WO2019085836A1 - 制动电阻回路接触器粘连检测系统及方法 - Google Patents

制动电阻回路接触器粘连检测系统及方法 Download PDF

Info

Publication number
WO2019085836A1
WO2019085836A1 PCT/CN2018/112159 CN2018112159W WO2019085836A1 WO 2019085836 A1 WO2019085836 A1 WO 2019085836A1 CN 2018112159 W CN2018112159 W CN 2018112159W WO 2019085836 A1 WO2019085836 A1 WO 2019085836A1
Authority
WO
WIPO (PCT)
Prior art keywords
main contactor
contactor
power
control unit
braking resistor
Prior art date
Application number
PCT/CN2018/112159
Other languages
English (en)
French (fr)
Inventor
张琪
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2019085836A1 publication Critical patent/WO2019085836A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers

Definitions

  • the present invention relates to the field of motor control, and more particularly to a brake resistor loop contactor adhesion detection system and method.
  • Braking resistors are mainly used in mechanical systems where the inverter controls the motor to stop quickly, helping the motor to convert its regenerative energy generated by rapid shutdown into heat.
  • the excess electric energy fed back during the braking process of the electric vehicle is discharged to the braking resistor through the braking resistor controller.
  • the contactor breaking signal will not respond effectively, the battery will continue to discharge, causing damage to the power battery and even greater danger. Therefore, it is necessary to use an effective method to detect whether the brake unit contactor is stuck.
  • the existing contactor adhesion detection technologies mainly include the following:
  • the technical problem to be solved by the present invention is to provide a new braking resistor loop contactor adhesion detecting system and method for the above-mentioned problem that the braking resistor loop contactor adhesion detection is easily misjudged and the circuit is complicated.
  • the technical solution of the present invention is to provide a brake resistor loop contactor adhesion detection system, which includes a power battery, a main contactor, a braking resistor, a snubber capacitor, and a semiconductor switch tube, and The braking resistor, the snubber capacitor, and the semiconductor switch tube are connected to a rear end of the main contactor, and the detecting system includes a braking resistor control unit, a sampling unit, and a power-off control unit, wherein:
  • the braking resistor control unit is configured to actively discharge a circuit at a rear end of the main contactor through the semiconductor switch tube after receiving a power-off command and delaying a first preset time;
  • the sampling unit is configured to sample the back end voltage of the main contactor after receiving the power-off instruction and delaying the second preset time;
  • the power-off control unit is configured to enable the braking resistor control unit to enter a standby mode and upload fault information when a back-end voltage of the main contactor obtained by sampling is higher than a set voltage.
  • the first preset time is a physical delay time when the main contactor is disconnected
  • the second preset time is the first The sum of the preset time and the discharge delay time of the main contactor back-end circuit.
  • the discharge delay time is: disconnected from the main contactor to the main body without the main contactor being stuck The time at which the back-end voltage of the contactor drops to a preset value.
  • the power-off control unit turns off the brake when the back-end voltage of the main contactor obtained by sampling is less than or equal to a set voltage Power supply to the resistor control unit.
  • the detecting system includes a main contactor control unit for controlling the main contactor to be turned off after receiving the power-off command.
  • the invention also provides a braking resistor loop contactor adhesion detecting method, the braking resistor loop comprises a power battery, a main contactor, a braking resistor, a snubber capacitor and a semiconductor switching tube, and the braking resistor and the snubber capacitor And a semiconductor switch tube is connected to the rear end of the main contactor, and the detecting method comprises the following steps:
  • the main contactor rear-end circuit After receiving the power-off command and delaying the first preset time, the main contactor rear-end circuit is actively discharged through the semiconductor switch tube;
  • the braking resistor control unit When the back end voltage of the main contactor obtained by sampling is higher than the set voltage, the braking resistor control unit is brought into the standby mode and the fault information is uploaded.
  • the first preset time is a physical delay time when the main contactor is disconnected
  • the second preset time is the first The sum of the preset time and the discharge delay time of the main contactor back-end circuit.
  • the discharge delay time is: disconnected from the main contactor to the main body without the main contactor being stuck The time at which the back-end voltage of the contactor drops to a preset value.
  • the detecting method further includes: disconnecting the system when the back end voltage of the main contactor obtained by sampling is less than or equal to a set voltage Power supply to the dynamic resistance control unit.
  • the detecting method comprises: controlling the main contactor to be disconnected after receiving the power-off command.
  • the braking resistor loop contactor adhesion detecting system and method of the invention can quickly perform positioning when a blocking failure occurs without externally expanding a complicated branch detecting circuit and sampling circuit, and the entire detecting process does not affect due to a short detection time. Power off normally.
  • FIG. 1 is a schematic view of an embodiment of a brake resistor loop contactor adhesion detecting system of the present invention
  • Figure 2 is a graph showing the voltage change at the rear end of the main contactor when the main contactor rear end circuit is discharged
  • FIG. 3 is a schematic flow chart of an embodiment of a method for detecting adhesion of a brake resistor loop contactor of the present invention.
  • FIG. 1 is a schematic diagram of an embodiment of a brake resistor loop contactor adhesion detecting system of the present invention.
  • the brake resistor loop contactor adhesion detecting system is specifically applicable to contactor adhesion detection in an electric vehicle brake unit.
  • the braking resistor circuit includes a power battery, a main contactor KM1, a braking resistor R1, a snubber capacitor C1, and a semiconductor switching tube, and the power battery, the main contactor KM1, the braking resistor R1, and the semiconductor switching tube are connected in series.
  • the snubber capacitor C1 is connected in parallel with the series connected braking resistor R1 and the semiconductor switching tube.
  • the braking resistor R1, the snubber capacitor C1, and the semiconductor switching tube are connected to the rear end of the main contactor KM1, and in order to improve safety, a fuse may be added to the braking resistor circuit.
  • the semiconductor switching transistor may be an IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor switching tube can also be a triode, a metal oxide semiconductor field effect transistor (ie, a MOS tube), or the like.
  • the brake resistor loop contactor adhesion detecting system includes a power-down control unit 11, a braking resistor control unit 12, and a sampling unit 13, wherein the braking resistor control unit 12 and the sampling unit 13 respectively and below
  • the electric control unit 11 is connected, and the input end of the sampling unit 13 is connected to the rear end of the main contactor KM1 in the braking resistor circuit (sampling point A as shown), and the output of the braking resistor control unit 12 is connected to
  • the control end of the semiconductor switch tube controls the conduction of the semiconductor switch tube to open, so that the brake resistor circuit is turned on or off, and the power of the power battery is discharged to the brake resistor R1.
  • the braking resistor control unit 12 realizes the on-time control of the semiconductor switching transistor by outputting a pulse width modulation signal to the semiconductor switching transistor.
  • the brake resistor loop contactor adhesion detecting system described above may further include a main contactor control unit that controls the main contactor KM1 to be turned off after receiving the power-off command.
  • the braking resistor control unit 12 passes the semiconductor switch to the circuit at the rear end of the main contactor KM1 (ie, the snubber capacitor C1 and the braking resistor R1). And the resistor and capacitor in the line are actively discharged, that is, output a predetermined pulse width modulation signal to the control end of the semiconductor switch tube, and quickly release the residual voltage of the resistive load in the circuit at the rear end of the main contactor KM1.
  • the receiving the power-off command and the delay first preset time may be performed by the power-off control unit 11, and after the power-off control unit 11 receives the power-off command and delays the first preset time, sends a signal to the braking resistor control unit 12.
  • the brake resistor control unit 12 is caused to perform a voltage release operation.
  • the sampling unit 13 collects the back-end voltage of the main contactor KM1 (ie, the voltage at point A in FIG. 1).
  • the receiving the power-off command and the delay second preset time may be performed by the power-off control unit 11, and after receiving the power-off command and delaying the second preset time, the power-off control unit 11 sends a signal to the sampling unit 13 and The sampling unit 13 obtains the sampled voltage of the feedback.
  • the power-off control unit 11 When the rear end voltage of the main contactor KM1 sampled by the sampling unit 13 is higher than the set voltage, the power-off control unit 11 causes the braking resistor control unit 12 to enter the standby mode and uploads fault information, that is, to the control system (for example, an electric car). The vehicle control system) feedback jamming fault of the main contactor KM1. If the back end voltage of the main contactor KM1 sampled by the sampling unit 13 is less than or equal to the set voltage, the power-off control unit 11 confirms that the main contactor KM1 of the braking resistor circuit has no adhesion, and turns off the braking resistor control unit 12. The power supply is controlled by the control system under normal conditions.
  • the circuit structure of the above-mentioned braking resistor loop contactor adhesion detecting system is relatively simple, and the complicated tributary detecting circuit and the sampling circuit are not expanded, and the positioning can be quickly performed in the event of a fault, and the installation and disassembly are convenient; and the above-mentioned braking resistor loop contactor adhesion detection
  • the short detection time of the system does not affect the normal power-off of the control system, and the safety is strong, and the requirements for detection accuracy are low.
  • the above-mentioned braking resistor loop contactor adhesion detecting system can effectively prevent false positives caused by voltage sampling errors by quickly releasing the residual voltage of the resistive load in the circuit at the rear end of the main contactor KM1, and has high flexibility in software strategy. , with strong scalability.
  • the first preset time can be the physical delay time of the main contactor KM1 being disconnected, and the physical delay time is affected by multiple factors.
  • the influence, such as the specification, model, design, life and working conditions of the main contactor KM1, can be set according to the parameters of the main contactor KM1.
  • the second preset time is the sum of the first preset time and the discharge delay time of the back end circuit of the main contactor KM1.
  • the simplified model of the load at the back end of the main contactor KM1 is the R1C1 circuit.
  • the discharge delay time T is selected according to the parameters of the braking resistor control unit 12, and according to the corresponding software strategy, the voltage sampling point (T, U t ) on the braking curve of the braking resistor is taken, and the voltage value U t of the sampling point to be detected is taken.
  • ⁇ ⁇ U 0 ( ⁇ is a percentage coefficient, which is evaluated according to the discharge characteristics of the hardware), and the discharge delay time T is obtained by deducting. That is, the discharge delay time T is the time from when the main contactor KM1 is not stuck, and the voltage from the main contactor KM1 to the rear end of the main contactor KM1 drops to a preset value.
  • FIG. 3 is a schematic flow chart of an embodiment of a method for detecting adhesion of a brake resistor loop contactor according to the present invention.
  • the brake resistor circuit includes a power battery, a main contactor, a braking resistor, a snubber capacitor, and a semiconductor switch tube.
  • the dynamic resistor, the snubber capacitor, and the semiconductor switch tube are connected to the rear end of the main contactor.
  • the detection method of the present invention comprises the following steps:
  • Step S31 The pulse width modulation signal is output from the braking resistor control unit to the control end of the semiconductor switching tube, so that the power of the power battery is discharged through the braking resistor.
  • Step S32 Step S33 is performed after receiving the power-off instruction, otherwise step S31 is continued.
  • Step S33 Disconnect the main contactor (ie, perform the main contactor disconnection operation) and delay the first preset time.
  • the first preset time may be a physical delay time of the main contactor being disconnected, and the physical delay time is affected by multiple factors, such as the specification, model, design, life, working conditions of the main contactor, etc., according to the main Parameter setting of the contactor.
  • Step S34 The pulse width modulation signal is outputted from the braking resistor control unit to the control end of the semiconductor switch tube, and the main contactor rear end circuit is actively discharged, that is, the residual voltage of the resistive load in the circuit at the rear end of the main contactor is released.
  • Step S35 Delaying the power-off delay time.
  • the power-off delay time is a time from when the main contactor is not stuck to when the rear contact voltage of the main contactor drops to a preset value.
  • the power-off delay time can be obtained by inversely pushing the voltage curve of the back end of the main contactor when the rear-end circuit of the main contactor is discharged.
  • Step S36 Sampling the back end voltage of the main contactor, and when the back end voltage of the main contactor obtained by the sampling is higher than the set voltage, step S37 is performed, otherwise step S38 is performed.
  • Step S37 feedback main contactor stuck fault. In this case, it is confirmed that the main contactor has a stuck fault, causing the brake resistor control unit to enter the standby mode and upload the fault information.
  • Step S38 The control system is powered off normally. At this point, confirm that the main contactor of the brake resistor circuit is not stuck and disconnect the power supply from the brake resistor control unit.

Abstract

一种制动电阻回路接触器粘连检测系统及方法,检测系统包括制动电阻控制单元(12)、采样单元(13)以及下电控制单元(11),其中:制动电阻控制单元(12)用于在接收到下电指令并延时第一预设时间后,通过半导体开关管对主接触器(KM1)后端的电路进行主动放电;采样单元(13)用于在接收到下电指令并延时第二预设时间后,采样主接触器(KM1)的后端电压;下电控制单元(11)用于在采样获得的主接触器(KM1)的后端电压高于设定电压时,使制动电阻控制单元(12)进入待机模式并上传故障信息。系统无需外扩复杂的支流检测电路和采样电路即可在出现粘连故障时快速进行定位,并且由于检测时间短,整个检测过程不影响正常下电。

Description

制动电阻回路接触器粘连检测系统及方法 技术领域
本发明涉及电机控制领域,更具体地说,涉及一种制动电阻回路接触器粘连检测系统及方法。
背景技术
制动电阻主要用于在变频器控制电机快速停车的机械系统中,帮助电机将其因快速停车所产生的再生电能转化为热能。例如,在电动汽车中,通过制动电阻控制器,将电动汽车刹车过程中回馈的多余电能泄放到制动电阻上。然而,一旦在上述制动电阻回路中发生接触器粘连,将会导致接触器开断信号无法有效响应,电池持续放电,造成动力电池损坏,甚至发生更大的危险。因此,有必要采用一种有效的方法检测制动单元接触器是否粘连。
现有接触器粘连检测技术主要有以下几种:
(1)在需要进行检测的接触器的两点设置采样引脚,通过判断前后绝对压差是否在一定阈值范围内来判断接触器粘连状况。这种检测方法优势在于原理简单;其缺陷在于:容易造成粘连检测的误判,且不适用于复杂电路结构的粘连判断。
(2)在制动电阻控制器主回路端增加续流检测回路和电压采样回路,通过控制支路上接触器的通断和电压采样值来判断主接触器的粘连状况。这种检测方法优势在于电路结构严谨,且出现接触器粘连故障时另外一条支路能够保证动力电池正常工作;其缺陷在于:增加了电池放电回路的复杂程度,需要高精度采样设备,检测成本高。
发明内容
本发明要解决的技术问题在于,针对上述制动电阻回路接触器粘连检测容 易误判、电路复杂的问题,提供一种新的制动电阻回路接触器粘连检测系统及方法。
本发明解决上述技术问题的技术方案是,提供一种制动电阻回路接触器粘连检测系统,所述制动电阻回路包括动力电池、主接触器、制动电阻、缓冲电容以及半导体开关管,且所述制动电阻、缓冲电容以及半导体开关管连接于所述主接触器的后端,所述检测系统包括制动电阻控制单元、采样单元以及下电控制单元,其中:
所述制动电阻控制单元,用于在接收到下电指令并延时第一预设时间后,通过所述半导体开关管对所述主接触器后端的电路进行主动放电;
所述采样单元,用于在接收到下电指令并延时第二预设时间后,采样所述主接触器的后端电压;
所述下电控制单元,用于在采样获得的所述主接触器的后端电压高于设定电压时,使所述制动电阻控制单元进入待机模式并上传故障信息。
在本发明所述的制动电阻回路接触器粘连检测系统中,所述第一预设时间为所述主接触器断开的物理延时时间,所述第二预设时间为所述第一预设时间与所述主接触器后端电路的放电延时时间之和。
在本发明所述的制动电阻回路接触器粘连检测系统中,所述放电延时时间为:在所述主接触器未发生粘连的情况下,从所述主接触器断开至所述主接触器的后端电压下降到预设值的时间。
在本发明所述的制动电阻回路接触器粘连检测系统中,所述下电控制单元在采样获得的所述主接触器的后端电压小于或等于设定电压时,断开所述制动电阻控制单元的供电。
在本发明所述的制动电阻回路接触器粘连检测系统中,所述检测系统包括主接触器控制单元,用于在接收到下电指令后控制所述主接触器断开。
本发明还提供一种制动电阻回路接触器粘连检测方法,所述制动电阻回路包括动力电池、主接触器、制动电阻、缓冲电容以及半导体开关管,且所述制动电阻、缓冲电容以及半导体开关管连接于所述主接触器的后端,所述检测方法包括以下步骤:
在接收到下电指令并延时第一预设时间后,通过半导体开关管对主接触器后端电路进行主动放电;
在接收到下电指令并延时第二预设时间后,采样所述主接触器的后端电压;
在采样获得的所述主接触器的后端电压高于设定电压时,使制动电阻控制单元进入待机模式并上传故障信息。
在本发明所述的制动电阻回路接触器粘连检测方法中,所述第一预设时间为所述主接触器断开的物理延时时间,所述第二预设时间为所述第一预设时间与所述主接触器后端电路的放电延时时间之和。
在本发明所述的制动电阻回路接触器粘连检测方法中,所述放电延时时间为:在所述主接触器未发生粘连的情况下,从所述主接触器断开至所述主接触器的后端电压下降到预设值的时间。
在本发明所述的制动电阻回路接触器粘连检测方法中,所述检测方法还包括:在采样获得的所述主接触器的后端电压小于或等于设定电压时,断开所述制动电阻控制单元的供电。
在本发明所述的制动电阻回路接触器粘连检测方法中,所述检测方法包括:在接收到下电指令后控制所述主接触器断开。
本发明的制动电阻回路接触器粘连检测系统及方法,无需外扩复杂的支流检测电路和采样电路,即可在出现粘连故障时快速进行定位,并且由于检测时间短,整个检测过程不会影响正常下电。
附图说明
图1是本发明制动电阻回路接触器粘连检测系统实施例的示意图;
图2是在对主接触器后端电路放电时主接触器后端电压变化曲线图;
图3是本发明制动电阻回路接触器粘连检测方法实施例的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,是本发明制动电阻回路接触器粘连检测系统实施例的示意图,该制动电阻回路接触器粘连检测系统具体可应用于电动汽车制动单元中的接触器粘连检测等。其中,制动电阻回路包括动力电池、主接触器KM1、制动电阻R1、缓冲电容C1以及半导体开关管,且上述动力电池、主接触器KM1、制动电阻R1以及半导体开关管串接成回路,缓冲电容C1则与串接的制动电阻R1和半导体开关管并联连接。上述制动电阻回路中,制动电阻R1、缓冲电容C1以及半导体开关管连接于主接触器KM1的后端,且为了提高安全性,还可在上述制动电阻回路中增加熔断器。上述半导体开关管具体可采用IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)。当然在实际应用中,半导体开关管也可采用三极管、金属氧化物半导体场效应晶体管(即MOS管)等。
在本发明的一个实施例中,制动电阻回路接触器粘连检测系统包括下电控制单元11、制动电阻控制单元12以及采样单元13,其中制动电阻控制单元12和采样单元13分别与下电控制单元11连接,且采样单元13的输入端连接到制动电阻回路中的主接触器KM1的后端(如图所示的采样点A),制动电阻控制单元12的输出端连接到半导体开关管的控制端,以控制半导体开关管的导通和断开,从而使制动电阻回路导通或断开,实现动力电池的电能泄放到制动电阻R1。具体地,上述制动电阻控制单元12通过向半导体开关管输出脉冲宽度调制信号,实现半导体开关管的导通时间控制。
上述的制动电阻回路接触器粘连检测系统还可包括主接触器控制单元,该主接触器控制单元在接收到下电指令后控制主接触器KM1断开。
在本实施例中,制动电阻控制单元12在接收到下电指令并延时第一预设时间后,通过半导体开关管对主接触器KM1后端的电路(即缓冲电容C1、制动电阻R1及线路中的电阻和电容)进行主动放电,即向半导体开关管的控制端输出预定脉冲宽度调制信号,快速释放主接触器KM1后端的电路中阻容性负载的残留电压。其中接收下电指令和延时第一预设时间可由下电控制单元11 执行,在下电控制单元11接收到下电指令并延时第一预设时间后,向制动电阻控制单元12发送信号,使制动电阻控制单元12进行电压释放操作。
待放电进入平稳期后(即在接收到下电指令并延时第二预设时间后),采样单元13采集主接触器KM1后端电压(即图1中的A点电压)。其中接收下电指令和延时第二预设时间可由下电控制单元11执行,在下电控制单元11接收到下电指令并延时第二预设时间后,向采样单元13发送信号,并从采样单元13获得反馈的采样电压。
下电控制单元11在采样单元13采样获得的主接触器KM1的后端电压高于设定电压时,使制动电阻控制单元12进入待机模式并上传故障信息,即向控制系统(例如电动汽车的整车控制系统)反馈主接触器KM1出现粘连故障。如果采样单元13采样获得的主接触器KM1的后端电压小于或等于设定电压,则下电控制单元11确认制动电阻回路的主接触器KM1无粘连,并断开制动电阻控制单元12的供电,控制系统正常下控制电。
上述制动电阻回路接触器粘连检测系统电路结构较为简单,不外扩复杂的支流检测电路和采样电路,出现故障时可以快速进行定位,安装与拆卸便捷;并且上述制动电阻回路接触器粘连检测系统检测时间短,不影响控制系统正常下电,安全性强,对检测精度的要求较低。此外,上述制动电阻回路接触器粘连检测系统通过快速释放主接触器KM1后端的电路中阻容性负载的残留电压,能够有效防止电压采样误差引起的误判,同时在软件策略上灵活性高,具备较强的扩展性。
为保证粘连检测过程不影响控制系统正常下电,同时能兼顾粘连检测的正确性,上述第一预设时间可为主接触器KM1断开的物理延时时间,该物理延时时间受多因素影响,如主接触器KM1的规格型号、设计、寿命、工况等影响,具体可根据主接触器KM1的参数设定。
上述第二预设时间为第一预设时间与主接触器KM1后端电路的放电延时时间之和。其中,主接触器KM1后端的负载的简化模型为R1C1电路,当主接触器KM1断开并进入主动放电模式后,主接触器KM1后端的电压(即图1中的A点)下降曲线如图2所示,缓冲电容C1两端电压值随时间的变化公式为:
Figure PCTCN2018112159-appb-000001
其中,τ=RC,R为制动电阻R的电阻值,C为缓冲电容C1的电容值,U 0为主接触器KM1断开前主接触器KM1后端电压。放电延时时间T根据制动电阻控制单元12的参数进行选择,根据相应的软件策略,取制动电阻放电曲线上的电压采样点(T,U t),待检测采样点的电压值U t=δ×U 0(δ为百分比系数,根据硬件的放电特性进行评估),反推得到放电延时时间T。即放电延时时间T为:在主接触器KM1未发生粘连的情况下,从主接触器KM1断开至主接触器KM1的后端的电压下降到预设值的时间。
如图3所示,是本发明制动电阻回路接触器粘连检测方法实施例的流程示意图,上述制动电阻回路包括动力电池、主接触器、制动电阻、缓冲电容以及半导体开关管,且制动电阻、缓冲电容以及半导体开关管连接于主接触器的后端。本发明的检测方法包括以下步骤:
步骤S31:由制动电阻控制单元向半导体开关管的控制端输出脉冲宽度调制信号,使得动力电池的电能通过制动电阻泄放。
步骤S32:在接收到下电指令后执行步骤S33,否则继续执行步骤S31。
步骤S33:断开主接触器(即执行主接触器断开操作),并延时第一预设时间。该第一预设时间可为主接触器断开的物理延时时间,该物理延时时间受多因素影响,如主接触器的规格型号、设计、寿命、工况等影响,具体可根据主接触器的参数设定。
步骤S34:由制动电阻控制单元向半导体开关管的控制端输出脉冲宽度调制信号,对主接触器后端电路进行主动放电,即释放主接触器后端的电路中阻容性负载的残留电压。
步骤S35:延时下电延时时间。该下电延时时间为:在主接触器未发生粘连的情况下,从主接触器断开至主接触器的后端电压下降到预设值的时间。该下电延时时间具体可根据主接触器后端电路放电时,主接触器后端电压变化曲线反推获得。
步骤S36:采样主接触器的后端电压,并在采样获得的主接触器的后端电 压高于设定电压时,执行步骤S37,否则执行步骤S38。
步骤S37:反馈主接触器粘连故障。此情况下可确认主接触器出现粘连故障,使制动电阻控制单元进入待机模式并上传故障信息。
步骤S38:控制系统正常下电。此时确认制动电阻回路的主接触器无粘连,断开制动电阻控制单元的供电。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种制动电阻回路接触器粘连检测系统,所述制动电阻回路包括动力电池、主接触器、制动电阻、缓冲电容以及半导体开关管,且所述制动电阻、缓冲电容以及半导体开关管连接于所述主接触器的后端,其特征在于,所述检测系统包括制动电阻控制单元、采样单元以及下电控制单元,其中:
    所述制动电阻控制单元,用于在接收到下电指令并延时第一预设时间后,通过所述半导体开关管对所述主接触器后端的电路进行主动放电;
    所述采样单元,用于在接收到下电指令并延时第二预设时间后,采样所述主接触器的后端电压;
    所述下电控制单元,用于在采样获得的所述主接触器的后端电压高于设定电压时,使所述制动电阻控制单元进入待机模式并上传故障信息。
  2. 根据权利要求1所述的制动电阻回路接触器粘连检测系统,其特征在于,所述第一预设时间为所述主接触器断开的物理延时时间,所述第二预设时间为所述第一预设时间与所述主接触器后端电路的放电延时时间之和。
  3. 根据权利要求2所述的制动电阻回路接触器粘连检测系统,其特征在于,所述放电延时时间为:在所述主接触器未发生粘连的情况下,从所述主接触器断开至所述主接触器的后端电压下降到预设值的时间。
  4. 根据权利要求1所述的制动电阻回路接触器粘连检测系统,其特征在于:所述下电控制单元在采样获得的所述主接触器的后端电压小于或等于设定电压时,断开所述制动电阻控制单元的供电。
  5. 根据权利要求1所述的制动电阻回路接触器粘连检测系统,其特征在于:所述检测系统包括主接触器控制单元,用于在接收到下电指令后控制所述主接触器断开。
  6. 一种制动电阻回路接触器粘连检测方法,所述制动电阻回路包括动力电池、主接触器、制动电阻、缓冲电容以及半导体开关管,且所述制动电阻、缓冲电容以及半导体开关管连接于所述主接触器的后端,其特征在于,所述检测方法包括以下步骤:
    在接收到下电指令并延时第一预设时间后,通过半导体开关管对主接触器后端电路进行主动放电;
    在接收到下电指令并延时第二预设时间后,采样所述主接触器的后端电压;
    在采样获得的所述主接触器的后端电压高于设定电压时,使制动电阻控制单元进入待机模式并上传故障信息。
  7. 根据权利要求6所述的制动电阻回路接触器粘连检测方法,其特征在于,所述第一预设时间为所述主接触器断开的物理延时时间,所述第二预设时间为所述第一预设时间与所述主接触器后端电路的放电延时时间之和。
  8. 根据权利要求7所述的制动电阻回路接触器粘连检测方法,其特征在于,所述放电延时时间为:在所述主接触器未发生粘连的情况下,从所述主接触器断开至所述主接触器的后端电压下降到预设值的时间。
  9. 根据权利要求6所述的制动电阻回路接触器粘连检测方法,其特征在于,所述检测方法还包括:在采样获得的所述主接触器的后端电压小于或等于设定电压时,断开所述制动电阻控制单元的供电。
  10. 根据权利要求6所述的制动电阻回路接触器粘连检测方法,其特征在于,所述检测方法包括:在接收到下电指令后控制所述主接触器断开。
PCT/CN2018/112159 2017-10-31 2018-10-26 制动电阻回路接触器粘连检测系统及方法 WO2019085836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711043520.0A CN107797056B (zh) 2017-10-31 2017-10-31 制动电阻回路接触器粘连检测系统及方法
CN201711043520.0 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085836A1 true WO2019085836A1 (zh) 2019-05-09

Family

ID=61548665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112159 WO2019085836A1 (zh) 2017-10-31 2018-10-26 制动电阻回路接触器粘连检测系统及方法

Country Status (2)

Country Link
CN (1) CN107797056B (zh)
WO (1) WO2019085836A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797056B (zh) * 2017-10-31 2019-05-31 苏州汇川联合动力系统有限公司 制动电阻回路接触器粘连检测系统及方法
CN110620019A (zh) * 2018-06-20 2019-12-27 森萨塔科技(常州)有限公司 混合式直流接触器及其在线诊断系统
CN109490768B (zh) * 2018-11-12 2021-01-26 北京长城华冠汽车科技股份有限公司 接触器触点粘连的冗余判断方法及系统
CN109733198B (zh) * 2018-11-30 2020-11-13 铜陵市优车科技有限公司 主接触器粘连检测方法和装置、动力电池系统、车辆
CN109444722A (zh) * 2018-12-22 2019-03-08 中国科学院宁波材料技术与工程研究所 一种放电电路故障检测装置及其检测故障的方法
CN109521359B (zh) * 2018-12-28 2020-11-03 华人运通(江苏)动力电池系统有限公司 一种动力电池负极继电器状态检测电路及方法
CN109709479B (zh) * 2018-12-29 2022-01-28 深圳市英威腾电动汽车驱动技术有限公司 接触器粘连检测电路及接触器粘连检测方法
CN109917280B (zh) * 2019-02-21 2021-06-08 东软睿驰汽车技术(沈阳)有限公司 一种电路状态检测系统及其检测方法和一种高压回路
CN112630538B (zh) 2019-09-24 2024-04-16 台达电子工业股份有限公司 制动电阻的估测方法
CN112083323B (zh) * 2020-07-23 2021-05-04 浙江高泰昊能科技有限公司 一种继电器黏连检测电路及其检测方法
CN112234584A (zh) * 2020-09-17 2021-01-15 邯郸钢铁集团有限责任公司 一种改进的电压型变频器制动电路保护方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390869A (ja) * 1989-09-01 1991-04-16 Fanuc Ltd リレーの溶着検出方法
CN203178443U (zh) * 2013-04-15 2013-09-04 中煤科工集团重庆研究院 一种测量三相真空开关触点粘连的装置
CN105929325A (zh) * 2016-06-15 2016-09-07 宁德时代新能源科技股份有限公司 一种继电器粘连检测电路及继电器粘连检测方法
CN106199409A (zh) * 2016-06-28 2016-12-07 苏州汇川技术有限公司 高压用电设备接触器粘连检测系统及方法
CN106771997A (zh) * 2016-11-16 2017-05-31 惠州市蓝微新源技术有限公司 一种储能系统接触器粘连检测装置
CN106872890A (zh) * 2017-03-24 2017-06-20 北京长城华冠汽车科技股份有限公司 高压接触器状态诊断装置
CN107797056A (zh) * 2017-10-31 2018-03-13 苏州汇川联合动力系统有限公司 制动电阻回路接触器粘连检测系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390869A (ja) * 1989-09-01 1991-04-16 Fanuc Ltd リレーの溶着検出方法
CN203178443U (zh) * 2013-04-15 2013-09-04 中煤科工集团重庆研究院 一种测量三相真空开关触点粘连的装置
CN105929325A (zh) * 2016-06-15 2016-09-07 宁德时代新能源科技股份有限公司 一种继电器粘连检测电路及继电器粘连检测方法
CN106199409A (zh) * 2016-06-28 2016-12-07 苏州汇川技术有限公司 高压用电设备接触器粘连检测系统及方法
CN106771997A (zh) * 2016-11-16 2017-05-31 惠州市蓝微新源技术有限公司 一种储能系统接触器粘连检测装置
CN106872890A (zh) * 2017-03-24 2017-06-20 北京长城华冠汽车科技股份有限公司 高压接触器状态诊断装置
CN107797056A (zh) * 2017-10-31 2018-03-13 苏州汇川联合动力系统有限公司 制动电阻回路接触器粘连检测系统及方法

Also Published As

Publication number Publication date
CN107797056A (zh) 2018-03-13
CN107797056B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2019085836A1 (zh) 制动电阻回路接触器粘连检测系统及方法
KR101936220B1 (ko) 절연 저항 측정 시스템 및 장치
JP4715253B2 (ja) 電源システムの監視装置
CA3049551C (en) Active bypass control device and method for photovoltaic module
US20150061376A1 (en) Pre-Charge Quick Key Cycling Protection
JP2017537589A (ja) 電気自動車用のステアリングパワーシステム及びそれを制御する方法
CN104709091A (zh) 纯电动车的上电和下电方法
US10700511B2 (en) Protector for electricity supply circuit
US20170123008A1 (en) Device and method for detecting transient electrical short circuits in a battery cell or pack
CN109490768B (zh) 接触器触点粘连的冗余判断方法及系统
JP2009038925A (ja) 車両用の電源装置とその制御方法
US10186854B2 (en) Circuit protection device with self fault detection function
US11077765B2 (en) Controller for dc-dc converter and dc-dc converter
WO2020113991A1 (zh) 继电器检测装置、及其检测方法
EP3667860B1 (en) Charging output protection circuit and method thereof
US20150029631A1 (en) Protector for electricity supply circuit
WO2018171259A1 (zh) 一种检测电路、方法和装置
CN104793135A (zh) 一种混合动力汽车继电器状态检测电路及方法
CN111092590A (zh) 电机控制器主动放电系统及控制方法
KR20210075130A (ko) 중간 회로 커패시터, 전력 변환기, 및 차량을 방전시키기 위한 장치 및 방법
CN203415956U (zh) 变频器系统保护装置
JP2016208646A (ja) バッテリ装置
US8941265B2 (en) Minimal interruption DC power supply
US10572326B2 (en) Self-diagnosing watchdog monitoring system
JP6898985B2 (ja) 無停電電源供給制御方法及び無停電電源供給設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873588

Country of ref document: EP

Kind code of ref document: A1