID/RNTI)确定;或者RRC配置UE所在sTTI频带。方式二仅使用物理层信令包括CFI或DCI指示sTTI频带频域位置,其中DCI优选为两级DCI中的第一级。指示一个sTTI频带,或者指示多个sTTI频带,UE通过隐式(UE ID/RNTI)确定;方式三同时使用高层信令半静态配置和物理层信令动态指示。对于方式三,第一级DCI通知多个sTTI频带位置,RRC配置UE具体使用哪一个sTTI频带;或者SIB通知多个sTTI频带位置,第一级DCI指示UE具体使用哪一个sTTI频带。
进一步,所述sTTI的时域长度获得方式包括以下至少之一:仅配置一种sTTI长度或图样;根据不同sTTI频带独立配置sTTI长度或图样;配置动态sTTI长度,并可选的结合动态指示本子帧或无线帧中支持的最小sTTI长度。其中,配置信令包括高层信令半静态配置、物理层信令至少之一。其中方法1:sTTI length由SIB或RRC配置(半静态可变)。具体包括:(1)SIB配置1种sTTI length;(2)(可选的,SIB配置多种sTTI length集合,)RRC根据不同sTTI频带配置具体的sTTI length,即可以组合配置{sTTI频带、sTTI length},也可以单独配置。方法2:sTTI length由类似CFI配置或第一级DCI指示(子帧级可变),其中由第一级DCI指示时,包括指示固定长度或固定图样的sTTI长度。方法3:sTTI length由第二级DCI配置(sTTI级可变)。方法4:由第一级DCI和第二级DCI共同指示。其中第一级指示为本子帧中支持的最小sTTI长度,第二级DCI指示实际PDSCH所对应的sTTI的长度。
进一步,所述sPDCCH加扰序列初始值包括以下至少之一
所述下行控制信道在短TTI内加扰时,加扰序列初始值通过短TTI序号、无线帧序号、子帧序号、时隙号、OFDM符号序号、sTTI子带序号、PRB序号中至少之一进行确定。
具体的,基站侧发送sPDCCH时,加扰序列所使用的初始值确定方式包括以下至少之一:
加扰初始值通过短TTI序号确定,其中加扰序列初始值具体可以考虑:基于1ms子帧内short TTI序号sTTI或基于10ms无线帧内short TTI序号sTTI,
Figure PCTCN2017078996-appb-000001
nTTI表示子帧中sTTI编号或无线帧中sTTI编号,例如短TTI为2个OFDM符号,在normal CP时一个子帧有7个sTTI,一个无线帧有70个sTTI,此时基于子帧时nTTI=0,1,…,6,基于无线帧时nTTI=0,1,…,69。另外,如果sTTI长度是半静态可变,例如由SIB配置sTTI长度,终端可以确定sTTI index取值。在SIB更新前使用之前的sTTI长度。如果sTTI长度是动态可变的,例如由DCI配置sTTI长度,那么终端通过接收一个通知sTTI数量/序号的物理层信令以确定sTTI index,例如sTTI长度由第二级DCI指示时,第一级DCI通知sTTI数量/序号;sTTI长度由DCI指示时,额外的物理层信令如类似CFI通知sTTI数量/序号。
加扰初始值通过短TTI序号和时隙号确定,以区分无线帧中不同短TTI的加扰序列。例如1个子帧中有7个长度为2OFDM符号的短TTI,通过时隙号和sTTI序号确定初始值为
Figure PCTCN2017078996-appb-000002
nTTI表示子帧中sTTI编号,nTTI=0,1,…,6。
加扰初始值通过子帧号或无线帧号或时隙号确定,其中基于子帧号确定初始值方式为
Figure PCTCN2017078996-appb-000003
若使用无线帧序号,
Figure PCTCN2017078996-appb-000004
若使用时隙号,
Figure PCTCN2017078996-appb-000005
加扰初始值通过OFDM符号序号OFDM index确定,无论sPDSCH对应的sTTI长度是多少,sPDCCH仅使用占用资源位置中的起始OFDM符号作为加扰参数。基于OFDM符号,
Figure PCTCN2017078996-appb-000006
当使用normal CP时,区分1ms中14个不同TTI的加扰序列,l=0,1,…,13。当使用Extended CP时,区分 1ms中12个不同TTI的加扰序列,l=0,1,…,11。优选的,基于OFDM符号加扰适用于sTTI动态确定的场景,不同sTTI长度的中的sPDCCH在相同OFDM符号中使用基于OFDM index作为加扰参数。
加扰初始值通过sTTI子带序号或PRB序号确定,根据sTTI频带中起始PRB index或sTTI频带index作为加扰参数。子帧中不同sTTI频带使用不同加扰序列。子帧中同一个sTTI频带使用相同的加扰序列。基于PRB index,
Figure PCTCN2017078996-appb-000007
Figure PCTCN2017078996-appb-000008
——区分子帧中不同sTTI频带的加扰序列,nsTTI_band=0或0,1或0,1,2,3。其中,sTTI频带中起始PRB index或sTTI频带index获得方式包括专利中所述sTTI频域位置确定方法,例如两级DCI中第一级DCI通知,SIB或RRC信令配置的。
进一步地,若sPDCCH是self-contained/embedded时,则sPDCCH不再共享,此时使用C-RNTI或Group-RNTI代替
Figure PCTCN2017078996-appb-000009
生成加扰初始值,或者是RRC配置的UE-specific的参数值。
实施例九
基站通过两级DCI调度sPDSCH。第一级DCI指示sTTI频带中具有固定sTTI长度/pattern,不同sTTI频带独立确定各自的sTTI长度/pattern。其中第一级DCI位于Legacy PDCCH中,或者第一个sTTI中。
图11是根据本发明实施例的不同sTTI频带中独立确定sTTI长度且同一个sTTI频带中sTTI长度相同的示意图,如图11所示,不同sTTI频带用于不同时延需求的终端组或业务组,同一个sTTI频带中sTTI长度唯一。图11中以子帧内含有2个sTTI频带为例,不同sTTI频带中sTTI长度独立确定且同一个sTTI频带中sTTI长度只有一种。具体的信令内容为,第一级DCI指示sTTI频带、每个频带一种length。第二级DCI指示其余控制信息。如MCS、RV、NDI等。其中,第一级对于多个sTTI频带的sTTI length和/或sTTI frequency频带可以独立指示或联合指示。如表1所示。
需要说明的是,图11仅为一种示意。第一个sTTI中可以没有sPDCCH,或者有sPDCCH。例如单一DCI时第一个sTTI没有sPDCCH,两级DCI时第 一个sTTI有sPDCCH;或者sTTI划分从Legacy PDCCH区域之后开始划分,第一个sTTI有sPDCCH。
表1第一级DCI格式
Figure PCTCN2017078996-appb-000010
或者第一级DCI如表2所示。
表2第一级DCI格式
Figure PCTCN2017078996-appb-000011
其中指示多个sTTI频带以及每个频带的频域位置可以通过联合编码值r表示,如式(1)所示其中一种优选方式。其中r指示M个sTTI频带,每个sTTI频带的起始和结束sPRB位置表示。第m个sTTI频带的起始PRB和结束PRB由S2(m-1)和S2(m-1)+1表示,其中m=1,2,..M。其中N为系统带宽对应 PRB数量。i=0,1,2…,2M-1。其中Si取值范围为1至N。
Figure PCTCN2017078996-appb-000012
C是个整数常数。
Si为单调函数中互异的正整数,也就是说:S0<S1<S2。或者S0>S1>S2
在该方式中,不允许出现类似:S0=5,S1=8,S2=3,S4=10等不同sTTI频带的PRB重叠的情况。
需要说明的是,联合编码仅针对sTTI频带联合编码,对于包括该sTTI频带联合编码比特域的DCI中包含的其他比特域没有特别限制。例如:该sTTI频带联合编码比特域的DCI中是否还包含sTTI length比特域没有特别限制,是否包含都可以,不影响该sTTI频带联合编码比特域的指示实施。多个TTI频带的频域位置联合资源分配也适用于非sTTI。
终端首先接收检测下行控制信息,然后根据下行控制信息指示接收下行业务信息。
终端在Legacy PDCCH区域和配置的搜索空间中检测两级DCI。原则为考虑盲检复杂度相较于现有1ms子帧中盲检复杂度不增加。例如:两级DCI总盲检次数与Legacy PDCCH在1ms子帧中盲检测次数相同。
第一级DCI在Legacy PDCCH区域盲检测。
方法1:可以参照CSS的盲检次数。候选集共计4个。支持两种聚合等级,每种聚合等级2个候选集。方法2:定义介于CSS与USS之间的Group-SS。候选集介于4至16之间。
终端首先在Legacy PDCCH区域中接收检测第一级DCI确定后续接收检测的sTTI频带位置,在相应的sTTI频带中在预定义或配置的搜索空间中检测第二级DCI。或者终端首先在Legacy PDCCH区域接收检测第一级DCI确定可能的多个sTTI频带,根据RRC配置的具体sTTI频带,在相应的sTTI频带中检测第二级DCI。
第二级DCI在sTTI频带中前L个OFDM符号中检测。L小于等于sTTI包含的符号数。
考虑到1个子帧中包含多个sTTI,每个sTTI中sPDCCH检测候选集共计x个,x取值建议1或2或4。检测的sPDCCH所在位置可以由搜索空间配置确定。
方法1:检测固定的候选集数量x个。检测y种聚合等级对应的候选集之和共计x个。方法2:根据第一级指示的sTTI长度,确定sTTI中检测的候选集x数量。若sTTI长度较短,如1或2,则x=1或2,若sTTI长度较长,如3-4或7,则x=2或4。相应的检测的聚合等级y种的候选集之和为x个。
终端接收检测sPDSCH时,在一个sTTI频带中:
若x=1,一个sTTI中只有一个UE,sPDSCH信道在除sPDCCH和RS占用以外的RE中速率匹配。第二级DCI无需指示sPDSCH的频域资源分配。
若x>1,一个sTTI中支持大于1个UE,sPDSCH信道在除sPDCCH和RS占用以外的RE中速率匹配。在sPDCCH不独立占用OFDM符号时,分配的sPDSCH资源占用若包含了调度其的sPDCCH资源占用范围,则为self-contained/embedded形式。第二级DCI需要指示sPDSCH的频域资源分配。(1)在sTTI频带中使用连续或非连续资源分配,资源分配包含sPDCCH占用的区域;
(2)在sTTI频带中使用1bit指示sPDSCH是否占用sTTI中所有资源,若不是,根据sPDCCH占用的资源隐含确定或结合部分指示信息确定sPDSCH的资源位置。
其中所述隐含确定方式为根据sPDCCH占用的资源位置确定其调度的sPDSCH占用的资源位置。具体的,在sTTI频带中根据sPDCCH数量划分出sPDSCH数量,并且预定义不同sPDSCH的频域资源范围,例如图10的(a)所示,搜索空间包含2个sPDCCH候选集,每个sPDCCH对应的sPDSCH资源占用为预定义好的,如sTTI频带频域范围的1/2,sPDSCH占用的资源为包含其调度信息的sPDCCH在内的频域范围。或者如图10的(b)或图10的(c)所示,sPDCCH占用的候选集为离散的PRB或REG,其所调度的sPDSCH占用的资源位置为以sPDCCH占用的PRB为起始,占用频域宽度由搜索空间分配PRB隐含确定或由DCI指示,例如搜索空间配置为2个候选集, 占用4个位置,sPDSCH占用频域宽度为sPDCCH占用的PRB起始至另一个候选集占用PRB起始之间的范围,或者由DCI指示由sPDCCH占用的sPRB起始之后sPDSCH占用频域资源大小。
所述sPDSCH在所分配的资源块进行资源映射时速率匹配方式包括:对调度其的sPDCCH和导频进行速率匹配。或者对调度其的sPDCCH所在搜索空间和导频进行速率匹配。
通过本实施例的方案,通过在sTTI频带中通过第一级DCI指示短TTI长度的方式使得第二级DCI在配置的搜索空间中检测,检测位置无需在每个OFDM符号上执行,降低检测复杂度。根据部分DCI信息获得sPDSCH所在资源位置,节省了资源分配开销。
实施例十
基站通过两级DCI调度sPDSCH。第一级指示本子帧中最小sTTI length,第二级指示sTTI length。其中第一级DCI位于Legacy PDCCH中,或者第一个sTTI中。
检测sPDCCH需要知道最小的sTTI length,这样在第二级通知动态sTTI长度,至少可以获知可能的检测OFDM符号位置而不一定是每个OFDM符号都检测。同时多个sTTI频带仍然可选。图12为本发明所述两级DCI确定sTTI频带中sTTI长度为可变值的示意图,如图12所示,以子帧内含有2个sTTI频带为例,不同sTTI频带中sTTI长度独立确定,具有第一级指示的最小粒度的sTTI,第二级DCI指示sTTI的可变长度。
检测时盲检次数降低分析:(A)如果子帧中最小sTTI length为1个OFDM符号,则需要每个OFDM符号均执行盲检测,如图5中上方第一个sTTI频带所示,实际可变sTTI length是由第二级DCI通知的,其中包括最小1个OFDM符号的情况,第一级DCI通知本子帧内最小sTTI length为1个OFDM符号。每个OFDM符号都检测,实际有效sPDCCH检测位置如图中虚线框标注出的位置。(B)如果子帧中最小sTTI length为2个OFDM符号,则需要每2个OFDM符号执行盲检测,如图12中下方第二个sTTI频带所示, 实际可变sTTI length是由第二级DCI通知的,其中包括最小2个OFDM符号的情况,第一级DCI通知本子帧内最小sTTI length为2个OFDM符号,则此时检测复杂度减少一半,实际有效sPDCCH检测位置如图中虚线框标注出的位置。
具体的信令内容为,第一级DCI指示sTTI频带、sTTI最小长度sTTI_length_min,PRB分配等,如表1所示。第二级DCI指示sTTI长度和其余控制信息,如MCS、RV、NDI等。
表3第一级DCI格式
Figure PCTCN2017078996-appb-000013
终端首先接收检测下行控制信息,然后根据下行控制信息指示接收下行业务信息。
终端在Legacy PDCCH区域和配置的搜索空间中检测两级DCI。原则为考虑盲检复杂度相较于现有1ms子帧中盲检复杂度不增加。例如:两级DCI总盲检次数与Legacy PDCCH在1ms子帧中盲检测次数相同。配置的搜索空间为在最小sTTI粒度的情况下进行配置,例如最小sTTI为1个OFDM符号,则除Legacy PDCCH区域外子帧中每个OFDM符号中均配置搜索空间,例如最小sTTI为2个OFDM符号,则按照包含或排除Legacy PDCCH区域在子 帧中划分sTTI,在没有Legacy PDCCH的sTTI中配置搜索空间。
第一级DCI在Legacy PDCCH区域盲检测。
方法1:可以参照CSS的盲检次数。候选集共计4个。支持两种聚合等级,每种聚合等级2个候选集。方法2:定义介于CSS与USS之间的Group-SS。候选集介于4至16之间。
终端首先在Legacy PDCCH区域中接收检测第一级DCI确定后续接收检测的sTTI频带位置,在相应的sTTI频带中根据最小sTTI长度对应配置的搜索空间中检测第二级DCI。
第二级DCI在sTTI频带中前L个OFDM符号中检测。L小于等于最小sTTI长度包含的符号数。优选L=1。
考虑到1个子帧中包含多个sTTI,每个sTTI中sPDCCH检测候选集共计x个,x取值建议1或2或4。检测的sPDCCH所在位置可以由搜索空间配置确定。
方法1:检测固定的候选集数量x个。检测y种聚合等级对应的候选集之和共计x个。方法2:根据第一级指示的sTTI长度,确定sTTI中检测的候选集x数量。若sTTI长度较短,如1或2,则x=1或2,若sTTI长度较长,如3-4或7,则x=2或4。相应的检测的聚合等级y种的候选集之和为x个。
终端接收检测sPDSCH时,在一个sTTI频带中:
若x=1,一个sTTI中只有一个UE,sPDSCH信道在除sPDCCH和RS占用以外的RE中速率匹配。第二级DCI无需指示sPDSCH的频域资源分配。
若x>1,一个sTTI中支持大于1个UE,sPDSCH信道在除sPDCCH和RS占用以外的RE中速率匹配。在sPDCCH不独立占用OFDM符号时,分配的sPDSCH资源占用若包含了调度其的sPDCCH资源占用范围,则为self-contained/embedded形式。第二级DCI需要指示sPDSCH的频域资源分配。(1)在sTTI频带中使用连续或非连续资源分配,资源分配包含sPDCCH占用的区域;
(2)在sTTI频带中使用1bit指示sPDSCH是否占用sTTI中所有资源,若不是,根据sPDCCH占用的资源隐含确定或结合部分指示信息确定 sPDSCH的资源位置。
其中所述隐含确定方式为根据sPDCCH占用的资源位置确定其调度的sPDSCH占用的资源位置。具体的,在sTTI频带中根据sPDCCH数量划分出sPDSCH数量,并且预定义不同sPDSCH的频域资源范围,例如图10的(a)所示,搜索空间包含2个sPDCCH候选集,每个sPDCCH对应的sPDSCH资源占用为预定义好的,如sTTI频带频域范围的1/2,sPDSCH占用的资源为包含其调度信息的sPDCCH在内的频域范围。或者如图10的(b)或图10的(c)所示,sPDCCH占用的候选集为离散的PRB或REG,其所调度的sPDSCH占用的资源位置为以sPDCCH占用的PRB为起始,占用频域宽度由搜索空间分配PRB隐含确定或由DCI指示,例如搜索空间配置为2个候选集,占用4个位置,sPDSCH占用频域宽度为sPDCCH占用的PRB起始至另一个候选集占用PRB起始之间的范围,或者由DCI指示由sPDCCH占用的sPRB起始之后sPDSCH占用频域资源大小。
所述sPDSCH在所分配的资源块进行资源映射时速率匹配方式包括:对调度其的sPDCCH和导频进行速率匹配。或者对调度其的sPDCCH所在搜索空间和导频进行速率匹配。
通过本实施例的方案,通过在sTTI频带中通过第一级DCI指示短最小TTI长度的方式使得第二级DCI在最小sTTI对应配置的搜索空间中检测,当最小sTTI大于1个OFDM符号时避免在每个OFDM符号上执行,降低检测复杂度。根据部分DCI信息获得sPDSCH所在资源位置,节省了资源分配开销。
实施例十一
基站通过单一DCI调度sPDSCH。
sTTI频带确定方式包括:
方法A:sTTI频带由SIB或RRC配置(半静态可变)。
具体包括:(1)SIB配置1个sTTI频带;(2)SIB配置多个sTTI频带,UE所在sTTI频带显示(RRC)或隐式(UE ID/RNTI)确定。(3)RRC配 置UE所在sTTI频带。
方法B:sTTI频带由类似CFI配置。(子帧级可变)
sTTI length确定方式:
方法1:sTTI length由SIB或RRC配置(半静态可变)。具体包括:(1)SIB配置1种sTTI length;(2)(可选的,SIB配置多种sTTI length集合,)RRC根据不同sTTI频带配置具体的sTTI length,即可以组合配置{sTTI频带、sTTI length},也可以单独配置。
方法2:sTTI length由类似CFI配置(子帧级可变)。
方法3:sTTI length由DCI配置(sTTI级可变)。
备注:上述sTTI频带和sTTI length配置可以相互组合,优选如A1、A2、B2。
单一DCI内容:sTTI length(可选)、RA for traffic(可选)、MCS、RV、NDI等
sTTI length指示取决于是否支持子帧中sTTI动态可变,同之前第二级DCI分析;RA for traffic指示取决于sTTI中是否支持大于1个UE,同之前第二级DCI分析。
终端首先接收检测下行控制信息,然后根据下行控制信息指示接收下行业务信息。
终端在Legacy PDCCH区域和配置的搜索空间中检测不同sTTI中的DCI。原则为考虑盲检复杂度相较于现有1ms子帧中盲检复杂度不增加。例如:1ms子帧中包含的短TTI中DCI总盲检次数与Legacy PDCCH在1ms子帧中盲检测次数相同。
可选的,第一个sTTI中DCI在Legacy PDCCH区域盲检测。
方法1:可以参照CSS的盲检次数。候选集共计4个。支持两种聚合等级,每种聚合等级2个候选集。方法2:定义介于CSS与USS之间的Group-SS。候选集介于4至16之间。
终端在Legacy PDCCH区域中接收检测DCI确定子帧中第一个sTTI中的sPDSCH接收,在相应的后续sTTI中在配置的搜索空间中检测DCI确定其 中sPDSCH接收。
可选的,子帧中所有sTTI的DCI(这种情况对应与sTTI是从Legacy PDCCH区域之后开始划分sTTI的),或者子帧中除包含Legacy PDCCH的sTTI以外的其余sTTI的DCI在sTTI频带中前L个OFDM符号中检测。L小于等于sTTI包含的符号数。
考虑到1个子帧中包含多个sTTI,每个sTTI中sPDCCH检测候选集共计x个,x取值建议1或2或4。检测的sPDCCH所在位置可以由搜索空间配置确定。
方法1:检测固定的候选集数量x个。检测y种聚合等级对应的候选集之和共计x个。方法2:根据第一级指示的sTTI长度,确定sTTI中检测的候选集x数量。若sTTI长度较短,如1或2,则x=1或2,若sTTI长度较长,如3-4或7,则x=2或4。相应的检测的聚合等级y种的候选集之和为x个。
终端接收检测sPDSCH时,在一个sTTI频带中:
若x=1,一个sTTI中只有一个UE,sPDSCH信道在除sPDCCH和RS占用以外的RE中速率匹配。第二级DCI无需指示sPDSCH的频域资源分配。
若x>1,一个sTTI中支持大于1个UE,sPDSCH信道在除sPDCCH和RS占用以外的RE中速率匹配。在sPDCCH不独立占用OFDM符号时,分配的sPDSCH资源占用若包含了调度其的sPDCCH资源占用范围,则为self-contained/embedded形式。DCI需要指示sPDSCH的频域资源分配。(1)在sTTI频带中使用连续或非连续资源分配,资源分配包含sPDCCH占用的区域;
(2)在sTTI频带中使用1bit指示sPDSCH是否占用sTTI中所有资源,若不是,根据sPDCCH占用的资源隐含确定或结合部分指示信息确定sPDSCH的资源位置。
其中所述隐含确定方式为根据sPDCCH占用的资源位置确定其调度的sPDSCH占用的资源位置。具体的,在sTTI频带中根据sPDCCH数量划分出sPDSCH数量,并且预定义不同sPDSCH的频域资源范围,例如图10的(a)所示,搜索空间包含2个sPDCCH候选集,每个sPDCCH对应的sPDSCH资 源占用为预定义好的,如sTTI频带频域范围的1/2,sPDSCH占用的资源为包含其调度信息的sPDCCH在内的频域范围。或者如图10的(b)或的(c)所示,sPDCCH占用的候选集为离散的PRB或REG,其所调度的sPDSCH占用的资源位置为以sPDCCH占用的PRB为起始,占用频域宽度由搜索空间分配PRB隐含确定或由DCI指示,例如搜索空间配置为2个候选集,占用4个位置,sPDSCH占用频域宽度为sPDCCH占用的PRB起始至另一个候选集占用PRB起始之间的范围,或者由DCI指示由sPDCCH占用的sPRB起始之后sPDSCH占用频域资源大小。
所述sPDSCH在所分配的资源块进行资源映射时速率匹配方式包括:对调度其的sPDCCH和导频进行速率匹配。或者对调度其的sPDCCH所在搜索空间和导频进行速率匹配。
同时为了解决UL grant以及DL A/N的传输,在与DL grant共用搜索空间时,不是完全的self-contained,还要留出UL grant以及DL A/N的候选集,即sPDSCH使用的资源除了对调度其的DL grant和RS进行rate matching,还要对UL grant以及DL A/N进行rate matching,即对配置的sPDCCH搜索空间rate matching,如图8所示。或者为UL grant以及DL A/N在sTTI中配置独立的搜索空间(如独立的PRB),如图9所示,此时下行sPDSCH仍是完全的self-contained,即sPDSCH使用的资源仅对调度其的DL grant和RS进行rate matching。或者将UL grant以及DL A/N仅放在Legacy PDCCH中传输。
通过本实施例的方案,通过在部分资源位置配置的搜索空间中检测单一DCI并根据部分DCI信息获得sPDSCH所在资源位置,节省了资源开销和处理复杂度。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1,确定用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下至少之一的资源:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;
步骤S2,通过确定的所述一个或多个搜索空间包括的所述一个或多个sPDCCH上接收所述下行控制信息DCI。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例,应用于通信技术领域,解决了相关技术中下行信息的处理方法不能支持新粒度的sTTI的问题,保证时延通信需求。

Claims (32)

  1. 一种下行信息接收方法,包括:
    确定用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下至少之一的资源:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源;
    通过确定的所述一个或多个搜索空间包括的所述一个或多个sPDCCH上接收所述下行控制信息DCI。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述DCI的分配指示、DCI所在资源位置至少之一确定业务信道的资源位置,包括以下至少之一的方式:
    在sTTI频带中使用连续或非连续资源分配,其中,所述资源分配包含部分或全部sPDCCH占用的区域;
    在sTTI频带中通过信令指示短物理下行共享信道sPDSCH是否占用sTTI频带中所有资源;
    根据sPDCCH占用的资源隐含确定sPDSCH的资源位置;
    根据sPDCCH占用的资源隐含确定且结合指示信息确定sPDSCH的资源位置;
    其中,所述隐含确定为根据sPDCCH占用的资源位置确定调度的sPDSCH占用的资源位置。
  3. 根据权利要求2所述的方法,其中,所述隐含的规则包括以下至少之一:
    sPDCCH所在起始或结束短物理资源块sPRB与所述sPDCCH所 调度的sPDSCH起始、结束或中间sPRB相同;
    DCI中指示所调度的sPDSCH的资源占用长度;
    DCI中指示所调度的sPDSCH的资源起始偏移值;
    sPDCCH所在起始或结束sPRB index乘以预先定义,DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH起始、结束或中间sPRB;
    sPDCCH所在起始或结束短物理资源块索引sPRB index乘以预定义、DCI通知、RRC通知或SIB通知的倍数或系数,确定其所调度的sPDSCH的资源占用长度。
  4. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述sPDSCH在所分配的资源块进行资源映射,其中,资源映射时速率匹配方式包括:
    对调度所述sPDSCH的sPDCCH和导频进行速率匹配;或者,
    对调度所述sPDSCH的sPDCCH所在的搜索空间和导频进行速率匹配。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    终端检测所述搜索空间,其中,所述搜索空间的使用资源是通过以下至少之一的方式配置的:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分sPRB资源;在一个或多个OFDM符号中配置部分资源。
  6. 根据权利要求5所述的方法,其中,
    所述部分资源为以下之一:
    子帧中至少一个sPRB或资源单元组REG资源;
    sTTI中至少一个sPRB或REG资源;
    一个或多个OFDM符号中的至少一个sPRB或REG资源,其中,所述sPRB资源为在限制的时域OFDM符号数目内的频域上包含12个子载波资源单位。
  7. 根据权利要求1所述的方法,其中,所述sTTI的频域位置和/或时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    在所述sTTI内检测所述sPDCCH、sPDSCH至少之一,
    其中,所述sTTI的频域位置采用至少以下之一:高层信令配置、物理层信令配置,其中,通过以下至少之一的方式配置:配置一个sTTI频带位置,在系统消息块SIB配置多个sTTI频带位置中采用RRC配置、在SIB配置多个sTTI频带位置中采用DCI配置,在DCI指示多个sTTI频带位置中采用RRC配置;或者,
    所述sTTI的时域长度采用至少以下之一:高层信令配置、物理层信令配置,其中,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
  9. 根据权利要求1所述的方法,其中,所述搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权。
  10. 根据权利要求9所述的方法,其中,
    所述搜索空间为一个的情况下,所述搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权;
    所述搜索空间为两个的情况下,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权。
  11. 根据权利要求9所述的方法,其中,
    所述搜索空间为多个的情况下,所述多个搜索空间中至少之一位于sTTI频带内。
  12. 根据权利要求1、2、5、7、9中任一项所述的方法,其中,所述方法还包括:
    所述sPDCCH在sTTI内加扰时,所述sPDCCH加扰序列初始值通过以下至少之一确定:sTTI序号、无线帧序号、子帧序号、时隙号、OFDM符号序号、sTTI子带序号、物理资源块PRB序号。
  13. 一种下行信息发送方法,包括:
    配置用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,所述sTTI为时间小于1ms的TTI;
    向终端发送下行控制信息DCI,其中,所述DCI用于所述终端通过从配置的所述一个或多个搜索空间中确定的一个或多个搜索空间 包括的所述一个或多个sPDCCH上接收。
  14. 根据权利要求13所述的方法,其中,配置用于接收下行控制信息的包括一个或多个sPDCCH的一个或多个搜索空间包括:
    通过以下至少之一的方式配置所述搜索空间的使用资源:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分sPRB资源;在一个或多个OFDM符号中配置部分资源。
  15. 根据权利要求14所述的方法,其中,所述部分资源为以下之一:
    子帧中至少一个sPRB或REG资源;
    sTTI中至少一个sPRB或REG资源;
    一个或多个OFDM符号中的至少一个sPRB或REG资源,其中,所述sPRB资源为在限制的时域OFDM符号数目内的频域上包含12个子载波资源单位。
  16. 根据权利要求13所述的方法,其中,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    采用以下至少之一:高层信令配置、物理层信令配置所述sTTI的频域位置,其中,通过以下方式至少之一配置:
    配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;
    采用以下至少之一:高层信令配置、物理层信令配置所述sTTI 的时域长度,其中,通过以下方式至少之一配置:
    配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
  18. 根据权利要求13所述的方法,其中,所述搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权。
  19. 根据权利要求18所述的方法,其中,
    所述搜索空间为一个的情况下,所述搜索空间承载的DCI消息格式包括以下至少之一:DL grant、UL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权;
    所述搜索空间为两个的情况下,其中一个搜索空间承载的DCI消息格式仅包括DL grant,另一个搜索空间承载的DCI消息格式包括以下至少之一:DL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权。
  20. 根据权利要求19所述的方法,其中,所述搜索空间为多个的情况下,所述多个搜索空间中至少之一位于sTTI频带内。
  21. 一种下行信息接收装置,包括:
    第一确定模块,设置为确定用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧中的部分资源,短发送时间间隔sTTI中的部分资源,正交频分复用OFDM符号中的部分资源,其中,所述sTTI为时间小于1ms的TTI;
    接收模块,设置为通过确定的所述一个或多个搜索空间包括的所述一个或多个sPDCCH上接收所述下行控制信息DCI。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    第二确定模块,设置为根据所述DCI的分配指示、DCI所在资源位置至少之一确定业务信道的资源位置,包括以下至少之一的方式:在sTTI频带中使用连续或非连续资源分配,其中,所述资源分配包含部分或全部sPDCCH占用的区域;在sTTI频带中通过信令指示短物理下行共享sPDSCH是否占用sTTI频带中所有资源;根据sPDCCH占用的资源隐含确定sPDSCH的资源位置;根据sPDCCH占用的资源隐含确定且结合指示信息确定sPDSCH的资源位置,其中,所述隐含确定为根据sPDCCH占用的资源位置确定调度的sPDSCH占用的资源位置。
  23. 根据权利要求22所述的装置,其中,所述装置还包括:
    资源映射模块,设置为所述sPDSCH在所分配的资源块进行资源映射,其中,资源映射时速率匹配方式包括:对调度所述sPDSCH的sPDCCH和导频进行速率匹配;或者,对调度所述sPDSCH的sPDCCH所在的搜索空间和导频进行速率匹配。
  24. 根据权利要求21所述的装置,其中,所述装置还包括:
    第一检测模块,设置为检测所述搜索空间,其中,所述搜索空间的使用资源是通过以下至少之一的方式配置的:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短物理资源块sPRB资源;在一个或多个OFDM符号中配置部分资源。
  25. 根据权利要求21所述的装置,其中,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、 物理层信令配置的值。
  26. 根据权利要求25所述的装置,其中,所述装置还包括:
    第二检测模块,设置为在所述sTTI内检测所述sPDCCH、sPDSCH至少之一,其中,所述sTTI的频域位置采用至少以下之一:高层信令配置、物理层信令配置,其中,通过以下至少之一的方式配置:配置一个sTTI频带位置,在系统消息块SIB配置多个sTTI频带位置中采用RRC配置、在SIB配置多个sTTI频带位置中采用DCI配置,在DCI指示多个sTTI频带位置中采用RRC配置;所述sTTI的时域长度采用至少以下之一:高层信令配置、物理层信令配置,其中,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
  27. 一种下行信息发送装置,包括:
    第一配置模块,设置为配置用于接收下行控制信息的包括一个或多个短物理下行控制信道sPDCCH的一个或多个搜索空间,其中,所述搜索空间包括以下资源至少之一:子帧,短发送时间间隔sTTI的部分资源,正交频分复用OFDM符号中的部分,其中,所述sTTI为时间小于1ms的TTI;
    发送模块,设置为向终端发送下行控制信息,其中,所述下行控制信息DCI用于所述终端通过从配置的所述一个或多个搜索空间中确定的一个或多个搜索空间包括的所述一个或多个sPDCCH上接收。
  28. 根据权利要求27所述的装置,其中,所述第一配置模块包括:
    配置单元,设置为通过以下至少之一的方式配置所述搜索空间的 使用资源:在sTTI中的前x个OFDM符号中配置部分资源;在sTTI中配置部分短sPRB资源;在一个或多个OFDM符号中配置部分资源。
  29. 根据权利要求27所述的装置,其中,所述sTTI的频域位置、时域长度为以下至少之一:预定值、预定图样、高层信令配置的值、物理层信令配置的值。
  30. 根据权利要求29所述的装置,其中,所述装置还包括:
    第二配置模块,设置为采用以下至少之一:高层信令配置、物理层信令配置所述sTTI的频域位置,其中,通过以下方式至少之一配置:配置一个sTTI频带位置,采用RRC或DCI通过SIB配置多个sTTI频带位置,采用RRC通过DCI指示多个sTTI频带位置;采用以下至少之一:高层信令配置、物理层信令配置所述sTTI的时域长度,其中,通过以下方式至少之一配置:配置一种sTTI长度或图样,根据不同sTTI频带独立配置sTTI长度或图样,配置动态sTTI长度,并结合动态指示子帧或无线帧中支持的最小sTTI长度。
  31. 根据权利要求27所述的装置,其中,所述搜索空间为一个或多个,承载的DCI消息格式包括以下至少之一:下行授权DL grant、上行授权UL grant、传输正确/错误应答消息的上行授权、调度公有消息的下行授权。
  32. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行上述权利要求1-12、13-20任一项所述的随机接入信道拥塞处理方法。
PCT/CN2017/078996 2016-04-01 2017-03-31 下行信息发送、接收方法及装置 WO2017167271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610206022.2A CN107294897B9 (zh) 2016-04-01 2016-04-01 下行信息发送、接收方法及装置
CN201610206022.2 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017167271A1 true WO2017167271A1 (zh) 2017-10-05

Family

ID=59963543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078996 WO2017167271A1 (zh) 2016-04-01 2017-03-31 下行信息发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN107294897B9 (zh)
WO (1) WO2017167271A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068392A (zh) * 2018-09-27 2018-12-21 京信通信系统(中国)有限公司 用户调度方法、装置及基站
WO2019076346A1 (zh) * 2017-10-20 2019-04-25 华为技术有限公司 下行控制信息的传输、盲检测次数的获取方法和装置
EP3528529A4 (en) * 2016-11-04 2019-10-16 Vivo Mobile Communication Co., Ltd. DETECTION METHOD AND DISPLAY METHOD FOR A DOWNLINK CONTROL CHANNEL, DEVICE AND NETWORK-SIDED DEVICE
CN112713973A (zh) * 2019-10-24 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710233A (zh) * 2017-11-17 2022-07-05 华为技术有限公司 下行控制信息确定方法和通信装置
CN110011761B (zh) * 2018-01-05 2021-11-19 中国移动通信有限公司研究院 混合重传反馈方法、网络侧设备及终端
CN114449666A (zh) * 2018-02-12 2022-05-06 维沃移动通信有限公司 一种下行控制信息dci的传输方法、装置及网络设备
CN110247685B (zh) * 2018-03-08 2021-11-19 中国移动通信有限公司研究院 波束指示方法、数据传输方法、装置、基站及终端
US10681722B2 (en) 2018-04-17 2020-06-09 Huawei Technologies Co., Ltd. Method for communication and an apparatus thereof
CN110505693A (zh) * 2018-05-17 2019-11-26 普天信息技术有限公司 控制信道的资源配置方法和装置
CN110719241A (zh) * 2018-07-11 2020-01-21 普天信息技术有限公司 一种对pdcch进行加扰的方法和设备
JP7313424B2 (ja) * 2018-07-25 2023-07-24 オッポ広東移動通信有限公司 信号伝送方法及び装置、ネットワーク装置、端末機器
CN111327410B (zh) * 2018-12-17 2021-05-18 华为技术有限公司 一种用于载波聚合系统的通信方法、终端及网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808408A (zh) * 2010-02-11 2010-08-18 中兴通讯股份有限公司 下行控制信息的传输方法及传输系统
CN104823396A (zh) * 2013-01-14 2015-08-05 Lg电子株式会社 接收下行链路信号的方法和用户设备以及发送下行链路信号的方法和基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740407B (zh) * 2011-04-11 2017-08-29 中兴通讯股份有限公司 上行调度方法及系统、终端及基站
KR102127535B1 (ko) * 2011-11-23 2020-06-29 블랙베리 리미티드 무선통신시스템에서 제어정보 전송/획득 방법 및 장치
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808408A (zh) * 2010-02-11 2010-08-18 中兴通讯股份有限公司 下行控制信息的传输方法及传输系统
CN104823396A (zh) * 2013-01-14 2015-08-05 Lg电子株式会社 接收下行链路信号的方法和用户设备以及发送下行链路信号的方法和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Physical Layer Aspects of Short TTI for Downlink Transmissions", 3GPP TSG RAN WG1 MEETING #84 R1-160934, 19 February 2016 (2016-02-19), XP051053548 *
HUAWEI ET AL.: "Control Signaling Enhancements for Short TTI", 3GPPTSG RAN WG1 MEETING #83 R1-156461, 22 November 2015 (2015-11-22), XP051002921 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528529A4 (en) * 2016-11-04 2019-10-16 Vivo Mobile Communication Co., Ltd. DETECTION METHOD AND DISPLAY METHOD FOR A DOWNLINK CONTROL CHANNEL, DEVICE AND NETWORK-SIDED DEVICE
US11109250B2 (en) 2016-11-04 2021-08-31 Vivo Mobile Communication Co., Ltd. Method for detecting downlink control channel, method for indicating downlink control channel, terminal and network side device
WO2019076346A1 (zh) * 2017-10-20 2019-04-25 华为技术有限公司 下行控制信息的传输、盲检测次数的获取方法和装置
CN109699076A (zh) * 2017-10-20 2019-04-30 华为技术有限公司 下行控制信息的传输、盲检测次数的获取方法和装置
US11540147B2 (en) 2017-10-20 2022-12-27 Huawei Technologies Co., Ltd. Downlink control information transmission method, method for obtaining quantity of blind detection times, and apparatus
CN109699076B (zh) * 2017-10-20 2023-11-10 华为技术有限公司 下行控制信息的传输、盲检测次数的获取方法和装置
CN109068392A (zh) * 2018-09-27 2018-12-21 京信通信系统(中国)有限公司 用户调度方法、装置及基站
CN109068392B (zh) * 2018-09-27 2022-11-01 京信网络系统股份有限公司 用户调度方法、装置及基站
CN112713973A (zh) * 2019-10-24 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN107294897B9 (zh) 2022-09-09
CN107294897A (zh) 2017-10-24
CN107294897B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2017167271A1 (zh) 下行信息发送、接收方法及装置
US11337205B2 (en) Method and apparatus for determining numerology bandwidth in a wireless communication system
CN110476385B (zh) 用于接收下行链路数据传输的方法和装置
KR102001991B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
KR101971410B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
CN106550459B (zh) 一种下行控制方法及装置
US20220385432A1 (en) Flexible radio resource allocation
CN107295696B (zh) 信道接入方法、装置、ue及基站
EP2517516B1 (en) Method and apparatus for resource allocation with carrier extension
KR20210031995A (ko) 업링크 송신 방법, 사용자 단말기, 기지국 및 컴퓨터 리드 가능 매체
RU2734860C1 (ru) Индикация сигналов в сетях беспроводной связи
CN113424474A (zh) 在无线通信系统中发送上行链路控制信道的装置和方法
US20200100276A1 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
KR20180069834A (ko) 낮은 레이턴시 전송들을 위한 방법 및 장치
KR20180061341A (ko) 낮은 레이턴시 전송들을 위한 방법 및 장치
KR20180017135A (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
KR20180070600A (ko) 낮은 레이턴시 전송들을 위한 방법 및 장치
KR20100014118A (ko) 다중 반송파 시스템에서 데이터 전송 방법 및 장치
CN114503761A (zh) 复用上行链路控制信息的方法及相关设备
CN110832930A (zh) 用于未许可频谱上的上行链路传输的多个起始位置
CN113574948A (zh) 用于复用uci的方法和装备
US20210100024A1 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
US11202305B2 (en) Method and apparatus for transmission and reception of data channel in wireless communication system
CN111757489A (zh) 下行控制信息传输方法及装置
KR20210092593A (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773301

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773301

Country of ref document: EP

Kind code of ref document: A1