WO2019085480A1 - 一种无人机通信方法、装置及无人机 - Google Patents

一种无人机通信方法、装置及无人机 Download PDF

Info

Publication number
WO2019085480A1
WO2019085480A1 PCT/CN2018/090404 CN2018090404W WO2019085480A1 WO 2019085480 A1 WO2019085480 A1 WO 2019085480A1 CN 2018090404 W CN2018090404 W CN 2018090404W WO 2019085480 A1 WO2019085480 A1 WO 2019085480A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
drone
power amplifier
working mode
ground station
Prior art date
Application number
PCT/CN2018/090404
Other languages
English (en)
French (fr)
Inventor
朱剑
张向东
于振宇
罗志平
严栋
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/095,876 priority Critical patent/US10852445B2/en
Publication of WO2019085480A1 publication Critical patent/WO2019085480A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0022Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of drones, in particular to a communication method and device for a drone and a drone.
  • the drone is referred to as “unmanned aerial vehicle” and is often used for aerial photography, geographic mapping, real-time traffic monitoring, power line inspection, and pesticide spraying.
  • unmanned aerial vehicle is often used for aerial photography, geographic mapping, real-time traffic monitoring, power line inspection, and pesticide spraying.
  • the main electronic devices include: (1) propeller motor; (2) radio frequency communication transmitting module; (3) main control system chip; (4) camera; (5) sensor; (6) radio frequency communication receiving module.
  • the radio frequency communication transmitting module consumes a large amount of power in various electronic devices of the drone, especially a digital transmission radio module (for transmitting flight state data, etc.) operating at 5.8 GHz and a radio frequency module for transmitting (for transmitting no one) Image data, video data, etc. collected by the machine). Due to the large attenuation of the 5.8 GHz environment signal, and the power amplifier itself has the problem of power amplifier efficiency, in order to ensure that the flight state data and the captured image data of the drone can be transmitted back to the ground station from a long distance, it is often necessary to use a large 32 dBm. Power amplifier. When the digital transmission RF module and the image transmission RF module simultaneously generate the RF transmission signal, the power amplifier consumes about 10 W for the power amplification of the RF transmission signals of the two, which reduces the life time of the UAV.
  • Such a high-power amplifier can make the communication distance between the RF transmitting module and the ground station reach more than 1km.
  • the UAV also has close-range work (such as tens of meters of drones from the ground station operator).
  • close-range work such as tens of meters of drones from the ground station operator.
  • the RF transmission power of the picture transmission and the digital transmission is only It takes more than a dozen dBm, and the actual power consumption is less than 1W. If a high-power amplifier is still used, it will waste energy.
  • the present invention provides a drone communication method, device and drone.
  • An embodiment of the present invention provides a UAV communication method, including:
  • a drone communication device including a processor and a memory.
  • the processor and the memory are communicably connected by an internal bus.
  • the memory stores a computer program executable by the processor, and the computer program is processed. The following steps can be implemented when the device is executed:
  • Another embodiment of the present invention provides a drone, including: a processor, a power amplifier, and an antenna;
  • the processor is configured to acquire location information of the drone and location information of the ground station, wherein the ground station performs wireless communication with the drone;
  • the power amplifier is configured to select a gain parameter threshold corresponding to the working mode according to the control signal, and perform power amplification on the radio frequency transmission signal according to the gain parameter threshold;
  • the antenna is used to send the amplified signal to the ground station.
  • the invention has the beneficial effects that the invention determines the distance between the drone and the ground station by acquiring the position information of the drone and the position information of the ground station; according to the distance between the drone and the ground station and the pre- The distance judgment rule is set to determine the working mode of the power amplifier of the drone; after determining the working mode of the power amplifier of the drone, the control signal is sent to the power amplifier, and the power amplifier is controlled according to the gain parameter threshold corresponding to the working mode. The signal is transmitted for power amplification.
  • the present invention first determines the drone and the ground station.
  • the distance between the UAV and the ground station can dynamically adjust the working mode of the power amplifier, so that when the UAV transmits data to the ground station, the most suitable gain parameter threshold is selected to perform the RF transmission signal.
  • Power amplification such as when the distance between the drone and the ground station is small, the control power amplifier operates in a low power mode of operation, and when the distance between the drone and the ground station is large, the power amplifier is controlled at a high power. Operating in the working mode can not only ensure the transmission quality of the RF transmission signal, but also reduce the power consumption of the power amplifier and improve the life time of the UAV.
  • FIG. 1 is a schematic flow chart of a communication method of a drone according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a communication method of a drone according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a communication device for a drone according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a drone according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a drone according to another embodiment of the present invention.
  • FIG. 1 is a schematic flow chart of a communication method of a drone according to an embodiment of the present invention. As shown in FIG. 1, the method of the embodiment of the present invention includes:
  • S11 acquiring location information of the drone and location information of the ground station, wherein the ground station performs wireless communication with the drone;
  • the location information of the drone and the location information of the ground station can be obtained based on the Global Positioning System (GPS), and the location information can be obtained by other methods, which is not limited by the present invention.
  • GPS Global Positioning System
  • the position information includes latitude and longitude information and altitude information, with the center of the earth as the origin, with the direction pointing to the north pole as the Z axis, and the direction pointing to the intersection of the starting meridian and the equator line as the X axis, perpendicular to the X
  • the direction of the plane in which the axis and the Z axis are located establishes a spatial Cartesian coordinate system for the Y axis.
  • the distance between the UAV and the ground station refers to the linear distance between the UAV and the ground station
  • the first space coordinate of the UAV is determined by the latitude and longitude information of the UAV and the altitude information.
  • the second spatial coordinate of the ground station is determined by the latitude and longitude information and the altitude information of the ground station, and the linear distance between the drone and the ground station is determined according to the first spatial coordinate and the second spatial coordinate.
  • the distance determination rule stores a correspondence relationship between the distance threshold and the operation mode of the power amplifier.
  • S14 Send a control signal corresponding to the working mode to the power amplifier, control the power amplifier to select a gain parameter threshold corresponding to the working mode according to the control signal, perform power amplification on the RF transmission signal according to the gain parameter threshold, and send the amplified signal to the ground station.
  • the distance threshold is larger, the gain parameter threshold of the power amplifier corresponding to the working mode is larger, and the output power of the power amplifier is larger on the premise that the input power is the same.
  • the UAV communication method provided by the embodiment of the present invention is a technology for uniformly using a high power amplifier in order to ensure that the flight state data and the acquired image data of the UAV can be transmitted back to the ground station at a long distance.
  • the invention first determines the distance between the drone and the ground station, and can dynamically adjust the working mode of the power amplifier according to the actual distance between the drone and the ground station, so that when the drone transmits data to the ground station, Select the most suitable gain parameter threshold to power amplify the RF transmit signal. For example, when the distance between the drone and the ground station is small, the control power amplifier operates in the low power mode, when the drone is connected to the ground station. When the distance is large, the control power amplifier operates in the high-power operation mode, which can ensure the quality of the RF transmission signal transmission, and also reduce the power consumption of the low-power amplifier, thereby improving the life time of the drone.
  • the working mode of the power amplifier includes a first working mode, a second working mode, and a third working mode; the gain parameter threshold of the first working mode is smaller than the gain parameter threshold of the second working mode, the The gain parameter threshold of the second working mode is smaller than the gain parameter threshold of the third working mode;
  • the working mode of the power amplifier on the drone is determined, including:
  • the operating mode of the power amplifier is the third operating mode.
  • the working mode of the power amplifier is divided into a first working mode (low power working mode), a second power working mode (medium power working mode), and a third power working mode (high power working) Mode), after obtaining the distance between the drone and the ground station, comparing the distance with a preset distance threshold to determine the working mode of the power amplifier, and dynamically adjusting the working mode of the power amplifier according to the distance .
  • the operating mode of the power amplifier is adjusted according to the distance determination rule in Table 1 using the method of FIG.
  • a control signal of a low-power operation mode is sent to the power amplifier; when the distance between the UAV and the ground station is 100-300 m, The power amplifier transmits a control signal of the medium power operation mode; when the distance between the drone and the ground station is ⁇ 300 m, the control signal of the high power operation mode is transmitted to the power amplifier.
  • the output power of the power amplifier in the first mode of operation may be 12 dBm
  • the output power of the power amplifier in the second mode of operation may be 22 dBm
  • the output power of the power amplifier in the third mode of operation may be 32 dBm
  • each stage The output power in the operating mode differs by 10 dB (10 times power difference), and the power difference of 10 times is equivalent to a frequency coverage of more than 3 times.
  • the output power of the power amplifier in different working modes can also be set to other values, which is not limited by the present invention.
  • the wireless communication signals between the drone and the ground station have different spatial attenuation in different flight environments.
  • the spatial attenuation of the wireless communication signal gradually becomes larger.
  • the wireless communication signal between the drone and the ground station is unobstructed, and the wireless communication path between the two is similar to a straight line, and the wireless communication signal is transmitted from the drone to the ground station.
  • the loss incurred is small; in a complex urban environment, the wireless communication signals between the drone and the ground station are blocked by buildings, trees, etc., and a series of wireless communication signals are sent from the drone to the ground station.
  • the reflection and diffraction, resulting in a large loss of wireless communication signals; in the general environment, the loss of wireless communication signals from the drone to the ground station is greater than the loss in the open environment, less than the complexity of the city Loss in the environment.
  • the distance judgment rule further includes an environment attribute
  • the method further includes:
  • the environment attribute to which the flight environment information belongs is determined, and the distance judgment rule corresponding to the environment attribute to which the flight environment information belongs is selected.
  • the flight environment in the embodiment of the present invention refers to a flight site where the drone is located, such as an open space with less space obstacles (such as fewer buildings), an open space with a large space obstacle (such as a dense building), and the like.
  • the environmental attribute of the flight environment information in the embodiment of the present invention refers to an environmental characteristic that affects the attenuation degree of the wireless communication signal of the drone during the spatial transmission process, such as an open environment, and a wireless communication signal to the drone.
  • the influence of spatial attenuation is small; the complex environment of the city has a great influence on the spatial attenuation of wireless communication signals, and the general environment is between the open environment and the complex environment of the city.
  • the spatial attenuation of the wireless communication signal can be determined according to the strength of the signal transmitted by the drone and the strength of the received signal of the ground station, and then the distance determination rule corresponding to the spatial attenuation degree is selected.
  • the flight environment information of the drone can be determined according to the image data sent by the drone to the ground station, and whether the drone is flying in an open environment or in a complex urban environment, and then corresponding to the flight environment information is selected. Distance judgment rules.
  • the distance determination rule corresponding to the environment attribute is directly selected.
  • the input operation of the user may be remote input through the smart device carried by the user, or manually controlled before releasing the drone.
  • the environment selection switch and the like on the drone realize the setting of the environmental attribute, which is not limited by the present invention.
  • the distance between the drone and the ground station may be switched at a certain distance threshold.
  • the distance between the drone and the ground station may be switched at a certain distance threshold.
  • the difference between the distance between the drone and the ground station and the threshold value of the corresponding distance threshold in a certain working mode of the power amplifier is less than the preset distance difference, or, in the drone and the ground station.
  • the distance between the reversals changes (such as from the distance increase to the distance reduction)
  • the distance between the UAV and the ground station at the inversion starting point and the UAV and ground station at the end point of the reversal The difference between the distances is less than the preset distance difference.
  • the power amplifier may frequently switch the operation mode to generate a ping-pong effect. For example, when the distance between the drone and the ground station is 98m, the working mode of the power amplifier is the low power mode; when increasing from 98m to 101m, the working mode of the power amplifier is switched from the low power mode to the medium power.
  • Working mode when the distance between the drone and the ground station is reduced from 101m to 99m, the working mode of the power amplifier is switched from the medium power working mode to the low power working mode, when it is repeatedly changed between 101m and 99m,
  • the working mode of the power amplifier on the human machine also repeatedly switches frequently between the low power working mode and the medium power working mode, which affects the service life of the power amplifier and also brings greater power consumption.
  • the distance determination rule further includes a distance change trend attribute
  • the method further includes:
  • the distance judgment rule corresponding to the trend of the distance change is selected.
  • the distance change trend includes an increase in distance and a decrease in distance
  • Determining the working mode of the power amplifier on the drone according to the distance and the preset distance judging rule specifically including:
  • the first distance threshold and the third distance threshold are different from each other by a preset value, and the second distance threshold and the fourth distance threshold are different from each other by a preset value.
  • the embodiment of the present invention sets the distance threshold in the same working mode when the distance between the drone and the ground station increases and the distance between the drone and the ground station decreases.
  • the first distance threshold is different from the third distance threshold by a preset value
  • the second distance threshold is different from the fourth distance threshold by a preset value.
  • the embodiment of the present invention sets the distance between the UAV and the ground station to be increased by 5m, and the distance threshold corresponding to the same working mode is 5m, to avoid the above-mentioned ping-pong effect. . That is, when the distance between the drone and the ground station increases, the distance threshold corresponding to the low power operation mode is set to 0-100 m, and the distance threshold corresponding to the medium power operation mode is set to 100-300 m; When the distance between the UAV and the ground station is reduced, the distance threshold corresponding to the low power operation mode is set to 0-95 m, and the distance threshold corresponding to the medium power operation mode is set to 95-295 m.
  • the working mode of the power amplifier is switched from the low-power mode to the medium-power mode; the drone continues to fly, when the drone and the ground station When the distance between the two is reduced to 98m, the working mode of the power amplifier will remain in the medium power mode; only when the distance between the drone and the ground station is reduced to less than 95m, the working mode of the power amplifier is only The power mode of operation switches to a low power mode of operation.
  • the second distance threshold is set to ⁇ 300 m, and the distance between the drone and the ground station is reduced, and the setting is set.
  • the four distance threshold is ⁇ 295 m, that is, the second distance threshold is different from the fourth distance threshold by 5 m.
  • the GPS satellite positioning measurement will cause errors.
  • the location information of the UAV is obtained:
  • the GPS satellite positioning information is corrected according to the GPS correction information, and the position information of the drone is obtained.
  • the ground station obtains GPS correction information according to the GPS reference station whose position is known, and transmits the GPS correction information to the drone; the drone corrects the GPS satellite positioning information according to the GPS correction information, and the correction is performed.
  • the GPS satellite positioning information is used as the location information of the drone.
  • FIG. 2 is a schematic flow chart of a communication method of a drone according to another embodiment of the present invention.
  • the method of the embodiment of the present invention includes:
  • S211 First confirm the flight environment of the drone, including open environment, general environment and urban complex environment.
  • S231 Calculate a distance between the UAV and the ground station according to the location information of the UAV and the ground station, and compare the distance with the distance of the previous time to determine a trend of the distance between the UAV and the ground station;
  • the distance between the drone and the ground station is:
  • S251 if the distance between the drone and the ground station is 0-100 m, send a control signal to the power amplifier to switch to the low-power working mode; if the distance between the drone and the ground station is 100-300 m, then Sending a control signal of a medium power operation mode to the power amplifier; if the distance between the drone and the ground station is ⁇ 300 m, transmitting a control signal of the high power operation mode to the power amplifier;
  • S222 and S232 are the same as S221 and S231 described above, and are not described herein again;
  • S242 If the distance between the drone and the ground station changes as the distance becomes larger, then S252 is performed; otherwise, S262 is performed;
  • S252 if the distance between the drone and the ground station is 0-50 m, send a control signal of the low power working mode to the power amplifier; if the distance between the drone and the ground station is 50-150 m, the power is The amplifier sends a control signal of the medium power working mode; if the distance between the drone and the ground station is ⁇ 150 m, the control signal of the high power working mode is sent to the power amplifier;
  • S223 and S233 are the same as S221 and S231 described above, and details are not described herein again.
  • the distance determination rule stores a correspondence relationship between a distance threshold, an environmental attribute of the flight environment information, a distance change tendency, and an operation mode of the power amplifier.
  • the drone communication method provided by the embodiment of the invention can dynamically adjust the working mode of the power amplifier according to the actual distance between the drone and the ground station, the environmental property of the flight environment information, and the distance change trend, so that the drone is in the direction
  • selecting the most suitable gain parameter threshold to power-amplify the RF transmission signal can not only ensure the transmission quality of the RF transmission signal, but also reduce the power consumption of the low power amplifier and improve the life time of the UAV.
  • the method further includes:
  • a distance threshold and a second distance threshold are increased by a preset value or decreased by a preset value.
  • the embodiment of the present invention can automatically increase the original distance threshold if the trend of the distance change between the current time and the first time is opposite to the change of the distance between the first time and the second time. Preset or decrease the preset.
  • FIG. 3 is a schematic structural diagram of a communication device of a drone according to an embodiment of the present invention.
  • the UAV communication apparatus of the embodiment of the present invention includes a processor 31 and a memory 32.
  • the processor 31 and the memory 32 are communicably connected via an internal bus 33, and the memory 31 is stored and executable by the processor 32.
  • the computer program when executed by the processor, can implement the following steps:
  • the working mode of the power amplifier includes a first working mode, a second working mode, and a third working mode; the gain parameter threshold of the first working mode is smaller than the gain parameter threshold of the second working mode, and the second working mode The gain parameter threshold is smaller than the gain parameter threshold of the third working mode;
  • the operating mode of the power amplifier is the third operating mode.
  • the distance determination rule further includes an environment attribute
  • the method further includes:
  • the distance determination rule further includes a distance change trend attribute, where the method further includes:
  • the distance judgment rule corresponding to the trend of the distance change is selected.
  • the distance change trend includes an increase in distance and a decrease in distance
  • Determining the working mode of the power amplifier on the drone according to the distance and the preset distance judging rule specifically including:
  • the first distance threshold and the third distance threshold are different from each other by a preset value, and the second distance threshold and the fourth distance threshold are different from each other by a preset value.
  • obtaining location information of the drone includes:
  • the GPS satellite positioning information is corrected according to the GPS correction information, and the position information of the drone is obtained.
  • the drone of the embodiment of the present invention includes: a processor 43, a power amplifier 42 and an antenna 41;
  • the processor 43 is configured to acquire location information of the drone and location information of the ground station, where the ground station performs wireless communication with the drone;
  • the power amplifier 42 is configured to select a gain parameter threshold corresponding to the working mode according to the control signal, and perform power amplification on the radio frequency transmission signal according to the gain parameter threshold;
  • the antenna 41 is used to transmit the amplified signal to the ground station.
  • the power amplifier 42 is an indirect current feedback power tunable amplifier
  • the processor 43 changes the resistance value of the gain adjusting resistor of the power amplifier 42 by transmitting a control signal to the power amplifier 42, thereby changing the gain parameter threshold of the power amplifier 42.
  • the unmanned aerial vehicle determines the distance between the drone and the ground station by acquiring the position information of the drone and the position information of the ground station; according to the distance between the drone and the ground station, Predetermined distance determination rule determines the working mode of the power amplifier of the drone; after determining the working mode of the power amplifier of the drone, sends a control signal to the power amplifier, and controls the power amplifier according to the gain parameter threshold value corresponding to the working mode
  • the RF transmit signal is power amplified.
  • the distance between the UAV and the ground station can dynamically adjust the working mode of the power amplifier, so that when the UAV transmits data to the ground station, the most suitable gain parameter threshold is selected to perform the RF transmission signal.
  • Power amplification such as when the distance between the drone and the ground station is small, the control power amplifier operates in a low power mode of operation, and when the distance between the drone and the ground station is large, the power amplifier is controlled at a high power. Operating in the working mode can not only ensure the transmission quality of the RF transmission signal, but also reduce the power consumption of the power amplifier and improve the life time of the UAV.
  • the drone of the embodiment of the present invention further includes a positioning module connected to the processor, wherein the positioning module is configured to acquire location information of the drone and the ground station, and send the location information to the processor.
  • the positioning module is preferably a GPS module, and may be other devices for positioning, which is not limited by the present invention.
  • the UAV of the embodiment of the present invention includes: a processor 53, a gain adjustable power amplifier 52, an antenna 51, and a differential GPS module 54 connected to the processor;
  • the differential GPS module 54 is configured to receive GPS satellite positioning information, and is further configured to receive GPS correction information sent by the ground station, wherein the GPS correction information is determined by the ground station according to the GPS reference station whose position is known, and the GPS satellite is determined according to the GPS correction information.
  • the positioning information is corrected to obtain the position information of the drone, and the position information information of the drone is transmitted to the processor 53.
  • a radio frequency communication transmitting module 55 is further included, the input end of the radio frequency communication transmitting module 55 is connected to the processor 53, the output end of the radio frequency communication transmitting module 55 is connected to the gain adjustable power amplifier 52, and the radio frequency communication transmitting module 55 is used according to The control signal sent by the processor 53 sends the radio frequency transmission signal to the gain adjustable power amplifier 52.
  • the radio frequency communication transmitting module 55 includes a digital transmission radio frequency module and a picture transmission radio frequency module.
  • the operating frequency band of the radio frequency communication transmitting module 55 is 5.8 GHz.
  • the digital transmission radio module is used to transmit the flight state data of the drone, and the radio frequency module is used to transmit the image data collected by the drone.
  • the drone further includes a gain switch 56 coupled to the gain adjustable power amplifier 52.
  • the processor 53 controls the gain switch 56 to be connected to different control ports of the gain adjustable power amplifier 52 according to the control signal. Different control ports correspond to different gains. Parameter threshold.
  • the gain adjustable power amplifier 52 of the embodiment of the present invention includes a first control port, a second control port, and a third control port.
  • the operating mode of the gain adjustable power amplifier 52 is the first mode of operation; when the processor passes the gain switch 56 and the gain adjustable power amplifier
  • the second control port of 52 is connected, the operating mode of the gain adjustable power amplifier 52 is the second operating mode; when the processor is connected to the third control port of the gain adjustable power amplifier 52 through the gain switch 56, the gain adjustable power The mode of operation of amplifier 52 is the third mode of operation.
  • the distance between the drone and the ground station is determined by acquiring the position information of the drone and the position information of the ground station; according to the between the drone and the ground station The distance and the preset distance determination rule determine the working mode of the power amplifier of the drone; after determining the working mode of the power amplifier of the drone, send a control signal to the power amplifier to control the power amplifier according to the gain parameter corresponding to the working mode The threshold power amplifiers the RF transmit signal.
  • the present invention first determines the drone and the ground station.
  • the distance between the UAV and the ground station can dynamically adjust the working mode of the power amplifier, so that when the UAV transmits data to the ground station, the most suitable gain parameter threshold is selected to perform the RF transmission signal.
  • Power amplification such as when the distance between the drone and the ground station is small, the control power amplifier operates in a low power mode of operation, and when the distance between the drone and the ground station is large, the power amplifier is controlled at a high power. Operating in the working mode, the transmission quality of the RF transmission signal can be ensured, and the power consumption of the power amplifier is also reduced, and the life time of the drone is improved.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Abstract

本发明公开了一种无人机通信方法、装置及无人机。该方法包括:获取无人机的位置信息以及地面站的位置信息;根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式;向功率放大器发送对应工作模式的控制信号,控制功率放大器根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至地面站。可见,本发明首先判断无人机与地面站之间的距离,能根据无人机与地面站之间的实际距离动态调整功率放大器的工作模式,既能保证射频发射信号传输质量,同时降低功率放大器的功耗,提高了无人机的续航时间。

Description

一种无人机通信方法、装置及无人机 技术领域
本发明涉及无人机技术领域,特别涉及一种无人机通信方法、装置及无人机。
背景技术
无人驾驶飞机简称“无人机”,常用于空中拍摄、地理测绘、交通实时监控、供电线路巡检、农药喷洒等方面。随着无人机技术的发展,无人机上的电子器件也日益增加,越来越多的新电子器件被加入到无人机中,一方面提高了无人机的性能,而另一方面又增加了无人机的功耗,降低无人机的续航时间。
在现有的无人机上,按照功耗从高到低排列,主要的电子器件包括:(1)螺旋桨电机;(2)射频通信发射模块;(3)主控制系统芯片;(4)摄像头;(5)传感器;(6)射频通信接收模块。
在无人机的各种电子器件中射频通信发射模块耗电较大,特别是工作在5.8GHz的数传射频模块(用于发射飞行状态数据等)和图传射频模块(用于发射无人机采集的图像数据、视频数据等)。由于5.8GHz的环境信号衰减较大,而功率放大器本身存在功放效率的问题,为了保证无人机的飞行状态数据和采集的图像数据等能够远距离的传回地面站,常常需要使用32dBm的大功率放大器。当数传射频模块和图传射频模块同时产生射频发射信号的时候,功率放大器对二者的射频发射信号进行功率放大消耗的功耗达到了10W左右,降低了无人机的续航时间。
如此高功率的放大器,能使射频发射模块与地面站的通信距离达到1km以上。然而在实际应用中,无人机也有近距离工作(如无人机离地面站操作人员几十米)的情况,在此种近距离工作的情况下,图传、数传的射频发射功率只需要十几个dBm,实际消耗的功率不到1W,若仍然采用大功率放大器会造成能源的浪费。
发明内容
为了解决现有无人机的功率放大器功耗大、无人机续航时间短的问题,本发明提供了一种无人机通信方法、装置及无人机。
本发明的一个实施例提供一种无人机通信方法,包括:
获取无人机的位置信息以及地面站的位置信息,其中,地面站与无人机进行无线通信;
根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
向功率放大器发送对应工作模式的控制信号,控制功率放大器根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至地面站。本发明的另一个实施例提供一种无人机通信装置,包括处理器和存储器,处理器和存储器之间通过内部总线通讯连接,存储器存储有能够被处理器执行的计算机程序,计算机程序被处理器执行时能够实现如下步骤:
获取无人机的位置信息以及地面站的位置信息,其中,地面站与无人机进行无线通信;
根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
向功率放大器发送对应工作模式的控制信号,控制功率放大器根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至地面站。
本发明的另一个实施例提供一种无人机,包括:处理器、功率放大器以及天线;
处理器用于获取无人机的位置信息以及地面站的位置信息,其中,地面站与无人机进行无线通信;
根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
向功率放大器发送对应工作模式的控制信号;
功率放大器用于根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大;
天线用于将放大后的信号发送至地面站。
本发明的有益效果是,本发明通过获取无人机的位置信息和地面站的位置信息,进而确定无人机与地面站之间的距离;根据无人机与地面站之间的距离以及预设的距离判断规则,确定无人机的功率放大器的工作模式;在确定无人机的功率放大器的工作模式后向功率放大器发送控制信号,控制功率放大器按照与工作模式对应的增益参数阈值对射频发射信号进行功率放大。相对于现有技术中,为了保证无人机的飞行状态数据和采集的图像数据等能够远距离的传回地面站,统一使用大功率放大器的技术方案,本发明 首先判断无人机与地面站之间的距离,能根据无人机与地面站之间的实际距离动态调整功率放大器的工作模式,使得无人机在向地面站传输数据时,选择最合适的增益参数阈值对射频发射信号进行功率放大,如当无人机与地面站之间的距离较小时,控制功率放大器在低功率工作模式下运行,当无人机与地面站之间的距离较大时,控制功率放大器在高功率工作模式下运行,既能保证射频发射信号传输质量,同时也降低了功率放大器的功耗,提高了无人机的续航时间。
附图说明
图1为本发明一个实施例的无人机通信方法的流程示意图;
图2为本发明另一个实施例的无人机通信方法的流程示意图;
图3为本发明一个实施例的无人机通信装置的结构示意图;
图4为本发明一个实施例的无人机的原理框图;
图5为本发明另一个实施例的无人机的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1为本发明一个实施例的无人机通信方法的流程示意图。如图1所示,本发明实施例的方法包括:
S11:获取无人机的位置信息以及地面站的位置信息,其中,地面站与无人机进行无线通信;
在实际应用中,可基于全球定位系统(Global Positioning System,GPS)获取无人机的位置信息以及地面站的位置信息,也可采用其他方式获取上述位置信息,本发明对此不作限制。
S12:根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;
在实际应用中,位置信息包括经纬度信息和海拔信息,以地球的中心为原点,以指向北极的方向为Z轴,以指向起始子午线与赤道线的交点的方向为X轴,以垂直于X轴和Z轴所在的平面的方向为Y轴建立空间直角坐标系。
本发明实施例中无人机与地面站之间的距离指的是无人机与地面站之间的直线距离,通过无人机的经纬度信息和海拔信息确定无人机的第一空间坐标,通过地面站的经纬度信息和海拔信息确定地面站的第二空间坐标,根据第一空间坐标和第二空间坐标确 定无人机与地面站之间的直线距离。
S13:根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式;
需要说明的是,距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系。
S14:向功率放大器发送对应工作模式的控制信号,控制功率放大器根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至地面站。
需要说明的是,当距离阈值越大时,功率放大器对应工作模式的增益参数阈值越大,在输入功率相同的前提下,功率放大器的输出功率越大。
本发明实施例提供的无人机通信方法,相对于现有技术中,为了保证无人机的飞行状态数据和采集的图像数据等能够远距离的传回地面站,统一使用大功率放大器的技术方案,本发明首先判断无人机与地面站之间的距离,能根据无人机与地面站之间的实际距离动态调整功率放大器的工作模式,使得无人机在向地面站传输数据时,选择最合适的增益参数阈值对射频发射信号进行功率放大,如当无人机与地面站之间的距离较小时,控制功率放大器在低功率工作模式下运行,当无人机与地面站之间的距离较大时,控制功率放大器在高功率工作模式下运行,既能保证射频发射信号传输质量,同时也降了低功率放大器的功耗,提高了无人机的续航时间。
在本发明一个实施例中,功率放大器的工作模式包括第一工作模式、第二工作模式和第三工作模式;第一工作模式的增益参数阈值小于第二工作模式的增益参数阈值,所述第二工作模式的增益参数阈值小于第三工作模式的增益参数阈值;
此时,根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,包括:
当距离小于等于第一距离阈值时,确定功率放大器的工作模式为第一工作模式;
当距离大于第一距离阈值小于第二距离阈值时,确定功率放大器的工作模式为第二工作模式;
当距离大于等于第二距离阈值时,确定功率放大器的工作模式为第三工作模式。
本发明实施例的无人机通信方法,功率放大器的工作模式分为第一工作模式(低功率工作模式)、第二功率工作模式(中功率工作模式)和第三功率工作模式(高功率工作模式),在获取到无人机与地面站之间的距离后,将该距离与预设的距离阈值进行比较,从而确定功率放大器的工作模式,实现根据距离对功率放大器的工作模式进行动态调整。
在实际应用中,采用图1中的方法根据表1中的距离判断规则对功率放大器的工作模式进行调整。
表1距离判断规则
距离阈值 工作模式
0-100m 低功率
100-300m 中功率
≥300m 高功率
具体地,当无人机与地面站之间的距离为0-100m时,向功率放大器发送低功率工作模式的控制信号;当无人机与地面站之间的距离为100-300m时,向功率放大器发送中功率工作模式的控制信号;当无人机与地面站之间的距离为≥300m时,向功率放大器发送高功率工作模式的控制信号。
在实际应用中,第一工作模式下功率放大器的输出功率可以为12dBm,第二工作模式下功率放大器的输出功率可以为22dBm,第三工作模式下功率放大器的输出功率可以为32dBm,每一级工作模式下的输出功率相差10dB(10倍功率差),10倍的功率差等价于3倍以上的频率覆盖范围。需要说明的是,功率放大器在不同的工作模式下的输出功率还可以设置为其他数值,本发明对此不作限制。
无人机与地面站之间的无线通信信号,在不同的飞行环境下的空间衰减度不同,例如在开阔环境、一般环境下和城市复杂环境下,无线通信信号的空间衰减度逐渐变大。具体地,在开阔环境下,无人机与地面站之间的无线通信信号不受遮挡,二者之间的无线通信路径类似于直线,无线通信信号从无人机发送至地面站的过程中发生的损耗很小;在城市复杂环境下,无人机与地面站之间的无线通信信号要受到楼宇、树木等遮挡,无线通信信号从无人机发送至地面站的过程中要发生一系列的反射和绕射,因而造成无线通信信号发生的损耗很大;而在一般环境下,无线通信信号从无人机发送至地面站的过程中发生的损耗大于开阔环境中的损耗、小于城市复杂环境下的损耗。
因而为了针对不同的飞行环境设置不同的功率放大器的增益参数阈值,以保证无人机在不同的飞行环境中的射频发射信号的传输质量,在本发明实施例的一种可选的实施方式中,距离判断规则中还包括环境属性,该方法还包括:
获取无人机的飞行环境信息;
根据飞行环境信息,确定飞行环境信息所属环境属性,选择与飞行环境信息所属的 环境属性对应的距离判断规则。
本发明实施例中的飞行环境是指无人机所处的飞行场地,如空间障碍物少(如建筑物少)视野开阔的空旷场地、空间障碍物多(如建筑物密集)的复杂城市等;本发明实施例中的飞行环境信息的环境属性指的是对无人机无线通信信号在空间传输过程中的衰减程度造成影响的环境特性,如开阔环境,对无人机的无线通信信号的空间衰减影响较小;城市复杂环境,对无线通信信号的空间衰减影响较大等,一般环境介于开阔环境和城市复杂环境之间。
在实际应用中,可以根据无人机发送信号的强度与地面站接收信号的强度确定无线通信信号的空间衰减度,进而选择与空间衰减度对应的距离判断规则。
另外,还可根据无人机发送至地面站的图像数据确定无人机的飞行环境信息,判断无人机是在开阔环境中飞行还是在城市复杂环境中飞行,进而选择与飞行环境信息对应的距离判断规则。或者,根据用户输入的环境属性,直接选择与环境属性对应的距离判断规则,在此,用户的输入操作,可以是通过用户携带的智能设备进行远程输入,或者在释放无人机之前,手动控制无人机上的环境选择开关等,实现环境属性的设定,本发明对此不作限定。
由于无人机在飞行过程中,其飞行的稳定性以及位置定位的准确性都会导致计算的距离产生误差,此时,无人机与地面站之间的距离可能会在某一距离阈值的切换门限附近反复变化,如无人机与地面站之间的距离与功率放大器某一工作模式下对应的距离阈值的门限值之差小于预设距离差值,或者,在无人机与地面站之间的距离变化发生反转时(如从距离增大反转到距离减小),反转起始点处无人机与地面站之间的距离与反转结束点处无人机与地面站之间的距离的差值小于预设距离差值。在出现上述情形时,若仍按照表1所示的距离判断规则,功率放大器可能会频繁的切换工作模式,产生乒乓效应。例如,当无人机与地面站之间的距离为98m时,功率放大器的工作模式为低功率工作模式;从98m增大到101m时,功率放大器的工作模式从低功率工作模式切换为中功率工作模式,当无人机与地面站之间的距离从101m减小到99m时,功率放大器的工作模式又从中功率工作模式切换到低功率工作模式,在101m和99m之间反复变化时,无人机上功率放大器的工作模式也会在低功率工作模式和中功率工作模式两种工作模式之间反复频繁切换,这影响功率放大器的使用寿命,也会带来更大的能耗。
为了避免乒乓效应,在本发明一个实施例中,距离判断规则中还包括距离变化趋势属性,该方法还包括;
获取无人机与地面站在预设时间内的距离变化趋势;
根据距离变化趋势,选择与距离变化趋势对应的距离判断规则。
此处,距离变化趋势包括距离增大和距离减小;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,具体包括:
在无人机与地面站之间的距离增大的情况下:
当距离小于等于第一距离阈值时,确定功率放大器的工作模式为第一工作模式;
当距离大于第一距离阈值小于第二距离阈值时,确定功率放大器的工作模式为第二工作模式;
当距离大于等于第二距离阈值时,确定功率放大器的工作模式为第三工作模式;
在无人机与地面站之间的距离减小的情况下:
当距离小于等于第三距离阈值时,确定功率放大器的工作模式为第一工作模式;
当距离大于第三距离阈值小于第四距离阈值时,确定功率放大器的工作模式为第二工作模式;
当距离大于等于第四距离阈值时,确定功率放大器的工作模式为第三工作模式;
其中,第一距离阈值与第三距离阈值相差预设值,第二距离阈值与第四距离阈值相差预设值。
本发明实施例为了避免乒乓效应,设定无人机与地面站之间的距离增大的情况下与无人机与地面站之间的距离减小的情况下对应同一工作模式下的距离阈值不同,即第一距离阈值与第三距离阈值相差预设值,第二距离阈值与第四距离阈值相差预设值。
如表2所示,是本发明实施例为了避免乒乓效应设置的距离判断规则。
表2距离判断规则
Figure PCTCN2018090404-appb-000001
如上表2中,本发明实施例设定无人机与地面站之间的距离在增大的情况下与减小的情况下对应同一工作模式下的距离阈值相差5m,来避免出现上述乒乓效应。即在无人机与地面站之间的距离增大的情况下,对应低功率工作模式下的距离阈值设定为 0-100m,对应中功率工作模式下的距离阈值设定为100-300m;而在无人机与地面站之间的距离减小的情况下,对应低功率工作模式下的距离阈值设定为0-95m,对应中功率工作模式下的距离阈值设定为95-295m。当无人机与地面站之间的距离从80m增大到101m时,功率放大器的工作模式从低功率工作模式切换为中功率工作模式;无人机继续飞行,当无人机与地面站之间的距离又减小到98m时,功率放大器的工作模式将仍然保持在中功率工作模式;只有当无人机与地面站之间的距离减小到小于95m时,功率放大器的工作模式才从中功率工作模式切换为低功率工作模式。
类似地,在无人机与地面站之间的距离增大的情况下,设定第二距离阈值为≥300m,在无人机与地面站之间的距离减小的情况下,设定第四距离阈值为≥295m,即第二距离阈值与第四距离阈值相差5m。当无人机与地面站之间的距离从280m增大到超过300m时,功率放大器的工作模式从中功率工作模式切换为高功率工作模式;无人机继续飞行,当无人机与地面站之间的距离减小到298m时,功率放大器的工作模式仍然为高功率工作模式,只有当无人机与地面站之间的距离减小到小于295m时,功率放大器的工作模式才从高功率工作模式切换为中功率工作模式。
由于GPS卫星、卫星信号传播过程等都会对GPS卫星定位测量造成误差,为了消除GPS卫星定位的误差、提高无人机定位的准确,获取无人机的位置信息包括:
接收GPS卫星定位信息;
接收地面站发送的GPS修正信息,其中,GPS修正信息为地面站根据位置已知的GPS基准台确定的;
根据GPS修正信息对GPS卫星定位信息进行修正,得到无人机的位置信息。
需要说明的是,地面站根据位置已知的GPS基准台获得GPS修正信息,并将该GPS修正信息发送至无人机;无人机根据GPS修正信息对GPS卫星定位信息进行修正,将修正后的GPS卫星定位信息作为无人机的位置信息。
图2为本发明另一个实施例的无人机通信方法的流程示意图。
如图2所示,本发明实施例的方法包括:
S211:首先确认无人机的飞行环境,包括开阔环境、一般环境和城市复杂环境。
当飞行环境信息为开阔环境时,
S221:获取无人机以及地面站的位置信息;
S231:根据无人机以及地面站的位置信息计算无人机与地面站之间的距离,并将该距离与上一时刻的距离进行比较确定无人机与地面站之间的距离变化趋势;
具体地,假设无人机的第一空间坐标为(X1,Y1,Z1),地面站的第二空间坐标为 (X2,Y2,Z2),则无人机与地面站之间的距离为:
Figure PCTCN2018090404-appb-000002
S241:若无人机与地面站之间的距离变化趋势为距离变大,则执行S251;否则,执行S261;
S251:若无人机与地面站之间的距离为0-100m,则向功率放大器发送切换到低功率工作模式的控制信号;若无人机与地面站之间的距离为100-300m,则向功率放大器发送中功率工作模式的控制信号;若无人机与地面站之间的距离≥300m,则向功率放大器发送高功率工作模式的控制信号;
S261:若无人机与地面站之间的距离为0-95m,则向功率放大器发送低功率工作模式的控制信号;若无人机与地面站之间的距离为95-295m,则向功率放大器发送中功率工作模式的控制信号;若无人机与地面站之间的距离≥295m,则向功率放大器发送高功率工作模式的控制信号。
如图2所示,当飞行环境信息为一般环境时:
S222、S232与上述的S221、S231相同,在此不再赘述;
S242:若无人机与地面站之间的距离变化趋势为距离变大,则执行S252;否则,执行S262;
S252:若无人机与地面站之间的距离为0-50m,则向功率放大器发送低功率工作模式的控制信号;若无人机与地面站之间的距离为50-150m,则向功率放大器发送中功率工作模式的控制信号;若无人机与地面站之间的距离≥150m,则向功率放大器发送高功率工作模式的控制信号;
S262:若无人机与地面站之间的距离为0-45m,则向功率放大器发送低功率工作模式的控制信号;若无人机与地面站之间的距离为45-145m,则向功率放大器发送中功率工作模式的控制信号;若无人机与地面站之间的距离≥145m,则向功率放大器发送高功率工作模式的控制信号。
如图2所示,当飞行环境信息为城市复杂环境时S223、S233与上述的S221、S231相同,在此不再赘述;
S243:若无人机与地面站之间的距离变化趋势为距离变大,则执行S253;否则,执行S263;
S253:若无人机与地面站之间的距离为0-50m,则向功率放大器发送中功率工作模式的控制信号;若无人机与地面站之间的距离≥50m,则向功率放大器发送高功率工作模式的控制信号;
S263:若无人机与地面站之间的距离为0-45m,则向功率放大器发送中功率工作模式的控制信号;若无人机与地面站之间的距离≥45m,则向功率放大器发送高功率工作模式的控制信号。上述图2的方法对应的距离判断规则如表3所示。
表3距离判断规则
Figure PCTCN2018090404-appb-000003
需要说明的是,如表3所示,当无人机处于城市复杂环境中时,由于无线通信信号的空间衰减较大,因此,为了保证无人机数据的正常传输,在此飞行环境中,无人机的功率放大器没有设定低功率工作模式,仅设定了中功率工作模式和高功率工作模式。
图2所示的无人机通信方法中,距离判断规则中存储有距离阈值、飞行环境信息的环境属性、距离变化趋势与功率放大器的工作模式的对应关系。
本发明实施例提供的无人机通信方法,能根据无人机与地面站之间的实际距离、飞行环境信息的环境属性和距离变化趋势动态调整功率放大器的工作模式,使得无人机在向地面站传输数据时,选择最合适的增益参数阈值对射频发射信号进行功率放大,既能保证射频发射信号传输质量,同时也降了低功率放大器的功耗,提高了无人机的续航时间。
在本发明的另一种实施方式中,为了避免乒乓效应,该方法还包括:
判断当前时刻对应的距离与第一时刻对应的距离的距离变化趋势,其中,第一时刻是与当前时刻相差第一预设时间的某个历史时刻;
若当前时刻相对第一时刻的距离变化趋势与第一时刻相对第二时刻的距离变化趋势相反,其中,第二时刻是与第一时刻相差第二预设时间的某个历史时刻,则将第一距离阈值和第二距离阈值增加预设值或减少预设值。
需要说明的是,本发明实施例为了避免乒乓效应,若当前时刻相对第一时刻的距离变化趋势与第一时刻相对第二时刻的距离变化趋势相反时,可自动在原有的距离阈值基础上增加预设值或减少预设值。
图3为本发明一个实施例的无人机通信装置的结构示意图。如图3所示,本发明实施例的无人机通信装置包括:处理器31和存储器32,处理器31和存储器32之间通过内部总线33通讯连接,存储器31存储有能够被处理器32执行的计算机程序,计算机程序被处理器执行时能够实现如下步骤:
获取无人机的位置信息以及地面站的位置信息,其中,地面站与无人机进行无线通信;
根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
向功率放大器发送对应工作模式的控制信号,控制功率放大器根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至地面站。
可选地,功率放大器的工作模式包括第一工作模式、第二工作模式和第三工作模式;第一工作模式的增益参数阈值小于第二工作模式的增益参数阈值,所述第二工作模式的增益参数阈值小于第三工作模式的增益参数阈值;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,包括:
当距离小于等于第一距离阈值时,确定功率放大器的工作模式为第一工作模式;
当距离大于第一距离阈值小于第二距离阈值时,确定功率放大器的工作模式为第二工作模式;
当距离大于等于第二距离阈值时,确定功率放大器的工作模式为第三工作模式。
可选地,距离判断规则中还包括环境属性,该方法还包括:
获取无人机的飞行环境信息;
根据飞行环境信息,确定飞行环境信息所属环境属性,选择与飞行环境信息所属的环境属性对应的距离判断规则;
可选地,距离判断规则中还包括距离变化趋势属性,该方法还包括;
获取无人机与地面站在预设时间内的距离变化趋势;
根据距离变化趋势,选择与距离变化趋势对应的距离判断规则。
可选地,距离变化趋势包括距离增大和距离减小;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,具体包括:
在无人机与地面站之间的距离增大的情况下:
当距离小于等于第一距离阈值时,确定功率放大器的工作模式为第一工作模式;
当距离大于第一距离阈值小于第二距离阈值时,确定功率放大器的工作模式为第二工作模式;
当距离大于等于第二距离阈值时,确定功率放大器的工作模式为第三工作模式;
在无人机与地面站之间的距离减小的情况下:
当距离小于等于第三距离阈值时,确定功率放大器的工作模式为第一工作模式;
当距离大于第三距离阈值小于第四距离阈值时,确定功率放大器的工作模式为第二工作模式;
当距离大于等于第四距离阈值时,确定功率放大器的工作模式为第三工作模式;
其中,第一距离阈值与第三距离阈值相差预设值,第二距离阈值与第四距离阈值相差预设值。
可选地,获取无人机的位置信息包括:
接收GPS卫星定位信息;
接收地面站发送的GPS修正信息,其中,GPS修正信息为地面站根据位置已知的GPS基准台确定的;
根据GPS修正信息对GPS卫星定位信息进行修正,得到无人机的位置信息。
图4为本发明一个实施例的无人机的原理框图。如图4所示,本发明实施例的无人机包括:处理器43、功率放大器42以及天线41;
处理器43用于获取无人机的位置信息以及地面站的位置信息,其中,地面站与无人机进行无线通信;
根据无人机的位置信息和地面站的位置信息,确定无人机与地面站之间的距离;
根据距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
向功率放大器发送对应工作模式的控制信号;
功率放大器42用于根据控制信号选择对应工作模式的增益参数阈值,按照增益参数阈值对射频发射信号进行功率放大;
天线41用于将放大后的信号发送至地面站。
在实际应用中,功率放大器42为间接电流反馈功率可调放大器,处理器43通过向 功率放大器42发送控制信号改变功率放大器42的增益调节电阻的阻值,进而改变功率放大器42的增益参数阈值。
本发明实施例提供的无人机,通过获取无人机的位置信息和地面站的位置信息,进而确定无人机与地面站之间的距离;根据无人机与地面站之间的距离以及预设的距离判断规则,确定无人机的功率放大器的工作模式;在确定无人机的功率放大器的工作模式后向功率放大器发送控制信号,控制功率放大器按照与工作模式对应的增益参数阈值对射频发射信号进行功率放大。相对于现有技术中,为了保证无人机的飞行状态数据和采集的图像数据等能够远距离的传回地面站,统一使用大功率放大器的技术方案,本发明首先判断无人机与地面站之间的距离,能根据无人机与地面站之间的实际距离动态调整功率放大器的工作模式,使得无人机在向地面站传输数据时,选择最合适的增益参数阈值对射频发射信号进行功率放大,如当无人机与地面站之间的距离较小时,控制功率放大器在低功率工作模式下运行,当无人机与地面站之间的距离较大时,控制功率放大器在高功率工作模式下运行,既能保证射频发射信号传输质量,同时也降低了功率放大器的功耗,提高了无人机的续航时间。
进一步地,本发明实施例的无人机还包括与处理器相连的定位模块,定位模块用于获取无人机和地面站的位置信息,并将所述位置信息发送至处理器。在实际应用中,定位模块优选为GPS模块,还可以是其他用于定位的装置,本发明对此不作限制。
如图5所示,本发明实施例的无人机包括:处理器53、增益可调功率放大器52、天线51,以及与处理器相连的差分GPS模块54;
差分GPS模块54用于接收GPS卫星定位信息,还用于接收地面站发送的GPS修正信息,其中,GPS修正信息为地面站根据位置已知的GPS基准台确定的,根据GPS修正信息对GPS卫星定位信息进行修正,得到无人机的位置信息,并将无人机的位置信息信息发送至处理器53。
进一步地,还包括射频通信发射模块55,射频通信发射模块55的输入端与处理器53相连,射频通信发射模块55的输出端与增益可调功率放大器52相连,射频通信发射模块55用于根据处理器53发送的控制信号将射频发射信号发送至增益可调功率放大器52;射频通信发射模块55包括数传射频模块和图传射频模块。
在实际应用中,射频通信发射模块55的工作频段为5.8GHz。数传射频模块用于发射无人机的飞行状态数据,图传射频模块用于发射无人机采集的图像数据。
该无人机还包括与增益可调功率放大器52相连的增益开关56,处理器53根据控制信号控制增益开关56与增益可调功率放大器52的不同控制端口相连,不同的控制端口 对应不同的增益参数阈值。
本发明实施例的增益可调功率放大器52包括第一控制端口、第二控制端口和第三控制端口。当处理器通过增益开关56与增益可调功率放大器52的第一控制端口相连时,增益可调功率放大器52的工作模式为第一工作模式;当处理器通过增益开关56与增益可调功率放大器52的第二控制端口相连时,增益可调功率放大器52的工作模式为第二工作模式;当处理器通过增益开关56与增益可调功率放大器52的第三控制端口相连时,增益可调功率放大器52的工作模式为第三工作模式。
综上所述,根据本发明的技术方案,通过获取无人机的位置信息和地面站的位置信息,进而确定无人机与地面站之间的距离;根据无人机与地面站之间的距离以及预设的距离判断规则,确定无人机的功率放大器的工作模式;在确定无人机的功率放大器的工作模式后向功率放大器发送控制信号,控制功率放大器按照与工作模式对应的增益参数阈值对射频发射信号进行功率放大。相对于现有技术中,为了保证无人机的飞行状态数据和采集的图像数据等能够远距离的传回地面站,统一使用大功率放大器的技术方案,本发明首先判断无人机与地面站之间的距离,能根据无人机与地面站之间的实际距离动态调整功率放大器的工作模式,使得无人机在向地面站传输数据时,选择最合适的增益参数阈值对射频发射信号进行功率放大,如当无人机与地面站之间的距离较小时,控制功率放大器在低功率工作模式下运行,当无人机与地面站之间的距离较大时,控制功率放大器在高功率工作模式下运行,即能保证射频发射信号传输质量,同时也降低了功率放大器的功耗,提高了无人机的续航时间。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
需要说明的是术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明的说明书中,说明了大量具体细节。然而能够理解的是,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。类似地,应当理解,为了精简本发明公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释呈反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种无人机通信方法,其中,包括:
    获取无人机的位置信息以及地面站的位置信息,其中,所述地面站与所述无人机进行无线通信;
    根据所述无人机的位置信息和地面站的位置信息,确定所述无人机与所述地面站之间的距离;
    根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,所述距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
    向所述功率放大器发送对应所述工作模式的控制信号,控制所述功率放大器根据所述控制信号选择对应所述工作模式的增益参数阈值,按照所述增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至所述地面站。
  2. 根据权利要求1所述的方法,其中,所述功率放大器的工作模式包括第一工作模式、第二工作模式和第三工作模式;所述第一工作模式的增益参数阈值小于所述第二工作模式的增益参数阈值,所述第二工作模式的增益参数阈值小于所述第三工作模式的增益参数阈值;
    所述根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,包括:
    当所述距离小于等于第一距离阈值时,确定所述功率放大器的工作模式为第一工作模式;
    当所述距离大于第一距离阈值小于第二距离阈值时,确定所述功率放大器的工作模式为第二工作模式;
    当所述距离大于等于第二距离阈值时,确定所述功率放大器的工作模式为第三工作模式。
  3. 根据权利要求2所述的方法,其中,所述距离判断规则中还包括环境属性,所述方法还包括:
    获取所述无人机的飞行环境信息;
    根据所述飞行环境信息,确定飞行环境信息所属环境属性,选择与所述飞行环境信息所属的环境属性对应的距离判断规则;
  4. 根据权利要求2或3所述的方法,所述距离判断规则中还包括距离变化趋势属性,所述方法还包括;
    获取所述无人机与所述地面站在预设时间内的距离变化趋势;
    根据所述距离变化趋势,选择与所述距离变化趋势对应的距离判断规则。
  5. 根据权利要求4所述的方法,其中,所述距离变化趋势包括距离增大和距离减小;
    所述根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,具体包括:
    在所述无人机与所述地面站之间的距离增大的情况下:
    当所述距离小于等于第一距离阈值时,确定所述功率放大器的工作模式为第一工作模式;
    当所述距离大于第一距离阈值小于第二距离阈值时,确定所述功率放大器的工作模式为第二工作模式;
    当所述距离大于等于第二距离阈值时,确定所述功率放大器的工作模式为第三工作模式;
    在所述无人机与所述地面站之间的距离减小的情况下:
    当所述距离小于等于第三距离阈值时,确定所述功率放大器的工作模式为第一工作模式;
    当所述距离大于第三距离阈值小于第四距离阈值时,确定所述功率放大器的工作模式为第二工作模式;
    当所述距离大于等于第四距离阈值时,确定所述功率放大器的工作模式为第三工作模式;
    其中,所述第一距离阈值与所述第三距离阈值相差预设值,所述第二距离阈值与所述第四距离阈值相差预设值。
  6. 根据权利要求1-5任一项所述的方法,其中,所述获取无人机的位置信息包括:
    接收GPS卫星定位信息;
    接收所述地面站发送的GPS修正信息,其中,所述GPS修正信息为所述地面站根据位置已知的GPS基准台确定的;
    根据所述GPS修正信息对所述GPS卫星定位信息进行修正,得到无人机的位置信息。
  7. 一种无人机通信装置,其中,包括处理器和存储器,所述处理器和所述存储器之间通过内部总线通讯连接,所述存储器存储有能够被所述处理器执行的计算机程序,所述计算机程序被所述处理器执行时能够实现如下步骤:
    获取无人机的位置信息以及地面站的位置信息,其中,所述地面站与所述无人机进 行无线通信;
    根据所述无人机的位置信息和地面站的位置信息,确定所述无人机与所述地面站之间的距离;
    根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,所述距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
    向所述功率放大器发送对应所述工作模式的控制信号,控制所述功率放大器根据所述控制信号选择对应所述工作模式的增益参数阈值,按照所述增益参数阈值对射频发射信号进行功率放大,并将放大后的信号发送至所述地面站。
  8. 根据权利要求7所述的装置,其中,所述功率放大器的工作模式包括第一工作模式、第二工作模式和第三工作模式;所述第一工作模式的增益参数阈值小于所述第二工作模式的增益参数阈值,所述第二工作模式的增益参数阈值小于所述第三工作模式的增益参数阈值;
    所述根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,包括:
    当所述距离小于等于第一距离阈值时,确定所述功率放大器的工作模式为第一工作模式;
    当所述距离大于第一距离阈值小于第二距离阈值时,确定所述功率放大器的工作模式为第二工作模式;
    当所述距离大于等于第二距离阈值时,确定所述功率放大器的工作模式为第三工作模式。
  9. 根据权利要求8所述的装置,其中,所述距离判断规则中还包括环境属性,所述计算机程序被所述处理器执行时还能够实现如下步骤:
    获取所述无人机的飞行环境信息;
    根据所述飞行环境信息,确定飞行环境信息所属环境属性,选择与所述飞行环境信息的所属环境属性对应的距离判断规则;
    和/或,所述距离判断规则中还包括距离变化趋势属性,所述方法还包括;
    获取所述无人机与所述地面站在预设时间内的距离变化趋势;
    根据所述距离变化趋势,选择与所述距离变化趋势对应的距离判断规则。
  10. 根据权利要求9所述的装置,其中,所述距离变化趋势包括距离增大和距离减小;
    所述根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模 式,具体包括:
    在所述无人机与所述地面站之间的距离增大的情况下:
    当所述距离小于等于第一距离阈值时,确定所述功率放大器的工作模式为第一工作模式;
    当所述距离大于第一距离阈值小于第二距离阈值时,确定所述功率放大器的工作模式为第二工作模式;
    当所述距离大于等于第二距离阈值时,确定所述功率放大器的工作模式为第三工作模式;
    在所述无人机与所述地面站之间的距离减小的情况下:
    当所述距离小于等于第三距离阈值时,确定所述功率放大器的工作模式为第一工作模式;
    当所述距离大于第三距离阈值小于第四距离阈值时,确定所述功率放大器的工作模式为第二工作模式;
    当所述距离大于等于第四距离阈值时,确定所述功率放大器的工作模式为第三工作模式;
    其中,所述第一距离阈值与所述第三距离阈值相差预设值,所述第二距离阈值与所述第四距离阈值相差预设值。
  11. 根据权利要求7-10任一项所述的装置,其中,所述获取无人机的位置信息包括:
    接收GPS卫星定位信息;
    接收所述地面站发送的GPS修正信息,其中,所述GPS修正信息为所述地面站根据位置已知的GPS基准台确定的;
    根据所述GPS修正信息对所述GPS卫星定位信息进行修正,得到无人机的位置信息。
  12. 一种无人机,其中,包括:处理器、功率放大器以及天线;
    所述处理器用于获取无人机的位置信息以及地面站的位置信息,其中,所述地面站与所述无人机进行无线通信;
    根据所述无人机的位置信息和地面站的位置信息,确定所述无人机与所述地面站之间的距离;
    根据所述距离以及预设的距离判断规则,确定无人机上的功率放大器的工作模式,其中,所述距离判断规则中存储有距离阈值与功率放大器的工作模式的对应关系;
    向所述功率放大器发送对应所述工作模式的控制信号;
    所述功率放大器用于根据所述控制信号选择对应所述工作模式的增益参数阈值,按照所述增益参数阈值对射频发射信号进行功率放大;
    所述天线用于将放大后的信号发送至所述地面站。
  13. 根据权利要求12所述的无人机,其中,还包括与所述处理器相连的差分GPS模块;
    所述差分GPS模块用于接收GPS卫星定位信息,还用于接收地面站发送的GPS修正信息,根据所述GPS修正信息对所述GPS卫星定位信息进行修正,得到无人机的位置信息,并将所述无人机的位置信息信息发送至所述处理器;其中,所述GPS修正信息为所述地面站根据位置已知的GPS基准台确定的。
  14. 根据权利要求12所述的无人机,其中,还包括射频通信发射模块,所述射频通信发射模块的输入端与所述处理器相连,所述射频通信发射模块的输出端与所述功率放大器相连,所述射频通信发射模块用于根据所述处理器发送的控制信号将射频发射信号发送至所述功率放大器;所述射频通信发射模块包括数传射频模块和图传射频模块。
  15. 根据权利要求12所述的无人机,其中,所述功率放大器为增益可调功率放大器;
    所述无人机还包括与所述增益可调功率放大器相连的增益开关,所述处理器根据所述控制信号控制所述增益开关与所述增益可调功率放大器的不同控制端口相连,不同的控制端口对应不同的增益参数阈值。
PCT/CN2018/090404 2017-10-30 2018-06-08 一种无人机通信方法、装置及无人机 WO2019085480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/095,876 US10852445B2 (en) 2017-10-30 2018-06-08 Unmanned aerial vehicle communication method and device and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711036642.7A CN108011659B (zh) 2017-10-30 2017-10-30 一种无人机通信方法、装置及无人机
CN201711036642.7 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019085480A1 true WO2019085480A1 (zh) 2019-05-09

Family

ID=62052030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090404 WO2019085480A1 (zh) 2017-10-30 2018-06-08 一种无人机通信方法、装置及无人机

Country Status (3)

Country Link
US (1) US10852445B2 (zh)
CN (1) CN108011659B (zh)
WO (1) WO2019085480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013839A (zh) * 2020-08-18 2020-12-01 重庆交通大学 一种gps拒止环境下无人机集群实时定位方法
CN114665947A (zh) * 2022-02-24 2022-06-24 南京邮电大学 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565989B (zh) * 2017-09-28 2020-07-10 歌尔股份有限公司 一种无人机宽频天线复用方法及装置
CN108011659B (zh) * 2017-10-30 2024-02-09 歌尔股份有限公司 一种无人机通信方法、装置及无人机
CN108848536B (zh) * 2018-06-27 2023-06-06 新华三技术有限公司 频宽控制方法、装置及通信设备
CN108919832A (zh) * 2018-07-23 2018-11-30 京东方科技集团股份有限公司 无人机作业航线规划方法、无人机施药方法及装置
CN109269352B (zh) * 2018-09-20 2021-03-30 北京机械设备研究所 一种基于地面探测的无人机跟踪目标方法及系统
CN110518994B (zh) * 2019-09-11 2022-04-22 中国联合网络通信集团有限公司 一种无人机测控方法和装置
CN111343609B (zh) * 2020-02-28 2022-09-02 西南电子技术研究所(中国电子科技集团公司第十研究所) 无人机测控链功率和速率联合控制方法
CN111554129B (zh) * 2020-05-15 2023-03-24 航迅信息技术有限公司 一种基于室内定位的无人机围栏系统
CN113163478B (zh) * 2020-12-31 2023-06-13 四川航天神坤科技有限公司 一种无人机数据链基于距离信息的下行功率控制方法及系统
CN112752219B (zh) * 2020-12-31 2022-09-02 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种适用于无人艇的超短波通信方法及装置
CN115562560B (zh) * 2021-07-02 2023-11-21 荣耀终端有限公司 笔迹绘制方法、装置、电子设备和可读存储介质
CN114189282B (zh) * 2021-11-16 2024-03-22 华东师范大学 一种无人机辅助的无线光通信系统传输方法
CN114371726A (zh) * 2021-12-06 2022-04-19 特金智能科技(上海)有限公司 无人机空地一体化探测定位方法、装置、系统与设备
CN114501516B (zh) * 2022-02-14 2024-03-12 成都市以太节点科技有限公司 一种车地无线通信切换室内测试方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162364A (zh) * 1994-10-27 1997-10-15 丹·师拉格 自定位的遥控监视系统
CN106535308A (zh) * 2016-10-27 2017-03-22 深圳市保千里电子有限公司 一种智能控制wifi传输距离的方法及系统
CN107004345A (zh) * 2017-01-23 2017-08-01 深圳市大疆创新科技有限公司 控制方法、无人机及遥控设备
CN108011659A (zh) * 2017-10-30 2018-05-08 歌尔股份有限公司 一种无人机通信方法、装置及无人机
CN207603640U (zh) * 2017-10-30 2018-07-10 歌尔股份有限公司 一种无人机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113794A1 (en) 1994-10-27 2004-06-17 Dan Schlager Self-locating personal alarm system equipped parachute
WO2008069603A1 (en) * 2006-12-07 2008-06-12 Electronics And Telecommunications Research Institute Device and method for controlling power
KR100865378B1 (ko) * 2006-12-07 2008-10-24 한국전자통신연구원 전력 제어 장치 및 방법
US9743412B2 (en) * 2013-02-27 2017-08-22 Hitachi Kokusai Electric, Inc. Wireless communication system
US9310221B1 (en) * 2014-05-12 2016-04-12 Unmanned Innovation, Inc. Distributed unmanned aerial vehicle architecture
CN105208643B (zh) * 2014-06-27 2019-01-04 中国移动通信集团公司 一种无线传输功率的控制方法及控制装置
CN104901725B (zh) * 2015-05-19 2018-09-21 西安海导信息技术有限公司 信号传输设备、定位器、信号传输系统及信号传输方法
CN107040865B (zh) * 2016-02-04 2021-11-23 北京三星通信技术研究有限公司 一种v2x通信中的功率控制方法和设备
US10762795B2 (en) * 2016-02-08 2020-09-01 Skydio, Inc. Unmanned aerial vehicle privacy controls
CN105933053B (zh) * 2016-04-19 2019-03-19 北京博瑞空间科技发展有限公司 无人机通信装置及无人机
US10507916B2 (en) * 2017-06-30 2019-12-17 Intel Corporation Unmanned aerial vehicles and related methods and systems
US10823822B2 (en) * 2017-10-02 2020-11-03 Higher Ground Llc System and method for deploying self-coordinated devices in an environment with incumbent receivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162364A (zh) * 1994-10-27 1997-10-15 丹·师拉格 自定位的遥控监视系统
CN106535308A (zh) * 2016-10-27 2017-03-22 深圳市保千里电子有限公司 一种智能控制wifi传输距离的方法及系统
CN107004345A (zh) * 2017-01-23 2017-08-01 深圳市大疆创新科技有限公司 控制方法、无人机及遥控设备
CN108011659A (zh) * 2017-10-30 2018-05-08 歌尔股份有限公司 一种无人机通信方法、装置及无人机
CN207603640U (zh) * 2017-10-30 2018-07-10 歌尔股份有限公司 一种无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YONGSHENG: "Design and Implementation of Real-Time Position Differential GPS", JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY, vol. 12, no. 3, 31 August 1994 (1994-08-31), pages 354 - 359 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013839A (zh) * 2020-08-18 2020-12-01 重庆交通大学 一种gps拒止环境下无人机集群实时定位方法
CN114665947A (zh) * 2022-02-24 2022-06-24 南京邮电大学 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法
CN114665947B (zh) * 2022-02-24 2023-07-25 南京邮电大学 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法

Also Published As

Publication number Publication date
US10852445B2 (en) 2020-12-01
CN108011659A (zh) 2018-05-08
US20200257003A1 (en) 2020-08-13
CN108011659B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2019085480A1 (zh) 一种无人机通信方法、装置及无人机
CN207603640U (zh) 一种无人机
WO2018133122A1 (zh) 控制方法、无人机及遥控设备
US8279840B2 (en) Systems and methods for providing location based services (LBS) utilizing WLAN and/or GPS signals for seamless indoor and outdoor tracking
CN102508237B (zh) 一种角跟踪系统
US11693431B2 (en) Method and system of measuring radio wave distribution of a radio signal source and estimating corresponding radio characteristics by using a flying vehicle
CN106772233B (zh) 定位方法、相关设备及系统
WO2008141551A1 (fr) Procédé et équipement pour la planification du réseau d'un système de communication
WO2019034086A1 (zh) 一种数据传输方法、系统、无人机及装置
CN101631349A (zh) 一种定位终端的方法、装置及无线操作维护中心
US9825718B2 (en) Localization of a mobile device using radio signal parameters
WO2018228483A1 (zh) 一种机动车辆自动驾驶方法及终端设备
US20180189516A1 (en) Methods and apparatus to provide privacy from drones using short term memory loss
CN111447001B (zh) 终端设备的上行功率控制方法以及装置
CN103369671A (zh) 一种基于wifi的近距离定位系统及定位方法
Sophia et al. Bluetooth low energy based indoor positioning system using ESP32
US20230275644A1 (en) Method and apparatus for determining operation mode, device, and storage medium
CN105472729A (zh) 一种基于WiFi室内定位技术的大数据处理系统和方法
WO2020248645A1 (zh) 一种终端发送参数的确定方法和装置
WO2020063545A1 (zh) 调节装置、天线及通信设备
TW202105936A (zh) 毫米波信號的通訊路徑確定方法、測量裝置及測量控制器
CN114501364A (zh) 基于wifi信号的室内定位方法、装置以及电子设备
CN106527477A (zh) 一种无人机监管系统及方法
CN106019210A (zh) 一种无人机搜索系统
CN112996108B (zh) 基于目标跟踪的无线通信网络中节点定位方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873167

Country of ref document: EP

Kind code of ref document: A1