WO2020248645A1 - 一种终端发送参数的确定方法和装置 - Google Patents

一种终端发送参数的确定方法和装置 Download PDF

Info

Publication number
WO2020248645A1
WO2020248645A1 PCT/CN2020/080708 CN2020080708W WO2020248645A1 WO 2020248645 A1 WO2020248645 A1 WO 2020248645A1 CN 2020080708 W CN2020080708 W CN 2020080708W WO 2020248645 A1 WO2020248645 A1 WO 2020248645A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
terminal
maximum
reference position
rate
Prior art date
Application number
PCT/CN2020/080708
Other languages
English (en)
French (fr)
Inventor
康绍莉
王映民
孙韶辉
缪德山
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20823128.2A priority Critical patent/EP3985885A4/en
Priority to US17/617,572 priority patent/US11515934B2/en
Publication of WO2020248645A1 publication Critical patent/WO2020248645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks

Definitions

  • This application relates to the field of satellite communication technology, and in particular to a method and device for determining sending parameters of a terminal.
  • the satellite mobile communication system needs to allocate power and bandwidth resources to the terminals reasonably according to the receiving and sending capabilities of the terminal.
  • the transmitting and receiving capabilities of the satellite and the receiving capabilities of the terminal can be determined by existing methods, but there is no reasonable solution for how to determine the transmitting capability of the terminal.
  • This application provides a method and device for determining sending parameters of a terminal to determine the sending capability of the terminal.
  • an embodiment of the present application provides a method for determining sending parameters of a terminal, and the method includes:
  • the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam is first determined.
  • Noise ratio determine the EIRP value corresponding to the uplink preset carrier bandwidth of at least one reference location, and determine the maximum rate supported by the uplink preset carrier bandwidth according to the EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference location , Determine the maximum uplink rate supported by the terminal according to the maximum rate supported by the uplink preset carrier bandwidth, determine an uplink rate not greater than the maximum uplink rate supported by the terminal, and determine the terminal based on the uplink rate that the terminal intends to support The uplink sending parameters.
  • the method can quickly and reasonably determine the uplink transmission parameters of the terminal, so that the control equipment in the satellite mobile communication system allocates relevant resources for the terminal according to the obtained terminal uplink transmission parameters, and ensures the reasonable utilization of system resources.
  • the determining the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam includes:
  • the preset lowest signal-to-noise ratio is used as the estimated signal-to-noise ratio of the uplink for at least one reference position.
  • the above method provides several alternative ways to determine the estimated signal-to-noise ratio of the uplink. Since the EIRP value of the terminal cannot be determined, the signal-to-noise ratio of the uplink cannot be directly determined according to the EIRP value of the terminal and the quality factor of the satellite receiver.
  • the transmission power of the satellite and the preset quality factor of the terminal receiver are both known parameters, which can be determined according to the transmission power of the satellite corresponding to at least one reference position and the preset quality factor of the terminal receiver.
  • the downlink signal-to-noise ratio of at least one reference position is determined, and the uplink estimated signal-to-noise ratio is determined according to the downlink signal-to-noise ratio.
  • the preset minimum signal-to-noise ratio can be used as the estimated signal of the uplink at at least one reference position. Noise ratio.
  • the above-mentioned methods can reasonably determine the estimated signal-to-noise ratio of the uplink.
  • the determining the EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference position according to the estimated signal-to-noise ratio of the uplink of the at least one reference position includes:
  • the quality factor of the satellite receiver, the noise power of the satellite receiver, the estimated signal-to-noise ratio of the uplink and the link loss can be determined quickly and accurately.
  • the determining the maximum rate supported by the uplink preset carrier bandwidth according to the EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference position includes:
  • the obtained maximum value of the EIRP value corresponding to the uplink preset carrier bandwidth is used as the uplink transmission EIRP corresponding to each reference position, and at least one reference is determined according to the uplink transmission EIRP and the uplink preset carrier bandwidth
  • the uplink rate of the location, and then determine the maximum rate supported by the uplink preset carrier bandwidth can make full use of system resources such as satellite power and bandwidth.
  • the determining the uplink rate of at least one reference position according to the uplink transmission EIRP and the uplink preset carrier bandwidth includes:
  • the actual uplink signal-to-noise ratio of the reference position is determined according to the uplink transmission EIRP, link loss, the preset quality factor of the satellite receiver, and the noise power of the satellite receiver, and then The spectrum efficiency of the reference location is determined, and the uplink rate of the reference location can be accurately obtained according to the spectrum efficiency of the reference location and the uplink preset carrier bandwidth.
  • the determining the maximum rate supported by the uplink preset carrier bandwidth according to the uplink rate of at least one reference position includes:
  • the average value of the uplink rate of at least one reference position is used as the maximum rate supported by the uplink preset carrier bandwidth.
  • the average value of the uplink rate of at least one reference position is taken as the maximum rate supported by the uplink preset carrier bandwidth, which can reasonably determine the maximum rate supported by the uplink preset carrier bandwidth.
  • determining the maximum uplink rate supported by the terminal according to the maximum rate supported by the uplink preset carrier bandwidth and the preset maximum number of concurrent users supported includes:
  • the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users supported is used as the maximum uplink rate supported by the terminal.
  • the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users is used as the maximum uplink rate supported by the terminal, and then the rate class or terminal rate of the terminal is divided according to the maximum uplink rate supported by the terminal
  • the uplink rate to be supported determines the sending capability of the terminal according to the uplink rate to be supported by the terminal, which is conducive to more reasonable allocation of system resources for the terminal.
  • the determining the maximum uplink transmission EIRP and/or the maximum uplink transmission bandwidth of the terminal according to the uplink rate that the terminal intends to support that is not greater than the maximum uplink rate supported by the terminal according to the user input includes:
  • some uplink rates to be supported by the terminal can be set. For example, the maximum uplink rate supported by the terminal can be displayed to the user, so that the user can set the uplink rate to be supported by the terminal according to the maximum uplink rate supported by the terminal.
  • the transmitting capability of the terminal is The terminal allocates system resources reasonably.
  • an embodiment of the present application provides an apparatus for determining sending parameters of a terminal, including a processor and a memory;
  • the processor is used to read computer instructions in the memory and execute:
  • the processor specifically executes:
  • the preset lowest signal-to-noise ratio is used as the estimated signal-to-noise ratio of the uplink for at least one reference position.
  • the processor specifically executes:
  • the processor specifically executes:
  • the processor specifically executes:
  • the processor specifically executes:
  • the average value of the uplink rate of at least one reference position is used as the maximum rate supported by the uplink preset carrier bandwidth.
  • the processor specifically executes:
  • the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users supported is used as the maximum uplink rate supported by the terminal.
  • the processor specifically executes:
  • an apparatus for determining sending parameters of a terminal including:
  • a signal-to-noise ratio determining module configured to determine the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam;
  • the EIRP determining module is configured to determine the effective isotropic radiated power EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference position according to the estimated signal-to-noise ratio of the uplink of the at least one reference position;
  • the link support rate determination module is configured to determine the maximum rate supported by the uplink preset carrier bandwidth according to the EIRP value corresponding to the uplink preset carrier bandwidth of at least one reference position;
  • the terminal support rate determination module is configured to determine the maximum uplink rate supported by the terminal according to the maximum rate supported by the uplink preset carrier bandwidth and the preset maximum number of concurrent users supported;
  • the terminal sending parameter determination module is used to determine the maximum uplink sending EIRP and/or the maximum bandwidth of the uplink sending of the terminal according to the uplink rate to be supported by the terminal that is not greater than the maximum uplink rate supported by the terminal input by the user.
  • the signal-to-noise ratio determination module is further used for:
  • the preset lowest signal-to-noise ratio is used as the estimated signal-to-noise ratio of the uplink for at least one reference position.
  • the EIRP determination module is further used for:
  • the link support rate determination module is further configured to:
  • the link support rate determination module is further configured to:
  • the link support rate determination module is further configured to:
  • the average value of the uplink rate of at least one reference position is used as the maximum rate supported by the uplink preset carrier bandwidth.
  • the terminal supports a rate determination module, which is also used to:
  • the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users supported is used as the maximum uplink rate supported by the terminal.
  • the terminal sending parameter determination module is further configured to:
  • an embodiment of the present application provides a computer-readable storage medium in which a computer program is stored, and when the computer program is executed by a processor, any one of the above-mentioned first aspects is implemented The steps of the method for determining the parameters sent by the terminal.
  • FIG. 1 is an application scenario diagram of a method for determining sending parameters of a terminal according to an embodiment of the application
  • FIG. 2 is a diagram of another application scenario of the method for determining sending parameters of a terminal provided by an embodiment of the application;
  • FIG. 3 is a flowchart of a method for determining sending parameters of a terminal according to an embodiment of the application
  • FIG. 4 is a schematic diagram of a satellite supporting multiple satellite beams according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of another satellite supporting multiple satellite beams according to an embodiment of the application.
  • FIG. 6 is a flowchart of step S303 in FIG. 3;
  • FIG. 7 is a schematic diagram of a reference position within a cell range corresponding to a satellite beam according to an embodiment of the application.
  • FIG. 8 is a structural block diagram of an apparatus for determining sending parameters of a terminal according to an embodiment of the application.
  • FIG. 9 is a structural block diagram of another device for determining sending parameters of a terminal according to an embodiment of the application.
  • LEO satellite mobile communication system refers to a large-scale satellite communication system composed of multiple satellites that can perform real-time information processing. The orbital height of its satellites is low, so it has transmission delay. Short time and low path loss.
  • EIRP Effective Isotropic Radiated Power
  • Link loss including path loss and other losses.
  • path loss refers to the loss caused by the propagation of satellite beams in space, which is caused by the radiation diffusion of the transmission power and the propagation characteristics of the channel, and reflects the change of the average value of the received signal power in the macroscopic range.
  • G/T refers to the quality factor of the receiving end, which is an important indicator in the satellite mobile communication system.
  • G represents the antenna gain of the receiver
  • T represents the equivalent noise temperature of the noise performance of the receiver.
  • the G/T value will gradually decrease.
  • SNR Signal-Noise Ratio
  • Fig. 1 shows a system architecture diagram of a satellite mobile communication system to which an embodiment of the present application is applicable.
  • satellite mobile communication systems include satellites, terminals, customs stations, control centers and other facilities.
  • the satellite 100 can be used as a relay station for communication between the terminal and the gateway.
  • the link between the terminal and the satellite is called the user link, and the link between the satellite and the gateway is called the feeder link.
  • a complete unidirectional communication link includes both user links and feeder links. Since the performance of the feeder links is significantly better than the user links, the user link should be mainly considered when determining the link quality.
  • Fig. 2 shows a system architecture diagram of another satellite mobile communication system to which the embodiments of the present application are applicable.
  • the satellite 100 is similar to a base station.
  • different terminals such as terminal A and terminal B can communicate directly through satellites.
  • the terminal is a device with wireless communication function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (For example, airplane or balloon, etc.).
  • the terminal may have different forms of expression, which may be a mobile phone, a pad, a computer with wireless transceiver function, a virtual reality (VR) terminal, and an augmented reality (AR) terminal , Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation) Wireless terminals in safety), wireless terminals in smart cities, wireless terminals in smart homes, etc.; it can also be various forms of UE, mobile station (MS) and other terminal equipment (terminal device).
  • the function of the terminal is to realize the setting and acquisition of the communication status of the terminal user through the installed wireless transceiver antenna, and complete the communication.
  • both power and bandwidth are limited resources.
  • the satellite mobile communication system needs to allocate power and bandwidth resources to the terminal reasonably according to the terminal's transceiver capabilities. Therefore, it is necessary to determine the transmission capability of the terminal.
  • the embodiments of the present application provide a method and device for determining sending parameters of a terminal.
  • the estimated signal-to-noise ratio of the uplink of at least one reference location within the cell range corresponding to the satellite beam is determined, based on the uplink of the at least one reference location.
  • the estimated signal-to-noise ratio of the link determine the EIRP value corresponding to the uplink preset carrier bandwidth of at least one reference location, and determine the uplink preset based on the EIRP value corresponding to the uplink preset carrier bandwidth of at least one reference location
  • the maximum rate supported by the carrier bandwidth is determined according to the maximum rate supported by the uplink preset carrier bandwidth, and the maximum uplink rate supported by the terminal is determined, and an uplink rate to be supported by the terminal that is not greater than the maximum uplink rate supported by the terminal is determined according to the terminal’s plan.
  • the supported uplink rate determines the uplink sending parameters of the terminal.
  • the method can quickly and reasonably determine the uplink transmission parameters of the terminal, so that the control equipment in the satellite mobile communication system allocates relevant resources for the terminal according to the obtained terminal uplink transmission parameters, and ensures the reasonable utilization of system resources.
  • FIG. 3 shows a flowchart of a method for determining sending parameters of a terminal according to an embodiment of the present application. As shown in FIG. 3, the method includes the following steps:
  • Step S301 Determine the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam;
  • Step S302 Determine the EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference position according to the estimated signal-to-noise ratio of the uplink of the at least one reference position;
  • Step S303 Determine the maximum rate supported by the uplink preset carrier bandwidth according to the EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference position;
  • Step S304 Determine the maximum uplink rate supported by the terminal according to the maximum rate supported by the uplink preset carrier bandwidth and the preset maximum number of concurrent users supported;
  • Step S305 Determine the maximum uplink transmission EIRP and/or the maximum uplink transmission bandwidth of the terminal according to the uplink rate to be supported by the terminal that is not greater than the maximum uplink rate supported by the terminal input by the user.
  • the maximum uplink transmission EIRP of the terminal may be determined only according to the uplink rate to be supported by the terminal. In other embodiments, the maximum uplink sending bandwidth of the terminal may be determined only according to the uplink rate to be supported by the terminal. In other embodiments, the maximum uplink sending EIRP and the uplink sending maximum bandwidth of the terminal can be determined according to the uplink rate to be supported by the terminal.
  • the uplink sending parameters of the terminal can be quickly and reasonably determined, so that the control device in the satellite mobile communication system can allocate relevant resources for the terminal according to the obtained terminal uplink sending parameters to ensure the reasonable utilization of system resources.
  • the terminal In a satellite mobile communication system, to determine the terminal’s transmission capability, it is necessary to determine the uplink signal-to-noise ratio and spectrum efficiency, and then determine the maximum rate that the uplink can support, and then determine the maximum rate that the uplink can support
  • the maximum uplink rate that the terminal can support is based on the uplink rate input by the user that is not greater than the maximum uplink rate supported by the terminal to obtain the terminal's sending parameters.
  • the terminal's sending parameters indicate the terminal's sending capabilities.
  • the signal-to-noise ratio of the uplink cannot be directly determined according to the EIRP value of the terminal and the quality factor of the satellite receiver.
  • the estimated signal-to-noise ratio of the uplink of at least one reference position in the cell range corresponding to the satellite beam is determined according to the downlink signal-to-noise ratio of a certain reference position.
  • the ratio or the preset minimum signal-to-noise ratio determines the estimated signal-to-noise ratio of the uplink at the reference position.
  • the satellite 100 can support multiple satellite beams.
  • Each satellite beam corresponds to a coverage area on the ground (the rectangular area in Figure 4 and the circular area in Figure 5).
  • the coverage area can be called the cell range corresponding to the satellite beam.
  • One or more reference positions can be preset within the cell range corresponding to the satellite beam for uplink budgeting, thereby determining the maximum rate that the uplink can support.
  • Multiple reference positions are preset within the cell range corresponding to the satellite beam, and the uplink related parameters corresponding to the multiple reference positions can be integrated to improve the credibility of the calculated result.
  • step S301 one of the following methods may be used to determine the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam.
  • the first method is to determine the downlink signal-to-noise ratio of at least one reference position according to the transmission power of the satellite corresponding to the at least one reference position and the preset quality factor of the terminal receiver, and combine the downlink signal-to-noise ratio of at least one reference position
  • the signal-to-noise ratio of the link is used as the estimated signal-to-noise ratio of the uplink corresponding to the reference position.
  • the transmission power of the satellite and the preset quality factor of the terminal receiver are known, and the following formula can be used to determine the signal-to-noise ratio of the downlink at the reference position.
  • SNR DL,m represents the downlink signal-to-noise ratio of the m-th reference position
  • EIRP DL,m represents the equivalent transmit power of the satellite corresponding to the m-th reference position
  • [G/T] DL represents the terminal receiver
  • P Dn represents the noise power of the terminal receiver
  • L 0,m represents the path loss at the m-th reference position
  • L 1,m represents the sum of other losses except the path loss at the m-th reference position.
  • Other losses can include frequency reuse loss, nonlinear loss, power back-off loss, polarization loss, antenna pointing loss, antenna scanning loss, atmospheric absorption, feeder link noise that needs to be considered, and redundancy considering the impact of link stability. Redundancy, rain/cloud attenuation, etc.
  • L 0,m +L 1,m represents the link loss at the m-th reference position, that is, the link loss includes the sum of path loss and other losses.
  • L 0,m and L 1,m can be obtained by measurement and calculation. The calculation formula is introduced below.
  • M represents the total number of preset reference positions.
  • the downlink signal-to-noise ratio SNR DL,m at the m-th reference position is calculated, and the downlink signal-to-noise ratio at the m-th reference position can be used as the estimated signal-to-noise ratio of the uplink at the m-th reference position ratio.
  • the second way is to determine the downlink signal-to-noise ratio of at least one reference position according to the transmission power of the satellite corresponding to the at least one reference position and the preset quality factor of the terminal receiver, and to determine the downlink signal-to-noise ratio of at least one reference position
  • the sum of the signal-to-noise ratio of the link and the preset adjustment value is used as the estimated signal-to-noise ratio of the uplink at the corresponding reference position.
  • the downlink signal-to-noise ratio SNR DL,m of the m-th reference position is calculated , and the following formula can be used to determine the estimated signal-to-noise ratio of the uplink of the m-th reference position.
  • SNR UL', m SNR DL, m + ⁇ .
  • SNR UL',m the estimated signal-to-noise ratio of the uplink at the m-th reference position
  • the preset adjustment value.
  • the recommended value range of ⁇ is -3dB ⁇ 0.
  • the third way is to use the preset lowest signal-to-noise ratio as the estimated signal-to-noise ratio of the uplink at at least one reference position.
  • the estimated signal-to-noise ratio of the uplink of the known at least one reference position can be based on the link loss, the preset quality factor of the satellite receiver, the noise power of the satellite receiver, and the signal-to-noise ratio of the at least one reference position.
  • the estimated signal-to-noise ratio of the uplink determines the EIRP value corresponding to the uplink preset carrier bandwidth of at least one reference position. Calculated as follows:
  • EIRP UL,m represents the EIRP value corresponding to the uplink preset carrier bandwidth of the m-th reference position
  • [G/T] UL represents the quality factor of the satellite receiver
  • P Un represents the noise power of the satellite receiver.
  • step S303 may be implemented by the method shown in FIG. 6, and includes the following steps:
  • Step S3031 Use the obtained maximum value among the EIRP values corresponding to the uplink preset carrier bandwidth as the uplink transmission EIRP corresponding to each reference position. It can be expressed by the following formula:
  • EIRP UL represents the corresponding uplink transmission EIRP of each reference position in the M reference positions.
  • Step S3032 Determine the uplink rate of at least one reference position according to the uplink transmission EIRP and the uplink preset carrier bandwidth.
  • step S3032 can be implemented in the following manner: determine the actual uplink signal-to-noise of at least one reference position according to the uplink transmission EIRP, link loss, the preset quality factor of the satellite receiver, and the noise power of the satellite receiver Ratio; according to the actual signal-to-noise ratio of the uplink of at least one reference position, determine the spectral efficiency of at least one reference position; determine the spectral efficiency of at least one reference position according to the spectral efficiency of at least one reference position and the uplink preset carrier bandwidth rate.
  • EIRP UL the corresponding uplink transmission EIRP of the m-th reference position
  • EIRP UL the corresponding uplink transmission EIRP of the m-th reference position
  • SNR UL,m represents the actual signal-to-noise ratio of the uplink at the m-th reference position.
  • the spectral efficiency ⁇ m of the m-th reference position can be determined.
  • the uplink rate of the m-th reference position can be determined according to the following formula.
  • datarate m represents the uplink rate of the m-th reference position
  • BW UL represents the uplink preset carrier bandwidth
  • ⁇ m represents the spectral efficiency of the m-th reference position.
  • Step S3033 Determine the maximum rate supported by the uplink preset carrier bandwidth according to the uplink rate of at least one reference location.
  • the average value of the uplink rate of at least one reference location may be used as the maximum rate supported by the uplink preset carrier bandwidth, or in other words, the average value of the uplink rate of all the preset reference locations may be used as the uplink preset rate.
  • Set the maximum rate supported by the carrier bandwidth The calculation formula is as follows:
  • step S304 after the maximum rate supported by the uplink preset carrier bandwidth is obtained, the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users can be used as the maximum uplink rate supported by the terminal .
  • the calculation formula is as follows:
  • datarate max datarate UL /N
  • datarate max represents the maximum uplink rate supported by the terminal; N represents the preset maximum number of concurrent users supported.
  • step S305 the uplink rate to be supported by the terminal input by the user is received, and it is determined whether the uplink rate to be supported by the terminal is greater than the maximum uplink rate supported by the terminal; if so, return to the user to input the uplink rate to be supported by the terminal again. Rate; if not, determine the maximum uplink transmission EIRP and/or the maximum uplink transmission bandwidth of the terminal according to the uplink rate to be supported by the terminal.
  • the calculated maximum uplink rate supported by the terminal can be displayed to the user, so that the user can set the uplink rate to be supported by the terminal according to the maximum uplink rate supported by the terminal, and the set uplink rate to be supported by the terminal is less than or equal to the uplink rate supported by the terminal.
  • the maximum rate is sufficient.
  • the uplink rate datarate to be supported by the terminal input by the user is actually ⁇ datarate max
  • the maximum uplink transmission EIRP and/or the maximum uplink transmission bandwidth of the terminal are determined according to the uplink rate to be supported by the terminal.
  • the maximum uplink transmission EIRP of the terminal can be determined according to the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the uplink rate to be supported by the terminal, and the EIRP UL . Specifically, the following formula may be used to determine the maximum EIRP sent by the terminal in the uplink.
  • EIRP actual EIRP UL -10*log10 (datarate UL /datarate actual );
  • EIRP actually represents the maximum EIRP sent by the terminal in the uplink.
  • the maximum uplink transmission bandwidth of the terminal may be determined according to the ratio of the uplink rate supported by the terminal to the maximum rate supported by the uplink preset carrier bandwidth and the uplink preset carrier bandwidth. Specifically, the following formula may be used to determine the maximum uplink transmission bandwidth of the terminal.
  • BW actual BW UL *(datarate actual /datarate UL );
  • BW actually represents the maximum uplink transmission bandwidth of the terminal.
  • the following describes in detail the execution process of the method for determining the sending parameters of the terminal through a specific application example applied in the LEO satellite mobile communication system.
  • the satellite can support multiple beams. Assuming that the satellite forms 16 rectangular beams, the satellite coverage can be marked with some typical reference positions, such as the center beam center (point A), the center beam edge (point B), and the edge beam center ( Point C) and the edge of the edge beam (point D), as shown in Figure 7.
  • the above-mentioned typical reference position can best represent the position difference of the cell. It should be noted that other reference positions can also be selected, and the number of reference positions can be more than 4 or less than 4.
  • the entries in the link budget table can include basic parameters, sender parameters, and wireless links. Key information such as parameters and receiver parameters.
  • basic parameters can include frequency, bandwidth, link distance, etc.
  • transmitter parameters include EIRP, etc.
  • wireless link parameters include path loss and other losses
  • receiver parameters include G/T, noise power, SNR, spectral efficiency, support The rate and so on.
  • frequency, bandwidth, link distance, EIRP at the sending end, and G/T at the receiving end are input values, that is, known parameters. These parameters are preset or can be obtained by measurement. .
  • the path loss, other losses, and receiver parameters are values that need to be calculated. Among them, the path loss, other losses and the noise power at the receiving end, the SNR of the downlink and the spectral efficiency of the downlink are intermediate calculated values, and the rate indicated by the receiving end is the output value.
  • the satellite uses different power amplifiers for each carrier, that is, the gain of each carrier is different, so the EIRP value of each carrier is different.
  • the link budget is performed according to a single carrier. It can be understood that, for each carrier supported by the satellite, it can be calculated according to the method provided in the embodiment of the present application. In addition to common information such as basic parameters and wireless link parameters, the calculation of the downlink depends on the EIRP sent by the satellite and the G/T of the terminal receiver, and the calculation of the uplink depends on the EIRP sent by the terminal and the G/T of the satellite receiver. /T.
  • the EIRP sent by the satellite and the G/T of the satellite receiver are fixed, and the G/T of the terminal receiver is also fixed.
  • the G/T of the machine is 18dB/K.
  • the EIRP sent by the terminal is related to the rate that needs to be supported and varies. Therefore, for the downlink, the downlink budget can be based on the downlink preset carrier bandwidth supported by the satellite to obtain downlink performance indicators, such as the noise power of the receiving end, the signal-to-noise ratio of the downlink, and the downlink Parameters such as the spectrum efficiency of the road and the supported rate. As shown in Table 2, it is an example table of the downlink budget corresponding to the terminal of the 1m aperture phased array antenna.
  • the frequency corresponding to the single carrier supported by the satellite is all known parameters.
  • the parameters of the transmitting end (the transmitting power of the satellite EIRP DL, m ) and the parameters of the receiving end (the G/T DL of the terminal receiver) are also known parameters.
  • the other losses L 1,m corresponding to the 4 reference positions can be obtained by summing after measurement.
  • the path loss L 0,m corresponding to the four reference positions can be calculated by the following formula
  • L 0,m 92.4+20log(d*f); where d is the link distance (km), and f is the frequency of the carrier (GHz).
  • the noise power P Dn of the terminal receiver corresponding to each reference position can be calculated by the following formula.
  • P Dn -228.6+10*log(BW DL *10 ⁇ 6); where BW DL is the downlink preset carrier bandwidth (MHz).
  • the signal-to-noise ratio of the downlink corresponding to the four reference positions can be determined according to the following formula.
  • Table 3 shows the demodulation threshold table.
  • the link budget can also be based on the downlink preset carrier bandwidth supported by the satellite. Since the EIRP sent by the terminal is an uncertain parameter, the following two methods can be used to perform the uplink budget and determine the terminal transmission parameter.
  • the first way is to determine the estimated signal-to-noise ratio of the uplink according to the signal-to-noise ratio of the downlink.
  • the uplink and downlink have the same signal-to-noise ratio and spectral efficiency.
  • the downlink signal-to-noise ratio of each reference position is taken as the estimated signal-to-noise ratio SNR UL',m of the uplink corresponding to the reference position.
  • the sum of the downlink signal-to-noise ratio of each reference position and the preset adjustment value may be used as the estimated signal-to-noise ratio of the uplink of the corresponding reference position.
  • the noise power P Un of the satellite receiver corresponding to each reference position can be calculated by the following formula.
  • the EIRP value EIRP UL,m corresponding to the uplink preset carrier bandwidth of each reference position can be calculated, where [G/T] UL is the quality factor of the satellite receiver.
  • EIRP UL 61.5 dBW.
  • Table 4 it is an example table of uplink budget corresponding to the terminal with 1m aperture phased array antenna.
  • the actual uplink signal-to-noise ratio SNR UL,m corresponding to the four reference positions can be determined.
  • the demodulation threshold table shown in Table 3 reveals the correspondence between the signal-to-noise ratio and the spectral efficiency.
  • the correspondence between the signal-to-noise ratio and the spectral efficiency can be determined and saved in advance.
  • Table 3 only intercepts a part of the demodulation threshold table. . According to Table 3, the spectral efficiency ⁇ m corresponding to the four reference positions can be determined.
  • the second way is to determine the estimated signal-to-noise ratio of the uplink according to the preset minimum signal-to-noise ratio.
  • Table 6 it is the 1m aperture phased array antenna
  • An example table of the uplink budget corresponding to the terminal's SNR UL 0dB.
  • the maximum uplink transmission EIRP and the maximum uplink transmission bandwidth of the terminal can be determined according to the uplink rate to be supported by the terminal that is not greater than the maximum uplink rate supported by the terminal by the user.
  • the embodiment of the present application provides a method for determining the transmission parameters of the terminal of the satellite mobile communication system based on the link budget.
  • the method comprehensively uses multiple reference positions to jointly determine the maximum uplink transmission EIRP and the maximum uplink transmission bandwidth of the terminal, so that the determined terminal transmission parameters are more accurate, and it is more conducive to meeting system indicators.
  • the method is simple and quick, can be realized in a process, and is easy to develop corresponding software or tools.
  • an embodiment of the present application also provides a device for determining sending parameters of a terminal. Since the principle of the device to solve the problem is similar to the above-mentioned method for determining sending parameters of the terminal, the device It can be implemented with reference to the foregoing method embodiment, and the repetition is not repeated here.
  • the device for determining the sending parameters of the terminal can be implemented on a satellite, or on a control device in a satellite mobile communication system, such as a ground station, a base station, or a control device in a control center.
  • an apparatus for determining sending parameters of a terminal in an embodiment of the present application includes a processor 800, a memory 801, and a transceiver 802;
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 when performing operations.
  • the transceiver 802 is used to receive and send data under the control of the processor 800.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 801 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 800 or implemented by the processor 800.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 800 or instructions in the form of software.
  • the processor 800 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present application The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 801, and the processor 800 reads the information in the memory 801 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 800 is configured to read a program in the memory 801 and execute:
  • processor 800 specifically executes:
  • the preset lowest signal-to-noise ratio is used as the estimated signal-to-noise ratio of the uplink for at least one reference position.
  • processor 800 specifically executes:
  • processor 800 specifically executes:
  • processor 800 specifically executes:
  • processor 800 specifically executes:
  • the average value of the uplink rate of at least one reference position is used as the maximum rate supported by the uplink preset carrier bandwidth.
  • processor 800 specifically executes:
  • the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users supported is used as the maximum uplink rate supported by the terminal.
  • the processor 800 specifically executes: receiving an uplink rate input by the user to be supported by the terminal;
  • the device for determining the sending parameter of the terminal provided in the embodiment of the present application first determines the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam, and determines the estimated signal-to-noise ratio of the uplink of the at least one reference position.
  • the method can quickly and reasonably determine the uplink transmission parameters of the terminal, so that the control equipment in the satellite mobile communication system allocates relevant resources for the terminal according to the obtained terminal uplink transmission parameters, and ensures the reasonable utilization of system resources.
  • an embodiment of the present application also provides a device for determining sending parameters of a terminal. Since the principle of the device to solve the problem is similar to the above-mentioned method for determining sending parameters of the terminal, the device You can refer to the implementation of the foregoing method embodiment, and the repetitive parts will not be repeated.
  • an apparatus for determining sending parameters of a terminal includes the following modules:
  • the signal-to-noise ratio determining module 91 is configured to determine the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam;
  • the EIRP determining module 92 is configured to determine the EIRP value corresponding to the uplink preset carrier bandwidth of the at least one reference position according to the estimated signal-to-noise ratio of the uplink of the at least one reference position;
  • the link support rate determining module 93 is configured to determine the maximum rate supported by the uplink preset carrier bandwidth according to the EIRP value corresponding to the uplink preset carrier bandwidth of at least one reference position;
  • the terminal support rate determining module 94 is configured to determine the maximum uplink rate supported by the terminal according to the maximum rate supported by the uplink preset carrier bandwidth and the preset maximum number of concurrent users supported;
  • the terminal sending parameter determination module 95 is configured to determine the maximum uplink transmission EIRP and/or the maximum uplink transmission bandwidth of the terminal according to the uplink rate to be supported by the terminal that is not greater than the maximum uplink rate supported by the terminal input by the user.
  • the signal-to-noise ratio determining module 91 may also be used for:
  • the preset lowest signal-to-noise ratio is used as the estimated signal-to-noise ratio of the uplink for at least one reference position.
  • the EIRP determining module 92 may also be used for:
  • the link support rate determining module 93 may also be used to:
  • the link support rate determining module 93 may also be used to:
  • the link support rate determining module 93 may also be used to:
  • the average value of the uplink rate of at least one reference position is used as the maximum rate supported by the uplink preset carrier bandwidth.
  • the terminal support rate determination module 94 may also be used to:
  • the ratio of the maximum rate supported by the uplink preset carrier bandwidth to the preset maximum number of concurrent users supported is used as the maximum uplink rate supported by the terminal.
  • the terminal sending parameter determination module 95 may also be used to:
  • the device for determining the sending parameter of the terminal provided in the embodiment of the present application first determines the estimated signal-to-noise ratio of the uplink of at least one reference position within the cell range corresponding to the satellite beam, and determines the estimated signal-to-noise ratio of the uplink of the at least one reference position.
  • the method can quickly and reasonably determine the uplink transmission parameters of the terminal, so that the control equipment in the satellite mobile communication system allocates relevant resources for the terminal according to the obtained terminal uplink transmission parameters, and ensures the reasonable utilization of system resources.
  • An embodiment of the present application provides a computer medium, and the computer-readable storage medium stores computer instructions.
  • the terminal When the computer instructions are executed by a processor, the terminal sends parameters according to any one of the foregoing embodiments. Determine the method.
  • the embodiment of the present application also provides a computing device-readable storage medium for the method for determining the sending parameter of the terminal, that is, the content is not lost after power off.
  • the storage medium stores a software program, including program code.
  • the software program can be read by one or more processors and executed by any of the terminals in the embodiments of the present application.
  • the scheme of the parameter determination method is not limited to, the following parameters.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供了一种终端发送参数的确定方法和装置,涉及卫星通信领域。该方法先确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,根据上行链路的预估信噪比确定对应参考位置的上行链路预设载波带宽对应的EIRP值,根据上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,根据上行链路预设载波带宽支持的最大速率确定终端支持的上行最大速率,根据用户输入的不大于终端支持的上行最大速率的终端拟支持的上行速率确定终端的上行发送参数。该方法可以快速且合理地确定终端的上行发送参数,使卫星移动通信系统中的控制设备根据得到的终端上行发送参数为终端分配相关资源,保障系统资源的合理利用。

Description

一种终端发送参数的确定方法和装置
相关申请的交叉引用
本申请要求在2019年06月13日提交中国专利局、申请号为201910510201.9、申请名称为“一种终端发送参数的确定方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信技术领域,特别涉及一种终端发送参数的确定方法和装置。
背景技术
对于卫星移动通信系统,受限于卫星和终端的收发能力,功率和带宽都是有限的资源,因此卫星移动通信系统需要根据终端的收发能力为终端合理地分配功率和带宽资源。
在现有技术中,卫星的收发能力和终端的接收能力可以通过已有方法确定,但如何确定终端的发送能力,目前尚无合理的解决方案。
发明内容
本申请提供一种终端发送参数的确定方法和装置,用以确定终端的发送能力。
第一方面,本申请实施例提供一种终端发送参数的确定方法,该方法包括:
确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的有效全向辐射功率EIRP值;
根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
本申请实施例提供的终端发送参数的确定方法,先确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值,根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,根据上行链路预设载波带宽支持的最大速率确定终端支持的上行最大速率,确定一个不大于所述终端支持的上行最大速率的终端拟支持的上行速率,根据终端拟支持的上行速率确定终端的上行发送参数。该方法可以快速且合理地确定终端的上行发送参数,使卫星移动通信系统中的控制设备根据得到的终端上行发送参数为终端分配相关资源,保障系统资源的合理利用。
在一种可能的实现方式中,所述确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,包括:
根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比;或者
将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
上述方法提供了确定上行链路的预估信噪比的几种可选方式。由于终端的EIRP值无法确定,因此无法根据终端的EIRP值和卫星接收机的品质因数直接确定上行链路的信噪比。一种方式为:卫星的发射功率和预设的终端接 收机的品质因数均是已知的参数,根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,可以确定至少一个参考位置的下行链路的信噪比,根据下行链路的信噪比确定上行链路的预估信噪比。另一种方式为:考虑到上行链路的预估信噪比应满足系统工作的最低信噪比,因此可以将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。上述几种方式均可以合理地确定上行链路的预估信噪比。
在一种可能的实现方式中,所述根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值,包括:
根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
上述方法中,对于任意一个参考位置,已知卫星接收机的品质因数、卫星接收机的噪声功率、上行链路的预估信噪比以及链路损耗,可以快速且准确地确定该参考位置的上行链路预设载波带宽对应的EIRP值。
在一种可能的实现方式中,所述根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,包括:
将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
上述方法中,将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP,根据上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率,进而确定上行链路预设载波带宽支持的最大速率,可以使卫星的功率和带宽等系统资源得到充分利用。
在一种可能的实现方式中,所述根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率,包括:
根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
上述方法中,对于任意一个参考位置,根据上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率确定该参考位置的上行链路的实际信噪比,进而确定该参考位置的频谱效率,根据该参考位置的频谱效率和上行链路预设载波带宽,可以准确地得到该参考位置的上行速率。
在一种可能的实现方式中,所述根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率,包括:
将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
上述方法中,将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率,可以合理地确定上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率,包括:
将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
上述方法中,将上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率,再根据终端支持的上行最大速率划分终端的速率等级或者终端拟支持的上行速率,根据终端拟支持的上行速率确定终端的发送能力,有利于更合理地为终端分配系统资源。
在一种可能的实现方式中,所述根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽,包括:
接收用户输入的终端拟支持的上行速率;
判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
上述方法中,基于终端支持的上行最大速率,可以设置一些终端拟支持的上行速率。如可以将终端支持的上行最大速率展示给用户,使用户根据终端支持的上行最大速率设置终端拟支持的上行速率。接收用户输入的终端拟支持的上行速率,判定用户输入的终端拟支持的上行速率不大于终端支持的上行最大速率后,根据终端拟支持的上行速率确定终端的发送能力,根据终端的发送能力为终端合理地分配系统资源。
第二方面,本申请实施例提供了一种终端发送参数的确定装置,包括处理器和存储器;
所述处理器用于读取所述存储器中的计算机指令,执行:
确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的有效全向辐射功率EIRP值;
根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
在一种可能的实现方式中,所述处理器具体执行:
根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比;或者
将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
在一种可能的实现方式中,所述处理器具体执行:
根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
在一种可能的实现方式中,所述处理器具体执行:
将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,所述处理器具体执行:
根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
在一种可能的实现方式中,所述处理器具体执行:
将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,所述处理器具体执行:
将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
在一种可能的实现方式中,所述处理器具体执行:
接收用户输入的终端拟支持的上行速率;
判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
第三方面,本申请实施例提供了一种终端发送参数的确定装置,包括:
信噪比确定模块,用于确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
EIRP确定模块,用于根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的有效全向辐射功率EIRP值;
链路支持速率确定模块,用于根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
终端支持速率确定模块,用于根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
终端发送参数确定模块,用于根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
在一种可能的实现方式中,所述信噪比确定模块,还用于:
根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比;或者
将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
在一种可能的实现方式中,所述EIRP确定模块,还用于:
根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
在一种可能的实现方式中,所述链路支持速率确定模块,还用于:
将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,所述链路支持速率确定模块,还用于:
根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
在一种可能的实现方式中,所述链路支持速率确定模块,还用于:
将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,所述终端支持速率确定模块,还用于:
将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
在一种可能的实现方式中,所述终端发送参数确定模块,还用于:
接收用户输入的终端拟支持的上行速率;
判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现上述第一方面中任意一种终端发送参数的确定方法的步骤。
另外,第二方面至第四方面中任一种实现方式所带来的技术效果可参见第一方面中不同实现方式所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的终端发送参数的确定方法的一种应用场景图;
图2为本申请实施例提供的终端发送参数的确定方法的另一种应用场景图;
图3为本申请实施例提供的一种终端发送参数的确定方法的流程图;
图4为本申请实施例提供的一种卫星支持多个卫星波束的示意图;
图5为本申请实施例提供的另一种卫星支持多个卫星波束的示意图;
图6为图3中步骤S303的流程图;
图7为本申请实施例提供的一种在卫星波束对应的小区范围内的参考位置的示意图;
图8为本申请实施例提供的一种终端发送参数的确定装置的结构框图;
图9为本申请实施例提供的另一种终端发送参数的确定装置的结构框图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)低轨卫星系统(Low Earth Orbit Satellite System,LEO):LEO卫星移动通信系统指多个卫星构成的可以进行实时信息处理的大型卫星通信系统,其卫星的轨道高度低,因此具有传输延时短,路径损耗小的特点。
(2)有效全向辐射功率(Effective Isotropic Radiated Power,EIRP):指卫星或终端的发射天线在波束中心轴向上辐射的功率,等于无线电发射机供给天线的功率与给定方向上的天线增益的乘积,也可称为等效全向辐射功率。该参数用于表征卫星或终端发射信号的能力。
(3)链路损耗:包括路径损耗和其它损耗。其中,路径损耗指卫星波束在空间传播所产生的损耗,是由发射功率的辐射扩散及信道的传播特性造成的,反映宏观范围内接收信号功率均值的变化。
(4)G/T(Gain/Temperature):指接收端的品质因数,是卫星移动通信系统中的重要指标。其中,G表示接收机的天线增益,T表示接收机噪音性能的等效噪声温度。一般来说,设备在使用过程中随着器件的老化,G/T值会逐渐下降。
(5)信噪比(Signal-Noise Ratio,SNR):指卫星移动通信系统的上行链路或下行链路中信号与噪声的比例。
(6)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
(7)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
为了使本申请实施例的申请目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通 技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例终端发送参数的确定方法应用于卫星移动通信系统。图1示出了本申请实施例所适用的一种卫星移动通信系统的系统架构图。一般来说,卫星移动通信系统包括卫星、终端、信关站、控制中心等设施。在卫星移动通信系统中,只要终端在卫星100发射的卫星波束所覆盖的范围内,终端和信关站之间可以利用卫星100作为中继站来进行通信。终端和卫星之间的链路称为用户链路,卫星和信关站之间的链路称为馈电链路。通常,一条完整的单向通信链路同时包括用户链路和馈电链路,因馈电链路的性能明显好于用户链路,在决定链路质量时主要考虑用户链路即可。
图2示出了本申请实施例所适用的另一种卫星移动通信系统的系统架构图。在图2中,卫星100类似是个基站,只要在卫星100发射的卫星波束所覆盖的范围内,不同的终端(如终端A和终端B)之间可以直接通过卫星来进行通信。
在本申请实施例中,终端是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机或气球上等)。所述终端可以有不同的表现形式,可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等;还可以是各种形式的UE,移动台(mobile station,MS)等终端设备(terminal device)。终端的作用是通过安装的无线收发天线实现终端用户对通信状态的设置、获取,完成通信。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申 请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在卫星移动通信系统中,功率和带宽都是有限的资源,卫星移动通信系统需要根据终端的收发能力为终端合理地分配功率和带宽资源。因此需要确定终端的发送能力。
基于此,本申请实施例提供一种终端发送参数的确定方法和装置,先确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值,根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,根据上行链路预设载波带宽支持的最大速率确定终端支持的上行最大速率,确定一个不大于所述终端支持的上行最大速率的终端拟支持的上行速率,根据终端拟支持的上行速率确定终端的上行发送参数。该方法可以快速且合理地确定终端的上行发送参数,使卫星移动通信系统中的控制设备根据得到的终端上行发送参数为终端分配相关资源,保障系统资源的合理利用。
以下首先介绍本申请实施例提供的一种终端发送参数的确定方法,该方法可以应用于卫星,也可以应用于卫星移动通信系统中的控制设备,如地面站、基站或控制中心的控制设备。图3示出了本申请实施例提供的一种终端发送参数的确定方法的流程图,如图3所示,该方法包括如下步骤:
步骤S301,确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
步骤S302,根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值;
步骤S303,根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
步骤S304,根据上行链路预设载波带宽支持的最大速率和预设的最大支 持并发用户数,确定终端支持的上行最大速率;
步骤S305,根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
在一些实施例中,可以仅根据终端拟支持的上行速率确定终端的上行发送最大EIRP。在另一些实施例中,可以仅根据终端拟支持的上行速率确定终端的上行发送最大带宽。在另一些实施例中,可以根据终端拟支持的上行速率确定终端的上行发送最大EIRP和上行发送最大带宽。
通过上述终端发送参数的确定方法,可以快速且合理地确定终端的上行发送参数,使卫星移动通信系统中的控制设备根据得到的终端上行发送参数为终端分配相关资源,保障系统资源的合理利用。
在卫星移动通信系统中,要确定终端的发送能力,需要先确定上行链路的信噪比和频谱效率,进而确定上行链路能支持的最大速率,再根据上行链路能支持的最大速率确定终端能支持的上行最大速率,根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率得到终端的发送参数,终端的发送参数即标示着终端的发送能力。
由于终端的EIRP值无法确定,因此无法根据终端的EIRP值和卫星接收机的品质因数直接确定上行链路的信噪比。为了解决这一问题,在本申请实施例中,先确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,可以根据某一参考位置的下行链路的信噪比或预设的最低信噪比确定该参考位置的上行链路的预估信噪比。
如图4或图5所示,卫星100可以支持多个卫星波束,每个卫星波束在地面上都对应有一个覆盖区域(图4中的矩形区域、图5中的圆形区域),每个覆盖区域都可以称之为卫星波束对应的小区范围。可以在卫星波束对应的小区范围内预设一个或多个参考位置,用于进行上行链路预算,进而确定上行链路能支持的最大速率。在卫星波束对应的小区范围内预设多个参考位置,可以综合多个参考位置对应的上行链路相关参数,提高计算得到的结果的可信度。
具体地,在步骤S301中,可以采用如下几种方式之一确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比。
第一种方式为:根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比。
对于任意一个参考位置,已知卫星的发射功率和预设的终端接收机的品质因数,可以采用如下公式确定该参考位置的下行链路的信噪比。
SNR DL,m=EIRP DL,m+[G/T] DL-P Dn-L 0,m-L 1,m;m=1…M;
其中,SNR DL,m表示第m个参考位置的下行链路的信噪比;EIRP DL,m表示第m个参考位置对应的卫星的等效发射功率;[G/T] DL表示终端接收机的品质因数;P Dn表示终端接收机的噪声功率;L 0,m表示第m个参考位置的路径损耗,L 1,m表示第m个参考位置的除路径损耗外的其他损耗之和。其他损耗可以包括频率复用损失、非线性损失、功率回退损失、极化损失、天线指向损失、天线扫描损失、大气吸收、需要考虑的馈电链路噪声、考虑链路稳定性影响的冗余度、雨/云衰减等。L 0,m+L 1,m表示第m个参考位置的链路损耗,即链路损耗包括路径损耗以及其他损耗之和。L 0,m和L 1,m可以通过测量和计算得到,计算公式在下文中介绍。M表示预设的参考位置的总数目。
计算得到第m个参考位置的下行链路的信噪比SNR DL,m,可以将第m个参考位置的下行链路的信噪比作为第m个参考位置的上行链路的预估信噪比。
第二种方式为:根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比。
在该方式中,计算得到第m个参考位置的下行链路的信噪比SNR DL,m,可以采用如下公式确定第m个参考位置的上行链路的预估信噪比。
SNR UL’,m=SNR DL,m+δ。其中,SNR UL’,m为第m个参考位置的上行链路的 预估信噪比,δ为预设调整值。为了让上行链路尽量接近下行链路的性能,δ的取值范围建议为-3dB≤δ≤0。
第三种方式为:将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
考虑到上行链路的信噪比需要满足卫星移动通信系统工作的最低信噪比,因此可以将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比,即SNR UL’,m=SNR min
在步骤S302中,已知至少一个参考位置的上行链路的预估信噪比,可以根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。计算公式如下:
EIRP UL,m=-[G/T] UL+P Un+SNR UL’,m+L 0,m+L 1,m;m=1…M;
其中,EIRP UL,m表示第m个参考位置的上行链路预设载波带宽对应的EIRP值;[G/T] UL表示卫星接收机的品质因数;P Un表示卫星接收机的噪声功率。
上述步骤S303可以采用图6所示的方法实现,包括如下步骤:
步骤S3031,将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP。可以采用如下公式表示:
EIRP UL=max(EIRP UL,m,m=1……M);
其中,EIRP UL表示M个参考位置中每个参考位置的对应的上行发送EIRP。
步骤S3032,根据上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
具体地,步骤S3032可以采用如下方式实现:根据上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
将EIRP UL作为第m个参考位置的对应的上行发送EIRP,根据如下公式,可以确定第m个参考位置的上行链路的实际信噪比。
SNR UL,m=EIRP UL+[G/T] UL-P Un-L 0,m-L 1,m;m=1…M;
其中,SNR UL,m表示第m个参考位置的上行链路的实际信噪比。
根据第m个参考位置的上行链路的实际信噪比SNR UL,m,以及预先保存的信噪比与频谱效率的对应关系,可以确定第m个参考位置的频谱效率η m
已知第m个参考位置的频谱效率η m和上行链路预设载波带宽BW UL,根据如下公式可以确定第m个参考位置的上行速率。
datarate m=BW ULm
其中,datarate m表示第m个参考位置的上行速率;BW UL表示上行链路预设载波带宽;η m表示第m个参考位置的频谱效率。
步骤S3033,根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
可选地,可以将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率,或者说,将预设的所有参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。采用计算公式表示如下:
datarate UL=datarate /M;
其中,datarate UL表示上行链路预设载波带宽支持的最大速率;datarate 表示预设的所有参考位置的上行速率之和;datarate =Σdatarate m;m=1…M。
在步骤S304中,得到上行链路预设载波带宽支持的最大速率之后,可以将上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。采用计算公式表示如下:
datarate max=datarate UL/N;
其中,datarate max表示终端支持的上行最大速率;N表示预设的最大支持并发用户数。
在步骤S305中,接收用户输入的终端拟支持的上行速率,判断所述终端拟支持的上行速率是否大于上述终端支持的上行最大速率;如果是,返回以 使用户重新输入的终端拟支持的上行速率;如果否,根据所述终端拟支持的上行速率确定终端的上行发送最大EIRP和/或上行发送最大带宽。
具体地,可以将计算得到的终端支持的上行最大速率展示给用户,以使用户根据终端支持的上行最大速率设置终端拟支持的上行速率,设置的终端拟支持的上行速率小于等于终端支持的上行最大速率即可。当用户输入的终端拟支持的上行速率datarate 实际≤datarate max时,根据所述终端拟支持的上行速率确定终端的上行发送最大EIRP和/或上行发送最大带宽。
进一步地,可以根据上行链路预设载波带宽支持的最大速率与终端拟支持的上行速率的比值,以及EIRP UL,确定终端的上行发送最大EIRP。具体地可以采用如下公式确定终端的上行发送最大EIRP。
EIRP 实际=EIRP UL-10*log10(datarate UL/datarate 实际);
其中,EIRP 实际表示终端的上行发送最大EIRP。
可以根据所述终端支持的上行速率与上行链路预设载波带宽支持的最大速率的比值,以及上行链路预设载波带宽,确定终端的上行发送最大带宽。具体地可以采用如下公式确定终端的上行发送最大带宽。
BW 实际=BW UL*(datarate 实际/datarate UL);
其中,BW 实际表示终端的上行发送最大带宽。
为了更便于理解本申请实施例提供的终端发送参数的确定方法,下面通过一个应用于LEO卫星移动通信系统中的具体应用实例详细说明终端发送参数的确定方法的执行过程。
对于LEO卫星移动通信系统,终端依据天线形态、等效天线口径的不同,会有多种类型。在具体应用实例中。以等效口径1m的相控阵天线终端类型为例来进行说明。卫星可以支持多个波束,假设卫星形成16个矩形波束,则卫星覆盖范围可用一些典型的参考位置来进行标记,例如中心波束中心(A点)、中心波束边缘(B点)、边缘波束中心(C点)和边缘波束边缘(D点),如图7所示。上述典型的参考位置最能代表小区的位置差异。需要说明的是,也可以选择其它的参考位置,参考位置的数量可以多于4个,也可以少于4个。 在进行链路预算时,同时考虑多个参考位置,有利于进行链路性能的综合分析。
建立卫星移动通信系统的链路预算表,如表1所示,为LEO卫星移动通信系统的链路预算示例表,该链路预算表涉及的条目可以包括基本参数、发送端参数、无线链路参数、接收端参数等关键信息。其中,基本参数可以包括频率、带宽、链路距离等;发送端参数包括EIRP等;无线链路参数包括路径损耗及其他损耗;接收端参数包括G/T、噪声功率、SNR、频谱效率、支持的速率等。
在链路预算表的各个参数中,频率、带宽、链路距离、发送端的EIRP和接收端的G/T为输入值,即已知参数,这些参数为预先设定的或通过测量可以得到的参数。路径损耗、其他损耗和接收端参数为需要经过计算得到的值。其中,路径损耗、其他损耗和的接收端的噪声功率、下行链路的SNR和下行链路的频谱效率属于中间计算值,接收端指出的速率为输出值。
表1
Figure PCTCN2020080708-appb-000001
在使用多载波的情况下,卫星针对各个载波使用不同的功率放大器,即各个载波的增益不同,因此各个载波的EIRP值不同。在本申请实施例中,链路预算按照单载波来进行。可以理解为,对于卫星支持的每个载波,均可以按照本申请实施例提供的方法计算。除了基本参数和无线链路参数等公共信息外,下行链路的计算依赖于卫星发送的EIRP和终端接收机的G/T,上行链路 的计算依赖于终端发送的EIRP和卫星接收机的G/T。对于一个确定的卫星移动通信系统,卫星发送的EIRP和卫星接收机的G/T是固定的,终端接收机的G/T也是固定的,例如,等效口径1m的相控阵天线的终端接收机的G/T为18dB/K。但终端发送的EIRP与需要支持的速率相关,是变化的。因此,对于下行链路,能够依据卫星支持的下行链路预设载波带宽来进行下行链路预算,获得下行链路的性能指标,如接收端的噪声功率、下行链路的信噪比、下行链路的频谱效率、支持的速率等参数。如表2所示,为1m口径相控阵天线的终端对应的下行链路预算示例表。
表2
Figure PCTCN2020080708-appb-000002
进行下行链路预算时,在A点、B点、C点和D点4个参考位置,卫星支持的单载波对应的频率、下行链路预设载波带宽和链路距离均为已知参数,发送端参数(卫星的发射功率EIRP DL,m)和接收端参数(终端接收机的G/T DL)也是已知参数。在此基础上,4个参考位置分别对应的其他损耗L 1,m可以通过测量后求和得到。
通过如下公式可以计算得到4个参考位置分别对应的路径损耗L 0,m
L 0,m=92.4+20log(d*f);其中,d为链路距离(km),f为载波的频率(GHz)。
通过如下公式可以计算得到各个参考位置对应的终端接收机的噪声功率P Dn
P Dn=-228.6+10*log(BW DL*10^6);其中,BW DL为下行链路预设载波带宽(MHz)。
已知上述各参数,根据如下公式可以确定4个参考位置分别对应的下行链路的信噪比。
SNR DL,m=EIRP DL,m+[G/T] DL-P Dn-L 0,m-L 1,m;m=A,…D。
如表3所示为解调门限表,通过上述下行链路预算过程,得到A点对应的下行链路的信噪比为11.6dB,B点对应的下行链路的信噪比为7.6dB,C点对应的下行链路的信噪比为8.2dB,D点对应的下行链路的信噪比为4.4dB。
表3
序号 频谱效率η(bps/Hz) SNR[dB]
1 0.0625 -9.2
2 0.125 -7.3
3 0.25 -4.7
4 0.5 -1.8
5 0.66 -0.5
6 0.8 0.5
7 1 1.7
8 1.2 2.9
9 1.34 3.7
10 1.5 4.5
11 1.6 5.1
12 1.66 5.6
13 1.75 6.3
14 2.01 7.8
15 2.1 8.2
16 2.4 9.5
17 2.67 11
18 2.7 11.6
对于上行链路,同样能够依据卫星支持的下行链路预设载波带宽进行链路预算,由于终端发送的EIRP是不确定的参数,因此可以采用如下两种方式进行上行链路预算以及确定终端发送参数。
第一种方式为:根据下行链路的信噪比来确定上行链路的预估信噪比。可选地,假设上行链路与下行链路具有相同的信噪比和频谱效率。对于A点、B点、C点和D点4个参考位置,在表2中已经计算得到每个参考位置对应的下行链路的信噪比SNR DL=[11.6,7.6,8.2,4.4]dB。在本实施例中,将每个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比 SNR UL’,m。在另一些实施例中,也可以将每个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比。
通过如下公式可以计算得到各个参考位置对应的卫星接收机的噪声功率P Un
P Un=-228.6+10*log(BW UL*10^6);其中,BW UL为上行链路预设载波带宽。
通过下述公式:
EIRP UL,m=-[G/T] UL+P Un+SNR UL’,m+L 0,m+L 1,m;m=A,…D;
可以计算得到每个参考位置的上行链路预设载波带宽对应的EIRP值EIRP UL,m,其中,[G/T] UL为卫星接收机的品质因数。通过上述公式计算得到的4个参考位置的上行链路预设载波带宽对应的EIRP值为EIRP UL,m=[61.5,59.5,61.5,59.5]dBW。
取4个参考位置的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP UL,即EIRP UL=61.5dBW。将EIRP UL=61.5dBW作为输入进行上行链路预算,得到每个参考位置的上行速率,如表4所示,为1m口径相控阵天线的终端对应的上行链路预算示例表。
表4
Figure PCTCN2020080708-appb-000003
进行上行链路预算的过程如下,将EIRP UL=61.5dBW作为每个参考位置对应的上行发送EIRP UL,根据如下公式:
SNR UL,m=EIRP UL+[G/T] UL-P Un-L 0,m-L 1,m;m=A,…D;
可以确定4个参考位置分别对应的上行链路的实际信噪比SNR UL,m。表3示出的解调门限表揭示了信噪比与频谱效率之间的对应关系,信噪比与频谱效率的对应关系可以是预先测定并保存的,表3仅截取了解调门限表的一部分。根据表3可以确定4个参考位置分别对应的频谱效率η m
已知4个参考位置分别对应的频谱效率η m和上行链路预设载波带宽BW UL,根据公式datarate m=BW ULm可以确定4个参考位置分别对应的上行速率,即表4中最后一行列出的支持的速率。
基于每个参考位置的上行速率,在给定并发用户数要求的情况下,能够确定此类终端支持的上行最大速率。如参照表4得到的每个参考位置的上行速率来计算终端支持的上行最大速率为(540+480+420+350)/4=448Mbps。根据终端拟支持的上行速率需要小于等于终端支持的上行最大速率,可以设置终端速率等级。根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率可以确定终端的上行发送最大EIRP和上行发送最大带宽,如表5所示,为终端拟支持的上行速率与发送参数示例表。
表5
Figure PCTCN2020080708-appb-000004
第二种方式为:根据预设的最低信噪比来确定上行链路的预估信噪比。在卫星波束中,边缘波束边缘相对于其他位置具有更低的接收信噪比,因此主要考虑边缘波束边缘位置的上行信噪比需要满足系统工作的最低信噪比SNR min,假设SNR min=0dB,则针对表2中的D点需要达到的上行信噪比SNR UL=0dB。由此通过公式EIRP UL,m=-[G/T] UL+P Un+SNR UL’,m+L 0,m+L 1,m; m=A,…D;能够计算出D点的发送EIRP UL=55.2dBW,将该值EIRP UL=55.2dBW作为输入来进行所有参考位置的上行链路预算,得到每个参考位置的上行速率,如表6所示,为1m口径相控阵天线的终端的SNR UL=0dB对应的上行链路预算示例表。
表6
Figure PCTCN2020080708-appb-000005
具体计算过程与上述第一种方式相同,在此不再赘述。最终确定4个参考位置分别对应的上行速率,如表6中最后一行列出的支持的速率。
同样,基于每个参考位置的上行速率,在给定并发用户数要求的情况下,能够确定此类终端支持的上行最大速率。如参照表6得到的每个参考位置的上行速率来计算终端支持的上行最大速率为(320+250+200+144)/4=228Mbps。根据终端拟支持的上行速率需要小于等于终端支持的上行最大速率,可以设置终端速率等级。根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率可以确定终端的上行发送最大EIRP和上行发送最大带宽。
本申请实施例提供了一种基于链路预算来确定卫星移动通信系统的终端发送参数的方法。一方面,该方法综合利用多个参考位置来联合确定终端的上行发送最大EIRP和上行发送最大带宽,使确定的终端发送参数更准确,更有利于满足系统指标。另一方面,该方法简便快捷,能够流程化地实现,易于开发相应的软件或工具。
与上述终端发送参数的确定方法基于同一发明构思,本申请实施例中还提供了一种终端发送参数的确定装置,由于该装置解决问题的原理与上述终端发送参数的确定方法相似,因此该装置可以参见上述方法实施例进行实施,重复之处不再赘述。
本申请实施例中提供的终端发送参数的确定装置可以实现在卫星上,也可以实现在卫星移动通信系统中的控制设备,如地面站、基站或控制中心的控制设备上。如图8所示,本申请实施例的一种终端发送参数的确定装置,包括处理器800、存储器801和收发机802;
处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。收发机802用于在处理器800的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器801代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器800中,或者由处理器800实现。在实现过程中,信号处理流程的各步骤可以通过处理器800中的硬件的集成逻辑电路或者软件形式的指令完成。处理器800可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位 于存储器801,处理器800读取存储器801中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器800,用于读取存储器801中的程序并执行:
确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值;
根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
可选的,所述处理器800具体执行:
根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比;或者
将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
可选的,所述处理器800具体执行:
根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
可选的,所述处理器800具体执行:
将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
可选的,所述处理器800具体执行:
根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
可选的,所述处理器800具体执行:
将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
可选的,所述处理器800具体执行:
将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
可选的,所述处理器800具体执行:接收用户输入的终端拟支持的上行速率;
判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
本申请实施例提供的终端发送参数的确定装置,先确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值,根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,根据上行链路预设载波 带宽支持的最大速率确定终端支持的上行最大速率,确定一个不大于所述终端支持的上行最大速率的终端拟支持的上行速率,根据终端拟支持的上行速率确定终端的上行发送参数。该方法可以快速且合理地确定终端的上行发送参数,使卫星移动通信系统中的控制设备根据得到的终端上行发送参数为终端分配相关资源,保障系统资源的合理利用。
与上述终端发送参数的确定方法基于同一发明构思,本申请实施例中还提供了一种终端发送参数的确定装置,由于该装置解决问题的原理与上述终端发送参数的确定方法相似,因此该装置可以参见上述方法实施例实施,重复之处不再赘述。
如图9所示,本申请实施例提供的一种终端发送参数的确定装置,包括如下模块:
信噪比确定模块91,用于确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
EIRP确定模块92,用于根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值;
链路支持速率确定模块93,用于根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
终端支持速率确定模块94,用于根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
终端发送参数确定模块95,用于根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
在一种可能的实现方式中,所述信噪比确定模块91还可以用于:
根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上 行链路的预估信噪比;或者
将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
在一种可能的实现方式中,所述EIRP确定模块92还可以用于:
根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
在一种可能的实现方式中,所述链路支持速率确定模块93还可以用于:
将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,所述链路支持速率确定模块93还可以用于:
根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
在一种可能的实现方式中,所述链路支持速率确定模块93还可以用于:
将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
在一种可能的实现方式中,所述终端支持速率确定模块94还可以用于:
将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
在一种可能的实现方式中,所述终端发送参数确定模块95还可以用于:
接收用户输入的终端拟支持的上行速率;
判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
本申请实施例提供的终端发送参数的确定装置,先确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值,根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,根据上行链路预设载波带宽支持的最大速率确定终端支持的上行最大速率,确定一个不大于所述终端支持的上行最大速率的终端拟支持的上行速率,根据终端拟支持的上行速率确定终端的上行发送参数。该方法可以快速且合理地确定终端的上行发送参数,使卫星移动通信系统中的控制设备根据得到的终端上行发送参数为终端分配相关资源,保障系统资源的合理利用。
本申请实施例提供一种计算机介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如上述实施例提供的任一项所述的一种终端发送参数的确定方法。
本申请实施例针对终端发送参数的确定方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种终端发送参数的确定方法的方案。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请实施例。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的 功能/动作的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种终端发送参数的确定方法,其特征在于,包括:
    确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
    根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的有效全向辐射功率EIRP值;
    根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
    根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
    根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
  2. 根据权利要求1所述的方法,其特征在于,所述确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比,包括:
    根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比;或者
    将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
  3. 根据权利要求1所述的方法,其特征在于,所述根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值,包括:
    根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
  4. 根据权利要求1所述的方法,其特征在于,所述根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率,包括:
    将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
    根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
    根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率,包括:
    根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
    根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
    根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
  6. 根据权利要求4所述的方法,其特征在于,所述根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率,包括:
    将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
  7. 根据权利要求1所述的方法,其特征在于,根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率,包括:
    将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
  8. 根据权利要求1所述的方法,其特征在于,所述根据用户输入的不大 于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽,包括:
    接收用户输入的终端拟支持的上行速率;
    判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
    如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
  9. 一种终端发送参数的确定装置,其特征在于,包括:处理器和存储器;
    所述处理器用于读取所述存储器中的计算机指令,执行:
    确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
    根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的有效全向辐射功率EIRP值;
    根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
    根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
    根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
  10. 根据权利要求9所述的装置,其特征在于,所述处理器具体执行:
    根据至少一个参考位置对应的卫星的发射功率和预设的终端接收机的品质因数,确定至少一个参考位置的下行链路的信噪比,并将至少一个参考位置的下行链路的信噪比作为对应参考位置的上行链路的预估信噪比或将至少一个参考位置的下行链路的信噪比与预设调整值的和作为对应参考位置的上行链路的预估信噪比;或者
    将预设的最低信噪比作为至少一个参考位置的上行链路的预估信噪比。
  11. 根据权利要求9所述的装置,其特征在于,所述处理器具体执行:
    根据链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率、 至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值。
  12. 根据权利要求9所述的装置,其特征在于,所述处理器具体执行:
    将得到的上行链路预设载波带宽对应的EIRP值中的最大值作为每个参考位置对应的上行发送EIRP;
    根据所述上行发送EIRP和上行链路预设载波带宽,确定至少一个参考位置的上行速率;
    根据至少一个参考位置的上行速率,确定上行链路预设载波带宽支持的最大速率。
  13. 根据权利要求12所述的装置,其特征在于,所述处理器具体执行:
    根据所述上行发送EIRP、链路损耗、预设的卫星接收机的品质因数、卫星接收机的噪声功率,确定至少一个参考位置的上行链路的实际信噪比;
    根据至少一个参考位置的上行链路的实际信噪比,确定至少一个参考位置的频谱效率;
    根据至少一个参考位置的频谱效率和上行链路预设载波带宽,确定至少一个参考位置的上行速率。
  14. 根据权利要求12所述的装置,其特征在于,所述处理器具体执行:
    将至少一个参考位置的上行速率的平均值作为上行链路预设载波带宽支持的最大速率。
  15. 根据权利要求9所述的装置,其特征在于,所述处理器具体执行:
    将所述上行链路预设载波带宽支持的最大速率与预设的最大支持并发用户数的比值作为终端支持的上行最大速率。
  16. 根据权利要求9所述的装置,其特征在于,所述处理器具体执行:
    接收用户输入的终端拟支持的上行速率;
    判断所述终端拟支持的上行速率是否大于所述终端支持的上行最大速率;
    如果否,根据所述终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
  17. 一种终端发送参数的确定装置,其特征在于,包括:
    信噪比确定模块,用于确定卫星波束对应的小区范围内至少一个参考位置的上行链路的预估信噪比;
    EIRP确定模块,用于根据至少一个参考位置的上行链路的预估信噪比,确定至少一个参考位置的上行链路预设载波带宽对应的EIRP值;
    链路支持速率确定模块,用于根据至少一个参考位置的上行链路预设载波带宽对应的EIRP值确定上行链路预设载波带宽支持的最大速率;
    终端支持速率确定模块,用于根据所述上行链路预设载波带宽支持的最大速率和预设的最大支持并发用户数,确定终端支持的上行最大速率;
    终端发送参数确定模块,用于根据用户输入的不大于所述终端支持的上行最大速率的终端拟支持的上行速率,确定终端的上行发送最大EIRP和/或上行发送最大带宽。
  18. 一种计算机介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求1~8任一项所述的一种终端发送参数的确定方法。
PCT/CN2020/080708 2019-06-13 2020-03-23 一种终端发送参数的确定方法和装置 WO2020248645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20823128.2A EP3985885A4 (en) 2019-06-13 2020-03-23 METHOD AND DEVICE FOR DETERMINING SEND PARAMETERS FROM A TERMINAL
US17/617,572 US11515934B2 (en) 2019-06-13 2020-03-23 Method and device for determining sending parameters of terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910510201.9 2019-06-13
CN201910510201.9A CN112087250B (zh) 2019-06-13 2019-06-13 一种终端发送参数的确定方法和装置

Publications (1)

Publication Number Publication Date
WO2020248645A1 true WO2020248645A1 (zh) 2020-12-17

Family

ID=73733288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080708 WO2020248645A1 (zh) 2019-06-13 2020-03-23 一种终端发送参数的确定方法和装置

Country Status (4)

Country Link
US (1) US11515934B2 (zh)
EP (1) EP3985885A4 (zh)
CN (1) CN112087250B (zh)
WO (1) WO2020248645A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978294B (zh) * 2022-07-29 2022-10-11 成都星联芯通科技有限公司 功率调整方法、装置、主站设备及小站设备
CN117375706B (zh) * 2023-12-04 2024-03-12 成都本原星通科技有限公司 一种面向接收端的低轨卫星星间干扰优化方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207711A (zh) * 2015-08-21 2015-12-30 施浒立 卫星通信信号的寄生传输和恢复方法
US20160285611A1 (en) * 2011-08-17 2016-09-29 CBF Networks, Inc. Radio with oobe victim detection
CN109803363A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法、通信装置和系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043199B2 (en) * 2001-06-06 2006-05-09 Hughes Network Systems Llc Uplink power control system for satellite communication system employing on-board satellite processing and fade estimation
US20020058477A1 (en) * 2000-09-28 2002-05-16 Chapelle Michael De La Return link design for PSD limited mobile satellite communication systems
US7054593B2 (en) * 2000-09-28 2006-05-30 The Boeing Company Return link design for PSD limited mobile satellite communication systems
US7437125B2 (en) * 2001-02-27 2008-10-14 The Boeing Company EIRP statistical calculation method
US6937952B2 (en) * 2001-07-12 2005-08-30 Ses Americom, Inc. Satellite carrier measurement system and method
JP3962377B2 (ja) 2003-03-24 2007-08-22 News株式会社 電子レンジ調理用システム容器
CN100387066C (zh) * 2003-04-07 2008-05-07 华为技术有限公司 一种上行业务资源调度的方法
CN101141184B (zh) * 2007-06-07 2012-01-11 中兴通讯股份有限公司 一种蜂窝小区前向可达速率的预测方法、装置及系统
US8576118B2 (en) * 2008-01-29 2013-11-05 Viasat, Inc. Satellite performance monitoring
US8483609B2 (en) * 2009-07-08 2013-07-09 Viasat, Inc. Interference resistant satellite link power control using uplink noise measurements
US9497715B2 (en) * 2011-03-02 2016-11-15 Blackbird Technology Holdings, Inc. Method and apparatus for addressing in a resource-constrained network
KR102008467B1 (ko) * 2012-12-27 2019-08-07 삼성전자주식회사 빔포밍 기반 무선 통신시스템의 상향링크 전력 제어 방법 및 장치
US9253727B1 (en) * 2015-05-01 2016-02-02 Link Labs, Inc. Adaptive transmission energy consumption
CN115734329A (zh) * 2016-09-28 2023-03-03 Idac控股公司 上行链路功率控制
US10917164B2 (en) * 2016-11-10 2021-02-09 Cable Television Laboratories, Inc. Systems and methods for ultra reliable low latency communications
US10656281B2 (en) * 2016-11-10 2020-05-19 Cable Television Laboratories, Inc. Systems and methods for interference detection in shared spectrum channels
CN106656301B (zh) * 2016-12-30 2019-07-16 西安电子科技大学 基于卫星轨道信息辅助最佳加权信噪比的中继选择方法
US10211909B2 (en) * 2017-06-30 2019-02-19 Qualcomm Incorporated Link adaptation with RF intermediary element
PE20201437A1 (es) * 2018-04-05 2020-12-09 Ntt Docomo Inc Equipo de usuario y aparato de estacion de base
WO2019216562A1 (ko) * 2018-05-11 2019-11-14 엘지전자 주식회사 파워 클래스 정보를 포함하는 능력 정보를 전송하는 방법 및 무선 장치
US10624038B2 (en) * 2018-05-14 2020-04-14 Lg Electronics Inc. Method for determining transmission power and a mobile communication device performing the method
EP3836644A4 (en) * 2018-08-10 2022-04-06 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR ADJUSTING THE UPLINK TRANSMISSION POWER OF A TERMINAL AND RECORDING MEDIUM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285611A1 (en) * 2011-08-17 2016-09-29 CBF Networks, Inc. Radio with oobe victim detection
CN105207711A (zh) * 2015-08-21 2015-12-30 施浒立 卫星通信信号的寄生传输和恢复方法
CN109803363A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法、通信装置和系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations on UL full Tx power", 3GPP TSG RAN WG1 #96BIS, R1-1904563, 12 April 2019 (2019-04-12), XP051699789, DOI: 20200611223036A *
CATT: "Self-evaluation on User Experienced Data Rate in Dense Urban-eMBB for LTE and NR", 3GPP TSG RAN WG1 MEETING #96BIS, R1-1904556, 12 April 2019 (2019-04-12), XP051699782, DOI: 20200612093933A *
ROHDE&SCHWARZ: "Testability of NR UE OFF power and minimum output power", 3GPP TSG RAN WG4 NR#3, R4-1709858, 1 March 2019 (2019-03-01), XP051331949, DOI: 20200612092959A *
SAMSUNG: "Considerations on UL full Tx power", 3GPP DRAFT; R4-1902252_ADHOC MOM_BEAM CORRESPONDENCE_V4_AFTERMONDAY,201903053RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 March 2019 (2019-03-01), Athens, Greece, XP051695859 *

Also Published As

Publication number Publication date
EP3985885A4 (en) 2022-11-30
EP3985885A1 (en) 2022-04-20
US20220209854A1 (en) 2022-06-30
CN112087250B (zh) 2021-10-29
CN112087250A (zh) 2020-12-15
US11515934B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2020164609A1 (en) Rsrp reporting methods for nr high resolution angle-based downlink positioning
US20150163080A1 (en) Method and device for determining available spectrums
WO2020248645A1 (zh) 一种终端发送参数的确定方法和装置
US20210410080A1 (en) Power Control Method and Power Control Apparatus
CN114073141A (zh) 在新无线电侧链路通信中排除和选择资源的用户设备和方法
CN104507160B (zh) 无线网络定位方法、接入点及定位服务器
CN111447001A (zh) 终端设备的上行功率控制方法以及装置
WO2021249559A1 (zh) 资源分配方法、装置、介质、网络设备及计算机程序产品
CN114614875B (zh) 重复传输次数确定方法与装置、终端和网络设备
WO2021022479A1 (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
CN104918328A (zh) 一种资源分配方法及基站控制器
US9794157B2 (en) Optimal open loop power control for random access channel
EP3079415B1 (en) Method, device and system for suppressing uplink background noise in indoor distributed system
US20180176867A1 (en) Headend device of distributed antenna system and signal processing method thereof
US20220124669A1 (en) Communication method and apparatus, device, system, and storage medium
US8265635B2 (en) Method for determining positioning accuracy based on origination and receiving terminals and positioning device and program therefor
WO2022022396A1 (zh) 一种波束确定方法及设备
CN113078973B (zh) 一种反无人机系统与cdma基站的干扰分析方法及系统
US7751777B2 (en) System and method for transmitting data in a communication network
WO2022214062A1 (zh) Pdcch监听方法与装置、终端和网络设备
CN107154819B (zh) 一种基于地理位置信息的卫星中继选择优化方法
CN115379547A (zh) 上行发射功率控制方法、装置、电子设备和存储介质
WO2021164375A1 (zh) 终端定位方法、服务器及存储介质
CN114679244A (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2022193757A1 (zh) 网络覆盖预测方法及其设备、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020823128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020823128

Country of ref document: EP

Effective date: 20220113